2,697 research outputs found

    Polar Mapper: a computational tool for integrated visualization of protein interaction networks and mRNA expression data

    Get PDF
    Polar Mapper is a computational application for exposing the architecture of protein interaction networks. It facilitates the system-level analysis of mRNA expression data in the context of the underlying protein interaction network. Preliminary analysis of a human protein interaction network and comparison of yeast oxidative stress and heat shock gene expression responses are addressed as case studies

    GENOME-SCALE METHYLATION ANALYSIS IN BLOOD AND TUMOR IDENTIFIES IMMUNE PROFILE, AGE ACCELERATION, AND DNA METHYLATION ALTERATIONS ASSOCIATED WITH BLADDER CANCER OUTCOMES

    Get PDF
    Bladder cancer patients receive frequent screening due to the high tumor recurrence rate (more than 60%). Nowadays, the conventional monitoring method relies on cystoscopy which is highly invasive and increases patient morbidity and burden to the health care system with frequent follow-up. As a result, it is urgent to explore novel markers related to the outcomes of bladder cancer. Immune profiles have been associated with cancer outcomes and may have the potential to be biomarkers for outcomes management. However, little work has been conducted to investigate the associations of immune cell profiles with bladder cancer outcomes. Here, I utilized the Illumina HumanMethylationEPIC array to measure DNA methylation profiles of peripheral blood and matched tumor tissues of bladder cancer cases recruited in a population-based cohort study in New Hampshire. Then, cell-type deconvolution was applied to quantify immune cell-type proportions, and three epigenetic clocks were estimated for calculating age acceleration. Cox proportional hazard models were performed to test the association of methylation-derived profiles with bladder cancer outcomes. The partDSA algorithm and a semi-supervised recursively partitioned mixture model were conducted to determine overall survival groups based on immune cell profiles, clinical variables, and DNA methylation level. We used an epigenome‐wide association study approach adjusting for immune cell profiles to identify CpG sites associated with the hazard of bladder cancer outcomes, and then, those identified CpG sites were used for enrichment analyses. Finally, we evaluated the association between circulating immune cell-type proportions with the cell-type proportions in the tumor microenvironment. We demonstrated that highly circulating CD4T memory and CD8T memory cell proportions were significantly associated with a decreased hazard of tumor recurrence or death, whereas high neutrophil cell proportion, NLR, and age acceleration were associated with an increased hazard of tumor recurrence or death. Collectively, we identified associations of methylation-derived immune profiles and age acceleration with bladder cancer outcomes that may facilitate the development of bladder cancer prognostic biomarkers

    Computational solutions for addressing heterogeneity in DNA methylation data

    Get PDF
    DNA methylation, a reversible epigenetic modification, has been implicated with various bi- ological processes including gene regulation. Due to the multitude of datasets available, it is a premier candidate for computational tool development, especially for investigating hetero- geneity within and across samples. We differentiate between three levels of heterogeneity in DNA methylation data: between-group, between-sample, and within-sample heterogeneity. Here, we separately address these three levels and present new computational approaches to quantify and systematically investigate heterogeneity. Epigenome-wide association studies relate a DNA methylation aberration to a phenotype and therefore address between-group heterogeneity. To facilitate such studies, which necessar- ily include data processing, exploratory data analysis, and differential analysis of DNA methy- lation, we extended the R-package RnBeads. We implemented novel methods for calculating the epigenetic age of individuals, novel imputation methods, and differential variability analysis. A use-case of the new features is presented using samples from Ewing sarcoma patients. As an important driver of epigenetic differences between phenotypes, we systematically investigated associations between donor genotypes and DNA methylation states in methylation quantitative trait loci (methQTL). To that end, we developed a novel computational framework –MAGAR– for determining statistically significant associations between genetic and epigenetic variations. We applied the new pipeline to samples obtained from sorted blood cells and complex bowel tissues of healthy individuals and found that tissue-specific and common methQTLs have dis- tinct genomic locations and biological properties. To investigate cell-type-specific DNA methylation profiles, which are the main drivers of within-group heterogeneity, computational deconvolution methods can be used to dissect DNA methylation patterns into latent methylation components. Deconvolution methods require pro- files of high technical quality and the identified components need to be biologically interpreted. We developed a computational pipeline to perform deconvolution of complex DNA methyla- tion data, which implements crucial data processing steps and facilitates result interpretation. We applied the protocol to lung adenocarcinoma samples and found indications of tumor in- filtration by immune cells and associations of the detected components with patient survival. Within-sample heterogeneity (WSH), i.e., heterogeneous DNA methylation patterns at a ge- nomic locus within a biological sample, is often neglected in epigenomic studies. We present the first systematic benchmark of scores quantifying WSH genome-wide using simulated and experimental data. Additionally, we created two novel scores that quantify DNA methyla- tion heterogeneity at single CpG resolution with improved robustness toward technical biases. WSH scores describe different types of WSH in simulated data, quantify differential hetero- geneity, and serve as a reliable estimator of tumor purity. Due to the broad availability of DNA methylation data, the levels of heterogeneity in DNA methylation data can be comprehensively investigated. We contribute novel computational frameworks for analyzing DNA methylation data with respect to different levels of hetero- geneity. We envision that this toolbox will be indispensible for understanding the functional implications of DNA methylation patterns in health and disease.DNA Methylierung ist eine reversible, epigenetische Modifikation, die mit verschiedenen biologischen Prozessen wie beispielsweise der Genregulation in Verbindung steht. Eine Vielzahl von DNA Methylierungsdatensätzen bildet die perfekte Grundlage zur Entwicklung von Softwareanwendungen, insbesondere um Heterogenität innerhalb und zwischen Proben zu beschreiben. Wir unterscheiden drei Ebenen von Heterogenität in DNA Methylierungsdaten: zwischen Gruppen, zwischen Proben und innerhalb einer Probe. Hier betrachten wir die drei Ebenen von Heterogenität in DNA Methylierungsdaten unabhängig voneinander und präsentieren neue Ansätze um die Heterogenität zu beschreiben und zu quantifizieren. Epigenomweite Assoziationsstudien verknüpfen eine DNA Methylierungsveränderung mit einem Phänotypen und beschreiben Heterogenität zwischen Gruppen. Um solche Studien, welche Datenprozessierung, sowie exploratorische und differentielle Datenanalyse beinhalten, zu vereinfachen haben wir die R-basierte Softwareanwendung RnBeads erweitert. Die Erweiterungen beinhalten neue Methoden, um das epigenetische Alter vorherzusagen, neue Schätzungsmethoden für fehlende Datenpunkte und eine differentielle Variabilitätsanalyse. Die Analyse von Ewing-Sarkom Patientendaten wurde als Anwendungsbeispiel für die neu entwickelten Methoden gewählt. Wir untersuchten Assoziationen zwischen Genotypen und DNA Methylierung von einzelnen CpGs, um sogenannte methylation quantitative trait loci (methQTL) zu definieren. Diese stellen einen wichtiger Faktor dar, der epigenetische Unterschiede zwischen Gruppen induziert. Hierzu entwickelten wir ein neues Softwarepaket (MAGAR), um statistisch signifikante Assoziationen zwischen genetischer und epigenetischer Variation zu identifizieren. Wir wendeten diese Pipeline auf Blutzelltypen und komplexe Biopsien von gesunden Individuen an und konnten gemeinsame und gewebespezifische methQTLs in verschiedenen Bereichen des Genoms lokalisieren, die mit unterschiedlichen biologischen Eigenschaften verknüpft sind. Die Hauptursache für Heterogenität innerhalb einer Gruppe sind zelltypspezifische DNA Methylierungsmuster. Um diese genauer zu untersuchen kann Dekonvolutionssoftware die DNA Methylierungsmatrix in unabhängige Variationskomponenten zerlegen. Dekonvolutionsmethoden auf Basis von DNA Methylierung benötigen technisch hochwertige Profile und die identifizierten Komponenten müssen biologisch interpretiert werden. In dieser Arbeit entwickelten wir eine computerbasierte Pipeline zur Durchführung von Dekonvolutionsexperimenten, welche die Datenprozessierung und Interpretation der Resultate beinhaltet. Wir wendeten das entwickelte Protokoll auf Lungenadenokarzinome an und fanden Anzeichen für eine Tumorinfiltration durch Immunzellen, sowie Verbindungen zum Überleben der Patienten. Heterogenität innerhalb einer Probe (within-sample heterogeneity, WSH), d.h. heterogene Methylierungsmuster innerhalb einer Probe an einer genomischen Position, wird in epigenomischen Studien meist vernachlässigt. Wir präsentieren den ersten Vergleich verschiedener, genomweiter WSH Maße auf simulierten und experimentellen Daten. Zusätzlich entwickelten wir zwei neue Maße um WSH für einzelne CpGs zu berechnen, welche eine verbesserte Robustheit gegenüber technischen Faktoren aufweisen. WSH Maße beschreiben verschiedene Arten von WSH, quantifizieren differentielle Heterogenität und sagen Tumorreinheit vorher. Aufgrund der breiten Verfügbarkeit von DNA Methylierungsdaten können die Ebenen der Heterogenität ganzheitlich beschrieben werden. In dieser Arbeit präsentieren wir neue Softwarelösungen zur Analyse von DNA Methylierungsdaten in Bezug auf die verschiedenen Ebenen der Heterogenität. Wir sind davon überzeugt, dass die vorgestellten Softwarewerkzeuge unverzichtbar für das Verständnis von DNA Methylierung im kranken und gesunden Stadium sein werden

    A Review on Machine Learning and Deep Learning Techniques Applied to Liquid Biopsy

    Get PDF
    For more than a decade, machine learning (ML) and deep learning (DL) techniques have been a mainstay in the toolset for the analysis of large amounts of weakly correlated or high-dimensional data. As new technologies for detecting and measuring biochemical markers from bodily fluid samples (e.g., microfluidics and labs-on-a-chip) revolutionise the industry of diagnostics and precision medicine, the heterogeneity and complexity of the acquired data present a growing challenge to their interpretation and usage. In this chapter, we attempt to review the state of ML and DL fields as applied to the analysis of liquid biopsy data and summarise the available corpus of techniques and methodologies

    Bioinformatic analysis and deep learning on large-scale human transcriptomic data: studies on aging, Alzheimer’s neurodegeneration and cancer

    Get PDF
    [ES] El objetivo general del proyecto ha sido el análisis bioinformático integrativo de datos múltiples de proteómica y genómica combinados con datos clínicos asociados para la búsqueda de biomarcadores y módulos poligénicos causales aplicado a enfermedades complejas; principalmente, cáncer de origen primario desconocido, en sus distintos tipos y subtipos y enfermedades neurodegenerativas (ND) mayormente Alzheimer, además de neurodegeneración debida a la edad. Además, se ha hecho un uso intensivo de técnicas de inteligencia artificial, más en concreto de técnicas de redes neuronales de aprendizaje profundo para el análisis y pronóstico de dichas enfermedades

    Big Data and Causality

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Causality analysis continues to remain one of the fundamental research questions and the ultimate objective for a tremendous amount of scientific studies. In line with the rapid progress of science and technology, the age of big data has significantly influenced the causality analysis on various disciplines especially for the last decade due to the fact that the complexity and difficulty on identifying causality among big data has dramatically increased. Data mining, the process of uncovering hidden information from big data is now an important tool for causality analysis, and has been extensively exploited by scholars around the world. The primary aim of this paper is to provide a concise review of the causality analysis in big data. To this end the paper reviews recent significant applications of data mining techniques in causality analysis covering a substantial quantity of research to date, presented in chronological order with an overview table of data mining applications in causality analysis domain as a reference directory
    corecore