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Abstract 

Bladder cancer patients receive frequent screening due to the high tumor 

recurrence rate (more than 60%). Nowadays, the conventional monitoring 

method relies on cystoscopy which is highly invasive and increases patient 

morbidity and burden to the health care system with frequent follow-up. As a 

result, it is urgent to explore novel markers related to the outcomes of bladder 

cancer. Immune profiles have been associated with cancer outcomes and may 

have the potential to be biomarkers for outcomes management. However, little 

work has been conducted to investigate the associations of immune cell profiles 

with bladder cancer outcomes. Here, I utilized the Illumina 

HumanMethylationEPIC array to measure DNA methylation profiles of 

peripheral blood and matched tumor tissues of bladder cancer cases recruited in 

a population-based cohort study in New Hampshire. Then, cell-type 

deconvolution was applied to quantify immune cell-type proportions, and three 

epigenetic clocks were estimated for calculating age acceleration. Cox 

proportional hazard models were performed to test the association of 

methylation-derived profiles with bladder cancer outcomes. The partDSA 

algorithm and a semi-supervised recursively partitioned mixture model were 

conducted to determine overall survival groups based on immune cell profiles, 

clinical variables, and DNA methylation level. We used an epigenome-wide 

association study approach adjusting for immune cell profiles to identify CpG 

sites associated with the hazard of bladder cancer outcomes, and then, those 

identified CpG sites were used for enrichment analyses. Finally, we evaluated 
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the association between circulating immune cell-type proportions with the cell-

type proportions in the tumor microenvironment. We demonstrated that highly 

circulating CD4T memory and CD8T memory cell proportions were 

significantly associated with a decreased hazard of tumor recurrence or death, 

whereas high neutrophil cell proportion, NLR, and age acceleration were 

associated with an increased hazard of tumor recurrence or death. Collectively, 

we identified associations of methylation-derived immune profiles and age 

acceleration with bladder cancer outcomes that may facilitate the development 

of bladder cancer prognostic biomarkers. 
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Chapter 1 

Introduction 

1.1 Bladder cancer 
 

1.1.1. Clinical and pathological basis 

Bladder cancer, also known as urological cancer or urinary bladder cancer, is a 

highly heterogeneous epithelial malignancy and urothelial carcinoma accounts 

for 90% of bladder cancers. The remaining 10% of bladder cancers are  

squamous cell carcinoma, adenocarcinoma, and small cell carcinoma [1]. 

Urothelial carcinoma represents 3% of new cancer diagnoses making bladder 

cancer the twelfth most common cancer worldwide [2]. In the United States, an 

estimated 17,100 people will die from bladder cancer and there will be 81,180 

new cases in 2023. In the United States, bladder cancer is the fourth most 

common cancer in men and the twelfth most common cancer in women [3]. The 

major risk factor for bladder cancer is tobacco, accounting for two-thirds of all 

bladder cancer. Smokers have a two to three-fold increased risk of developing 

the disease [4]. Since the smoking prevalence is higher in men than in women, 

bladder cancer is approximately three-fold more common in men [5]. Other risk 

factors include age, occupational exposure, diet, BMI, pathogens, genetics, and 

heredity [6], [7]. 

Bladder cancers are categorized as either muscle-invasive bladder cancer 

(MIBC) or non-muscle-invasive bladder cancer (NMIBC). Approximately 75% 

of patients suffer from NMIBC, while 25% are diagnosed with MIBC [8]. 
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According to the European Association of Urology guidelines, NMIBC is 

characterized by the restriction to the mucosa (stages Tis and Ta) or with invasion 

only into the underlying lamina propria (stage T1), without invasion into other 

muscle layers. Conversely, MIBC is defined as bladder cancer that has spread 

into or through the deeper layers of the bladder, such as muscle (stage T2), or 

perivesical organs (stages T3 and T4; stages are under the TNM classification 

system) [9]. Typically, patients with NMIBC have a better prognosis compared 

with MIBC patients (5-year survival rate is around 70% and 50% respectively) 

[10], [11]. Despite high survival rates in NMIBC patients, they have a high 

recurrence rate (> 50%) even with treatments [12]. 

In addition to pathological characteristics, with the development of 

sequencing, genetic and transcription-based molecular tumor subtyping has been 

reported to improve disease classification [13]. For example, bladder cancer 

patients, including NMIBC and MIBC, have been classified into six molecular 

subtypes based on gene signaling (WNT, ERBB2, FGFR3, ALK, MAPK, and 

PD1), with significant differences in overall survival [14]. A combination of 

pathological parameters with molecular information is now believed to benefit 

the comprehensive evaluation for the diagnosis, treatment, and prognosis of 

bladder cancer. 

 

1.1.2. Diagnosis, treatment, and monitoring 

Early detection is the best way to improve bladder cancer survival if the cancer 

has not spread to other tissues. Hematuria, blood in the urine, is the most 
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common symptom of bladder cancer, present in nearly 85% of bladder cancer 

patients [15]. Diagnosis is only done with a biopsy and histopathological review. 

During the process, the urologist uses a cystoscope to examine the bladder to see 

if any abnormal tissue can be observed. If abnormal tissue is found, transurethral 

resection of bladder tumor (TURBT) would be performed and tissue samples 

would be histologically evaluated by a pathologist to determine the need for 

further surgery or other treatments [16]. Cystoscopy is a highly invasive 

surveillance method and patients often receive repeated screening to manage 

recurrences, resulting in discomfort, high morbidity, and the burden of health 

care costs for patients [7]. Hence, it is urgent to find out an ideal monitoring test 

that is less invasive, affordable, and high-performance in clinical practice. 

According to the examination of clinical factors, such as tumor grade, size, 

and the location of the primary tumor site, patients receive different treatments. 

Generally, the initial treatment step is performing TURBT of visible tumors [17]. 

Following TURBT, depending on how deeply tumors have grown into the layers 

of the bladder or possible side effects, patients would receive other treatments, 

including intravesical immunotherapy, chemotherapy, radiation therapy and/or 

cystectomy, to control tumor recurrence and progression [18]. Intravesical 

Bacillus Calmette-Guérin (BCG) immunotherapy is the gold-standard treatment 

after surgery for patients with early-stage or non-muscle-invasive cancers [19]–

[21]. Through a catheter, BCG is delivered into the bladder and affects the cells 

lining the bladder directly. The main effect of BCG is to induce the activation of 

immune cells to attack bladder cancer cells [22]. Despite response to initial 
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therapy, around 50% of NMIBC patients still suffer from recurrent tumors [12], 

[23]. When patients present with muscle-invasive bladder cancer or their tumors 

are BCG-unresponsive, radical cystectomy and immunotherapy with checkpoint 

inhibitors would be offered to lower the risk of recurrence and progression [24], 

[25]. 

There are many monitoring tests used for bladder cancer recurrence after 

treatments, such as urinalysis (urine cytology and urinary molecular marker 

tests), cystoscopy, and computed tomography urography. Urine cytology uses a 

microscope to identify cancer cells in bladder-washing specimens or urine 

samples from normal urination, and is often accompanied by other urine tests 

using molecular analysis [9]. Although urinalysis can assist to detect bladder 

cancers, it has not been recognized as the only routine monitoring test due to its 

unstable accuracy and sensitivity [26], [27]. 

 

1.2 Association of immune cells with cancer 
 

1.2.1. Immune cell profiles 

Among all cells in the peripheral blood, around 0.1 percent of blood cells are 

leukocytes comprised of granulocytes, monocytes, and lymphocytes. The 

leukocytes in peripheral blood derive from the hematopoietic stem cells (HSCs) 

in the bone marrow, where many of them mature. HSCs are multipotent primitive 

cells that can produce and differentiate into all lineage blood cells. Initially, 

HSCs give rise to intermediate progenitor cells of platelets, red blood cells, 
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myeloid progenitors, and lymphoid progenitors. These intermediate progenitors 

have lineage-committed properties before maturation. After release from the 

bone marrow, HSCs and intermediate progenitor cells circulate throughout the 

body by blood and lymph to reach the thymus, spleen, liver, or lymph nodes for 

further development and maturation [28]. The lineage relationships of the 

different types of immune cells are shown in Figure 1.1. 

 Myeloid progenitors are the precursor of monocytes and granulocytes. 

Monocytes represent around 10% of the nucleated cells in the blood in the 

healthy human body, and their main function includes phagocytosis, antigen 

presentation, cytokine secretion, and differentiation into dendritic cells and 

macrophages [29]. Dendritic cells play a critical role in detecting infection, 

presenting antigens, and inducing a primary immune response by the activation 

of naïve T cells [30]. Macrophages are responsible for engulfing and digesting 

pathogens, such as cellular debris and cancer cells [31]. Besides, macrophages 

can regulate immunity, for instance, initiating adaptive immunity by presenting 

antigens to T cells or releasing cytokines to suppress immune reactions [32]. 

 There are four types of granulocytes: mast cells, basophils, eosinophils, and 

neutrophils. Mast cells involve in bacterial, parasitic, and viral clearance and 

immune tolerance and are able to present antigens and regulate the activation 

and migration of dendritic cells to lymph nodes [33]. Basophils protect human 

body against allergens, bacteria, and parasites through releasing histamine and 

prostaglandins to induce the inflammatory response [34]. Eosinophils are a 

circulating granulocyte and own multi-function, including parasites prevention, 
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lymphocyte recruitment, antigens presentation, and helper T cell polarization 

[35]. Neutrophils, the most common type of leukocyte, are the first immune cells 

to respond to eliminate the invading pathogens by phagocytosis, degranulation, 

and the formation of neutrophil extracellular traps. They can both upregulate and 

downregulate inflammation and the immune system by producing cytokines 

under different situations [36]. 

Lymphoid progenitors differentiate into three types of lymphocytes, T cells, 

B cells, and natural killer (NK) cells. This process is called lymphopoiesis. Once 

lymphocytes complete maturation, they enter circulation and migrate to protect 

tissues from disease-causing pathogens and abnormal cells, such as cancer cells. 

Peripheral lymphocytes are approximately 70 to 85 percent T cells and 5 to 10 

percent B cells, and 5 to 20 percent NK cells [37]. These three types of 

lymphocytes correspond to innate and adaptive immune cells. 

 

 

Figure 1.1: Immune cell lineage. Adapted from Peprotech Inc, 2021. Schematic 
illustration displayed hematopoiesis of leukocyte. Hematopoietic stem cells have 
differentiation capability into leukocyte lineages. 
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T cells play a crucial role in the adaptive immune. There are two main 

classes of T lymphocytes, cytotoxic T cells (CD8T) and helper T cells (CD4T). 

CD8T cells are important for the defense against virus-infected cells as well as 

tumor cells through the secretion of cytotoxic granules and cytokines, such as 

TNF-α [38]. Resting CD8T naïve cells normally circulate between the blood and 

lymphoid organs. During viral infection or tumor formation, naïve CD8T cells 

are primed and activated by antigen-presenting cells, differentiating into effector 

CD8T cells and memory CD8T cells [38]. After the clearance of pathogens and 

tumor cells, most effector CD8 T cells die but memory CD8T cells that are 

antigen-specific remain in the circulation and tissues and provide an enhanced 

protective response to control secondary infections more rapidly [39]. The main 

function of CD4T cells is immune response regulation, such as the activation of 

memory B cells and effector CD8T cells. With antigenic stimulation through 

antigen-presenting cells, naïve CD4T cells proliferate and differentiate into 

specific effector cells based on the cytokine milieu [40]. For now, at least seven 

functionally distinct subsets of effector CD4T cells have been observed to 

balance adaptive immunity. After the clearance of threats, a small proportion of 

CD4T cells survive and differentiate into memory CD4T cells for expanding to 

large numbers of effector cells once re-exposure to threats [41]. Besides the 

activation of memory and effector cells, one of the subsets of CD4T cells, 

regulatory T cells, is able to suppress T cell-mediated immunity for the 

maintenance of immunologic tolerance [42]. 

B cells are responsible for the humoral immunity of the adaptive immune 
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system. When harmful pathogens or abnormal cells emerge in the body, naïve B 

cells are able to recognize antigens on harmful agents and then differentiate into 

plasma cells and memory B cells with the assistance of follicular dendritic cells 

and T follicular helper cells [43]. Plasma cells produce protective antibodies in 

response to antigens and memory B cells are able to respond to reinfection with 

pathogens and tumor recurrence in the future [43]. NK cells are lymphocyte-like 

cells and are part of the innate immune system. They can recognize and kill 

abnormal cells, such as tumor cells, and intracellular pathogens by releasing 

cytotoxic granules, limiting the spread of tumors and microbial infections [44]. 

 

1.2.2. Immune system with bladder cancer development 

Immunotherapy, such as BCG and immune checkpoint inhibitors (ICI), are the 

most common treatments after TURBT surgery to suppress the tumor relapse. 

BCG, a live attenuated strain of Mycobacterium bovis, activates the immune 

system to prevent or delay bladder cancer from becoming invasive or relapsing 

after surgery [45]. Many mechanisms of BCG have been proposed. For example, 

BCG generates pathogen-associated molecular patterns, such as toll-like 

receptors expressed on monocytes, B and, T cells, recognized by host pattern 

recognition receptors, inducing the production of proinflammatory cytokines 

[46]. In addition, innate immune cells, such as macrophage and NK cells, 

demonstrate increased cytotoxicity against BCG-infected bladder cancer cells 

[47], [48]. With BCG treatment, dendritic cells can process antigens and present 

them to recruit and activate tumor-specific CD4 and CD8T cells [49]. A recent 
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study has demonstrated that BCG stimulation induces epigenetic changes in 

innate immune cells, resulting in enhanced cytokine secretion [50]. 

Several studies have demonstrated that resistance to intravesical BCG 

therapy is associated with upregulated PD-L1 expression at the surface of cancer 

cells, including bladder cancer [51], [52]. The interaction of PD-1 and its ligand, 

PD-L1, downregulates the immune response to protect from autoimmune 

damage in normal conditions [53], [54]. Tumor cells exploit PD-1- PD-L1 

pathway to inhibit proapoptotic and escape immunity, such as CD8T cell-

mediated cytotoxicity [55]. The function of ICI drugs is to block the interaction 

of PD-1 and its ligand, promoting the immune system to attack cancer cells [56]. 

However, only 30% of metastatic urothelial carcinoma patients are sensitive to 

the checkpoint inhibitor and BCG treatments, and the remaining 70% of patients 

have cancer cells that are able to escape immune detection eventually leading to 

poor outcomes. Further understanding of the interaction between the immune 

system and bladder cancer cells is needed to improve prognostication and for 

developing novel treatments [56]. 

During tumor development, bladder cancer cells have been shown to 

modulate the immune system, creating a tolerant microenvironment. Bladder 

cancer cells overexpress sphingosine-1-phosphate receptor-1 to promote the 

expression of TGF-β and IL-10, inducing regulatory T-cell (Treg) expansion in 

the tumor microenvironment [57]–[59]. Abundant infiltrated Treg cells suppress 

the activation of cytotoxic T cells [60]. Similar to Treg cells, myeloid-derived 

suppressor cells (MDSCs) are one of the suppressor cell subsets that exhibit 
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immunosuppressive effects [61] and assist tumor maintenance [62]. Bladder 

cancers are able to secret CXC-chemokine ligand 2 (CXCL2) to recruit MDSCs 

[63]. Both abundant Treg and MDSC infiltration was reported to be associated 

with a poor prognosis [60], [63]–[65]. 

Multiple studies show that bladder cancer cells produce CCL2, IL-10, and 

TGF-β polarizing tumor-associated macrophages (TAM) into M2-like 

macrophages that are characterized by an immunosuppressive and anti-

inflammatory phenotype [66]–[69]. High infiltration of M2-like TAM was 

associated with a poor outcome in bladder cancer patients [70], [71]. In addition 

to infiltrating immune profiles, a few immune cell types in blood have also been 

indicated to involve in immune modulation. Neutrophils have been found in 

higher proportions in peripheral blood and tumor microenvironment and have 

immunosuppressive properties in bladder cancer patients [72]. Also, high 

neutrophil-to-lymphocyte ratio (NLR) in peripheral blood has been associated 

with worse outcomes for bladder cancer patients [73]–[75]. Based on the above 

studies, future investigations are needed to uncover mechanisms of 

immunosuppression involved in bladder cancer development and recurrence to 

improve and/or design therapeutic strategies. 

 

1.3 DNA methylation 
 

1.3.1. Regulation of gene expression 

DNA methylation is an epigenetic mark and a covalent modification of DNA 
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involving the addition of a methyl group to the C-5 position of the cytosine ring 

in the cytosine-phosphate-guanine (CpG) of DNA to form 5-methylcytosine 

through DNA methyltransferases (DNMTs) (Figure 1.2). Without changing 

DNA sequences, DNA methylation can recruit proteins related with gene 

expression or inhibit transcription factors binding to regulate biological 

phenotypes and activities [76]. 

 

 

Figure 1.2: Cytosine is modified to 5-methylcytosine by DNA methyltransferase 
 

In mammals, DNA methylation occurs at CpG dinucleotides distributed 

unevenly throughout the entire genome [77]. Regions with a high frequency of 

CpG sites, known as the CpG islands, are stretches of DNA with a higher than 

expected concentration of CpG sites and are typically hypomethylated [78]. In 

addition to CpG islands, CpG genomic context can be defined into a few regions. 

Shores are the regions flanking CpG islands and are located as far as 2 kb from 

CpG islands; shelves are regions from 2 to 4 kb from CpG islands; open seas are 

the rest of the genome and commonly overlap with enhancer regions [79]. Most 

of the known genes have a CpG island within the promoter region. 
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The impact of DNA methylation on gene regulation is dependent on 

genomic context. Generally, DNA methylation of gene promoter and enhancer 

regions leads to the repression of gene expression due to impeding the binding 

of activating transcription factors [80]. Contrary to promoter and enhancer 

methylation, the methylation of the gene body might not only stimulate 

transcription but impact splicing [81]. However, some studies have reported that 

gene body methylation is not associated with increased gene expression in non-

dividing and slowly dividing cells [82]. As a result, the association of DNA 

methylation with gene regulation at different regions relative to genes still needs 

further exploration, and may be cell-type-dependent. 

Because DNA methylation modulates gene expression, many studies have 

investigated the association of methylation with various phenotypic traits and 

clinical characteristics. For instance, DNA repair genes with hypermethylated 

promoters result in the accumulation of DNA damage, promoting early steps in 

cancer progression [83]. In recent years, age has been associated with DNA 

methylation [84], [85], and improvements in high-throughput arrays measuring 

methylation led to the development of accurate age estimators [86]–[88]. Due to 

the cell type-specific differences in DNA methylation profiles, each cell type has 

developed its specific phenotypes and functions. With this understanding, 

several studies had utilized the differentially methylated DNA regions (DMRs) 

to estimate distinct cell lineages with high sensitivity and specificity [89], [90]. 

 

1.3.2. Measurement of DNA methylation 
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DNA methylation can be measured through different methods. The well-known 

approaches are dependent on the conversion of genomic DNA by using sodium 

bisulfite. In brief, during sodium bisulfite treatment, unmethylated cytosines are 

deaminated to uracils, while methylated cytosines are preserved. After bisulfite 

conversion, whole genome amplification results in uracils being replaced by 

thymine, whereas methylated cytosines remain cytosines [91], [92]. 

The signal of the amplified products of bisulfite-treated DNA can be 

quantified using whole genome bisulfite sequencing and high-density microarray. 

In this thesis, we rely on the microarray, Illumina Infinium MethylationEPIC 

BeadChip (EPIC) [91], to measure methylation. The EPIC array is able to 

interrogate around 860,000 CpG sites. The fluorescence signals from the EPIC 

array are converted into methylation beta values representing the methylation 

levels for further analyses. 

 

1.4 DNA methylation-derived variables 
 

1.4.1. Cell type deconvolution from DNA methylation 

Even though cells throughout the body have the same DNA sequences, they 

generally display different phenotypes. Numerous studies show that, in 

mammals, a specific cell type expresses a specific subset of protein coding genes 

for required functions and silences others through DNA methylation [93], [94], 

controlling cell identity in development. Hence, each tissue and cell type exhibits 

differences in epigenetic modifications of DNA at genomic regions that result in 
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the unique DNA methylation profile of each cell type [95]. Therefore, 

researchers can leverage this biological feature to differentiate cells types from 

different tissues or within a tissue [96]. 

 Bulk tissue specimens comprise a heterogeneous mixture of different cell 

types. Since the DNA methylation measurement of a specimen is an average 

level across all cells in the sample, the measured results reflect cell-type specific 

methylation profiles according to the proportion of component cell types. If we 

investigate differentially methylated regions (DMRs) associated with 

phenotypes or outcomes of interest without controlling for the cellular 

composition, detected changes will be confounded by cell-type variation among 

subjects [97]. Therefore, it is important to adjust for cellular composition during 

the analyses of DNA methylation profiles. The cellular composition can be 

estimated using DNA methylation profiles from bulk specimens [98], [99]. The 

cell-type deconvolution method was first developed in 2012 [90].  

Compared with traditional methods, such as flow cytometry, DNA 

methylation-based cell type deconvolution has the following advantages: (1) it 

does not require fresh samples because it is a DNA-based method, (2) it is 

objective, and (3) DNA methylation-based deconvolution can estimate several 

distinct immune cell types at once [98]. With cell-type deconvolution approaches, 

it is possible to explore the cellular composition in archived samples [100]. For 

cancer studies, peripheral blood and tumor tissue are the two types of specimens 

used most. In recent years, a lot of advanced deconvolution methods were 

developed to infer the cellular composition of blood and tumor 
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microenvironment based on methylation profiles and the latest microarray 

platform, making researchers able to compare cell-type proportions between 

cases and controls and control for cell-type mixtures in outcome analyses [89], 

[101], [102]. 

 

1.4.2. DNA methylation age clock 

Understanding why and how we age is a critical question in biology. A lot of 

mechanisms and molecular hallmarks have been identified that are associated 

with aging, including telomere length, metabolomic variations, and epigenetic 

changes [103], [104]. Among these biomarkers, DNA methylation is the most 

promising to estimate an individual's age since methylation alterations are 

conspicuous across an individual's lifespan [105]–[107] and the changes are 

measured accessibly with the development of high-throughput arrays [84], [108]. 

With high-solution data, highly correlated (r > 0.8) age estimators, called DNA 

methylation clocks, were constructed and may reflect biological aging [87], [88], 

[109], [110]. There are two types of DNA methylation clocks, chronological 

DNA methylation clock and biological DNA methylation clock. 

 For chronological DNA methylation clock, the algorithm selects CpG sites 

associated with chronological age and this type methylation clock reflects age-

related DNA methylation alterations shared between individuals [86]. The well-

known chronological DNA methylation clocks are the Horvath clock [87] and 

Hannum clock [88]. The Horvath clock composed of 353 CpG sites was trained 

on various cell and tissue types and hence not confounded by cell and tissue-
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specific alterations [106]. The Hannum clock was constructed on blood samples 

and consists of 71 CpG sites. These chronological DNA methylation clocks are 

powerful for predicting actual age, however, they only can capture associations 

with mortality at a population level, not an individual level [111]. 

 Although chronological DNA methylation clocks can predict forensic age 

with high accuracy, they lose some variabilities for estimating associations of 

biological aging [112]. As a result, biological DNA methylation clock was 

developed to investigate biological age more directly. Unlike chronological 

clocks, the algorithm of biological clocks selects CpG sites associated with aging 

phenotype and biological clocks reflect the inter-individual variability in DNA 

methylation alterations related to aging decline and disease [86]. The most 

popular biological clock is PhenoAge which is a blood-based biological clock 

comprised of ten measures, such as chronological age, mean cell volume, and 

lymphocyte percent [113]. In general, biological DNA methylation clocks 

outperform chronological DNA methylation clocks in predicting mortality risk 

by cancer, health span, and physical function [113], [114]. 

 Each reported DNA methylation clock has its own strengths and weaknesses. 

It is critical to understand which DNA methylation clock would be suitable for 

interpreting the association of aging with health outcomes. While the DNA 

methylation clock is a new research field and is much promise for improved 

human health, there are more challenges, such as no gold standard of biological 

aging, limited sample size, and under-exploration of the association between 

other DNA modifications and age, waiting for us to overcome [115]. 
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1.5 Summary 

In the subsequent dissertation, I present an independent investigation of DNA 

methylation and its derived factors in bladder cancer with an urgent need for 

less-invasive prognostic biomarkers. First, I assess the association of six 

methylation-derived immune cell-type proportions, including monocyte, 

neutrophil, NK, CD4T, CD8T, and B cell, in the circulating system with overall 

survival and recurrence-free survival in NMIBC patients. Then, an epigenome-

wide association study (EWAS) is conducted to identify CpG sites associated 

with tumor outcomes. Next, I investigate the association of age acceleration and 

immune cell-type proportions, such as memory, naïve T and B cells, and 

granulocyte subtypes, estimated from the latest cell-type deconvolution library 

with bladder cancer outcomes. Finally, I explore the association between 

immune profiles from both peripheral blood and tumor tissue. This work 

provides implications for improving the development of bladder cancer 

prognostic biomarkers. 
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2.1 Abstract 

Non-muscle-invasive bladder cancer (NMIBC) patients receive frequent 

monitoring because ≥ 70% will have recurrent disease. However, screening is 

invasive, expensive, and associated with significant morbidity making bladder 
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cancer the most expensive cancer to treat per capita. There is an urgent need to 

expand the understanding of markers related to recurrence and survival outcomes 

of NMIBC. We used the Illumina HumanMethylationEPIC array to measure 

peripheral blood DNA methylation profiles of NMIBC patients (N = 603) 

enrolled in a population-based cohort study in New Hampshire and applied cell 

type deconvolution to estimate immune cell-type proportions. Using Cox 

proportional hazard models, we identified that increasing CD4T and CD8T cell 

proportions were associated with a statistically significant decreased hazard of 

tumor recurrence or death (CD4T: HR = 0.98, 95% CI = 0.97 – 1.00; CD8T: HR 

= 0.97, 95% CI = 0.95 – 1.00), whereas increasing monocyte proportion and 

methylation-derived neutrophil-to-lymphocyte ratio (mdNLR) were associated 

with the increased hazard of tumor recurrence or death (monocyte: HR = 1.04, 

95% CI = 1.00 – 1.07; mdNLR: HR = 1.12, 95% CI = 1.04 – 1.20). Then, using 

an epigenome-wide association study (EWAS) approach adjusting for age, sex, 

smoking status, BCG treatment status, and immune cell profiles, we identified 

2528 CpGs associated with the hazard of tumor recurrence or death (P < 0.005). 

Among these CpGs, the 1572 were associated with an increased hazard and were 

significantly enriched in open sea regions; the 956 remaining CpGs were 

associated with a decreased hazard and were significantly enriched in enhancer 

regions and DNase hypersensitive sites. Our results expand on the knowledge of 

immune profiles and methylation alteration associated with NMIBC outcomes 

and represent a first step toward the development of DNA methylation based 

biomarkers of tumor recurrence. 



 20 

 

2.2 Introduction 

In 2021, the estimated number of bladder cancer deaths is projected to be 17,200, 

with an estimated number of new cases of 83,730 in the USA. Bladder cancer is 

the fourth most common cancer among men and twelfth most common among 

women, which may in part be due to smoking prevalence rates being higher in 

men than women as cigarette smoking accounts for half of all cases (47%) in the 

USA [116]. Seventy-five percent of bladder cancers are diagnosed as low-grade 

non-muscle invasive tumors, NMIBC [117]. Cystoscopy is used for diagnosis 

(biopsy) with transurethral excision of localized tumors as the primary treatment 

[118]–[120]. Although transurethral excisions can successfully control the 

disease and mortality from bladder cancer among patients with localized tumors 

is low, 45% of NMIBC cases have recurrences within 12 months of surgery [121]. 

In addition, frequent invasive follow-up via cystoscopy without prognostic 

markers leads to significant patient morbidity and comes with a considerable cost 

burden to the health care system, estimated at approximately $4 billion dollars 

annually in the USA [122]. To control the patient and healthcare burdens 

associated with NMIBC, there is an imminent need for biomarkers to identify 

those at the highest risk of tumor recurrence. 

 Peripheral blood immune profiles have been associated with different 

outcomes in bladder cancer patients and may have clinical utility for NMIBC 

prognosis [123]–[128]. For instance, in NMIBC, patients with elevated 

neutrophil-to-lymphocyte ratio (NLR) had poorer cancer-specific survival than 
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patients with lower NLR [124]–[126]. Thus, elevated NLR could be a potential 

predictor of overall survival and cancer-specific survival for this disease. Other 

studies have indicated that bladder cancer patients with increased lymphocyte-

to-monocyte ratio had poorer overall survival and cancer-specific survival [127], 

[128]. In addition, Bacillus Calmette–Guérin (BCG), a commonly used 

intravesical immunotherapy for NMIBC administered post-surgery, has been 

reported to reduce the proportion of natural killer T cells, memory CD4T, CD8T, 

and regulatory T cells in the peripheral blood of NMIBC patients [123]. Together, 

circulating immune profiles might be promising markers for reducing adverse 

outcomes in NMIBC patients. Previous studies have relied on complete blood 

count differential (CBC) tests to determine immune profile variables [129], [130]. 

The CBC test relies on fresh blood samples and is incapable of providing 

proportions of specific lymphocyte subtypes [131]. 

 Our prior work has established methods to infer the immune profiles in 

archival samples using immune cell-type-specific DNA methylation [89], [132]. 

DNA methylation plays an essential role in gene regulation for cell lineage 

specification [133], [134]. Differentially methylated regions (DMRs) have been 

used to distinguish cell types, including leukocyte subtypes, and form the basis 

of reference-based deconvolution methods for estimating specific immune cell-

type proportions [89], [90], [135]. Compared with cytological methods for 

determining cell type abundances and proportions, such as flow cytometry, DNA 

methylation-based cell-type deconvolution does not require a fresh substrate, 

intact cells, or batch-sensitive reagents, is reproducible and cost-effective 
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relative to time-sensitive blood processing [98], [136]. With cell-type 

deconvolution approaches, it is possible to identify immune cell-type profiles 

and test their relationship with cancer outcomes in archived samples [100]. This 

study used the archival blood samples of NMIBC patients to test the association 

between the immune profiles and outcomes in bladder cancer patients. 

 In the present study, we sought to identify immune profiles and epigenetic 

features associated with disease recurrence in the hope that such information 

might help improve the management of NMIBC. Here, we hypothesized that 

CpG-specific DNA methylation and DNA methylation-derived immune cell 

profiles are associated with recurrence-free survival in NMIBC patients. We used 

archival blood samples from a population-based case–control study to obtain 

genome-scale DNA methylation profiles. We then investigated the association 

between the methylation-derived immune profiles and outcomes in NMIBC 

patients. Preliminary work from our group observed an association between 

methylation-derived NLR (mdNLR) and survival in bladder cancer patients 

using a smaller sample size (223 cases) and an early genome-scale methylation 

array (HumanMethylation27K array) [137]. In this study, we increased the 

sample size (603 cases), used a new more comprehensive array 

(HumanMethylationEPIC array) with 30 times as many measured features, and 

a new cell type deconvolution library [89] to estimate immune cell-type 

proportions. An epigenome-wide association study (EWAS) and enrichment 

analyses were used to determine possible CpG sites and gene sets associated with 

recurrence-free survival. 
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2.3 Methods 
2.3.1. Study Subjects and Samples 

The subjects and data used in this study are described in more detail in prior 

publications [138]–[140]. Briefly, subjects were recruited from all three phases 

of a New Hampshire population-based bladder cancer case–control study [141]. 

The first wave of this study (phase 1) collected blood samples from 331 

individuals diagnosed with incident bladder cancer between July 1994 and June 

1998. The second study wave (phase 2) collected blood samples from 243 

individuals diagnosed between July 1998 and December 2001. Finally, the third 

study wave (phase 3) obtained blood samples from 194 individuals recruited and 

diagnosed between July 2002 and December 2004. All the subjects were 

identified using the New Hampshire State Cancer Registry, hospital pathology 

departments, and hospital cancer registries, and all blood samples were collected 

after the time of diagnosis (time range: 20 – 1790 days). Among patients, 40 

patients received BCG treatment in Phase 1, 29 patients received BCG in Phase 

2, and 19 patients received BCG in Phase 3. All patients with BCG treatment 

had blood drawn after receiving BCG (time range: 7 – 1542 days). An outline of 

data filtering and inclusion/exclusion criteria applied to these data are shown in 

Figure 2.1. Briefly, subjects without muscle-invasive status, histopathology re-

review, tumor grade, smoking status, or pack-years were removed from the study. 

Subjects that withstood the aforementioned exclusion criteria were retained and 

used in downstream statistical analyses. 
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Figure 2.1: Flow chart of study 

 

2.3.2. DNA Extraction, Quantification, and Bisulfite Modification 

Each blood sample was maintained at 4°C and frozen within 24 hours of the 

blood draw. A hundred µl buffy coat was used to extract DNA. The QIAMP DNA 

blood & Tissue kit was used to extract DNA from blood samples according to 

the manufacturer’s protocol. Extracted DNA was quantified by using the Qubit 

3.0 Fluorometer. After bisulfite modification, an established 5mC microarray 

protocol optimized for Illumina methylation arrays was used to determine the 

genome-wide 5mC profile. DNA samples were subjected to bisulfite conversion 

(according to the manufacturer’s protocol of the Zymo EZ DNA methylation Kit) 
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with an input of 750 ng per sample and whole-genome amplified prior to array 

hybridization. Recovered substrate ssDNA were submitted for DNA methylation 

array processing. 

 

2.3.3. DNA Methylation Data 

Bisulfite-modified DNA samples were measured for their DNA methylation 

status using the MethylationEPIC array, which interrogates > 860,000 CpG sites. 

Probe intensity data (iDAT files) from the EPIC methylation array were 

processed for quality control via the R package minfi [142] and ENmix [143] in 

R version 3.6. After quality control, 11 samples with low-quality CpG values or 

bisulfite intensity (threshold: 7,000) were excluded from the study. The data 

were then normalized and conducted background correction through 

preprocessNoob procedure from minfi. The ComBat [144] was used to adjust for 

potential batch effect. Probes with a detection P > 1.0 × 10−6 in more than 10% 

of the samples were excluded (32,414). Also, 98,826 probes, which are 

crossreactive, SNP-associated, and non-CpG (CpH) methylation [145], as well 

as 17,120 probes on sex chromosomes, were excluded. In total, 726,856 probes 

were used in downstream statistical analyses in downstream statistical analyses. 

IlluminaHumanMethylationEPICanno.ilm10b4.hg19 [146] was used to annotate 

CpG sites. Relation to CpG island was defined by the “Relation_to_Island” as 

in the Illumina annotation used in the genomic context analysis. ‘5’UTR,’ ‘Exon,’ 

‘Gene Body,’ and ‘3’UTR’ contexts were defined by having ‘5UTR,’ ‘ExonBnd,’ 

‘Body’ and ‘3UTR’ in UCSC_RefGene_Group. ‘Enhancer’ context was defined 
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by having a record in the Phantom5_Enhancers. ‘DHS’ context was defined by 

finding a record in the DNase_Hypersensitivity_NAME. ‘TFBS’ context was 

defined by having a record in the TFBS_NAME. 

 

2.3.4. Statistical Analysis 

The estimation of cell-type proportions was processed through the 

estimateCellCounts2 from the FlowSorted.Blood.EPIC package in Bioconductor 

(version 3.9; [89]). Methylation-derived neutrophil-to-lymphocyte ratio 

(mdNLR) was calculated by performing cell-mixture deconvolution to estimate 

the proportion of leukocyte subtypes and the ratio of neutrophil proportion to 

lymphocyte proportion was then computed. Individual leukocyte cell-type 

proportions and mdNLR were included in outcome analyses as continuous 

variables for Cox proportional hazard regression. In addition, mdNLR was 

dichotomized based on the median mdNLR for the Kaplan–Meier method. 

 Ten-year overall survival was defined as the time interval from the date of 

initial diagnosis to death within 10 years (all deaths were related with bladder 

cancer). Subjects who were alive or lost to follow-up were censored at the last 

follow-up. Ten-year recurrence-free survival was defined as the time interval 

from the date of initial diagnosis to the first tumor recurrence or death (all causes), 

whichever occurred first within 10 years. Patients alive and free of the disease 

or lost to follow-up were censored at the last follow-up. For both overall and 

recurrence-free survival, patient survival times over 10 years were truncated at 

10 years, and patients were censored if the first tumor recurrence or death 
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occurred after 10 years. The median survival times for the two survival outcomes 

were estimated using the Kaplan–Meier method. In multivariable analyses, Cox 

proportional hazard regression models were used to examine the association of 

each variable on bladder cancer outcomes and were fit via coxph in the survival 

R package. The proportional hazards assumption was tested by using cox.zph 

from the survival R package. The cox.zph function tests the proportionality of all 

the predictors in Cox models by creating interactions with time. As sex and BCG 

treatment status violated the proportional hazards assumption, stratification on 

both variables was included. The linearity assumption was examined via 

ggcoxfunctional from the R survminer package, and methylation-derived 

immune cell profiles were found to violate the linearity assumption. Hence, 

winsorization was used on methylation-derived immune cell profiles. The 

winsorization cutpoint of each immune cell profile is shown in Figure S2.1. A 

P-value of < 0.05 was the significance threshold on multivariable analysis. Cox 

model results were presented using the stargazer R package. 

 

2.3.5. Epigenome-Wide Association Study (EWAS), Enrichment Analysis, 

and Differentially Methylated Regions (DMRs) 

An epigenome-wide association study (EWAS) was performed using ewaff R 

package (https://github.com/perishky/ewaff) to investigate the association of 

CpG-specific DNA methylation and bladder cancer recurrence. We fit Cox 

proportional hazards models independently to each CpG, controlling for age, sex, 

tumor grade, smoking status, Bacillus Calmette–Guérin (BCG) receiving status, 
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and immune cell profiles. Since all P-values adjusted for false discovery rate 

from EWAS results are higher than 0.05, we relaxed the threshold for genomic 

context and enrichment analyses using a P-value of < 0.005. 

 For CpG sites associated (P < 0.005) with bladder tumor recurrence, we 

examined whether those CpGs were enriched in CpG island-related genomic 

context or regulatory regions via using Mantel–Haenszel tests, adjusted for 

Illumina probe type to eliminate the difference in distributions on genomic 

context. CpG island-related genomic context includes open sea, north shelves, 

north shores, islands, south shores, and south shelves. Regulatory regions 

include enhancers, DNase hypersensitivity sites, 5’UTR, TSS1500, TSS200, 1st 

Exon, Exon, gene body, 3’UTR, and transcription factor binding sites. Next, the 

Locus Overlap analysis (LOLA) R package in Bioconductor (version 1.20.0; 

[147]) was used to investigate enrichment of genomic regions limited to tissue 

equal to “hematopoietic stem cell.” Finally, gometh and gsameth from the 

missMethyl package in Bioconductor (version 1.6.2; [148]) were used to test the 

enrichment of gene sets for Gene Ontology (GO) terms and the C7: immunologic 

signature gene set in the Gene Set Enrichment Analysis (GSEA) Molecular 

Signature Database (MSigDB) cnetplot from the enrichplot package in 

Bioconductor (version 1.10.1; https://yulab-smu.top/biomedical-knowledge-

mining-book/) was used to plot gene-concept network plots. 

 Differentially methylated regions were identified and extracted through the 

dmrcate and extractRanges from the DMRcate R package [149]. The inputs were 

logit-transform of beta values (M-values). The phenotype of interest for 



 29 

comparison was “NMIBC patients with tumor recurrence within ten years or not” 

in our designed model. In addition, the designed model was adjusted for sex, age, 

tumor grade, smoking status, BCG receiving status, and immune cell profiles. 

We relaxed the threshold for DMRs analysis using an FDR-corrected P-value of 

< 0.1. Then, the visualizeGene from the sesame package [150] was used for 

observing the methylation levels of CpGs in regions identified by DMRcate. 

 

2.4 Results 
2.4.1. Characteristics of subjects 

Profiles of DNA methylation were obtained from 685 peripheral blood samples 

using the Human MethylationEPIC array. Eighty-two subjects were excluded 

due to low-quality CpG value or bisulfite intensity (n = 11), or without muscle-

invasive status, histopathology re-review, tumor grade, smoking status, and 

pack-years (n = 71) (Figure 2.1). The remaining subjects (N = 603) included in 

the study group were 75.8% men (n = 457), 82.9% ever-smokers (n = 500), and 

had a median age of 66 (Table 2.1). We estimated the cell-type proportions for 

each patient using methylation values by performing FlowSorted.Blood.EPIC 

(see Figure S2.1 for the distribution). Neutrophil-to-lymphocyte ratio (NLR) 

was then calculated according to the ratio of neutrophil proportion to lymphocyte 

proportion (B cell + CD4T cell + CD8T cell + NK cell), and the median 

methylation-derived NLR (mdNLR) was 1.97. Further details of study 

population characteristics are described in Table 2.1. 
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Table 2.1: Characteristics of subjects after excluding subjects with missing values# 

 NMIBC (n = 603) 

Age  

  Median (Q1, Q3) 66 (57,71) 

Sex  

  Male 457 (75.8%) 

  Female 146 (24.2%) 

Tumor grade  

  Low Grade 452 (75.0%) 

  High Grade 151 (25.0%) 

Smoking status  

  Never 103 (17.1%) 

  Ever 500 (82.9%) 

BCG: Immunotherapy  

  No 514 (85.2%) 

  Yes 89 (14.8%) 

NLR  

  Median (Q1, Q3) 1.97 (1.40, 2.93) 

10-year dead status  

  Alive 423 (70.1%) 

  Deceased 180 (29.9%) 

10-year Survival  

  Median (Q1, Q3) 120.0 (105, 120) 

10-year Recurrence status  

  No 193 (32.0%) 

  Yes 295 (48.9%) 

  Missing 115 (19.1%) 

10-year Recurrence  

  Median (Q1, Q3) 17.7 (6.9, 67.1) 

  Missing 115 
#: Exclude subjects with missing values in muscle-invasive status, pathology 

reviewing status, tumor grade, smoking status, or pack-years 
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2.4.2. Associations of patient and tumor characteristics with bladder 

cancer outcomes 

To characterize 10-year recurrence-free survival (RFS), we generated Kaplan–

Meier curves for each covariate and fit a Cox proportional hazard regression 

model for univariate analyses and multivariable analyses, respectively. In the 

Kaplan–Meier analysis, the NMIBC patients aged > 65 had a worse probability 

of RFS compared with the NMIBC patients with age ≤ 65 (P = 0.0006). Females 

had a greater probability of RFS compared with males (P = 0.002), and the 

NMIBC patients with high-grade tumors (grade 3 + 4) had a lesser probability 

of RFS than those with low-grade tumors (grade 1 + 2) (P = 8.0 × 10−5). Ever-

smokers had a worse probability of RFS than the NMIBC patients who were 

never smokers (P = 3.0 × 10−4). NMIBC patients with low mdNLR had a greater 

probability of RFS than the patients with high mdNLR (P = 0.002) (Figure 2.2). 

Consistent with the Kaplan–Meier results, in a multivariable Cox model, age > 

65 (HR = 1.01, 95% CI = 1.00 – 1.03), high tumor grade (HR = 1.48, 95% CI = 

1.17 – 1.87), ever-smoking (HR = 1.65, 95% CI = 1.22 – 2.25), and mdNLR (HR 

= 1.12, 95% CI = 1.04 – 1.20) were significantly associated with an increased 

hazard of RFS (Table 2.2). 
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Figure 2.2: Kaplan–Meier analysis of 10-year recurrence-free survival 
(RFS). 10-year RFS curves stratified by (A) age, (B) sex, (C) tumor grade, (D) 
smoking status, (E) BCG treatment status or (F) mdNLR level. P-values for log-
rank tests are shown 
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2.4.3. Associations of circulating immune profiles with bladder cancer 

outcomes 

We next investigated the association between immune cell-type proportions and 

RFS in multivariable models. CD4T (HR = 0.98, 95% CI = 0.97 – 1.00) and 

CD8T cell proportion (HR = 0.97, 95% CI = 0.95 – 1.00) were significantly 

associated with the decreased hazard of RFS. Monocyte cell proportion (HR = 

1.04, 95% CI = 1.00 – 1.07) was significantly associated with the increased 

hazard of RFS. Both B cell and NK cell proportion hazard estimates were < 1 

but not statistically significant (Table S2.1). We also examined the 10-year 

overall survival (OS) in univariate models and the multivariable models. 

Observed associations with RFS were consistent for OS for: age, male, high 

Table 2.2: Cox proportional hazards 10-year recurrence-free survival models 

   Event occurrence months Multivariable$ model 

 n (%) event# n (%) no-events# Mean Median HR (95% CI) P value 

Age 373 (61.9) 230 (38.1) 65.6 62.0 1.01 (1.00-1.03) 0.024 

Tumor grade       

  Low 263 (58.2) 189 (41.8) 69.9 79.0 Referent group  

  High 110 (72.8) 41 (27.2) 52.8 26.7 1.48 (1.17-1.87) 1.0E-3 

Smoking status       

  Non-smoker 47 (45.6) 56 (54.4) 82.3 120.0 Referent group  

  Ever-smoker 326 (65.2) 174 (34.8) 62.2 51.9 1.65 (1.22-2.25) 1.0E-3 

mdNLR* 373 (61.9) 230 (38.1) 65.6 62.0 1.12 (1.04-1.20) 3.0E-3 

HR: hazard ratio, CI: confidence interval, mdNLR: methylation-derived neutrophil to lymphocyte ratio 

Stratification was used on sex and BCG treatment status for proportional assumption. 

$: The model controlling for age, sex, tumor grade, smoking status, BCG treatment status, and mdNLR. 

*: Winsorization was used on the top 2% values for fitting linearity assumption. 

#: initial recurrence or the death whose cause was unknown 
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tumor grade, ever smoking, and mdNLR (Table 2.3 and Figure S2.2). In 

addition, CD4T, CD8T, B cell, and NK cell proportion were significantly 

associated with the decreased hazard of death; neutrophil cell proportion was 

significantly associated with the increased hazard of death (Table S2.2). 

 

 

 

2.4.4. Epigenome-wide association study for the association of bladder 

cancer outcomes 

Table 2.3: Cox proportional hazards 10-year overall survival models 

   Survival months Multivariable model 

 n (%) deceased n (%) alive Mean# HR (95% CI) P value 

Age 180 (29.9) 423 (70.1) 104.3 1.07 (1.04-1.08) 8.7E-9 

Sex      

  Male 156 (34.1) 301 (65.9) 102.2 Referent group  

  Female 24 (16.4) 122 (83.6) 111.1 0.62 (0.40-0.96) 0.032 

Tumor grade      

  Low 118 (26.1) 334 (73.9) 106.6 Referent group  

  High 62 (41.1) 89 (58.9) 97.7 1.54 (1.12-2.12) 8.0E-3 

Smoking status      

  Non-smoker 19 (18.4) 84 (81.6) 110.8 Referent group  

  Ever-smoker 161 (32.2) 339 (67.8) 103.0 1.66 (1.03-2.67) 0.039 

BCG treatment      

  No 152 (29.6) 362 (70.4) 104.8 Referent group  

  Yes 28 (31.5) 61 (68.5) 101.9 1.04 (0.68-1.60) 0.842 

mdNLR* 180 (29.9) 423 (70.1) 104.3 1.46 (1.32-1.60) 6.0E-

15 

HR: hazard ratio, CI: confidence interval, mdNLR: methylation-derived neutrophil to lymphocyte ratio 

*: Winsorization was used on the top 2% values for fitting linearity assumption. 

All covariates modeled met proportionality assumptions  #: the median survival month for each variable 

is 120. 
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Next, we assessed the relation of NMIBC patient outcomes with DNA 

methylation. First, Cox proportional hazards models were fit for each CpG 

controlling for age, stratified sex, tumor grade, smoking status, and stratified 

BCG receiving status. Without adjustment for immune cell proportions, we 

identified 27,575 CpGs whose methylation was associated with a significant (P 

< 0.005) difference in the hazard of RFS (Figure 2.3A, Table S2.3). We then 

conducted similar analyses controlling for age, sex, tumor grade, smoking status, 

BCG status, and winsorized immune cell proportions. As expected and 

demonstrating the importance of adjusting for cell-type proportions, the fully 

adjusted models were attenuated and identified 2,528 CpGs whose methylation 

was associated with a significant difference (P < 0.005) in the hazard of RFS. 

The 10 CpGs most strongly (with the smallest P-value) associated with the 

hazard of RFS corresponded to 10 genes: TMCO4 (cg04738197), LENG9 

(cg12057190), CDC42EP5 (cg12057190), LNP1 (cg02540094), TOMM70A 

(cg02540094), RUNX2 (cg08012149), TBXAS1 (cg01584377), SSH1 

(cg16237760), SFXN2 (cg08609163), and COG3 (cg06172950). 1,572 CpGs 

were associated with the increased hazard of RFS, and 956 CpGs were associated 

with the decreased hazard of RFS (Figure 2.3B). The complete list of RFS-

associated CpGs is provided in Table S2.4 and Table S2.5. 
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A 

 

B 

 

Figure 2.3: Volcano plots of recurrence-free survival (RFS) associated CpGs 
from the epigenome-wide association study (EWAS) analyses. The Cox 
multivariable model that was fitted in EWAS was shown in each plot. CpGs are 
colored in red (A) 12,105 CpGs were associated with the increased hazard of 
NMIBC 10-year RFS, and 15,470 CpGs were associated with the decreased 
hazard of NMIBC 10-year RFS. (B) 1,572 CpGs were associated with the 
increased hazard of NMIBC 10-year RFS, and 956 CpGs were associated with 
the decreased hazard of NMIBC 10-year RFS 
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2.4.5. Location of the bladder cancer outcomes-associated CpG loci 

To gain a better understanding of the regions where the hazard-associated CpGs 

were located, we tested for enrichment of CpG island region context among CpG 

loci associated with a significant change in the hazard of RFS. We found that 

1,572 CpGs associated with the increased hazard of RFS were significantly 

enriched in the open sea (OR = 1.14, 95% CI = 1.03 – 1.27) and were 

significantly depleted in CpG island S Shore regions (OR = 0.82, 95% CI = 0.67 

– 0.99). The 956 CpGs associated with a decreased hazard of RFS were 

significantly enriched in CpG island N Shore regions (OR = 1.30, 95% CI = 1.06 

– 1.57) and were significantly depleted in CpG island (OR = 0.60, 95% CI = 0.46 

– 0.78) (Figure 2.4A). We also tested for enrichment of other gene regulatory 

regions among CpG loci associated with a significant change in the hazard of 

RFS. 

 Location of CpGs in regulatory regions also was investigated and the CpGs 

associated with the increased hazard of RFS were significantly enriched in 

enhancer regions (OR = 1.78, 95% CI = 1.43 – 2.18), DNase hypersensitive sites 

(DHS) (OR = 1.25, 95% CI = 1.13 – 1.40), 5’UTR regions (OR = 1.37, 95% CI 

= 1.17 – 1.60) and gene body (OR = 1.15, 95% CI = 1.04 – 1.27); however, these 

CpGs were significantly depleted in regions 200–1,500 bps upstream of the 

transcription start site (TSS1500) (OR = 0.85, 95% CI = 0.73 – 0.99). In addition, 

while the CpGs associated with a decreased hazard were strongly enriched in 

enhancer regions (OR = 4.18, 95% CI = 3.44 – 5.05) and DHS (OR = 2.46, 95% 
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CI = 2.13 – 2.86), they were depleted for TSS200 (OR = 0.70, 95% CI = 0.48 – 

0.99), gene body (OR = 0.85, 95% CI = 0.74 – 0.97) and transcription factor 

binding sites (TFBS) (OR = 0.68, 95% CI = 0.55 – 0.83) (Figure 2.4B). Using 

the CpGs associated with the hazard of RFS from cell-type unadjusted models 

in tests for enrichment gave results that were largely consistent with those above 

based on CpGs from fully adjusted models (Figure S2.3). 

 

2.4.6. Gene Set Enrichment Analysis for the bladder cancer outcomes-

associated CpG sites 

To further understand the biological function of the hazard-associated CpGs, 

Gene Set Enrichment Analysis (GSEA) Molecular Signature Database (MSigDB) 

was used to explore the potential gene sets which might associate with the tumor 

recurrence or death of NMIBC patients. The input was 2,528 RFS-associated 

CpGs from the Cox model EWAS adjusting for immune cell composition. In the 

top 10 hazard-associated gene sets in gene ontology (GO) terms, some gene sets 

were related to neurological system processing (Figure S2.4A), and most related 

genes were associated with the increased hazard of RFS in NMIBC (Figure 

S2.4B). Since mdNLR was associated with the hazard of recurrence or death of 

NMIBC, we were interested in immune-related gene sets. We checked the 

immunologic signature gene set, and the top 10 gene sets and their genes were 

related to immune cell regulation. However, only one gene set (BCELL VS MDC 

UP: up-regulated genes in B cells compared with myeloid dendritic cells after 

vaccination for influenza) consisting of 41 genes was significantly associated  
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A 

 
B 

 

Figure 2.4: Genomic context enrichment analysis of CpG sites whose 
methylation state is significantly associated with recurrence-free survival. 
Enrichment analysis of (A) relation to CpG island and (B) genomic context of 
NMIBC recurrence-free survival associated CpGs. The 2,528 CpGs from EWAS 
(P < 0.005) were tested for enrichment versus all modeled CpGs. The bar 
represents the 95% confidence interval. Mantel–Haenszel was used to test RFS-
associated CpGs enrichment of CpG island-related gnome context. An odds ratio 
larger than 1 means enrichment, and an odds ratio smaller than 1 indicates 
depletion 

 

with RFS (FDR < 0.05) (Figure S2.4C-D). Results from GO term analyses using 
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27,575 CpGs from the cell-type unadjusted models identified 5 pathways related 

to immunologic regulation among the top 10 pathways. Further, in the 

immunologic signature gene set specifically, we observed the top 10 pathways 

were associated with monocytes and lymphocytes (Figure S2.5). 

 

2.4.7. Locus overlap analysis for the bladder cancer outcomes-associated 

CpG sites 

Locus overlap analysis (LOLA) was used to test the enrichment of CpGs in 

genomic regions. As our analysis was conducted on blood samples, results focus 

on the genomic regions within hematopoietic stem cells. When controlling for 

immune cell profiles, the 2,528 CpGs associated with the hazard of RFS in 

NMIBC patients were most significantly enriched in Histone H3 acetylated at 

lysine 9 and 14 (H3K9K14ac) (Q value = 1.9 × 10−20) (Figure S2.6A). LOLA 

results for the 27,575 CpGs associated with the hazard of RFS from cell-type 

unadjusted models were most significantly enriched in cistrome of the 

promyelocytic leukemia protein (PML) (Q-value < 0.05) (Figure S2.6B). 

 

2.4.8. Methylation levels of CpG sites of BLCAP found by differentially 

methylated regions analysis 

We also ran a differentially methylated regions analysis using DMRcate. In this 

study, we found 11 CpGs in a specific genome region overlapping with the gene 

BLCAP. NMIBC patients without tumor recurrence or death within 10 years had 

a higher mean of methylation levels for this region compared with NMIBC 
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patients with tumor recurrence or death within 10 years, and one CpG in this 

region was significant (FDR = 2.63 × 10−14) (Table S2.6, Figure S2.7). 

 

2.5 Discussion 

In this study, we tested whether immune profiles and epigenetic features are 

associated with NMIBC recurrence. Although previous work observed the 

association between NLR and overall survival in NMIBC patients, it was in a 

smaller study sample and used DNA methylation data from a dated (second 

generation) array platform with ~ 27,000 CpGs. In this study, our sample size 

was nearly three times larger and DNA methylation data were collected using 

the current genome-scale platform (fourth generation), measuring ~ 860,000 

CpGs for which an optimized cell-type deconvolution library exists to determine 

highly accurate immune cell-type proportions. We extended tests of association 

with the patient outcomes beyond the methylation-derived neutrophil-to-

lymphocyte ratio (mdNLR) to include leukocyte-specific cell-type proportions. 

Our findings suggest that elevated mdNLR increased the hazard of RFS in 

NMIBC patients. These findings are consistent with previous studies 

demonstrating that NLR was significantly higher in high-risk NMIBC patients 

[151], and increased NLR was positively associated with poor prognosis [152], 

[153]. While past studies have shown a significant association between NLR and 

outcomes in NMIBC patients using the conventional method of CBC tests [75], 

[154], [155], this study uses NLR derived from blood methylation profiles. 

Compared with flow cytometry, estimation using the differentially methylated 
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regions (DMR) library has several advantages: it does not require long sample 

processing time, large volume of blood, or intact cells as DNA and 5-

methylcytosine are both stable [99]. The advantage of our approach is the ability 

to use archived samples that many investigators may already have. Moreover, 

utilizing blood samples to monitor patient outcomes is less invasive compared 

with a cystoscopy, the routine screening method. For NMIBC patients with a 

high risk of tumor recurrence, BCG is the standard intravesical immunotherapy 

to induce immune system eliminating bladder cancer cells that might be left after 

surgery [123], [156], [157], and therefore, blood immune profile is a potential 

prognostic factor. Immune profiling with DNA methylation data is a promising 

avenue for assessing NMIBC prognosis. 

 As NLR is composed of lymphocyte and neutrophil proportions, we also 

considered the association between each methylation-derived immune cell type 

proportion and patient outcomes. Interestingly, increased CD4T and CD8T cell 

proportions were associated with decreased NMIBC recurrence-free survival 

and overall survival. Prior work has shown that NMIBC patients with a high 

CD4T cell count in BCG pretreatment microenvironment have a significantly 

prolonged recurrence-free survival compared to patients with a low CD4T cell 

count [157]. In addition to the immune cell types explored in this study, other 

cell types have been shown to affect NMIBC development, such as GATA3 + T 

cells, regulatory T cells, and tumor-associated macrophages [157]. Other work 

showed an increased CD8+ ILT2+ T cell proportion was associated with a 

significantly increased hazard of NMIBC recurrence [158]. Further, peripheral 
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(neutrophil×platelet) / (lymphocyte) was inversely correlated with high-risk 

NMIBC recurrence-free survival [159]. These results demonstrate the potential 

of immune cell profiles in evaluating the prognosis of NMIBC patients, and 

future work mapping DNA methylation profiles of additional immune cell types 

and states could add detail to investigations of immune profiles and bladder 

cancer outcomes. In addition, peripheral immune cell distribution is affected by 

potentially residual confounding factors such as, infection [160], inflammation 

[161], lifestyles, treatments [162], [163], obesity [164], chronic alcohol 

consumption [165], and type 2 diabetes [166]. Since our study includes hundreds 

of subjects and has a decade or more of follow-up time, in the future, we will re-

explore the effect of these residual confounding factors on the association of 

circulating immune cell distribution and NMIBC outcomes. In the future, we 

will perform higher resolution methylation cell mixture deconvolution to resolve 

additional immune cell types and employ blood count on prospectively collected 

samples. Together, these data will allow us to understand if specific subsets of 

neutrophils or lymphocytes contribute to high NLR in patients with poor 

outcomes. 

 Bacillus Calmette–Guérin (BCG) is the most commonly used 

immunotherapy for high-risk NMIBC. After transurethral resection of bladder 

tumors, NMIBC patients may receive BCG intravesical therapy to induce an 

immune response in the bladder to attack cancer cells. Previous studies have 

shown that tumor immune environments may interact with BCG and interfere 

with the efficacy of this therapy. For instance, IL-12 secreted by BCG-induced 



 44 

monocytes was increased in NMIBC patients without tumor recurrence, a 

phenomenon that may involve the innate immune memory of circulating 

monocytes [167]. Nevertheless, patients receiving BCG in our study did not have 

peripheral immune cell profiles that differed from patients who were BCG naïve, 

and BCG was not significantly associated with NMIBC outcomes. As the 

number of patients with BCG treatment was relatively low (N = 89; 14.8%) and 

limited power to observe possible therapy induced changes in peripheral immune 

profiles, future work is needed to address the potential associations of BCG with 

peripheral immune profiles and patient outcomes. Most BCG-treated patients 

were already high-risk. In addition, blood samples were collected only after 

surgery or initial BCG treatment. To assess the changes in immune profiles over 

time, having multiple blood draws is necessary for future work. 

 This EWAS identified several CpGs associated with NMIBC recurrence-

free survival when controlling for stratified sex, age, tumor grade, smoking status, 

stratified BCG receiving status, and immune cell profiles. With a P-value < 0.005, 

2,528 CpGs were found to be associated with the hazard of RFS. 

 Among the top CpGs whose methylation was associated with NMIBC 

recurrence or death in the fully adjusted models, some genes have been 

previously associated with bladder cancer. Slingshot homolog-1 (SSH1) had a 

positive association with tumor grade, tumor invasion, and tumor recurrence in 

bladder cancer patients [168]. Runt-related transcription factor 2 (RUNX2) is a 

key factor of osteoblast differentiation and has been reported to be associated 

with epithelial-mesenchymal transition in bladder tumors. Furthermore, RUNX2 
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could predict early recurrence in bladder cancer patients with high accuracy 

[169], [170]. Similar to past studies, SSH1 and RUNX2 were associated with the 

increased risk of tumor recurrence in our study. In addition, NMIBC patients 

with tumor recurrence within ten years had significantly higher methylation 

levels in the gene body of these two genes compared with patients without tumor 

recurrence. 

 When not adjusting for immune cell profiles, 27,575 CpGs were associated 

with the decreased hazard of RFS. The top 10 CpGs with the most significant P-

value corresponded to 6 genes: BCL11A (cg24361098), TMCO4 (cg04738197), 

MICALCL (cg01518090), GRAP2 (cg21012238), TRAM2 (cg15085626), and 

KIRREL (cg10570484). While these genes have not been reported to be 

associated with bladder cancer outcomes, they have been reported to be involved 

in mechanisms promoting cancer development in tumors [171]–[174] or blood 

[175], [176]. Although we measured blood methylation in this study, we plan to 

measure tumor methylation and will explore the association of CpGs in these 

genes with NMIBC outcomes. What was more interesting is that the model, with 

or without controlling for immune cell profiles, led to different results. While 

immune cell profiles are usually not adjusted in the Cox model, we controlled 

for immune cell profiles since the immune system plays a key role in tumor 

development. This study presents a new perspective to demonstrate the 

difference between models with or without adjusting for immune profiles, 

indicating the need for further investigation on the involvement of immune 

profiles in outcome analyses. 
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 Through DMR analysis, we found NMIBC patients with tumor recurrence 

or death within 10 years had a lower methylation level in the BLCAP region 

compared with patients without tumor recurrence or death. The bladder cancer-

associated protein (BLCAP) gene encodes a protein that stimulates apoptosis. It 

has been reported that loss of protein expression is associated with bladder tumor 

progression, and the application of staining patterns for this protein could be a 

potential biomarker in bladder cancer [177]. In functional analysis, strong 

nuclear expression of BLCAP was associated with expression of p-STAT3 and 

overall poor disease outcome. Additionally, BLCAP was discovered to interact 

with STAT3 physically and may involve the STAT3-mediated progression of 

precancerous lesions to invasive bladder tumors [178]. These results were 

consistent with our finding that NMIBC patients with poor outcomes had lower 

methylation levels in the BLCAP region. Since the model we used for DMRs 

analysis was adjusted for immune cell profiles, we are curious whether immune 

cells may play roles in the interaction between BLCAP and STAT3 and will 

investigate this in the future. The CpG site with significantly lower methylation 

(cg10642330) is located in the 5’ UTR of BLCAP and the gene body of NNAT. 

The methylation beta value of this CpG site in NNAT had been reported 

significantly higher in prostate cancer tissue relative to adjacent normal tissues 

[179]. Though no CpG site in the BLCAP region was significantly associated 

with the hazard of tumor recurrence or death in the adjusted EWAS, five BLCAP 

CpGs (cg26083330, cg23757721, cg13790727, cg03061677, and cg04489586) 

were associated in the model not controlling for immune cell proportions (not 
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including the DMR analysis site cg10642330). In the future, we will investigate 

the relation of BLCAP tumor methylation with survival outcomes. 

 Our results reveal several features of peripheral blood immune profiles that 

are associated with outcomes in NMIBC patients. We showed that higher CD4 

or CD8 proportions were associated with decreased hazard of recurrence or death 

and further established that high NLR is associated with an increased hazard of 

RFS. The EWAS portion of our study also points to epigenetic reprogramming 

within the immune compartment being involved in tumor recurrence of NMIBC 

patients. In addition, we identify preliminary evidence of discrete and regional 

CpG methylation associations with bladder cancer outcomes. Future study in a 

prospective setting will assess the clinical utility of incorporating methylation in 

predicting the hazard of recurrence and shaping recommendations for disease 

surveillance. In addition to immune cells, future work examining cell-type 

proportions in tumor microenvironments of NMIBC patients is needed to 

understand the relationship between peripheral immune profiles with tumor-

infiltrating immune profiles and patient outcomes. This work contributes to our 

understanding of associations between methylation-derived immune profiles and 

NMIBC patient outcomes and could further contribute to developments in 

epigenetic biomarkers of cancer. 

 

2.6 Supplement: Chapter 2 

Tables S2.3, S2.4, S2.5, and S2.6 are available in the published version of this 

manuscript online (from Clinical Epigenetics), and omitted from the text here 
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due to size restrictions. 

 

 
Figure S2.1: Summary of each immune cell profile from DNA methylation 
deconvolution (603 NMIBC patients). (A) Leukocyte proportions (B) 
Neutrophil percent (C) Methylation-derived neutrophil-lymphocyte ratio. For 
Leukocyte proportions (panel A) and NLR (panel B), winsorization was used on 
the top 2% value, and the red dashed line indicates the 98th percentile of each 
immune cell profiles. For neutrophil percent, winsorization was used on the 
bottom 2% value, and the red dashed line indicates the 2th percentile of 
neutrophil percent. 
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Table S2.1: Cox proportional hazards 10-year recurrence-free survival models 
for each immune cell type 
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Figure S2.2: Kaplan-Meier analysis of 10-year overall survival (OS). 10-year 
OS curves stratified by (A) age, (B) sex, (C) tumor grade, (D) smoking status, 
(E) BCG treatment status or (F) mdNLR level. P-values for Log-rank tests are 
shown. 
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Table S2.2: Cox proportional hazards 10-year overall survival models for each 
immune cell type 
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Figure S2.3: Enrichment analysis of (A) relation to CpG island and (B) genomic 
context of NMIBC recurrence-free survival associated CpGs. The 27,575 CpGs 
from EWAS (P-value < 0.005) without adjusting immune cell profiles were 
tested for enrichment versus all modeled CpGs. The bar represents the 95% 
confidence interval. Mantel-Haenszel test was used to test RFS associated CpGs 
enrichment of CpG island-related gnome context. Odds ratio larger than 1 means 
enrichment, and odds ratio smaller than 1 indicates depletion. 
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Figure S2.4: Gene set enrichment analysis (GSEA). The input was 2,528 RFS 
associated CpGs from the EWAS which Cox proportional multivariable model 
with adjusting immune cell profiles were fitted in. (A, C) The top green axis is 
corresponded to negative log 10 unadjusted p-value, and the further to the right, 
the more significant; the bottom blue axis is represented to the total number of 
genes in the gene set; the black axis is corresponded to the number of genes that 
the hazard-associated CpGs are located in the gene set. (A-B) The results of 
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GSEA for the gene ontology (GO) term. (A) Only the top 10 RFS associated 
pathways are shown. (B) Gene-concept network is displayed for the top 5 
pathways. (C-D) The results of GSEA for the immunologic signature gene set. 
(C) the top 10 RFS associated pathways. (D) gene-concept network for the top 5 
pathways. 
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Figure S2.5: Gene set enrichment analysis (GSEA). The input was 27,575 RFS 
associated CpGs from the EWAS which Cox proportional multivariable model 
without adjusting immune cell profiles were fitted in. (A-B) the results of GSEA 
for the gene ontology (GO) term. (A) the top 10 RFS associated pathways. (B) 
gene-concept network for the top 5 pathways. (C-D) the results of GSEA for the 
immunologic signature gene set. (C) only the top 10 RFS associated pathways 
are shown. (D) gene-concept network for the top 5 pathways. 
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Figure S2.6: Enrichment of NMIBC recurrence-free survival associated (P-
value < 0.005) CpGs from EWAS using locus overlap analysis (LOLA). Cell 
types were limited to “hematopoiet stem cell”. (A) the input was 2,528 RFS 
associated CpGs from the EWAS which Cox proportional multivariable model 
with adjusting immune cell profiles were fitted in. (B) the input was 27,575 RFS 
associated CpGs from the EWAS which Cox proportional multivariable model 
without adjusting immune cell profiles were fitted in. 
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Figure S2.7: The distribution of methylation levels in the BLCAP gene region 
of each NMIBC patients (A) In the heatmap, each row represents a subject; 
cg10642330 is labeled in the red box. (B) The distribution of cg10642330 beta 
values within NMIBC patients. Disease outcomes: death or tumor recurrence. 
P-values for Wilcox tests is shown. (C) NMIBC patients were grouped 
according to the median of cg10642330 methylation levels, and the KM plot 
for recurrence-free survival was shown. 
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Chapter 3 

Genome-scale methylation analysis identifies 

immune profiles and age acceleration associations 

with bladder cancer outcomes 
 

This work was published on August 1, 2023 as a Research Article in Cancer 

Epidemiology, Biomarkers & Prevention. PMID: 37527159. 
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3.1 Abstract 

Immune profiles have been associated with bladder cancer outcomes and may 

have clinical applications for prognosis. However, associations of detailed 

immune cell subtypes with patient outcomes remain underexplored and may 
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contribute crucial prognostic information for better managing bladder cancer 

recurrence and survival. Bladder cancer case peripheral blood DNA methylation 

was measured using the Illumina HumanMethylationEPIC array. Extended cell-

type deconvolution quantified twelve immune cell-type proportions, including 

memory, naïve T and B cells, and granulocyte subtypes. DNA methylation clocks 

determined biological age. Cox proportional hazard models tested associations 

of immune cell profiles and age acceleration with bladder cancer outcomes. The 

partDSA algorithm discriminated 10-year overall survival groups from clinical 

variables and immune cell profiles, and a semi-supervised recursively 

partitioned mixture model (SS-RPMM) with DNA methylation data was applied 

to identify a classifier for 10-year overall survival. Higher CD8T memory cell 

proportions were associated with better overall survival (HR = 0.95, 95% CI = 

0.93 – 0.98), while higher NLR (HR = 1.36, 95% CI = 1.23 – 1.50), CD8T naïve 

(HR = 1.21, 95% CI = 1.04 – 1.41), neutrophil (HR = 1.04, 95% CI = 1.03 – 

1.06) proportions, and age acceleration (HR = 1.06, 95% CI = 1.03 – 1.08) were 

associated with worse overall survival in bladder cancer patients. partDSA and 

SS-RPMM classified five groups of subjects with significant differences in 

overall survival. We identified associations between immune cell subtypes and 

age acceleration with bladder cancer outcomes. The findings of this study 

suggest that bladder cancer outcomes are associated with specific methylation-

derived immune cell-type proportions and age acceleration, and these factors 

could be potential prognostic biomarkers. 
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3.2 Introduction 

Bladder cancer is a malignant urogenital neoplasm and is classified into non-

muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer 

(MIBC). In 2022, an estimated 81,000 new cases of bladder cancer and 17,000 

deaths from the disease occurred in the U.S. [180]. The common risk factors of 

bladder cancer are age, sex, and smoking. Bladder cancer is four times more 

common in men compared with women [181]. About 90% of bladder cancer 

patients are age 55 or older, and patients younger than 60 have a higher 10-year 

overall survival rate than patients older than 60 [182]. Around 50% to 60% of 

new cases are attributed to smoking, and current smoking has a positive 

association with the risk of recurrence [183]. The conventional treatment for 

bladder cancer is surgery or surgery in combination with chemotherapy drugs or 

intravesical immunotherapy (Bacillus Calmette-Guérin (BCG)) [120]. Even 

though transurethral resection and immunotherapy generally control the disease 

[3], [184], the tumor recurrence rate is about 40% after treatment [185], [186]. 

Predictive biomarkers that alert clinicians to recurrence would help to improve 

the clinical management of bladder cancer. 

 Circulating immune cell profiles have been associated with outcomes in 

bladder cancer patients. For example, CD8+ cell proportions were associated 

with a decreased risk of tumor recurrence [187]. Also, an elevated neutrophil-to-

lymphocyte ratio (NLR) has been associated with worse overall survival and 

higher recurrence rate [125], [126]. Previously [188], we measured peripheral 

blood DNA methylation profiles of NMIBC patients and applied cell-type 
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deconvolution to estimate the proportions of six immune cell types [89]. CD4T 

and CD8T cell proportions were associated with decreased risk of death and 

recurrence. Yet, there have been limited studies investigating the relationship of 

circulating immune profiles in bladder cancer with disease outcomes. Further, 

subtypes of each major cell type have been shown to affect cancer development 

distinctly. For instance, cytotoxic CD4+ T cells can kill the bladder tumor cells, 

and in contrast, regulatory CD4+ T can suppress the activity of cytotoxic CD4+ 

T cells and lead to tumor growth indirectly [189]. To broaden the scope of the 

effects of circulating immune profiles on bladder cancer outcomes, it is 

necessary to investigate the association between leukocyte subtypes and bladder 

cancer outcomes. 

 Recently, our group developed an enhanced method to perform high-

resolution cell mixture deconvolution to resolve 12 immune cell types in blood 

using DNA methylation measures (naïve and memory B, CD4T, and CD8T, as 

well as regulatory T, monocyte, NK cells, neutrophils, basophils, and eosinophils) 

[102]. Because DNA methylation involves gene regulation for cell lineage 

specification [133], cell-specific differentially methylated regions (DMRs) can 

be utilized to distinguish cell types with reference-based deconvolution [89], 

[90], [96]. Also, DNA methylation cytometry is more efficient for immune 

profiling with high accuracy than flow cytometry and can be applied to archival 

specimens. 

 Epigenetic clocks have been developed to estimate chronological age or 

physiological age in regard to aging outcomes, such as cancers and all-cause 
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mortality [87], [88], [113]. Age acceleration derived from these clocks has been 

associated with prospective risk in lung, kidney, and pancreatic cancer [190]–

[192]. Moreover, age acceleration has been associated with outcomes in other 

cancers [193], [194]. Though only a few studies have reported the association of 

age acceleration with bladder cancer risk, they have not exhibited consistent 

results nor mentioned the subtype of bladder cancer they investigated. For 

example, one study showed that Pheno and Grim age acceleration were 

positively associated with the prospective risk in bladder cancers [190]. Another 

study reported that Horvath and Hannum's age acceleration was not associated 

with bladder cancer risk [195]. Since aging is one of risks of bladder cancer [196], 

we investigated the association of age acceleration with bladder cancer outcomes. 

 Here, we hypothesized that DNA methylation-derived immune cell 

proportions and age acceleration are associated with bladder cancer outcomes. 

We applied our new methylation cytometry approach for extended immune cell 

resolution to DNA methylation profiles of archival blood samples from a 

population-based study containing NMIBC (N = 601) patients. We then tested 

the association of cancer outcomes with each leukocyte subtype proportion and 

age acceleration. We also used partDSA [197], a classification and regression 

trees method, and a semi-supervised recursively partitioned mixture model (SS-

RPMM) [198], to group/cluster our subjects based on cancer outcomes, patients’ 

demographics, tumor characteristics, and methylation profiles of specific CpG 

loci. 
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3.3 Methods 

3.3.1. Study Subjects and Samples 

A detailed description of subjects who participated in the present study is 

available in prior studies [138]–[140]. Briefly, bladder cancer subjects were 

recruited from three phases of a New Hampshire population-based case-control 

study [141]. The first phase collected blood samples from 331 individuals 

diagnosed between July 1994 and June 1998 (phase 1). The second phase 

collected blood samples from 243 individuals diagnosed between July 1998 and 

December 2001 (phase 2). The third study phase collected blood samples from 

194 individuals diagnosed between July 2002 and December 2004 (phase 3). 

Bladder cancer patients were identified using the New Hampshire State Cancer 

Registry and hospital cancer registry (Patients in phase 3 were identified using 

the hospital cancer registry only). Patients’ overall survival data were from the 

National Death Index, and tumor recurrence data were ascertained through chart 

review. We performed four comprehensive National Death Index (NDI) searches 

for the years 2008, 2010, 2014, and 2018 to identify cases of death. Additionally, 

the NH State Cancer Registry had previously reported some deaths to us through 

their conducted searches. During each NDI search, we included all bladder 

cancer case-control study participants who had not been previously matched with 

an NDI death. To ensure accurate matching, we followed the NDI-recommended 

method and utilized the code and algorithms provided by the NDI to score the 

matches. Furthermore, we applied the NDI score interpretation using the 

recommended NPCR algorithm [199] to enhance the accuracy of our findings. 
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Subjects without histopathology re-review, muscle-invasive status, tumor grade, 

or smoking status were excluded from the study. The remaining 601 patients with 

non-muscle-invasive bladder cancer were used in downstream statistical 

analyses. In addition, 40 patients received Bacillus Calmette-Guérin (BCG) in 

phase 1, 30 received BCG in phase 2, and 19 received BCG in phase 3. All 

patients with BCG treatment had their blood drawn after BCG treatment, and all 

blood samples were taken after the initial diagnosis. This study was approved by 

the Dartmouth Human Research Protection Program (IRB) (Approval Number 

STUDY00010107). The written informed consent was obtained from the 

patients and the studies were conducted in accordance with Belmont Report. 

 

3.3.2. DNA Extraction, Qualification, and Bisulfite Modification 

After the blood draw, blood samples were kept at 4°C and frozen within 24 hours. 

DNA was extracted from blood samples using the QIAamp DNA Blood Kit 

(Qiagen, CA, USA) according to the manufacturer’s protocol. Extracted DNA 

quantity and quality were assessed with Qubit 3.0 Fluorometer (Life 

Technologies, CA, USA) and Fragment Analyzer (Advanced Analytical, IA, 

USA). Then, extracted DNA underwent bisulfite conversion using EZ DNA 

Methylation Kit (Zymo Research, CA, USA) according to the manufacturer’s 

protocol. Approximately 750 ng of bisulfite-modified DNA was used as input 

for the DNA methylation array. 

 

3.3.3. DNA Methylation Profiling 
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After DNA extraction, quantification, and bisulfite modification, Infinium 

MethylationEPIC Bead Chips (Illumina, Inc., CA, USA) were used to measure 

the DNA methylation status of bisulfite-modified DNA samples. Raw probe 

intensity data, iDAT files, from the methylation array were processed through 

preprocessNoob using minfi (RRID:SCR_012830) [142], and quality control 

was performed using ENmix [143] R package. To distinguish from background 

noise, samples with more than 5% of probes with a detection P >1.0×10−6 were 

not included. In addition, we dropped 32,713 probes that were not detected in 

more than 10% of the samples. Then, the bias of type-2 probe values was 

corrected using BMIQ (RRID:SCR_003446) [200] from watermelon 

(RRID:SCR_001296) [201] R package, and the ComBat (RRID:SCR_010974) 

[144] was used to adjust for batch effects. Next, 106,522 probes previously 

reported to be cross-reactive, SNP-associated, non-CpG (CpH) methylation, and 

sex-specific were excluded [145]. After these exclusions, 726,856 CpGs 

remained for downstream statistical analysis. The annotation for CpG sites was 

from IlluminaHumanMethylationEPICanno.ilm10b4.hg19. 

 

3.3.4. Statistical Analysis 

Methylation age was estimated with the function methyAge from the ENmix [143] 

R package implementation of the methylation age estimation. Age acceleration 

was defined as the residual from a regression of methylation age on 

chronological age. Cell-type proportions were estimated with the 

projectCellType_CP from the FlowSorted.Blood.EPIC (RRID:SCR_022540) 
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[89] R package. The neutrophil-to-lymphocyte ratio (NLR) was calculated 

according to the ratio of neutrophil proportion to lymphocyte proportion. 

 Ten-year overall survival (OS) was defined as the time interval from the date 

of initial diagnosis to death. Patients alive or lost to follow-up were censored at 

the last follow-up. Similarly, ten-year recurrence-free survival (RFS) was 

defined as the time interval from the date of initial diagnosis to the first tumor 

recurrence or death, whichever occurred first, and patients alive and without 

tumor recurrence or lost to follow-up were censored at the last follow-up. For 

OS and RFS, survival times were truncated at ten years. In univariate and 

multivariable analyses, coxph from the survival (RRID:SCR_021137) R package 

was used to fit Cox proportional hazard models to evaluate the association 

between bladder cancer outcomes and each variable. Only immune cell profiles 

significantly associated with bladder cancer outcomes in the univariate Cox 

model were subjected to multivariable analyses. Cox.zph from the survival R 

package was employed to test the proportional hazards assumption. Predictors 

with assumption violations were included as strata in the Cox models. The 

linearity assumption was examined with the ggcoxfunctional from the survminer 

(RRID:SCR_021094) R package. We conducted 2% winsorization on immune 

cell profiles identified to violate the linearity assumption. FDR-corrected P-

value of < 0.05 was the significance threshold on multivariable analysis. 

 To explore interactions between clinical variables and immune cell 

proportions in survival analysis, we applied a partitioning 

deletion/substitution/addition algorithm (partDSA [197], [202]; R package) for 
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model building employing the inverse probability censoring weighted-L2 loss 

function. Those variables (age, Hannum or Pheno age acceleration, sex, tumor 

grade, smoking status, BCG treatment status, and immune cell type proportions) 

associated with 10-year overall survival were included in the multivariable 

model as input. The partDSA approach resulted in three groups of subjects that 

were based on neutrophil and CD8 naïve cell proportions. After the model was 

built, corresponding Kaplan-Meier curves were generated, and hazard ratios and 

95% confidence intervals were calculated using the Cox model. 

 To identify a novel set of blood DNA methylation profiles associated with 

cancer outcomes, we applied a semi-supervised recursive partitioning mixture 

modeling (SS-RPMM) algorithm [198]. This method uses the recursive 

partitioning mixture model (RPMM), demonstrating an effective and efficient 

unsupervised clustering procedure for methylation data [84], [203]–[205]. To 

avoid overfitting and provide for validation of the model, we randomly split the 

total population into a training and testing set at a 2:1 ratio, stratified by deceased 

status (whether subjects were deceased or censored within ten years) to balance 

the distribution of outcome status between sets. We used the 10% most variable 

CpG loci in methylation beta values across all samples. After splitting subjects 

and subsetting CpGs, a series of Cox proportional hazard models were fit using 

the training set for each selected CpG loci adjusted for age, age acceleration, sex, 

tumor grade, smoking status, BCG treatment status, and immune cell type 

proportions associated with 10-year overall survival of NMIBC patients. Next, 

Cox-scores (|β|/se(β), where β = the proportional hazards estimate of the log-
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hazard ratio, and se = the standard error) were computed for each of the selected 

CpG loci, and Cpg loci were ranked based on the Cox scores. Subsequently, the 

top M (range: 5 - 50) loci with the largest absolute Cox scores were chosen using 

a x-fold cross-validation RPMM with the smallest median P-value of the log-

rank test for each potentially optimal number (M) of CpG loci in the training set. 

Then, RPMM was fit to the testing set for clustering subjects using the optimal 

M-selected CpG loci with the largest absolute Cox score, predicting the 

methylation class membership for the subjects. Then, all NMIBC patients were 

clustered using RPMM based on the methylation levels of the optimal CpG sites. 

Finally, we evaluated the association of RPMM class membership with overall 

survival using Cox proportional hazard models. 

 

3.3.5. Data Availability 

All datasets generated and analyzed during this current study are available in the 

Gene Expression Omnibus (GEO) repository at GSE183920. 

 

3.4 Results 

3.4.1. Characteristics of subjects 

DNA methylation profiles were obtained from 601 peripheral blood samples 

from non-muscle-invasive bladder cancer (NMIBC) patients using the Human 

MethylationEPIC array. The study group was 455 (75.7%) men, 306 (50.9%) 

former-smokers, 192 (32.0%) current-smokers, 89 (14.8%) with BCG treatment, 

and had a median age of 66 (Table 3.1). The distribution of chronological age, 
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methylation age, and age acceleration is shown in Figure S3.1A. Cell-type 

proportions were estimated for each patient using methylation cytometry 

(Figure S3.1B). Stratifying on median time from diagnosis to blood draw, 

patient and tumor characteristic summary statistics showed similar distributions. 

Further, we observed no significant associations of immune profile variables 

with time from diagnosis to blood draw. To assess the potential modification of 

results by time to the blood draw, we performed an analysis testing the relation 

of immune profile variables with patient outcome, stratifying patients into two 

groups based on median time to the blood draw. We did not observe differences 

between associations of immune variables with outcomes between the groups 

based on time to blood draw. 

 

3.4.2. Risk of bladder cancer outcomes 

First, we examined associations of three major methylation age clocks, Horvath 

age [87], Hannum age [88], and DNAmPhenoAge [113], with bladder cancer 

outcomes. Our findings showed that Horvath age acceleration was not associated 

with 10-year overall survival (OS) (Table S3.1). Since the Horvath clock was 

developed using data from a subset of CpG loci on the Illumina 

HumanMethylation27 (27K) CpG BeadChip (~27,000 features) compared with 

the Hannum and PhenoAge clocks (which were developed using 20 times more 

features with data from CpGs on the Illumina HumanMethylation450 (450K) 

and EPIC (850K) BeadChips), we focused on Hannum and Pheno age 

acceleration in subsequent analyses. Then, we fit multivariable Cox proportional 
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hazard models for demographic and tumor characteristic variables to investigate 

associations with 10-year OS and recurrence-free survival (RFS). For NMIBC 

patients, age, age acceleration, smoking, and high tumor grade were associated 

with worse RFS and OS. Women had a better survival outcome compared with 

men (Table 3.2, Table S3.2). 

 
Table 3.1: Characteristics of subjects 
 NMIBC (n = 601) 
Age  
  Median (IQR) 66 (57,71) 
Pheno Age Acceleration  
  Median (IQR) -0.41 (-4.28, 3.65) 
Hannum Age Acceleration  
  Median (IQR) -0.10 (-2.53, 2.54) 
Sex  
  Male 455 (75.7%) 
  Female 146 (24.3%) 
Tumor grade  
  Low Grade 450 (74.9%) 
  High Grade 151 (25.1%) 
Smoking status  
  Never 103 (17.1%) 
  Former 306 (50.9%) 
  Current 192 (32.0%) 
BCG: Immunotherapy  
  No 512 (85.2%) 
  Yes 89 (14.8%) 
Time from diagnosis to blood draw (Days)b  
  Median (IQR) 319 (176, 569) 
NLR  
  Median (IQR) 1.96 (1.38, 2.86) 
10-year survival status  
  Alive 423 (70.4%) 
  Deceased 178 (29.6%) 
10-year Recurrence-free statusa  
  No 230 (38.3%) 
  Yes 371 (61.7%) 
aWhether patient with tumor recurrence or deceased within 10 years.  
bAll blood samples were taken after the diagnosis. 
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 Next, the association between immune cell-type proportions and bladder 

cancer patient outcomes was investigated. We fit multivariable Cox models for 

immune cell-type proportions associated with bladder cancer outcomes in Cox 

univariate models (Table 3.3, Table S3.3). CD4T memory, CD8T memory, and 

NK cell proportions were associated with a decreased risk of death. Whereas 

NLR, CD8T naïve, and neutrophil cell proportions were each associated with an 

increased risk of death. In analyses of RFS, CD4T memory was associated with 

a decreased risk of tumor recurrence, and NLR, monocyte, and regulatory T cell 

Table 3.2: Cox proportional hazards multivariable models for demographic and tumor characteristics of 601 

NMIBC patients (For Pheno Age Acceleration) 

 10-year overall survival 

HR (95% CI) 

10-year recurrence-free survivala 

HR (95% CI) 

Age 1.08 (1.06-1.10) 1.02 (1.01-1.03) 

Pheno Age Acceleration 1.06 (1.03-1.08) 1.02 (1.00-1.03) 

Sex   

  Male   

  Female 0.50 (0.33-0.78)  

Tumor grade   

  Low Grade   

  High Grade 1.58 (1.15-2.17) 1.49 (1.18-1.88) 

Smoking status   

  Non-smoker   

  Former-smoker 1.35 (0.82-2.22) 1.56 (1.13-2.15) 

  Current-smoker 1.87 (1.10-3.16) 1.69 (1.20-2.38) 

BCG treatment   

  No   

  Yes 0.89 (0.58-1.34)  

aStratification was used on sex and BCG treatment status for proportional assumption. 

NMIBC = non-muscle-invasive bladder cancer, HR = hazard ratio, CI = confidence interval 
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proportions were associated with an increased risk of tumor recurrence (Table 

3.3, Table S3.3). Hazard estimates for associations of demographic and tumor 

characteristic variables with outcomes were similar after adjusting for cell 

composition. Since there was a stronger (smaller P-value) association of immune 

cell profiles with 10-year overall survival compared with 10-year recurrence-

free survival, subsequent analyses are focused on 10-year overall survival of 

NMIBC patients. Since BCG treatment may affect immune cell composition, we 

performed a sensitivity analysis limiting our analysis to patients not receiving 

BCG treatment and observed results consistent with those obtained for all 

NMIBC patients (Table 3.3; Table S3.4). 

 

 

 

3.4.3. Clinical and immune profiles recursive partitioning analysis 

 

 

 

 

 

Table 3.3: Cox proportional hazards models of immune cell proportions and NMIBC patient outcomes (For Pheno Age Acceleration) 

 10-year overall survival 10-year recurrence-free survival 

 Univariate model Multivariablea model Univariate model Multivariableb model 

 HR (95% CI) HR (95% CI) FDR HR (95% CI) HR (95% CI) FDR 

NLR 1.49 (1.37-1.62) 1.36 (1.23-1.50) 6.9x10-9 1.14 (1.06-1.22) 1.10 (1.01-1.18) 0.046 

Memory B cell 0.82 (0.72-0.94) 0.89 (0.78-1.02) 0.13 0.94 (0.87-1.03)   

Naïve B cell 0.86 (0.79-0.94) 0.93 (0.86-1.00) 0.09 0.99 (0.94-1.04)   

Memory CD4T cell 0.92 (0.90-0.95) 0.95 (0.93-0.98) 3.8x10-3 0.97 (0.96-0.99) 0.98 (0.96-0.99) 0.046 

Naïve CD4T cell 0.87 (0.82-0.93) 0.98 (0.92-1.04) 0.48 0.95 (0.92-0.99) 0.99 (0.95-1.02) 0.46 

Memory CD8T cell 0.96 (0.94-0.99) 0.95 (0.93-0.98) 3.8x10-3 0.99 (0.97-1.01)   

Naïve CD8T cell 0.84 (0.73-0.96) 1.21 (1.04-1.41) 0.03 0.93 (0.86-1.02)   

Monocyte 1.06 (1.02-1.11) 1.01 (0.96-1.06) 0.74 1.05 (1.02-1.08) 1.03 (1.00-1.07) 0.07 

Neutrophil 1.06 (1.05-1.08) 1.04 (1.03-1.06) 2.0x10-6 1.01 (1.00-1.02) 1.01 (0.99-1.02) 0.31 

Regulatory T cell 1.27 (1.08-1.49) 1.16 (0.98-1.36) 0.12 1.20 (1.06-1.35) 1.17 (1.03-1.32) 0.046 

NK cell 0.92 (0.87-0.98) 0.92 (0.86-0.98) 0.03 0.98 (0.94-1.02)   

Basophil 1.51 (1.24-1.85) 1.26 (1.01-1.56) 0.07 1.16 (0.99-1.35)   

Eosinophil 1.02 (0.95-1.10)   1.03 (0.98-1.08)   

aThe model controlling for age, sex, tumor grade, smoking status, BCG treatment status, and Pheno age acceleration. 

bThe model controlling for age, stratified sex, tumor grade, smoking status, stratified BCG treatment status, and Pheno age acceleration. 

NMIBC: non-muscle-invasive bladder cancer, HR = hazard ratio, CI = confidence interval, NLR = neutrophil to lymphocyte ratio. Winsorization was used on the top 2% or the 
last 2% (only Neu) values for fitting linearity assumption. 
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To partition the covariate space and explore interactions of clinical variables with 

immune cell proportions in 10-year overall survival, we applied a partitioning 

deletion/substitution/addition (partDSA [197]) algorithm for model building 

(Figure 3.1A). partDSA is an analytic algorithm employing recursive 

partitioning. It uses loss functions to build clinically interpretable predictors of 

risk for a given event based on the covariate information. In brief, this method 

divides the covariate space into mutually exclusive regions and stratifies patients 

into distinct risk groups with respect to an outcome. As a result, it can make 

guidelines for estimating a patient’s prognosis from clinical and biological 

information [202]. Age, Hannum or Pheno age acceleration, sex, tumor grade, 

smoking status, BCG treatment status, and immune cell type proportions 

associated with 10-year overall survival were included in the model as input. The 

outcome was 10-year overall survival. The partDSA analysis divided subjects 

into three groups based on Neutrophil and CD8 naive cell proportions. The 

NMIBC patients with neutrophil proportion > 76.46 had the worst 10-year 

overall survival (Group 2, n = 17, HR = 4.93, 95% CI = 2.78 – 8.71) compared 

with Group 1 patients (patients with neutrophil cell proportions ≤ 76.46 and CD8 

naïve cell proportions ≤ 1.76; n = 454) (Figure 3.1B). Although the 10- and 5-

year overall survival rates (Figure 3.1C) for Groups 1 and 3 were not statistically 

significantly different, we observed that their corresponding Kaplan–Meier 

curves separated after five years. To further investigate the difference between 

10-year OS in Group 1 and Group 3, we selected the NMIBC patients in Groups 

1 and 3 whose time intervals from the date of initial diagnosis to death or the last 
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follow-up were greater than five years (sample size: Group 1 = 401; Group 3 = 

117), using the Kaplan–Meier method to observe 10-year OS. As we expected, 

for patients with time intervals from the date of initial diagnosis to death or last 

follow-up of more than five years, Group 3 patients (neutrophil proportion ≤ 

76.46, CD8T naïve proportion > 1.76) had better 10-year overall survival (HR = 

0.37, 95% CI = 0.19 – 0.71) compared with Group 1 patients (Figure 3.1D). 

Next, we examined the distribution of immune cell-type proportions, 

methylation age, and age acceleration in the three groups. Among the groups, 

NMIBC patients in Group 2 had lower B naïve, eosinophil, monocyte, NK, 

CD4T memory, CD4T naïve, CD8T memory, and CD8T naïve proportions 

compared with other groups. Also, patients in Group 2 had higher neutrophil 

proportion, NLR, chronological age, methylation age, and age acceleration 

compared with other groups (Figure S3.2). 
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Figure 3.1: Clinical and immune profiles recursive partitioning analysis, 
and 10-year overall survival Kaplan-Meier curves stratified by the grouping 
result from partDSA in NMIBC patients (A) partDSA model setting and 
analysis results. For 601 non-muscle-invasive bladder cancer (NMIBC) patients, 
the neutrophil cell proportion in peripheral blood was the primary node, with the 
CD8 naïve cell proportion as the secondary node. NMIBC patients fell into 1 of 
3 risk groups. Group 1 consisted of the 454 patients who had neutrophil cell 
proportions ≤ 76.46 and CD8 naïve cell proportions ≤ 1.76. Group 2 consisted 
of the 17 patients who had neutrophil cell proportions > 76.46. Group 3 consisted 
of the 130 patients who had neutrophil cell proportions ≤ 76.46 and CD8 naïve 
cell proportions > 1.76. CD4T memory, CD8T naïve, CD8T memory, NK cells, 
and neutrophils cell proportions were employed in the model using Pheno age 
acceleration; B memory, CD4T memory, CD8T naïve, CD8T memory, 
regulatory T, NK cells, neutrophils, and basophils cell proportions were 
employed in the model using Hannum age acceleration. Both models generated 
the same partitioning results. (B) Kaplan-Meier curves are shown based on 
clinical and immune profiles recursive partitioning analysis. (C) 5-year overall 
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survival Kaplan-Meier curves in NMIBC patients in group 1 and 3 (D) 5 to 10-
year overall survival Kaplan-Meier curves in NMIBC patients in group 1 and 3 
who were deceased or censored after 60 months. P-values for Log-rank tests are 
shown. All Kaplan-Meier curves are univariate analyses without adjusting for 
other variables. Neu = neutrophil; HR = hazard ratio; C.I. = confidence intervals 

 

3.4.4. Semi-supervised recursively partitioned mixture model for 10-year 

overall survival 

To investigate whether we could identify a blood DNA methylation profile 

associated with NMIBC survival, we applied a semi-supervised recursively 

partitioned mixture model (SS-RPMM) method. The workflow is illustrated in 

Figure 3.2A and Figure S3.3A. The subjects in the testing set were assigned to 

cluster membership using the methylation profiles of the optimal CpG sites 

(Table S3.5A [Pheno], and S3.5B [Hannum]). Then, all NMIBC patients were 

clustered using RPMM based on the methylation levels of the optimal CpG sites, 

resulting in 2 classes, rR and rL (‘R’ and ‘L’ corresponded with branches in the 

dendrogram; r stands for root, Figure 3.2B [Pheno], Figure S3.3B [Hannum]). 

Methylation class membership was significantly associated with 10-year overall 

survival; patients in cluster rR had a more favorable 10-year OS compared with 

those in cluster rL in both the testing set (HR = 0.35, 95% CI = 0.20 – 0.60, 

Figure 3.2C [Pheno]; HR = 0.38, 95% CI = 0.21 – 0.68, Figure S3.3C 

[Hannum]) and when using all NMIBC patients (HR = 0.35, 95% CI = 0.25 – 

0.48 Figure 3.2D [Pheno]; HR = 0.37, 95% CI = 0.27 – 0.52 Figure S3.3D 

[Hannum]). Then, we compared the distribution of immune cell-type 

proportions, chronological age, methylation age, and age acceleration. 
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Figure 3.2: Semi-Supervised Recursively Partitioned Mixture Model (SS-
RPMM) for 10-year overall survival (OS) in NMIBC patients [For Pheno 
age acceleration] (A) Data analysis schematic of SS-RPMM used for 
identification of blood DNA methylation profiles associated with non-muscle-
invasive bladder cancer (NMIBC). (B) Heatmap of predicted class memberships 
for the observations in all NMIBC patients using the average beta values of the 
15 CpG loci with the largest absolute Cox-scores. (C) Kaplan-Meier curves of 
10-year overall survival stratified by the SS-RPMM classification of 202 NMIBC 
patients in the testing set by the 15 CpG loci. (D) Kaplan-Meier analysis of 10-
year overall survival. 10-year overall survival curves stratified by the grouping 
result from SS-RPMM in all NMIBC patients. P-values for Log-rank tests are 
shown. All Kaplan-Meier curves are univariate analyses without adjusting for 
other variables. HR = hazard ratio; C.I. = confidence intervals; SS-RPMM = 
semi-supervised recursively partitioned mixture model 
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Consistent with the models in Table 3.3 and Table S3.3, we observed that 

patients in cluster rR (n = 288) had significantly higher B memory, B naïve, 

CD4T memory, CD4T naïve, CD8T memory, and NK cell proportions and had 

significantly lower basophil, eosinophil, monocyte, neutrophil cell proportions, 

NLR, chronological age, methylation age, and age acceleration compared with 

patients in cluster rL (n = 313) (Figure S3.4A, B). The model using Hannum age 

acceleration had similar results shown in Figure S3.4C, D. 

 

3.4.5. Combined results from immune cell proportions and methylation 

profile groups 

The two methods above used immune profiles (partDSA) and DNA methylation 

profiles (SS-RPMM) to explore the association of these profiles with overall 

survival respectively. We were curious whether we could combine immune and 

methylation information to produce a guideline for estimating a patient’s 

prognosis. To gain a deeper understanding of interactions between clinical 

variables, immune cell proportions, and blood DNA methylation profiles in 10-

year overall survival, we allocated NMIBC patients based on clustering results 

from partDSA and SS-RPMM analyses in 5 groups (Table S3.6). Groups 1 and 

3, from the partDSA analysis, were divided into two subgroups based on the SS-

RPMM analysis (Figure 3.3A, Figure S3.5A). In Kaplan–Meier analysis, 

patients in Group 2 still had the worst 10-year overall survival rate among all 

groups. Within the Group 1 patients, the group G1_rR had better 10-year overall 
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survival than the group G1_rL (HR = 0.40, 95% CI = 0.27 – 0.58, Figure 3.3B 

[Pheno]; HR = 0.45, 95% CI = 0.31 – 0.65, Figure S3.5B [Hannum]). 

Consistent with Group 1 patients, in Group 3 patients, the group G3_rR had 

better 10-year overall survival compared with the group G3_rL (HR = 0.42, 95% 

CI = 0.18 – 0.95, Figure 3.3B [Pheno]; HR = 0.35, 95% CI = 0.15 – 0.79, Figure 

S3.5B [Hannum]). 

Figure 3.3: Kaplan-Meier analysis of 10-year overall survival based on the 
grouping results from both partDSA and SS-RPMM in all NMIBC patients 
[For Pheno age acceleration] (A) contingency table based on the grouping 
results from both partDSA and SS-RPMM in all NMIBC patients (B) 10-year 
overall survival curves of all 5 groups. P-values for Log-rank tests are shown. 
All Kaplan-Meier curves are univariate analyses without adjusting for other 
variables. HR = hazard ratio; C.I. = confidence intervals; partDSA = partitioning 
deletion/substitution/addition algorithm; SS-RPMM = semi-supervised 
recursively partitioned mixture model; NMIBC = non-muscle-invasive bladder 
cancer 
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resolution immune profiles using methylation cytometry and cell-independent 

methylation states in blood. In prior work, we observed that CD4T and CD8T 

proportions were associated with the decreased risk of death and tumor 

recurrence in non-muscle-invasive bladder cancer patients (NMIBC) patients 

[188]; however, the results were not generalizable to naïve and memory subtypes 

of CD4T and CD8T cells. With recent advances in methylation cytometry for 

immune profiling [102], we were able to examine the association between the 

proportions of regulatory T cells, eosinophils, basophils, naïve and memory 

subtypes of CD4T, CD8T, and B cell and bladder cancer outcomes. Consistent 

with our previous study, neutrophil-to-lymphocyte ratio (NLR) was associated 

with an increased risk of death and tumor recurrence in NMIBC patients. For 

CD4T and CD8T cell subsets, CD4T memory and CD8T memory cell 

proportions were associated with a decreased risk of death. However, only CD4T 

memory cell proportion was associated with a reduced risk of death and tumor 

recurrence. One possible explanation for the different observations is that we 

introduced age acceleration into the models. This might confound the association 

between CD8T cell proportions subtypes and bladder cancer outcomes. Here, we 

identified associations between immune cell subtypes and age acceleration with 

bladder cancer outcomes. These factors could be potentially prognostic 

biomarkers of bladder cancer. 

 Few studies have shown age acceleration from multiple age clocks to be 

associated with bladder cancer outcomes, and even then, they do not show 

consistent results [190], [195]. In our study, the direction of hazard estimates 
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among cell type proportions was similar. However, outcome associations with 

immune profile differed in Cox multivariable models controlling for Pheno and 

Hannum age acceleration. The observed difference was potentially due to the 

training methods of clocks. Unlike Hannum age using chronological age as a 

surrogate, Pheno age mainly focuses on aging outcomes, such as cancers, diet, 

and all-cause mortality, hence, Pheno age can capture age-related outcomes and 

perform well in predicting survival compared with chronological methylation 

clocks, such as Hannum and Horvath clocks. Horvath age acceleration was not 

associated with bladder cancer outcomes. One potential explanation is that the 

Horvath clock was built mainly using a subset of CpGs on the 27K methylation 

array platform, which had approximately twenty times fewer CpGs than the 

450K and EPIC array platforms used for the developing of the Hannum and 

PhenoAge clocks. Furthermore, various cell and tissue types were used to 

develop the Horvath clock. However, Hannum and PhenoAge clocks were built 

based on data from blood DNA measures. 

 Our findings suggest that elevated NLR, neutrophil, basophil, regulatory T, 

and decreased CD4T memory cell proportions increased the risk of death and 

tumor recurrence in bladder cancer patients. These findings met our expectations, 

consistent with previous studies demonstrating that peripheral blood NLR levels 

were associated with an increased risk of NMIBC recurrence after surgery [75], 

[154], [206]. Moreover, basophil count was significantly associated with an 

increased risk of recurrence in BCG-treated bladder cancer patients [207]. One 

study indicated that peripheral (neutrophil x platelet) / (lymphocyte) was 
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inversely correlated with a high risk of tumor recurrence in NMIBC [159]. Even 

though some peripheral immune profiles we found had not been revealed to be 

associated with bladder cancer outcomes, these immune profiles in the tumor 

microenvironment had been reported to be associated with bladder cancer 

outcomes. For instance, higher regulatory T cell infiltration in the tumor 

microenvironment was associated with a shorter RFS [64], and regulatory T cell 

frequency within the tumor was inversely correlated with RFS in NMIBC 

patients [208]. Future work that integrates the assessment of cell-type 

proportions in the tumor microenvironment and periphery associated with 

bladder cancer outcomes would be of value. 

 The optimal 15 CpG loci selected by SS-RPMM using the model adjusting 

for Pheno age acceleration, and the optimal 50 CpG loci selected by SS-RPMM 

using the model adjusting for Hannum age acceleration track to several genes 

that have been reported to be involved in bladder cancer development. Sprouty-

related EVH1 domain-containing protein 2 (SPRED2), is a negative regulator of 

the ERK-MAPK pathway, and has been reported to have increased mRNA and 

protein expression in NMIBC compared with carcinoma in situ and infiltrating 

urothelial carcinoma [209]. In addition, patients with higher SPRED2 mRNA 

levels had better overall survival compared with low expression group [209]. 

Peroxisome proliferator-activated receptor gamma (PPARG) high-activation has 

been reported to promote cell cycle G2 arrest and apoptosis, leading to 

suppression of tumor growth and better prognosis in bladder cancer patients 

[210]. Fibrous sheath interacting protein 1 (FSIP1) was overexpressed in protein 
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and mRNA levels of bladder tumor tissues and cancer cell lines [211], [212]. 

Besides, FSIP1 overexpression was associated with worse outcomes [211]. 

Phosphorylated mitogen-activated protein kinase 14 (MAPK14) was 

overexpressed in bladder cancer cell lines and tissues [213]. Furthermore, 

phosphorylated MAPK14 could combine and regulate RUNX2, which was 

identified in our previous study through epigenome-wide association study 

(EWAS) [188], to promote the proliferation and migration of bladder cancer 

[213]. Consistent with our findings, patients with a worse survival rate (rL group) 

had lower methylation levels in the CpG site, cg16145324, located in the 

MAPK14 gene region (Table S5B). 

 To further investigate the interactions between clinical variables, immune 

profiles, and DNA methylation levels, we performed both partDSA and SS-

RPMM. Though NMIBC patients were divided into three groups using partDSA, 

the Kaplan-Meier curves for Group 1 and 3 patients were not significantly 

different. Interestingly, when we applied the optimal CpG loci selected by SS-

RPMM, patients in Groups 1 and 3 were grouped into two groups, with a 

significant difference in 10-year overall survival. This finding illustrated the 

importance of methylation levels of specific CpG sites in evaluating bladder 

cancer prognosis. 

 While this study carefully evaluated the association of cancer outcomes with 

peripheral immune cell type proportions, there were potential study limitations. 

For instance, BCG treatment has been reported to affect immune cell 

composition [159], [207], [214] and methylation profiles [215]. We do not have 
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detailed information, such as cycle numbers or responsiveness for each patient, 

though only a few patients (14.8%) in our study received BCG treatment. In 

addition, our sensitivity analysis that limited to patients who didn’t receive BCG 

treatment demonstrated consistent results with the overall NMIBC group. In 

addition, case ascertainment for our population-based study resulted in a median 

time from diagnosis to study blood draw is 319 days in our dataset. Further, some 

confounding factors, such as obesity [164], alcohol consumption [165], and type 

2 diabetes [166], have been reported to affect peripheral immune cell distribution. 

However, we had incomplete information on these potential covariates. 

 Taken together, our analysis applied the latest differentially methylated 

region library and highlighted several peripheral immune profiles that were 

associated with bladder cancer outcomes. We assessed interactions between 

clinical variables, immune cell proportions, and blood DNA methylation profiles 

in 10-year OS using partDSA and SS-RPMM analyses, clustering NMIBC 

patients into 5 groups according to the methylation levels of the optimal CpG 

loci, neutrophil, and CD8T naïve cell proportions. While few studies have 

investigated the association between bladder cancer outcomes and peripheral 

immune profiles, our findings provide insight into the potential of peripheral 

immune profiles to serve as prognostic biomarkers in bladder cancer. Future 

work examining immune profiles in tumor tissues as well as DNA methylation 

profiles of bladder cancer patients is needed to integrate interactions between 

bladder cancer outcomes, methylation levels, peripheral immune environment, 

and tumor microenvironments to further validate the feasibility of methylation-
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derived immune profiles for epigenetic biomarkers of bladder cancer. 
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B 

 
Figure S3.1: The distribution of chronological age, methylation age, age 
acceleration, and each immune cell profile (A) The distribution of 
chronological age, methylation age, age acceleration, and (B) each immune cell 
profile of 601 non-muscle-invasive bladder cancer patients 
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Table S3.1: Cox proportional hazards multivariable modelsa for age acceleration of 601 NMIBC patients 
 10-year overall survival 

HR (95% CI) 
10-year recurrence-free survivalb 

HR (95% CI) 
Horvath Age Acceleration 1.00 (0.97-1.03) 1.00 (0.98-1.02) 
Hannum Age Acceleration 1.05 (1.02-1.09) 1.00 (0.97-1.02) 
Pheno Age Acceleration 1.06 (1.03-1.08) 1.02 (1.00-1.03) 
aModels was adjusted for age, sex, tumor grade, smoking status, and BCG treatment status. 
bStratification was used on sex and BCG treatment status for proportional assumption. 

NMIBC: non-muscle-invasive bladder cancer, HR: hazard ratio, CI: confidence interval 

 

Table S3.2: Cox proportional hazards multivariable models for demographic and tumor characteristics of 601 

NMIBC patients (For Hannum Age Acceleration) 

 10-year overall survival 

HR (95% CI) 

10-year recurrence-free survivala 

HR (95% CI) 

Age 1.08 (1.06-1.10) 1.02 (1.01-1.03) 

Hannum Age Acceleration 1.05 (1.02-1.09) 1.00 (0.97-1.02) 

Sex   

  Male   

  Female 0.51 (0.33-0.79)  

Tumor grade   

  Low Grade   

  High Grade 1.57 (1.14-2.16) 1.47 (1.16-1.86) 

Smoking status   

  Non-smoker   

  Former-smoker 1.41 (0.86-2.32) 1.58 (1.15-2.18) 

  Current-smoker 2.15 (1.28-3.62) 1.77 (1.26-2.48) 

BCG treatment   

  No   

  Yes 0.89 (0.58-1.35)  

aStratification was used on sex and BCG treatment status for proportional assumption. NMIBC: non-muscle-invasive bladder cancer, HR: hazard 

ratio, CI: confidence interval 
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Table S3.3: Cox proportional hazards models of immune cell proportions and NMIBC patient outcomes (For Hannum Age Acceleration) 

 10-year overall survival 10-year recurrence-free survival 

 Univariate model Multivariablea model Univariate model Multivariableb model 

 HR (95% CI) HR (95% CI) FDR HR (95% CI) HR (95% CI) FDR 

NLR 1.49 (1.37-1.62) 1.40 (1.28-1.54) 1.7x10-11 1.14 (1.06-1.22) 1.12 (1.04-1.21) 0.01 

Memory B cell 0.82 (0.72-0.94) 0.86 (0.75-0.98) 0.04 0.94 (0.87-1.03)   

Naïve B cell 0.86 (0.79-0.94) 0.93 (0.86-1.01) 0.12 0.99 (0.94-1.04)   

Memory CD4T cell 0.92 (0.90-0.95) 0.95 (0.92-0.97) 5.4x10-4 0.97 (0.96-0.99) 0.97 (0.96-0.99) 0.01 

Naïve CD4T cell 0.87 (0.82-0.93) 0.96 (0.90-1.02) 0.19 0.95 (0.92-0.99) 0.97 (0.93-1.01) 0.14 

Memory CD8T cell 0.96 (0.94-0.99) 0.94 (0.92-0.97) 3.9x10-4 0.99 (0.97-1.01)   

Naïve CD8T cell 0.84 (0.73-0.96) 1.18 (1.01-1.38) 0.047 0.93 (0.86-1.02)   

Monocyte 1.06 (1.02-1.11) 1.03 (0.98-1.08) 0.26 1.05 (1.02-1.08) 1.04 (1.01-1.08) 0.02 

Neutrophil 1.06 (1.05-1.08) 1.05 (1.03-1.07) 6.1x10-8 1.01 (1.00-1.02) 1.01 (0.99-1.02) 0.08 

Regulatory T cell 1.27 (1.08-1.49) 1.23 (1.05-1.46) 0.02 1.20 (1.06-1.35) 1.19 (1.05-1.34) 0.01 

NK cell 0.92 (0.87-0.98) 0.90 (0.85-0.96) 0.01 0.98 (0.94-1.02)   

Basophil 1.51 (1.24-1.85) 1.36 (1.10-1.67) 0.01 1.16 (0.99-1.35)   

Eosinophil 1.02 (0.95-1.10)   1.03 (0.98-1.08)   
aThe model controlling for age, sex, tumor grade, smoking status, BCG treatment status, and Hannum age acceleration. 
bThe model controlling for age, stratified sex, tumor grade, smoking status, stratified BCG treatment status, and Hannum age acceleration. 

NMIBC: non-muscle-invasive bladder cancer, HR: hazard ratio, CI: confidence interval, NLR: neutrophil to lymphocyte ratio. Winsorization was used on the top 

 

 

 

 

 

Table S3.4: Cox proportional hazards models of immune cell proportions and NMIBC patient outcomes (For Pheno Age Acceleration; 
NMIBC patients without BCG treatment; N = 512) 

 10-year overall survival 10-year recurrence-free survival 

 Univariate model Multivariablea model Univariate model Multivariableb model 

 HR (95% CI) HR (95% CI) FDR HR (95% CI) HR (95% CI) FDR 

NLR 1.49 (1.36-1.63) 1.33 (1.20-1.48) 1.1x10-6 1.14 (1.06-1.22) 1.09 (1.00-1.19) 0.19 

Memory B cell 0.80 (0.69-0.93) 0.88 (0.76-1.02) 0.12 0.96 (0.88-1.05)   

Naïve B cell 0.87 (0.80-0.96) 0.96 (0.88-1.04) 0.36 0.99 (0.94-1.05)   

Memory CD4T cell 0.92 (0.90-0.95) 0.96 (0.93-0.99) 0.01 0.98 (0.96-0.99) 0.98 (0.96-1.00) 0.19 

Naïve CD4T cell 0.88 (0.82-0.94) 0.99 (0.93-1.06) 0.87 0.95 (0.92-0.99) 0.99 (0.95-1.04) 0.79 

Memory CD8T cell 0.96 (0.93-0.99) 0.95 (0.92-0.98) 2.7x10-3 0.99 (0.97-1.01)   

Naïve CD8T cell 0.83 (0.72-0.96) 1.22 (1.04-1.44) 0.03 0.93 (0.85-1.02)   

Monocyte 1.07 (1.01-1.12) 1.00 (0.95-1.06) 0.92 1.04 (1.01-1.08) 1.03 (0.99-1.06) 0.21 

Neutrophil 1.06 (1.05-1.08) 1.04 (1.02-1.06) 3.9x10-5 1.01 (1.001-1.02) 1.01 (0.99-1.02) 0.45 

Regulatory T cell 1.31 (1.10-1.56) 1.21 (1.01-1.45) 0.06 1.14 (1.003-1.30) 1.12 (0.98-1.29) 0.19 

NK cell 0.93 (0.87-0.99) 0.93 (0.86-0.99) 0.06 0.97 (0.93-1.02)   

Basophil 1.64 (1.33-2.02) 1.38 (1.10-1.74) 0.01 1.21 (1.03-1.43) 1.16 (0.97-1.38) 0.19 

Eosinophil 1.01 (0.93-1.10)   1.01 (0.95-1.07)   
 

aThe model controlling for age, sex, tumor grade, smoking status, and Pheno age acceleration. 
bThe model controlling for age, stratified sex, tumor grade, smoking status, and Pheno age acceleration. 
NMIBC: non-muscle-invasive bladder cancer, HR = hazard ratio, CI = confidence interval, NLR = neutrophil to lymphocyte ratio. 
Winsorization was used on the top 2% or the last 2% (only Neu) values for fitting linearity assumption. 
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Figure S3.2: Blood immune cell profiles, age and age acceleration 
distribution of three groups assigned by partDSA algorithm in NMIBC 
patients (A) Blood immune cell profiles (B) age and age acceleration. Group 1 
consisted of the 454 patients who had neutrophil cell proportions ≤ 76.46 and 
CD8 naïve cell proportions ≤ 1.76. Group 2 consisted of the 17 patients who had 
neutrophil cell proportions > 76.46. Group 3 consisted of the 130 patients who 
had neutrophil cell proportions ≤ 76.46 and CD8 naïve cell proportions > 1.76. 
Differences in cell-type proportions, age, methylation age, and age acceleration 
between three groups were evaluated using the ANOVA test. 
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Figure S3.3: Semi-Supervised Recursively Partitioned Mixture Model (SS-
RPMM) for 10-year overall survival (OS) in NMIBC patients [For Hannum 
age acceleration] (A) Data analysis schematic of SS-RPMM used for 
identification of blood DNA methylation profiles associated with non-muscle-
invasive bladder cancer (NMIBC). (B) Heatmap of predicted class memberships 
for the observations in all NMIBC patients using the average beta values of the 
50 CpG loci with the largest absolute Cox-scores. (C) Kaplan-Meier curves of 
10-year overall survival stratified by the SS-RPMM classification of 202 
NMIBC patients in the testing set by the 50 CpG loci. (D) Kaplan-Meier analysis 
of 10-year overall survival. 10-year overall survival curves stratified by the 
grouping result from SS-RPMM in all NMIBC patients. P-values for Log-rank 
tests are shown. All Kaplan-Meier curves are univariate analyses without 
adjusting for other variables. HR = hazard ratio; C.I. = confidence intervals; SS-
RPMM = semi-supervised recursively partitioned mixture model 
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Table S3.5A: The information of optimal 15 CpGs selected by SS-RPMM using the model controlling for Pheno age acceleration 

CpG DHS Enhancer Relation_to_Island chr UCSC_RefGene_Name UCSC_RefGene_Group delta_beta 

cg11187668 Yes No S_Shore 11   0.114 

cg13077138 Yes No Island 15 C15orf2 (NPAP1) 1stExon 0.006 

cg06864351 Yes No OpenSea 14   -0.015 

cg16441900 Yes No OpenSea 17 NXN Body 0.003 

cg23510764 No No OpenSea 5   0.061 

cg20688738 Yes No OpenSea 17   0.114 

cg13074203 Yes No OpenSea 8 SNTB1 Body 0.115 

cg14521240 No No OpenSea 14   -0.023 

cg06991118 Yes No OpenSea 18 NDUFV2 Body -0.050 

cg20016914 Yes No S_Shore 14 C14orf181 TSS200 0.035 

cg14768892 Yes Yes OpenSea 15 FSIP1 Body -0.070 

cg03872677 Yes No OpenSea 6   0.050 

cg12086028 Yes No S_Shore 6 VPS52 (ARE1) TSS1500 -0.024 

cg25644567 Yes No OpenSea 2 SPRED2 1stExon 0.107 

cg20187292 Yes No OpenSea 21   0.108 

delta_beta: the difference of average beta values between rR and rL groups (subtract rL from rR) 
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Table S3.5B: The information of optimal 50 CpGs selected by SS-RPMM using the model controlling for Hannum age acceleration 

CpG DHS Enhancer Relation_to_Island chr UCSC_RefGene_Name UCSC_RefGene_Group delta_beta 

cg19584733 No No OpenSea 9 DENND4C Body -0.009 

cg04036920 No No OpenSea 11 C11orf41 TSS1500 0.089 

cg23614413 No No Island 1 TMEM53 Body -0.008 

cg02288976 Yes No N_Shelf 19 ARID3A Body -0.114 

cg04524766 No No OpenSea 20   0.006 

cg15898112 No No OpenSea 15   -0.008 

cg06857887 Yes No N_Shelf 16 SEZ6L2 Body -0.004 

cg13077138 Yes No Island 15 C15orf2 (NPAP1) 1stExon 0.010 

cg24460268 Yes No OpenSea 13 INTS6 Body -0.098 

cg23120101 Yes No OpenSea 5 MCC Body 0.075 

cg03862957 No No OpenSea 20   0.079 

cg22048216 Yes No Island 18   -0.016 

cg02946878 Yes No OpenSea 4 PPARGC1A Body 0.047 

cg22354988 Yes No OpenSea 15   0.004 

cg16145324 Yes No OpenSea 6 MAPK14 Body 0.110 

cg07330145 Yes No N_Shore 11 STARD10 3'UTR -0.015 

cg21242079 Yes No N_Shore 15 ADAMTS7 Body -0.006 

cg00816164 Yes No OpenSea 3   0.040 

cg03417884 Yes No Island 18 GNAL TSS200 1.416 

cg01567825 No No Island 7 DOCK4 Body 0.002 

cg11490805 Yes No OpenSea 5   -0.009 

cg05796652 Yes No N_Shore 11 PSMA1 Body -0.043 

cg09430957 Yes No S_Shelf 19   -0.009 

cg07744547 Yes No N_Shore 8 MYOM2 Body 0.042 

cg05527920 Yes No OpenSea 4   0.033 

cg19904425 No No OpenSea 14 SERPINA12 TSS1500 0.006 

cg11187668 Yes No S_Shore 11   0.112 

cg20016914 Yes No S_Shore 14 C14orf181 TSS200 0.033 

cg09555736 Yes No N_Shore 16 RAB11FIP3 TSS1500 0.083 

cg08235551 Yes No Island 22   0.002 

cg03168497 Yes No Island 17 MYCBPAP Body 0.022 

cg15205435 Yes No Island 1 CHD5 Body 0.038 

cg10963061 Yes Yes Island 1   0.007 

cg07143050 No No N_Shelf 16   0.003 

cg04232850 Yes No OpenSea 5 EMB Body 0.146 

cg10598596 No No N_Shelf 19 KLK10 3'UTR -0.012 

cg16801601 Yes Yes OpenSea 10 PRKCQ 5'UTR -0.065 

cg24011500 Yes No OpenSea 11 VWCE Body 0.002 

cg27058077 Yes No OpenSea 1   0.096 

cg25433586 No No OpenSea 8   -0.108 

cg07838270 Yes No OpenSea 16   0.015 

cg26391794 Yes No OpenSea 13   -0.052 

cg16441900 Yes No OpenSea 17 NXN Body 0.004 

cg18766861 Yes No OpenSea 2 PLCL1 Body 0.131 

cg03354717 No No N_Shore 16 LONP2 TSS1500 0.020 

cg05373255 Yes No OpenSea 10 CHAT Body -0.040 

cg24401262 Yes Yes OpenSea 1   0.147 

cg25644567 Yes No OpenSea 2 SPRED2 1stExon 0.102 

cg22382021 No No Island 8 MGC70857 TSS1500 0.026 

cg12414181 Yes No Island 15 SCAMP5 TSS200 0.005 

delta_beta: the difference of average beta values between rR and rL groups (subtract rL from rR) 
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Figure S3.4: Blood immune cell profiles, age and age acceleration 
distribution of two clusters assigned by the SS-RPMM approach in NMIBC 
patients (A) Blood immune cell profiles (B) age and age acceleration 
distribution for the SS-RPMM adjusting for Pheno age acceleration. Differences 
in cell-type proportions, age, Pheno age, and age acceleration between two 
groups were evaluated using the Wilcoxon rank sum test. (C) Blood immune cell 
profiles (D) age and age acceleration distribution for the SS-RPMM adjusting 
for Hannum age acceleration. Differences in cell-type proportions, age, Hannum 
age, and age acceleration between two groups were evaluated using the 
Wilcoxon rank sum test. 
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Figure S3.5: Kaplan-Meier analysis of 10-year overall survival based on the 
grouping results from both partDSA and SS-RPMM in all NMIBC patients 
[For Hannum age acceleration] (A) contingency table based on the grouping 
results from both partDSA and SS-RPMM in all NMIBC patients. (B) 10-year 
overall survival curves of all 5 groups. P-values for Log-rank tests are shown. 
All Kaplan-Meier curves are univariate analyses without adjusting for other 
variables. HR = hazard ratio; C.I. = confidence intervals; partDSA = partitioning 
deletion/substitution/addition algorithm; SS-RPMM = semi-supervised 
recursively partitioned mixture model; NMIBC = non-muscle-invasive bladder 
cancer. 
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Chapter 4 

Integrated investigation of bladder cancer immune 

profiles in the tumor microenvironment and 

peripheral blood 
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4.1 Abstract 

Bladder cancer development and the response to therapy are influenced by 

immune profiles in the tumor microenvironment (TME) and peripheral blood. 

Despite the significance of immune involvement, studies investigating 

associations of tumor-infiltrating immune cells with immune profiles in 

circulating blood are limited. The Illumina HumanMethylationEPIC array was 

utilized to assess DNA methylation levels in tumor tissues and matched blood 
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samples from bladder cancer patients. DNA methylation cytometry approaches 

were employed to quantify the proportions of thirteen immune cell types in the 

TME and twelve immune cell types in peripheral blood. These cell types 

included dendritic cells, naïve and memory subsets of T and B cells, as well as 

granulocyte subtypes. Tumors were grouped by immune hot and cold status as 

well as using consensus clustering with immune profile data as the input. 

Differences in immune composition between the identified groups were assessed 

through the permutational multivariate analysis of variance method. The 

Wilcoxon rank sum test was used to evaluate differences in individual immune 

cell-type proportions within the TME and blood across the identified groups. 

Compared with non-muscle-invasive bladder cancer patients, muscle-invasive 

bladder cancer patients had higher dendritic cell (P=1.9x10-4), memory B 

(P=9.3x10-6), natural killer (P=7.4x10-5), and memory CD8T (P=1.1x10-5) cell 

proportions in the TME. Patients with high anti-tumor immune infiltration – 

immune hot tumors – had higher dendritic cell (P=1.0x10-9), eosinophil (P=0.02), 

memory CD4T (P=0.002), memory CD8T (P=8.6x10-13), natural killer 

(P=2.7x10-10), and memory B (P=9.3x10-14) cell proportions in the TME 

compared with low anti-tumor immune infiltration group. However, there were 

no differences in circulating immune profiles between patients with immune hot 

and cold tumors. With consensus clustering based on tumor immune profiles, 

two clusters of patients were identified. Patients in Cluster 1 had higher dendritic 

cells (P=6.4x10-12), memory CD8T (P=1.2x10-13), natural killer (P=3.9x10-11), 

and memory B (P=8.0x10-13) cell proportions and had lower basophil 
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(P=0.0047) and monocyte (P=0.011) cell proportions in the TME compared with 

Cluster 2. In addition, in peripheral blood samples, patients in Cluster 1 had 

higher basophil (P=0.043) but lower naïve CD4T (P=0.029) and memory CD4T 

(P=0.037) cell proportions. Our findings showed that methylation cytometry 

approaches offer detailed immune profiles, and that consensus clustering 

provided insights into the relationship of tumor and systemic immune status in 

bladder cancer patients. 

 

4.2 Introduction 

The immune system in the tumor microenvironment (TME) plays a critical role 

in bladder cancer development and treatment. Considerable evidence has 

indicated that bladder cancer cells are able to shape the microenvironment, 

resulting in immunosuppression beneficial for tumorigenesis. For example, due 

to the overexpression of sphingosine 1 phosphate receptor 1 in bladder cancer 

cells, TGF-β and IL-10-induced regulatory T-cell (Treg) expansion has been 

shown to lead to suppression of cytotoxic T cells in the tumor microenvironment 

[58], [59]. Numerous studies have indicated that myeloid-derived suppressor 

cells (MDSCs), which exhibit immunosuppressive properties, are recruited by 

bladder cancer cells with the secretion of CXC-chemokine ligand 2, and 

macrophage migration inhibitory factor [63]. Infiltrating MDSCs are able to 

express Arginase 1, inducible nitric oxide synthases, and PD-L1 to induce Treg 

activation and suppress the function of T, B, and natural killer cells [61], [216], 

[217]. Since bladder cancer cells can escape from immune surveillance with the 
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assistance of immunosuppressive cells, many treatments have been developed to 

target immunosuppressive cells and/or stimulate the activation of anti-tumor 

immune cells. 

 After transurethral resection of the bladder tumor, intravesical Bacillus 

Calmette-Guérin (BCG) and immune checkpoint inhibitors (ICI) are the most 

common treatments to control tumor recurrence. BCG treatment uses the 

attenuated form of the tuberculosis vaccine, which induces an inflammatory 

reaction and activates anti-tumor immune cells, such as natural killer and CD8T 

memory cells, within the TME [47], [218]. ICIs are used to block the interaction 

of PD-1 with PD-L1, aiming to restore the activity of effector T cells against 

bladder cancer cells [56]. However, < 30% of bladder cancer patients responded 

to immunotherapy [219]–[221]. One potential contribution to immunotherapy 

resistance is the immune landscape of the TME. For instance, patients with 

abundant T cell infiltration in the TME, typically called immune hot, respond 

better to ICIs compared with patients with little immune cell infiltration, also 

known as immune cold tumors [222]–[225]. Currently, there is no standard 

definition of immune hot and cold tumors for bladder cancers, and a more 

complete understanding of the immune composition of the TME is required to 

improve treatments for bladder cancer. 

 Only a few studies have investigated both the tumor and peripheral blood 

immune status in bladder cancer. Existing work to date has been limited to 

measures of tumor and peripheral blood neutrophils. For example, high 

neutrophil proportions in both peripheral blood and the TME have been 
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associated with immunosuppressive effects in bladder cancer [72]. Additional 

works investigating other immune cell types within the bladder cancer 

microenvironment and their association with circulating immune profiles are 

needed to improve the management of bladder cancer. 

 Due to the critical role in gene regulation for cell lineage specification [133], 

[134], DNA methylation profiles can be leveraged to estimate cell-type 

proportions [89], [90], [96]. The major advantages of DNA methylation 

cytometry are high accuracy and the ability to work in archival specimens [98]–

[100]. Many studies have exploited DNA methylation cytometry in the cancer 

research field, including bladder cancer [100], [188], [226], [227]. Currently, 

publicly available DNA methylation data for tumor tissue is predominantly from 

muscle-invasive bladder cancers (MIBC) and thus information on non-muscle-

invasive bladder cancers (NMIBC) lacks as matched data from blood samples 

are lacking. Here, we obtained tumor tissues and matched blood samples from 

MIBC and non-muscle-invasive bladder cancer patients through population-

based studies [138]–[140]. Since our samples were archival specimens, we 

performed DNA methylation cytometry to identify the immune profiles of both 

compartments. Recently, our group developed methods that enable the 

deconvolution of DNA methylation data quantifying cell types in the tumor 

microenvironment [101] and immune cell types in peripheral blood [89]. Here, 

we identified and compared the distributions of immune landscapes in bladder 

cancer patient tumors and peripheral blood using DNA methylation. 
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4.3 Methods 

4.3.1. Study Subjects and Samples 

The study subjects have been described in detail in prior research [138]–[140]. 

In brief, we included a subset of bladder cancer patients recruited in three phases 

from a population-based case-control study in New Hampshire [141]. For our 

study, we included 331 subjects diagnosed between July 1994 and June 1998 

from the phase 1 study, 243 subjects diagnosed between July 1998 and December 

2001 from the phase 2 study, and 194 subjects diagnosed between July 2002 and 

December 2004 in the phase 3 study. Subjects who were from phases 1 and 2 

were identified using the New Hampshire State Cancer Registry and hospital 

cancer registry, while subjects in phase 3 were only those included in the hospital 

cancer registry. Patients with both available blood and tumor samples (N = 88) 

were included in the present study. Among 88 subjects, the median time interval 

from the initial diagnosis to the blood draw was 207 days. All blood samples 

were stored at 4°C and then frozen within 24 hours of blood draw. Overall 11% 

(N = 10) of patients received treatment with Bacillus Calmette-Guérin (BCG), 

and blood samples were taken after treatment (median: 583 days). The resections 

were generally taken around the time of initial diagnosis, and BCG was 

administered after the tumor resection. This study was approved by the 

Dartmouth Human Research Protection Program (IRB). 

 Formalin-fixed, paraffin-embedded (FFPE) tumor specimens and pathology 

reports were requested from treating physicians/pathology laboratories with 

initial diagnoses. Bladder tumors were reviewed by a single pathologist and 



 109 

classified based on the WHO classification criteria. DNA extraction was 

performed using a previously reported method [228]. In brief, 20-µm sections 

were cut from the paraffin-embedded tissue and placed into tubes containing a 

digestion buffer. The paraffin was removed with microwave treatment and 

centrifugation, and the resulting paraffin-free tissue pellets were further 

processed with proteinase K digestion in a separate digestion buffer. 

Subsequently, supernatants containing the DNA lysate were subjected to boiling 

to denature any residual protease activity. Study participants underwent an 

extensive in-person interview to gather comprehensive data on demographic 

characteristics and risk factors, including information on cigarette smoking 

history [138]–[141]. 

 

4.3.2. DNA Extraction, Qualification, and Bisulfite Modification 

Blood and tumor DNA extraction was performed using the QIAamp DNA Blood 

Kit and the QIAamp DNA FFPE Tissue Kit (Qiagen, CA, USA), respectively, 

according to the manufacturer’s protocol. We quantified and qualified the 

extracted DNA using Qubit 3.0 Fluorometer (Life Technologies, CA, USA) and 

Fragment Analyzer (Advanced Analytical, IA, USA). Extracted DNA samples 

were conducted for bisulfite modification with EZ DNA Methylation Kit (Zymo 

Research, CA, USA) according to the instructions of the manufacturer. 

 

4.3.3. DNA Methylation Profiling 

Bisulfite-modified DNA samples were subjected to the Infinium 
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MethylationEPIC Bead Chip array (Illumina, Inc., CA, USA), measured for their 

methylation intensity at > 850,000 CpG sites. Probe intensity data (iDAT) files 

were processed via preprocessNoob normalization method from the R package 

minfi [142]. ENmix [143], an R package, was performed for the quality control 

of probes. For sample selection, we set that samples with more than 5% of probes 

with a detection P value larger than 1.0 × 10-6 would be excluded to distinguish 

from background noise; fortunately, all samples had good quality and were kept 

in the study. Probes were checked by observing any probes that were not missing 

in more than 10% of the samples. BMIQ [200] from the watermelon [201] R 

package was performed for probe-type normalization, and batch effects were 

corrected using ComBat [144]. Then, 119,258 probes previously described to be 

potentially cross-hybridizing, sex-specific, non-CpG (CpH) methylation, and 

SNP-associated were filtered [145]. In total, 746,980 were included in the final 

analysis (Figure 1A). The CpG loci were annotated with 

IlluminaHumanMethylationEPICanno.ilm10b4.hg19 [146] R package. 

 

4.3.4. Statistical Analysis 

Cell-type proportions in the tumor microenvironment (TME) were inferred using 

hierarchical tumor immune microenvironment epigenetic deconvolution 

(HiTIMED; https://github.com/SalasLab/HiTIMED) [101], and circulating cell-

type proportions of 12 cell types were estimated through the projectCellType_CP 

from the FlowSorted.Blood.EPIC [89] R package. 

 To integrate the information of cell-type proportions from tumor and blood, 
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we grouped subjects using two methods. The first grouping method is according 

to the concept of immune hot and immune cold tumors. Since there is no standard 

definition of immune hot and immune cold tumors in bladder cancers, we 

grouped subjects based on the total percentage of anti-tumor immune cell-type 

proportions in the TME. If the sum of dendritic cell, natural killer, and naïve and 

memory subsets of CD4T, CD8T, and B cell proportions was > 5%, patients were 

assigned to the high immune infiltration (immune hot) group; otherwise they 

were assigned to the low immune infiltration (immune cold) group. 

 To also take an agnostic approach to grouping tumors by immune infiltration 

status, we performed consensus clustering [229] of standardized immune cell-

type proportions in TME as input using the ConsensusClusterPlus [230] R 

package with the setting of the following parameters and standardized immune 

cell-type proportions in TME as input. The clustering algorithm was hierarchical 

clustering using a distance of 1 – Spearman correlation values. The number of 

repetitions of subsampling and clustering was 1,000. To avoid overfitting, 80% 

of subjects were randomly selected for each repetition. To test if the immune 

composition in peripheral blood was different between groups, we performed 

permutational multivariate analysis of variance (PERMANOVA) using 

PERMANOVA [231] R package, and the input was Aitchison distance matrix 

calculated by robCompositions [232] R package. Differences in cell-type 

proportions between two groups generated via two methods (immune hot-cold 

and consensus clustering) were evaluated using the Wilcoxon rank sum test. 

Statistical comparisons between two categorical variables were performed using 
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Fisher’s exact test (two-tailed). 

 

4.3.5. Data Availability 

Datasets generated and analyzed in the present study are available in the Gene 

Expression Omnibus (GEO) repository at GSE237100. 

 

4.4 Results 

4.4.1. Characteristics of subjects 

The study group consisted of 75 non-muscle-invasive bladder cancer (NMIBC) 

patients and 13 MIBC patients. The median age was 67 years, 65 (74%) were 

men, 59 (67%) had tumors in low grade, 46 (52%) and 26 (30%) were former 

and current smokers respectively, and 10 (11%) patients received BCG treatment 

(Table 4.1). DNA methylation profiles obtained from the tumor 

microenvironment (TME) of 88 patients were used to estimate cell-type 

proportions in TME through HiTIMED, and the distribution of cell proportions 

was displayed in Figure 4.1B. The distribution of the matched methylation-

derived immune cell profiles in the blood is shown in Figure 4.1C. 
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Table 4.1: Characteristics of subjects 

 NMIBC (n = 75) MIBC (n = 13) All (n = 88) 

Age    

  Median (Q1, Q3) 67 (56,71) 69 (64,76) 67 (57,72) 

Sex    

  Male 57 (76%) 8 (62%) 65 (74%) 

  Female 18 (24%) 5 (38%) 23 (26%) 

Tumor grade    

  Low Grade 56 (75%) 3 (23%) 59 (67%) 

  High Grade 19 (25%) 10 (77%) 29 (33%) 

Tumor stage    

  Stage 0a 61 (81%) 0 (0%) 61 (69%) 

  Stage I 14 (19%) 0 (0%) 14 (16%) 

  Stage II 0 (0%) 8 (62%) 8 (9%) 

  Stage III 0 (0%) 2 (15%) 2 (2%) 

  Stage IV 0 (0%) 3 (23%) 3 (4%) 

Smoking status    

  Never 12 (16%) 2 (15%) 14 (16%) 

  Former 40 (53%) 6 (46%) 46 (52%) 

  Current 21 (28%) 5 (39%) 26 (30%) 

  Missing 2 (3%) 0 (0%) 2 (2%) 

BCG: Immunotherapy    

  No 65 (87%) 13 (100%) 78 (89%) 

  Yes 10 (13%) 0 (0%) 10 (11%) 
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Figure 4.1: Data processing and cell distribution in tumor 
microenvironment and peripheral blood (A) Data processing schematic; DNA 
was extracted from tumor tissues and matched blood samples of 88 bladder 
cancer patients. After serial pre-processing steps, DNA methylation profiles 
were applied to estimate cell-type proportions in (B) tumor tissues and (C) blood 
using HiTIMED and FlowSorted.Blood.EPIC methods respectively. 

 

4.4.2. Differences in tumor cell distribution between non-muscle-invasive 

and muscle-invasive bladder cancer patients 

We first investigated the association of tumor muscle invasive status with the 

distribution of cell-type proportions in both the tumor microenvironment (TME) 

and peripheral blood. Within TME, we observed that NMIBC patients had 

significantly lower memory B, natural killer, neutrophil, memory CD8T, 
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endothelial, stromal, and dendritic cell proportions, and a higher epithelial cell 

proportion compared with MIBC patients (Figure 4.2); however, no significant 

differences in circulating immune profiles was observed between NMIBC and 

MIBC patients (Figure S4.1). 

 

4.4.3. The impact of tumor immune infiltration on peripheral blood 

immune cell distribution 

In recent years, several studies have reported that cellular immune composition 

within a tumor plays a critical role in tumor development and the response to 

immunotherapy, generating the concept of immune hot and cold tumors [224], 

[225], [233], [234]. Since tumor-infiltrated immune cells translocate to tumor 

sites through the bloodstream, we assessed the association between immune cell-

type proportions in TME and blood. Due to the lack of a standard definition of 

immune hot and cold tumor for bladder cancer, we clustered subjects based on 

the infiltrated anti-tumor immune cell proportions (the sum of dendritic cells, 

natural killer, and naïve and memory subsets of lymphocytes). Anti-tumor 

immune cell proportion of < 5% in the TME was defined as low immune 

infiltration (immune cold, N = 38), and tumors with infiltrating immune cell 

proportions >5% were in the high immune infiltration group (immune hot, N = 

50). 
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Figure 4.2: Cell profiles of tumor microenvironment in NMIBC and MIBC 
patients Differences in cell-type proportions between NMIBC and MIBC 
patients were evaluated using the Wilcoxon rank sum test. 
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and dendritic cell proportions in TME compared with the low immune 

infiltration group, we did not observe any statistical differences in the immune 

composition in peripheral blood (P = 0.13; PERMANOVA test) and individual 

cell types between immune hot and immune cold patient groups (Figure 4.3). 

We conducted Fisher’s exact test to determine if there are associations 

between tumor infiltration and tumor characteristics. We observed that high anti-

tumor immune infiltration was associated with tumor grade, stage, and muscle-

invasiveness, but not with BCG treatment (Table S4.1). 

 

4.4.4. Comparing tumor and blood immune cell distributions using 

consensus clustering 

We next used an unbiased approach for grouping patients based on tumor 

immune infiltration with consensus clustering which resulted in two groups 

(Group 1, n = 43; Group 2, n = 45). Among non-immune cell types, Group 1 

patients had higher endothelial and stromal cell proportions and lower epithelial 

cell proportion in TME compared with Group 2 patients. Additionally, Group 1 

patients had significantly higher memory CD8T, natural killer, memory B, and 

dendritic cell proportions and lower basophil and monocyte proportions in TME 

(Figure 4.4). 

 Unlike the more basic approach using anti-tumor immune cell percentage in 

TME, with groupings from consensus clustering based on tumor immune cell 

proportions, we observed statistical differences in the immune composition in 

peripheral blood (P = 0.01; PERMANOVA test). In addition, individual 
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circulating immune profiles had significant differences between Groups 

including basophil, naïve CD4T, and memory CD4T cell types (Figure 4.4). 

Interestingly, some peripheral blood cell proportions with significant differences 

between groups had the opposite direction of cell proportion differences 

observed in the tumor. For example, patients in Group 1 had a lower basophil 

proportion in TME, but a higher basophil proportion in blood compared with 

Group 2. Despite not reaching statistical significance, patients with a higher 

monocyte proportion in TME (Group 2) had a lower monocyte proportion in 

their blood (Figure 4.4). In addition, we found the grouping result was associated 

with tumor grade, stage, muscle-invasive status, and BCG treatment (Table 

S4.2). Interestingly, the findings showed that Cluster 1 patients demonstrated 

significantly increased odds of having an advanced tumor stage (Stage I – IV vs 

0a; odds ratio = 17.68; 95% CI = 4.74 – 66.00) and substantially elevated odds 

of having a high tumor grade (odds ratio = 14.24; 95% CI = 4.32 – 46.90) 

compared to patients in Cluster 2. 
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Figure 4.3: Tumor and blood cell profiles distribution of two groups 
assigned by the proportion of anti-tumor immune infiltration High immune 
infiltration group (High) consisted of the 50 patients who had the sum of B, 
CD8T, CD4T, natural killer, and dendritic cell proportions > 5% in tumor 
microenvironment. Low immune infiltration group (Low) consisted of the 38 
patients who had the sum of B, CD8T, CD4T, natural killer, and dendritic cell 
proportions ≤ 5% in tumor microenvironment. Differences in cell-type 
proportions between two groups were evaluated using the Wilcoxon rank sum 
test. 
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Figure 4.4: Tumor and blood cell profiles distribution of two groups 
assigned by consensus clustering algorithm using tumor immune profiles as 
input Group 1 and Group 2 consisted of 43 and 45 patients respectively. 
Differences in cell-type proportions between two groups were evaluated using 
the Wilcoxon rank sum test. 
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4.5 Discussion 

The objective of this study was to investigate the distribution of immune cells 

within the tumor microenvironment (TME) of bladder cancer and explore its 

potential association with circulating immune profiles. Initially, we employed 

the HiTIMED [101] approach to estimate the cell distribution in the TME. Our 

findings revealed a scarcity of naïve lymphocytes (approximately 0%) in tumor 

tissues, aligning with their rarity in non-lymphoid tissues except peripheral blood 

[235]–[238]. Furthermore, we utilized the FlowSorted.Blood.EPIC [89] method 

to infer immune profiles within matched blood samples. Unsurprisingly, the 

mean neutrophil-to-lymphocyte ratio (NLR), a prognostic marker in various 

cancer types, was found to be 2.3 (Q1-Q3: 1.5-2.9). This value slightly exceeded 

the normal range of 1-2, as NLR values above 2.3 in adults serve as an early 

indicator of pathological conditions and cancer development [239], [240]. In past 

studies, peripheral blood NLR has been demonstrated to be associated with an 

increased risk of death and tumor recurrence in bladder cancer patients [154], 

[188], [241]. 

 To address a knowledge gap regarding the association of immune profiles 

in bladder cancer between two compartments, we conducted several 

comparisons using different clustering approaches. While no significant 

differences were observed in circulating immune profiles between patients with 

MIBC and NMIBC, higher proportions of natural killer cells, neutrophils, 

memory B cells, memory CD8T cells, and dendritic cells were found in the TME 

of MIBC compared to NMIBC patients. These findings were consistent with a 
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previous study that reported significantly elevated levels of CD3 and CD8 

tumor-infiltrating lymphocytes in MIBC compared to NMIBC patients [242]. 

 In order to investigate the association of immune distribution between two 

compartments, we initially adopted the concept of immune hot and cold tumors 

to categorize the groups, although no standardized definitions were available in 

previous studies. Significant variations in immune profiles within the TME were 

observed, indicating distinctive immune characteristics among the categorized 

groups. In contrast, no significant differences were detected in immune profiles 

within the peripheral blood between the groups, suggesting that the conventional 

classification of immune hot and cold tumors might be inadequate in capturing 

the intricate relationship of immune profiles between the two compartments. 

 Interestingly, when applying the consensus clustering approach to 

categorize subjects based on more detailed immune infiltration profiling data, 

significant differences in immune profiles emerged not only within the TME but 

also in peripheral blood across the clustering groups. Of particular note, we 

observed an inverse relationship between basophil proportions in the TME and 

peripheral blood (Figure 4). Previous research exploring the association of 

basophils with bladder cancer demonstrated that high basophil counts in 

peripheral blood were linked to an increased hazard of recurrence in high-grade 

T1 bladder cancer patients undergoing BCG treatment [207]. In our study, 

patients with a high circulating basophil proportion (Cluster 1) exhibited 17.68 

times the odds of having an advanced tumor stage (Stage I – IV vs 0a) compared 

to patients in Cluster 2. Similarly, patients with a high circulating basophil 
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proportion (Cluster 1) had 14.24 times the odds of having a high tumor grade 

compared to patients in Cluster 2. Our previous study also demonstrated that 

elevated basophil proportions in blood were associated with an increased risk of 

death in NMIBC patients, with patients exhibiting poor overall survival showing 

higher circulating basophil proportions [243]. Although there is no study 

surveilling basophils in the TME of bladder cancer currently, tumor-infiltrating 

basophils in other cancer types have been reported to play a critical role in tumor 

progression [244]–[246]. In addition to basophils, Cluster 1 patients exhibited 

significantly lower monocyte proportions in the TME, but slightly higher 

monocyte and significantly lower CD4T cell proportions in peripheral blood. 

Numerous studies have indicated that a high monocyte-to-lymphocyte ratio in 

the blood is associated with poor bladder cancer outcomes [247]–[250]. 

Circulating monocytes can be recruited into the TME through tumor-derived 

chemokines [251], where they differentiate into tumor-associated macrophages 

(TAMs), promoting tumor cell survival, local invasion, and metastasis [252]–

[254]. The lower monocyte proportion in the TME of Cluster 1 patients may be 

attributed to the tumor’s ability to facilitate the differentiation of infiltrating 

monocytes into TAMs. Further investigations are warranted to validate this 

inference. 

 Several potential limitations should be acknowledged in this study. Firstly, 

all blood samples were collected after diagnosis, with a median time interval of 

207 days (Q1 – Q3: 120 – 517). Although the elapsed time may impact the 

distribution of circulating immune profiles, we found that patient and tumor 
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characteristic summary statistics, as well as peripheral immune profiles, 

exhibited similar distributions when stratified based on the median time interval. 

Secondly, BCG treatment has been shown to influence immune profiles in both 

the tumor microenvironment and the circulating system [255]–[257]. Despite 

lacking the information for responsiveness and the number of treatment cycles 

for each patient with treatment (N = 10; 13%), we did a comparison for immune 

distribution between the dataset, including patients with BCG treatment (N = 88) 

or not (N = 78), demonstrating similar distribution. Furthermore, the sample size 

ratio between NMIBC and MIBC is imbalanced. To address this issue, future 

data collection efforts should focus on including more MIBC as well as NMIBC 

patients as well as NMIBCs. However, currently, publicly available datasets with 

DNA methylation data from tumor tissues and matched blood samples are 

lacking. Additionally, due to incomplete information, we were unable to 

investigate the influence of other confounders, such as alcohol consumption 

[165], [258] and obesity [164], [259], on immune cell distribution. Finally, 

further studies with larger and independent patient cohorts are needed to validate 

and confirm these preliminary results. 

 Taken together, further investigations are warranted to unravel the intricate 

interplay between local and systemic events in immune modulation against 

bladder cancer cells. Our study presents a potential opportunity facilitated by a 

detailed immune profiling approach that utilizes cell-specific methylation data 

to deconvolute the tumor microenvironment. This work has provided additional 

insights into the analysis of data encompassing both tumor and peripheral blood 
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immune profiles. We believe that our findings will provide valuable 

contributions to the further understanding of immunotherapy response and the 

underlying mechanisms of bladder cancer development. 

 

4.6 Supplement: Chapter 4 

 
Figure S4.1: Circulating cell profiles in NMIBC and MIBC patients 
Differences in cell-type proportions between NMIBC and MIBC patients were 
evaluated using the Wilcoxon rank sum test 
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Table S4.1: The distribution of subject characteristics within anti-tumor immune infiltration groups  

 Low Infiltration (N = 38) High Infiltration (N = 50) P (Fisher’s Exact Test; Two-tailed) 

Tumor Grade   6.22E-5 

  Low Grade 35 (92%) 24 (48%)  

  High Grade 3 (8%) 26 (52%)  

Tumor Stage   5.73E-8 

  Stage 0a 38 (100%) 23 (46%)  

  Stage I 0 (0%) 14 (28%)  

  Stage II 0 (0%) 8 (16%)  

  Stage III 0 (0%) 2 (4%)  

  Stage IV 0 (0%) 3 (6%)  

Muscle Invasive   0.0004 

  No 38 (100%) 37 (74%)  

  Yes 0 (0%) 13 (26%)  

BCG Treatment   0.177 

  No 36 (95%) 42 (84%)  

  Yes 2 (5%) 8 (16%)  

 

Table S4.2: The distribution of subject characteristics within groups derived from consensus clustering 

 Cluster 1 (N = 43) Cluster 2 (N = 45) P (Fisher’s Exact Test; Two-tailed) 

Tumor Grade   2.76E-6 

  Low Grade 18 (42%) 41 (91%)  

  High Grade 25 (58%) 4 (9%)  

Tumor Stage   4.06E-6 

  Stage 0a 19 (44%) 42 (94%)  

  Stage I 12 (28%) 2 (4%)  

  Stage II 7 (16%) 1 (2%)  

  Stage III 2 (5%) 0 (0%)  

  Stage IV 3 (7%) 0 (0%)  

Muscle Invasive   0.0006 

  No 31 (72%) 44 (98%)  

  Yes 12 (28%) 1 (2%)  

BCG Treatment   0.047 

  No 35 (81%) 43 (96%)  

  Yes 8 (19%) 2 (4%)  

Immune Infiltration   0.013 

  Low 2 (5%) 36 (80%)  

  High 41 (95%) 9 (20%)  
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Chapter 5 

Discussion and Conclusions 

 

5.1 Overview of Findings 

 

5.1.1. Chapter 2: Immune profiles and DNA methylation alterations 

related with non-muscle-invasive bladder cancer outcomes 

Bladder cancer ranks as the sixth most prevalent malignancy in the USA, with 

approximately seventy percent of patients diagnosed with non-muscle-invasive 

bladder cancer (NMIBC) [3]. Despite the initial utilization of transurethral 

resection and immunotherapy for disease control, nearly forty percent of NMIBC 

patients experience tumor recurrence within one year of surgery. [121]. 

Furthermore, cystoscopy, the current invasive and standard screening method for 

monitoring recurrence and progression, imposes a substantial burden on patient 

morbidity and healthcare costs [260]. Therefore, there is an urgent need to 

identify less invasive prognostic markers for effective surveillance of tumor 

recurrence. Potential markers include circulating immune profiles and blood 

DNA methylation patterns. 

 The work presented in Chapter 2 focuses on evaluating the association of 

immune profiles and epigenetic features with tumor recurrence using DNA 

methylation levels obtained from archived blood samples of NMIBC patients. 

By employing Cox proportional hazard analysis, we observed that CD4T and 
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CD8T cell proportions, estimated using the FlowSorted.Blood.EPIC approach, 

were associated with a reduced risk of death and tumor recurrence, whereas the 

neutrophil-to-lymphocyte ratio (NLR) and monocyte cell proportion were 

associated with an increased risk of death and tumor recurrence. Of particular 

interest, adjusting for immune cell proportions had an impact on the results of 

the epigenome-wide association study (EWAS). Through the EWAS results, we 

identified 1,572 CpG loci associated with increased risk of tumor recurrence or 

death, as well as 956 CpG loci associated with decreased risk of tumor recurrence 

or death. Among the CpGs associated with an increased risk of poor outcome, 

we found enrichment in open sea regions with low CpG density, and depleted in 

the CpG island S Shore regions. Meanwhile, CpGs associated with decreased 

risk of poor outcomes were enriched in CpG island N Shore regions but depleted 

in CpG islands. Notably, after correcting for cell type variation, CpG loci related 

with tumor recurrence and death were associated with immune cell regulation 

and showed enrichment for Histone H3 acetylated at lysine 9 and 14 

(H3K9K14ac). 

The findings of this study reveal multiple immune profiles in peripheral 

blood that are significantly associated with outcomes in NMIBC and underscore 

the significance of incorporating immune profile adjustments in analysis models. 

Crucially, these results hold the potential for enhancing and establishing a novel 

biomarker for the surveillance of tumor relapse in NMIBC. 

 

5.1.2. Chapter 3: Genome-scale methylation analysis identifies immune 
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profiles and age acceleration associations with bladder cancer outcomes 

The findings presented in Chapter 2 demonstrate significant associations 

between circulating immune profiles derived from DNA methylation profiles, 

such as CD4T and CD8T cell proportions, and the risk of death and tumor 

recurrence in NMIBC patients. However, these findings were not generalizable 

to naïve and memory subtypes of CD4T and CD8T cells, as well as subtypes of 

granulocytes. To expand on our initial findings, we employed the latest 

deconvolution approach [102] to obtain high-resolution immune cell profiles in 

peripheral blood. This approach allowed for a more comprehensive investigation 

of immune profiles beyond the previously studied cell types. In addition to 

immune profiles, another DNA methylation-derived variable, age acceleration, 

has been implicated in cancer outcomes. However, limited studies have focused 

on age acceleration and bladder cancer specifically [190]–[192], [195]. 

Therefore, we investigated the association of various immune cell types and age 

acceleration with NMIBC outcomes to broaden our understanding of their 

prognostic relevance. 

 Chapter 3 presents the utilization of DNA methylation data from blood 

samples to estimate twelve circulating immune cell-type proportions and age 

acceleration variables from three DNA methylation clocks, the Horvath, 

Hannum, and Pheno age clocks. We observed significant associations of 

Hannum and Pheno age accelerations with worse overall survival (OS) and 

recurrence-free survival (RFS). Moreover, among the immune profiles assessed 

in the blood samples, high proportions of CD4T memory cells, CD8T memory 
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cells, and natural killer (NK) cells were associated with a decreased risk of death. 

Conversely, elevated neutrophil cell proportions, CD8T naïve cell proportions, 

and neutrophil-to-lymphocyte ratio (NLR) were associated with an increased 

risk of death. 

 Furthermore, employing a partitioning deletion/substitution/addition 

(partDSA) algorithm, we identified that neutrophil and CD8T naïve cell 

proportions partitioned the covariate space, enabling the stratification of patients 

into three distinct groups. Patients assigned to the group exhibiting the worst 10-

year OS demonstrated lower proportions of B naïve, eosinophil, monocyte, NK, 

CD4T memory, CD4T naïve, CD8T memory, and CD8T naïve cells. In contrast, 

these patients displayed higher neutrophil proportions, NLR, and age 

acceleration compared to the other groups. We further employed a semi-

supervised recursively partitioned mixture model (SS-RPMM) method to assign 

subjects into two clusters based on optimal CpG sites. Although based on cell-

type adjusted models, methylation-derived classes identified that patients with 

better 10-year OS exhibited higher proportions of B memory, B naïve, CD4T 

memory, CD4T naïve, CD8T memory, and NK cells. Conversely, patients with 

better outcomes displayed lower proportions of basophil, eosinophil, monocyte, 

and neutrophil cells, along with lower NLR and lower age acceleration, in 

comparison to the other methylation-derived cluster from SS-RPMM. Lastly, 

utilizing the information derived from circulating immune profiles and DNA 

methylation profiles obtained from the previous clustering approaches, we 

successfully classified subjects into five distinct groups that exhibited significant 
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differences in OS. 

 Collectively, the study represents one of the few investigations to leverage 

high-resolution immune profiles in blood, age acceleration, and DNA 

methylation profiles for the evaluation of bladder cancer prognosis, suggesting 

these factors hold promise as potentially epigenetic biomarkers of bladder cancer. 

 

5.1.3. Chapter 4: Integrated investigation of bladder cancer immune 

profiles in the tumor microenvironment and peripheral blood 

In Chapters 2 and 3, we identified several circulating immune profiles that were 

associated with bladder cancer outcomes. Besides the circulating immune 

system, infiltrating immune status has been reported to modulate bladder cancer 

development [47], [58], [63]. As a result, it is very valuable to understand the 

immune landscape in tumor tissues and its association with circulating immune 

profiles, especially for the improvement of immunotherapy. Despite the 

acknowledged significance of both infiltrating immune status and circulating 

immune profiles, limited studies have explored the association between immune 

cell distribution in the tumor microenvironment and peripheral blood in the 

context of bladder cancer [72]. Fortunately, the recent development of 

hierarchical tumor immune microenvironment epigenetic deconvolution 

provides a valuable opportunity to discern cell types in tumor microenvironment 

using DNA methylation data [89], [90], [96]. 

 Work presented in Chapter 4 leverages DNA methylation cytometry 

approaches to estimate cell-type proportions in tumors and blood according to 
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their methylation profiles. Analysis revealed that muscle-invasive bladder cancer 

patients had a higher dendritic cell, B memory, natural killer, and CD8T memory 

cell proportions in the tumor microenvironment compared with non-muscle-

invasive bladder tumors. Despite the observed differences in immune profiles in 

tumors, no significant differences were observed in circulating immune profiles 

between muscle-invasive and non-muscle-invasive bladder cancer patients. 

Subsequently, subjects were grouped according to conventional immune hot and 

cold tumor classification, and here too, no significant differences in peripheral 

immune cell types were observed based on tumors with high and low immune 

infiltration. To gain additional insights, we applied a consensus clustering 

approach using tumor immune cell profiles as input data and identified two 

clusters of tumors. Patients in Cluster 1 had significantly higher proportions of 

tumor infiltrating dendritic cells, CD8T memory cells, natural killer cells, and B 

memory cells compared to Cluster 2 patients. Furthermore, Cluster 1 patients, 

characterized by higher odds of having a high tumor stage and grade compared 

to Cluster 2 patients, exhibited significantly higher circulating basophil 

proportions and lower circulating CD4T naïve and memory cell proportions. 

 This study not only elucidates the potential relation of immune profiles 

between two compartments but also highlights the promising opportunity to 

leverage the detailed immune profiling approach based on methylation 

information. Such an approach holds the potential to enhance our understanding 

of bladder cancer development and improve the assessment of immunotherapy 

response. 
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5.2 Perspectives and Future Directions 

Currently, post-surgery and immunotherapy, bladder cancer patients routinely 

undergo an invasive monitoring approach, cystoscopy, imposing substantial 

patient morbidity and placing a burden on the healthcare system [260]. Given 

the emerging understanding of the pivotal role of the immune system in bladder 

cancer pathogenesis and response to immunotherapies, immune profiling holds 

promise as a potential prognostic biomarker [261], [262]. Understanding the 

intricate interplay between the immune system and bladder cancer relapse, as 

well as the development of resistance to immunotherapy, presents a complex 

challenge. Despite extensive research in the field of bladder cancer immunology, 

comprehensive investigations focusing on the distribution of lymphocyte and 

granulocyte subsets within both tumor and blood, and their association with 

treatment outcomes, remain limited. One potential constraint is the requirement 

for fresh specimens and a sufficient sample quantity. The work presented in this 

thesis utilized DNA methylation cytometry, which allows for the analysis of 

archived samples and does not necessitate large sample volumes, to identify the 

association between immune status and cancer outcomes. 

An important question arising from the findings presented in this 

dissertation remains unanswered: does the immune composition of peripheral 

blood undergo changes during bladder cancer relapse or progression? To date, 

no studies have investigated alterations in lymphocyte subtypes and granulocyte 

subtypes over time during cancer development. By utilizing DNA methylation 
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cytometry, we can simultaneously estimate multiple distinct immune cell types, 

providing a time and cost-efficient alternative to conventional methods such as 

the CBC test and flow cytometry. Given the potential for changes in the immune 

composition of blood over time during cancer development within an individual, 

future studies incorporating frequent and repeated measures of blood are 

necessary to better understand the optimal timing and frequency of these 

assessments. To further elucidate the potential of methylation-derived immune 

profiles as prognostic biomarkers, it is crucial to investigate whether circulating 

immune profiles undergo changes following surgery. Consequently, it is 

imperative to collect preoperative and postoperative blood samples within a 

specific time frame. Subsequently, a comparison of immune cell types before 

and after treatment will be conducted, followed by an assessment of the 

association between these changes and bladder cancer outcomes. Furthermore, 

addressing immunotherapy resistance is a critical concern in the management of 

bladder cancer. In the case of the most commonly used immunotherapy, BCG 

treatment, patients typically undergo treatment once a week for six weeks [263], 

[264]. By incorporating more frequent blood draws during treatment, changes in 

circulating immune profiles can be monitored and integrated with 

recommendations for follow-up time to assess potential tumor relapse. Such an 

approach would enable the development of a model to distinguish patients who 

are likely to respond to BCG treatment, facilitating early intervention with 

alternative therapies and minimizing unnecessary costs and patient discomfort. 

In addition to BCG treatment, other treatment modalities and lifestyle factors, 
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including chemotherapy [265], cystectomy [266], obesity [164], alcohol 

consumption [258], [267], and type II diabetes [166], [268], may introduce 

confounding effects on our analysis results. Therefore, it is crucial to gather 

information regarding these factors in future studies to enhance our 

understanding of predictive prognostic factors. Conducting studies that evaluate 

the impact of interventions such as surgery and alternative treatment methods on 

the stability and trajectory of peripheral immune status would be instrumental in 

furthering our understanding of immune dynamics in bladder cancer. 

 Urine cytology is a non-invasive diagnostic test with high specificity but 

limited average sensitivity in detecting cancer cells in bladder-washing 

specimens or urine samples obtained during normal urination [269]. 

Consequently, several studies have explored the utilization of DNA methylation 

profiles from urine samples to enhance the sensitivity of early-stage bladder 

cancer diagnosis and facilitate tumor recurrence monitoring [270]–[272]. Also, 

considering the substantial presence of granulocytes and monocytes in urine 

samples from bladder cancer patients, as well as the association between a robust 

inflammatory response and increased cell numbers in the urine, the development 

of DNA methylation cytometry for urine samples holds promise [273], [274]. 

The integration of urine methylation cytometry could allow for the combination 

of urine immune profiles with established DNA methylation markers, leading to 

the creation of a rapid, high-throughput, and non-invasive approach for 

surveillance in bladder cancer. Recently, there have been notable advancements 

in utilizing deep learning techniques for urine cytology analysis [275]–[277]. 
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One such example is the development of AutoParis-X [277], [278], a novel 

method that demonstrates improved performance in determining the level of 

atypia in specific cells and detecting abnormal cells, including bladder cancer 

cells, compared to conventional cytological assessments. Moving forward, there 

is a potential opportunity for integrating urine methylation profiles with feature 

representations derived from AutoParis-X analysis results. This integration 

could offer a promising approach for predicting bladder cancer recurrence and 

identifying CpG loci within urine samples that are associated with recurrence. 

We expect that this integrated approach holds promise for achieving enhanced 

performance compared to existing methods. 

 In Chapter 4, we examined the potential association between immune 

profiles in tumor tissue and blood. However, the regulatory role of DNA 

methylation levels in the tumor microenvironment was not investigated. The 

major challenge lies in the sample size limitation. In future studies, our aim is to 

increase the number of tumor specimens with matched blood samples or explore 

the utilization of external datasets, although currently, there are no publicly 

available datasets for this purpose. Subsequently, we plan to conduct epigenome-

wide association studies to identify differentially methylated regions between 

groups categorized using the methods outlined in Chapter 4. Furthermore, we 

will investigate whether the identified CpG sites are involved in bladder cancer 

progression or immune regulation. 

Machine learning is a discipline that leverages task-specific objective 

functions to extract valuable information from large datasets [279]. In recent 
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years, with advancements in hardware capabilities and the accumulation of data, 

deep learning models have emerged as powerful tools widely applied in cancer 

pathology [280], [281]. While previous studies have demonstrated the potential 

of convolutional neural networks in bladder cancer pathology, these findings 

have been limited to the analysis of whole slide images (WSIs) [282], [283]. To 

further enhance cancer prognostication, we propose the integration of DNA 

methylation profiles and derived immune cell-type proportions, into the model. 

Our next objective is to develop a multimodal neural network that incorporates 

WSIs, DNA methylation levels, immune profiles estimated through DNA 

methylation cytometry, and clinical attributes, such as age and tumor grade. 

Specifically, graph neural networks and autoencoders will be applied to WSIs to 

extract morphological features and spatial locality, generating an embedding 

(vector representation). Moreover, additional autoencoders will be trained using 

DNA methylation levels, immune profiles, and clinical attributes to generate 

corresponding vector representations. Finally, multiple vector representations 

will be combined and then the fused representation passes through several fully 

connected layers, culminating in a final prognosis prediction output layer. This 

work primarily aims to quantify prognosis as a scalar hazard ratio and alleviate 

the burden on practitioners while optimizing resource utilization. 

 

5.3 Concluding Remarks 

The collection of research presented in this study employs innovative approaches 

to enhance our understanding of immune status and DNA methylation levels in 
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bladder cancer. Through this work, we have identified several methylation-

derived immune profiles that are significantly associated with risk and prognosis 

in bladder cancer with the urgent need for less-invasive methods to monitor 

relapse. Furthermore, our findings shed light on the relationship between 

immune profiles in the tumor microenvironment and peripheral blood, providing 

valuable insights into immune dynamics in bladder cancer. Together with future 

investigations, these findings will contribute to the development of novel 

prognostic biomarkers for bladder cancer outcomes and immunotherapy, 

ultimately advancing our ability to personalize patient management and improve 

treatment strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 139 

Bibliography 

[1] D. J. Grignon, “The current classification of urothelial neoplasms,” Mod. 

Pathol., vol. 22, pp. S60–S69, 2009. 

[2] B. S. Chhikara and K. Parang, “Global Cancer Statistics 2022: the trends 

projection analysis,” Chem. Biol. Lett., vol. 10, no. 1, pp. 1–16, 2023. 

[3] Atlanta: American Cancer Society, “Cancer Facts & Figures 2022,” 

American Cancer Society. 2022. 

[4] M. G. Cumberbatch, M. Rota, J. W. F. Catto, and C. La Vecchia, “The 

Role of Tobacco Smoke in Bladder and Kidney Carcinogenesis: A 

Comparison of Exposures and Meta-analysis of Incidence and Mortality 

Risks,” Eur. Urol., vol. 70, no. 3, pp. 458–466, 2016. 

[5] H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates 

of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” 

CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021. 

[6] S. A. Halaseh, S. Halaseh, Y. Alali, M. E. Ashour, and M. J. Alharayzah, 

“A Review of the Etiology and Epidemiology of Bladder Cancer: All You 

Need To Know,” Cureus, vol. 14, no. 7, 2022. 

[7] L. M. C. van Hoogstraten, A. Vrieling, A. G. van der Heijden, M. 

Kogevinas, A. Richters, and L. A. Kiemeney, “Global trends in the 

epidemiology of bladder cancer: challenges for public health and clinical 

practice,” Nat. Rev. Clin. Oncol., vol. 20, no. May, pp. 287–304, 2023. 

[8] B. W. G. van Rhijn et al., “Recurrence and Progression of Disease in 

Non-Muscle-Invasive Bladder Cancer: From Epidemiology to Treatment 



 140 

Strategy,” Eur. Urol., vol. 56, no. 3, pp. 430–442, 2009. 

[9] Z. Kirkali et al., “Bladder cancer: Epidemiology, staging and grading, 

and diagnosis,” Urology, vol. 66, no. 6 SUPPL. 1, pp. 4–34, 2005. 

[10] A. K. Das, D. K. Mishra, and S. S. Gopalan, “Effect of Intravesical 

Chemotherapy on the Survival of Patients with Non-Muscle-Invasive 

Bladder Cancer Undergoing Transurethral Resection: A Retrospective 

Cohort Study Among Older Adults,” Open Urol. Nephrol. J., vol. 14, no. 

1, pp. 20–25, 2021. 

[11] K. Ogawa, Y. Shimizu, S. Uketa, N. Utsunomiya, and S. Kanamaru, 

“Prognosis of patients with muscle invasive bladder cancer who are 

intolerable to receive any anti-cancer treatment,” Cancer Treat. Res. 

Commun., vol. 24, p. 100195, 2020. 

[12] S. Cambier et al., “EORTC Nomograms and Risk Groups for Predicting 

Recurrence, Progression, and Disease-specific and Overall Survival in 

Non-Muscle-invasive Stage Ta-T1 Urothelial Bladder Cancer Patients 

Treated with 1-3 Years of Maintenance Bacillus Calmette-Guérin,” Eur. 

Urol., vol. 69, no. 1, pp. 60–69, 2016. 

[13] S. Zhu, W. Yu, X. Yang, C. Wu, and F. Cheng, “Traditional Classification 

and Novel Subtyping Systems for Bladder Cancer,” Front. Oncol., vol. 

10, no. February, pp. 1–13, 2020. 

[14] T. Z. Tan, M. Rouanne, K. T. Tan, R. Y. J. Huang, and J. P. Thiery, 

“Molecular Subtypes of Urothelial Bladder Cancer: Results from a Meta-

cohort Analysis of 2411 Tumors,” Eur. Urol., vol. 75, no. 3, pp. 423–432, 



 141 

2019. 

[15] C. L. Pashos, M. F. Botteman, B. L. Laskin, and A. Redaelli, “Bladder 

cancer: epidemiology, diagnosis, and management.,” Cancer Pract., vol. 

10, no. 6, pp. 311–322, 2002. 

[16] M. G. K. Cumberbatch et al., “Epidemiology of Bladder Cancer: A 

Systematic Review and Contemporary Update of Risk Factors in 2018,” 

Eur. Urol., vol. 74, no. 6, pp. 784–795, 2018. 

[17] A. Guevara et al., “The Role of Tumor-Free Status in Repeat Resection 

Before Intravesical Bacillus Calmette-Guerin for High Grade Ta, T1 and 

CIS Bladder Cancer,” J. Urol., vol. 183, no. 6, pp. 2161–2164, 2010. 

[18] A. C. Goh and S. P. Lerner, “Application of new technology in bladder 

cancer diagnosis and treatment,” World J. Urol., vol. 27, no. 3, pp. 301–

307, 2009. 

[19] S. Guallar-Garrido and E. Julián, “Bacillus Calmette-Guérin (BCG) 

Therapy for Bladder Cancer: An Update.,” ImmunoTargets Ther., vol. 9, 

pp. 1–11, 2020. 

[20] J. Palou, P. Laguna, F. Millán-Rodríguez, R. R. Hall, J. Salvador-Bayarri, 

and J. Vicente-Rodríguez, “Control group and maintenance treatment 

with bacillus Calmette-Guerin for  carcinoma in situ and/or high grade 

bladder tumors.,” J. Urol., vol. 165, no. 5, pp. 1488–1491, May 2001. 

[21] D. L. Lamm et al., “Maintenance bacillus Calmette-Guerin 

immunotherapy for recurrent TA, T1 and  carcinoma in situ transitional 

cell carcinoma of the bladder: a randomized Southwest Oncology Group 



 142 

Study.,” J. Urol., vol. 163, no. 4, pp. 1124–1129, Apr. 2000. 

[22] A. M. Kamat et al., “Expert consensus document: Consensus statement 

on best practice management regarding the use of intravesical 

immunotherapy with BCG for bladder cancer,” Nat. Rev. Urol., vol. 12, 

no. 4, pp. 225–235, 2015. 

[23] A. M. Kamat et al., “Bladder cancer,” Lancet, vol. 388, no. 10061, pp. 

2796–2810, 2016. 

[24] M. Moschini et al., “Comparing long-term outcomes of primary and 

progressive carcinoma invading bladder muscle after radical 

cystectomy,” BJU Int., vol. 117, no. 4, pp. 604–610, 2016. 

[25] M. S. Soloway, “Diagnosis and management of superficial bladder 

cancer.,” Semin. Surg. Oncol., vol. 5, no. 4, pp. 247–254, 1989. 

[26] M. Babjuk, W. Oosterlinck, R. Sylvester, E. Kaasinen, A. Böhle, and J. 

Palou-Redorta, “EAU Guidelines on Non-Muscle-Invasive Urothelial 

Carcinoma of the Bladder,” Eur. Urol., vol. 54, no. 2, pp. 303–314, 2008. 

[27] F. A. Yafi, F. Brimo, J. Steinberg, A. G. Aprikian, S. Tanguay, and W. 

Kassouf, “Prospective analysis of sensitivity and specificity of urinary 

cytology and other urinary biomarkers for bladder cancer,” Urol. Oncol. 

Semin. Orig. Investig., vol. 33, no. 2, pp. 66.e25-66.e31, 2015. 

[28] C. Scheiermann, P. S. Frenette, and A. Hidalgo, “Regulation of leucocyte 

homeostasis in the circulation,” Cardiovasc. Res., vol. 107, no. 3, pp. 

340–351, 2015. 

[29] T. S. Kapellos et al., “Human monocyte subsets and phenotypes in major 



 143 

chronic inflammatory diseases,” Front. Immunol., vol. 10, no. AUG, pp. 

1–13, 2019. 

[30] M. Y. Zanna et al., “Review of dendritic cells, their role in clinical 

immunology, and distribution in various animal species,” Int. J. Mol. 

Sci., vol. 22, no. 15, 2021. 

[31] P. J. Murray and T. A. Wynn, “Protective and pathogenic functions of 

macrophage subsets,” Nat. Rev. Immunol., vol. 11, no. 11, pp. 723–737, 

2011. 

[32] G. A. Duque and A. Descoteaux, “Macrophage cytokines: Involvement 

in immunity and infectious diseases,” Front. Immunol., vol. 5, no. OCT, 

pp. 1–12, 2014. 

[33] E. Z. M. da Silva, M. C. Jamur, and C. Oliver, Mast Cell Function: A 

New Vision of an Old Cell, vol. 62, no. 10. 2014. 

[34] B. Min, M. A. Brown, and G. Legros, “Understanding the roles of 

basophils: Breaking dawn,” Immunology, vol. 135, no. 3, pp. 192–197, 

2012. 

[35] T. Wen and M. E. Rothenberg, “The regulatory function of eosinophils,” 

Myeloid Cells Heal. Dis. A Synth., vol. 4, no. 5, pp. 257–269, 2017. 

[36] C. Rosales, “Neutrophil: A cell with many roles in inflammation or 

several cell types?,” Front. Physiol., vol. 9, no. FEB, pp. 1–17, 2018. 

[37] K. Verhoeckx et al., “Peripheral Blood Mononuclear Cells,” in The 

Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models, 2015. 

[38] N. Zhang and M. J. Bevan, “CD8+ T Cells: Foot Soldiers of the Immune 



 144 

System,” Immunity, vol. 35, no. 2, pp. 161–168, 2011. 

[39] T. Samji and K. M. Khanna, “Understanding Memory CD8+ T cells,” 

Immunol. Lett., vol. 185, pp. 32–39, 2017. 

[40] R. V. Luckheeram, R. Zhou, A. D. Verma, and B. Xia, “CD4 +T cells: 

Differentiation and functions,” Clin. Dev. Immunol., vol. 2012, 2012. 

[41] D. J. Gasper, M. M. Tejera, and M. Suresh, “CD4 T-cell memory 

generation and maintenance,” Crit. Rev. Immunol., vol. 34, no. 2, pp. 

121–146, 2014. 

[42] D. A. A. Vignali, L. W. Collison, and C. J. Workman, “How regulatory T 

cells work,” Nat. Rev. Immunol., vol. 8, no. 7, pp. 523–532, 2008. 

[43] M. Akkaya, K. Kwak, and S. K. Pierce, “B cell memory: building two 

walls of protection against pathogens,” Nat. Rev. Immunol., vol. 20, no. 

4, pp. 229–238, 2020. 

[44] E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, 

“Functions of natural killer cells,” Nat. Immunol., vol. 9, no. 5, pp. 503–

510, 2008. 

[45] N. M. Donin et al., “Immunotherapy for the Treatment of Urothelial 

Carcinoma.,” J. Urol., vol. 197, no. 1, pp. 14–22, Jan. 2017. 

[46] T. Kawasaki and T. Kawai, “Toll-like receptor signaling pathways.,” 

Front. Immunol., vol. 5, p. 461, 2014. 

[47] T. Sonoda, K. Sugimura, S.-I. Ikemoto, H. Kawashima, and T. Nakatani, 

“Significance of target cell infection and natural killer cells in the anti-

tumor effects of bacillus Calmette-Guerin in murine bladder cancer.,” 



 145 

Oncol. Rep., vol. 17, no. 6, pp. 1469–1474, Jun. 2007. 

[48] H. Yamada, S. Matsumoto, T. Matsumoto, T. Yamada, and U. Yamashita, 

“Enhancing effect of an inhibitor of nitric oxide synthesis on bacillus  

Calmette-Guerin-induced macrophage cytotoxicity against murine 

bladder cancer cell line MBT-2 in vitro.,” Jpn. J. Cancer Res., vol. 91, 

no. 5, pp. 534–542, May 2000. 

[49] M. Naoe et al., “Bacillus Calmette-Guérin-pulsed dendritic cells 

stimulate natural killer T cells  and gammadeltaT cells.,” Int. J. Urol.  

Off. J. Japanese Urol.  Assoc., vol. 14, no. 6, pp. 532–8; discussion 538, 

Jun. 2007. 

[50] M. G. Netea et al., “Defining trained immunity and its role in health and 

disease.,” Nat. Rev. Immunol., vol. 20, no. 6, pp. 375–388, Jun. 2020. 

[51] B. A. Inman et al., “PD-L1 (B7-H1) expression by urothelial carcinoma 

of the bladder and BCG-induced  granulomata: associations with 

localized stage progression.,” Cancer, vol. 109, no. 8, pp. 1499–1505, 

Apr. 2007. 

[52] J. Hamanishi, M. Mandai, N. Matsumura, K. Abiko, T. Baba, and I. 

Konishi, “PD-1/PD-L1 blockade in cancer treatment: perspectives and 

issues.,” Int. J. Clin. Oncol., vol. 21, no. 3, pp. 462–473, Jun. 2016. 

[53] M. E. Keir et al., “Tissue expression of PD-L1 mediates peripheral T cell 

tolerance.,” J. Exp. Med., vol. 203, no. 4, pp. 883–895, Apr. 2006. 

[54] B. T. Fife et al., “Interactions between PD-1 and PD-L1 promote 

tolerance by blocking the TCR-induced  stop signal.,” Nat. Immunol., 



 146 

vol. 10, no. 11, pp. 1185–1192, Nov. 2009. 

[55] C. Ilcus et al., “Immune checkpoint blockade: the role of PD-1-PD-L 

axis in lymphoid malignancies.,” Onco. Targets. Ther., vol. 10, pp. 2349–

2363, 2017. 

[56] A. Lopez-Beltran et al., “Immune Checkpoint Inhibitors for the 

Treatment of Bladder Cancer.,” Cancers (Basel)., vol. 13, no. 1, Jan. 

2021. 

[57] G. A. M. Povoleri, C. Scottà, E. A. Nova-Lamperti, S. John, G. 

Lombardi, and B. Afzali, “Thymic versus induced regulatory T cells - 

who regulates the regulators?,” Front. Immunol., vol. 4, p. 169, 2013. 

[58] Y.-N. Liu et al., “Sphingosine 1 phosphate receptor-1 (S1P1) promotes 

tumor-associated regulatory T  cell expansion: leading to poor survival 

in bladder cancer.,” Cell Death Dis., vol. 10, no. 2, p. 50, Jan. 2019. 

[59] A. Loskog, C. Ninalga, G. Paul-Wetterberg, M. de la Torre, P.-U. 

Malmström, and T. H. Tötterman, “Human bladder carcinoma is 

dominated by T-regulatory cells and Th1 inhibitory  cytokines.,” J. 

Urol., vol. 177, no. 1, pp. 353–358, Jan. 2007. 

[60] R. Murai et al., “Prediction of intravesical recurrence of non-muscle-

invasive bladder cancer by  evaluation of intratumoral Foxp3+ T cells in 

the primary transurethral resection of bladder tumor specimens.,” PLoS 

One, vol. 13, no. 9, p. e0204745, 2018. 

[61] F. Veglia, M. Perego, and D. Gabrilovich, “Myeloid-derived suppressor 

cells coming of age.,” Nat. Immunol., vol. 19, no. 2, pp. 108–119, Feb. 



 147 

2018. 

[62] A. Sica, C. Porta, A. Amadori, and A. Pastò, “Tumor-associated myeloid 

cells as guiding forces of cancer cell stemness.,” Cancer Immunol. 

Immunother., vol. 66, no. 8, pp. 1025–1036, Aug. 2017. 

[63] H. Zhang et al., “CXCL2/MIF-CXCR2 signaling promotes the 

recruitment of myeloid-derived suppressor  cells and is correlated with 

prognosis in bladder cancer.,” Oncogene, vol. 36, no. 15, pp. 2095–2104, 

Apr. 2017. 

[64] M. Miyake et al., “Regulatory T Cells and Tumor-Associated 

Macrophages in the Tumor Microenvironment  in Non-Muscle Invasive 

Bladder Cancer Treated with Intravesical Bacille Calmette-Guérin: A 

Long-Term Follow-Up Study of a Japanese Cohort.,” Int. J. Mol. Sci., 

vol. 18, no. 10, Oct. 2017. 

[65] G. Yang et al., “Accumulation of myeloid-derived suppressor cells 

(MDSCs) induced by low levels of  IL-6 correlates with poor prognosis 

in bladder cancer.,” Oncotarget, vol. 8, no. 24, pp. 38378–38388, Jun. 

2017. 

[66] A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, 

“Macrophage polarization: tumor-associated macrophages as a paradigm 

for polarized  M2 mononuclear phagocytes.,” Trends Immunol., vol. 23, 

no. 11, pp. 549–555, Nov. 2002. 

[67] C. Chen et al., “LNMAT1 promotes lymphatic metastasis of bladder 

cancer via CCL2 dependent  macrophage recruitment.,” Nat. Commun., 



 148 

vol. 9, no. 1, p. 3826, Sep. 2018. 

[68] H. Miyamoto, Y. Kubota, T. Shuin, S. Torigoe, Y. Dobashi, and M. 

Hosaka, “Expression of transforming growth factor-beta 1 in human 

bladder cancer.,” Cancer, vol. 75, no. 10, pp. 2565–2570, May 1995. 

[69] X. Wang et al., “Bladder cancer cells induce immunosuppression of T 

cells by supporting PD-L1  expression in tumour macrophages partially 

through interleukin 10.,” Cell Biol. Int., vol. 41, no. 2, pp. 177–186, Feb. 

2017. 

[70] T. Hanada, M. Nakagawa, A. Emoto, T. Nomura, N. Nasu, and Y. 

Nomura, “Prognostic value of tumor-associated macrophage count in 

human bladder cancer.,” Int. J. Urol.  Off. J. Japanese Urol.  Assoc., 

vol. 7, no. 7, pp. 263–269, Jul. 2000. 

[71] B. Wang et al., “High CD204+ tumor-infiltrating macrophage density 

predicts a poor prognosis in  patients with urothelial cell carcinoma of 

the bladder.,” Oncotarget, vol. 6, no. 24, pp. 20204–20214, Aug. 2015. 

[72] M. E. Shaul and Z. G. Fridlender, “Cancer-related circulating and tumor-

associated neutrophils - subtypes, sources and function.,” FEBS J., vol. 

285, no. 23, pp. 4316–4342, Dec. 2018. 

[73] K. Liu, K. Zhao, L. Wang, and E. Sun, “The prognostic values of tumor-

infiltrating neutrophils, lymphocytes and  neutrophil/lymphocyte rates 

in bladder urothelial cancer.,” Pathol. Res. Pract., vol. 214, no. 8, pp. 

1074–1080, Aug. 2018. 

[74] M. Marchioni et al., “The Clinical Use of the Neutrophil to Lymphocyte 



 149 

Ratio (NLR) in Urothelial  Cancer: A Systematic Review.,” Clin. 

Genitourin. Cancer, vol. 14, no. 6, pp. 473–484, Dec. 2016. 

[75] M. D. Vartolomei et al., “Prognostic role of pretreatment neutrophil-to-

lymphocyte ratio (NLR) in patients  with non-muscle-invasive bladder 

cancer (NMIBC): A systematic review and meta-analysis.,” Urol. Oncol., 

vol. 36, no. 9, pp. 389–399, Sep. 2018. 

[76] L. D. Moore, T. Le, and G. Fan, “DNA methylation and its basic 

function,” Neuropsychopharmacology, vol. 38, no. 1, pp. 23–38, 2013. 

[77] M. Ehrlich et al., “Amount and distribution of 5-methylcytosine in 

human DNA from different types of tissues or cells,” Nucleic Acids Res., 

vol. 10, no. 8, pp. 2709–2721, 1982. 

[78] A. M. Deaton and A. Bird, “CpG islands and the regulation of 

transcription,” Genes Dev., vol. 25, no. 10, pp. 1010–1022, 2011. 

[79] J. Sandoval et al., “Validation of a DNA methylation microarray for 

450,000 CpG sites in the human genome,” Epigenetics, vol. 6, no. 6, pp. 

692–702, 2011. 

[80] P. A. Wade, “Methyl CpG-binding proteins and transcriptional 

repression,” BioEssays, vol. 23, no. 12, pp. 1131–1137, 2001. 

[81] P. A. Jones, “Functions of DNA methylation: Islands, start sites, gene 

bodies and beyond,” Nat. Rev. Genet., vol. 13, no. 7, pp. 484–492, 2012. 

[82] D. Aran, G. Toperoff, M. Rosenberg, and A. Hellman, “Replication 

timing-related and gene body-specific methylation of active human 

genes,” Hum. Mol. Genet., vol. 20, no. 4, pp. 670–680, 2011. 



 150 

[83] B. Jin and K. D. Robertson, “DNA methyltransferases, DNA damage 

repair, and cancer,” Adv. Exp. Med. Biol., vol. 754, pp. 3–29, 2013. 

[84] B. C. Christensen et al., “Aging and environmental exposures alter 

tissue-specific DNA methylation dependent upon CPG island context,” 

PLoS Genet., vol. 5, no. 8, 2009. 

[85] B. Kwabi-Addo et al., “Age-related DNA methylation changes in normal 

human prostate tissues.,” Clin. cancer Res.  an Off. J. Am. Assoc.  

Cancer Res., vol. 13, no. 13, pp. 3796–3802, Jul. 2007. 

[86] T. Bergsma and E. Rogaeva, “DNA Methylation Clocks and Their 

Predictive Capacity for Aging Phenotypes and Healthspan,” Neurosci. 

Insights, vol. 15, 2020. 

[87] S. Horvath, “DNA methylation age of human tissues and cell types,” 

Genome Biol., vol. 16, no. 1, 2015. 

[88]  and K. Z. Gregory Hannum, Justin Guinney, Ling Zhao, Li Zhang, Guy 

Hughes, SriniVas Sadda, Brandy Klotzle, Marina Bibikova, Jian-Bing 

Fan, Yuan Gao, Rob Deconde, Menzies Chen, Indika Rajapakse, Stephen 

Friend, Trey Ideker, “Genome-wide Methylation Profiles Reveal 

Quantitative Views of Human Aging Rates,” Mol Cell., vol. 49, no. 2, pp. 

359–367, 2013. 

[89] L. A. Salas et al., “An optimized library for reference-based 

deconvolution of whole-blood biospecimens assayed using the Illumina 

HumanMethylationEPIC BeadArray.,” Genome Biol., vol. 19, no. 1, p. 

64, 2018. 



 151 

[90] E. A. Houseman et al., “DNA methylation arrays as surrogate measures 

of cell mixture distribution,” BMC Bioinformatics, vol. 13, no. 1, 2012. 

[91] S. Moran, C. Arribas, and M. Esteller, “Validation of a DNA methylation 

microarray for 850,000 CpG sites of the human genome enriched in 

enhancer sequences,” Epigenomics, vol. 8, no. 3, pp. 389–399, 2016. 

[92] R. Darst, C. Pardo, and Etc, “Bisulphite sequencing of DNA,” Curr 

Protoc Mol Biol, 2011. 

[93] H. D. Woo and J. Kim, “Global DNA hypomethylation in peripheral 

blood leukocytes as a biomarker for cancer risk: A meta-analysis,” PLoS 

One, vol. 7, no. 4, 2012. 

[94] R. Illingworth et al., “A novel CpG island set identifies tissue-specific 

methylation at developmental gene loci,” PLoS Biol., vol. 6, no. 1, pp. 

0037–0051, 2008. 

[95] E. Kitamura et al., “Analysis of tissue-specific differentially methylated 

regions (TDMs) in humans,” Genomics, vol. 89, no. 3, pp. 326–337, 

2007. 

[96] L. E. Reinius et al., “Differential DNA methylation in purified human 

blood cells: Implications for cell lineage and studies on disease 

susceptibility,” PLoS One, vol. 7, no. 7, 2012. 

[97] V. K. Rakyan, T. A. Down, D. J. Balding, and S. Beck, “Epigenome-wide 

association studies for common human diseases,” Nat. Rev. Genet., vol. 

12, no. 8, pp. 529–541, 2011. 

[98] A. J. Titus, R. M. Gallimore, L. A. Salas, and B. C. Christensen, “Cell-



 152 

type deconvolution from DNA methylation: A review of recent 

applications,” Hum. Mol. Genet., vol. 26, no. R2, pp. R216–R224, 2017. 

[99] A. E. Teschendorff and S. C. Zheng, “Cell-type deconvolution in 

epigenome-wide association studies: A review and recommendations,” 

Epigenomics, vol. 9, no. 5, pp. 757–768, 2017. 

[100] J. K. Wiencke et al., “Immunomethylomic approach to explore the blood 

neutrophil lymphocyte ratio (NLR) in glioma survival,” Clin. 

Epigenetics, vol. 9, no. 1, pp. 1–11, 2017. 

[101] Z. Zhang, J. K. Wiencke, K. T. Kelsey, D. C. Koestler, B. C. Christensen, 

and L. A. Salas, “HiTIMED: hierarchical tumor immune 

microenvironment epigenetic deconvolution for accurate cell type 

resolution in the tumor microenvironment using tumor-type-specific 

DNA methylation data,” J. Transl. Med., vol. 20, no. 1, pp. 1–17, 2022. 

[102] L. A. Salas et al., “Enhanced cell deconvolution of peripheral blood 

using DNA methylation for high-resolution immune profiling,” Nat. 

Commun., vol. 13, no. 1, 2022. 

[103] C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, 

“The Hallmarks of Aging,” Cell, vol. 153, no. 6, pp. 1194–1217, 2013. 

[104] J. Jylhävä, N. L. Pedersen, and S. Hägg, “Biological Age Predictors,” 

EBioMedicine, vol. 21, pp. 29–36, 2017. 

[105] C. E., V. S., K. J.K., and A. D., “Biomarkers related to aging in human 

populations.,” Advances in clinical chemistry, vol. 46. pp. 161–216, 

2008. 



 153 

[106] S. Horvath and K. Raj, “DNA methylation-based biomarkers and the 

epigenetic clock theory of ageing,” Nat. Rev. Genet., vol. 19, no. 6, pp. 

371–384, 2018. 

[107] A. E. Field, N. A. Robertson, T. Wang, A. Havas, T. Ideker, and P. D. 

Adams, “DNA Methylation Clocks in Aging: Categories, Causes, and 

Consequences,” Molecular Cell, vol. 71, no. 6. pp. 882–895, 2018. 

[108] V. K. Rakyan et al., “Human aging-associated DNA hypermethylation 

occurs preferentially at bivalent chromatin domains,” Genome Res., vol. 

20, no. 4, pp. 434–439, 2010. 

[109] S. Bocklandt et al., “Epigenetic Predictor of Age,” PLoS One, vol. 6, no. 

6, 2011. 

[110] C. M. Koch and W. Wagner, “Epigenetic-aging-signature to determine 

age in different tissues,” Aging (Albany. NY)., vol. 3, no. 10, pp. 1018–

1027, 2011. 

[111] B. H. Chen et al., “DNA methylation-based measures of biological age: 

Meta-analysis predicting time to death,” Aging (Albany. NY)., vol. 8, no. 

9, pp. 1844–1865, 2016. 

[112] Q. Zhang et al., “Improved precision of epigenetic clock estimates across 

tissues and its implication for biological ageing,” Genome Med., vol. 11, 

no. 1, pp. 1–11, 2019. 

[113] M. Levine et al., “An epigenetic biomarker of aging for lifespan and 

healthspan,” Aging (Albany NY), vol. 10, no. 4, pp. 573–591, 2018. 

[114] Y. Zhang et al., “DNA methylation signatures in peripheral blood 



 154 

strongly predict all-cause mortality,” Nat. Commun., vol. 8, pp. 1–11, 

2017. 

[115] C. G. Bell et al., “DNA methylation aging clocks: Challenges and 

recommendations,” Genome Biol., vol. 20, no. 1, pp. 1–24, 2019. 

[116] Atlanta: American Cancer Society, “Cancer Facts & Figures 2020,” 

American Cancer Society. 2020. 

[117] R. H. Martinez Rodriguez, O. Buisan Rueda, and L. Ibarz, “Bladder 

cancer: Present and future,” Med. Clínica (English Ed., vol. 149, no. 10, 

pp. 449–455, 2017. 

[118] R. S. Svatek and Y. Lotan, “Is there a rationale for bladder cancer 

screening?,” Curr. Urol. Rep., vol. 9, no. 5, pp. 339–341, 2008. 

[119] S. Larré et al., “Screening for bladder cancer: Rationale, limitations, 

whom to target, and perspectives,” Eur. Urol., vol. 63, no. 6, pp. 1049–

1058, 2013. 

[120] K. C. DeGeorge, H. R. Holt, and S. C. Hodges, “Bladder Cancer: 

Diagnosis and Treatment.,” Am. Fam. Physician, vol. 96, no. 8, pp. 507–

514, Oct. 2017. 

[121] M. C. Hall et al., “Guideline for the Management of Nonmuscle Invasive 

Bladder Cancer (Stages Ta, T1, and Tis): 2007 Update,” J. Urol., vol. 

178, no. 6, pp. 2314–2330, 2007. 

[122] M. Mossanen and J. L. Gore, “The burden of bladder cancer care: Direct 

and indirect costs,” Curr. Opin. Urol., vol. 24, no. 5, pp. 487–491, 2014. 

[123] C. J. Lim et al., “Immunological Hallmarks for Clinical Response to 



 155 

BCG in Bladder Cancer,” Front. Immunol., vol. 11, no. January, pp. 1–

13, 2021. 

[124] K. Ogihara et al., “The Preoperative Neutrophil-to-lymphocyte Ratio is a 

Novel Biomarker for Predicting Worse Clinical Outcomes in Non-muscle 

Invasive Bladder Cancer Patients with a Previous History of Smoking,” 

Ann. Surg. Oncol., vol. 23, pp. 1039–1047, 2016. 

[125] Y. G. Tan, E. Eu, W. Lau Kam On, and H. H. Huang, “Pretreatment 

neutrophil-to-lymphocyte ratio predicts worse survival outcomes and 

advanced tumor staging in patients undergoing radical cystectomy for 

bladder cancer,” Asian J. Urol., vol. 4, no. 4, pp. 239–246, 2017. 

[126] M. Kang, C. W. Jeong, C. Kwak, H. H. Kim, and J. H. Ku, “Preoperative 

neutrophil-lymphocyte ratio can significantly predict mortality outcomes 

in patients with non-muscle invasive bladder cancer undergoing 

transurethral resection of bladder tumor,” Oncotarget, vol. 8, no. 8, pp. 

12891–12901, 2017. 

[127] T. Yoshida et al., “Prognostic impact of perioperative lymphocyte–

monocyte ratio in patients with bladder cancer undergoing radical 

cystectomy,” Tumor Biol., vol. 37, no. 8, pp. 10067–10074, 2016. 

[128] J. Y. Ma, G. Hu, and Q. Liu, “Prognostic significance of the lymphocyte-

to-monocyte ratio in bladder cancer undergoing radical cystectomy: A 

meta-analysis of 5638 individuals,” Dis. Markers, vol. 2019, 2019. 

[129] B. Bhindi et al., “Identification of the best complete blood count-based 

predictors for bladder cancer outcomes in patients undergoing radical 



 156 

cystectomy,” Br. J. Cancer, vol. 114, no. 2, pp. 207–212, 2016. 

[130] E. Ojerholm et al., “Neutrophil-to-lymphocyte ratio as a bladder cancer 

biomarker: assessing prognostic and predictive value in SWOG 8710,” 

vol. 123, no. 5, pp. 794–801, 2018. 

[131] L. R. Dixon, “The complete blood count: physiologic basis and clinical 

usage,” J Perinat Neonatal Nurs., vol. 11, no. 3, pp. 1–18, 1997. 

[132] W. P. Accomando, J. K. Wiencke, E. A. Houseman, H. H. Nelson, and K. 

T. Kelsey, “Quantitative reconstruction of leukocyte subsets using DNA 

methylation,” Genome Biol., vol. 15, no. 3, pp. 1–12, 2014. 

[133] M. Suelves, E. Carrió, Y. Núñez-Álvarez, and M. A. Peinado, “DNA 

methylation dynamics in cellular commitment and differentiation,” Brief. 

Funct. Genomics, vol. 15, no. 6, pp. 443–453, 2016. 

[134] L. A. Salas, J. K. Wiencke, D. C. Koestler, Z. Zhang, B. C. Christensen, 

and K. T. Kelsey, “Tracing human stem cell lineage during development 

using DNA methylation,” Genome Res., vol. 28, no. 9, pp. 1285–1295, 

2018. 

[135] U. Baron et al., “DNA methylation analysis as a tool for cell typing,” 

Epigenetics, vol. 1, no. 1, pp. 55–60, 2006. 

[136] Y. Li et al., “Stability of global methylation profiles of whole blood and 

extracted DNA under different storage durations and conditions,” 

Epigenomics, vol. 10, no. 6, pp. 797–811, 2018. 

[137] D. C. Koestler et al., “DNA methylation-derived neutrophil-

tolymphocyte ratio: An epigenetic tool to explore cancer inflammation 



 157 

and outcomes,” Cancer Epidemiol. Biomarkers Prev., vol. 26, no. 3, pp. 

328–338, 2017. 

[138] D. Baris et al., “A case-control study of smoking and bladder cancer risk: 

Emergent patterns over time,” J. Natl. Cancer Inst., vol. 101, no. 22, pp. 

1553–1561, 2009. 

[139] A. R. Schned, A. S. Andrew, C. J. Marsit, M. S. Zens, K. T. Kelsey, and 

M. R. Karagas, “Survival Following the Diagnosis of Noninvasive 

Bladder Cancer: WHO/International Society of Urological Pathology 

Versus WHO Classification Systems,” J. Urol., vol. 178, no. 4, pp. 1196–

1200, 2007. 

[140] K. T. Kelsey et al., “A population-based study of immunohistochemical 

detection of p53 alteration in bladder cancer,” Br. J. Cancer, vol. 90, no. 

8, pp. 1572–1576, 2004. 

[141] M. R. Karagas, T. D. Tosteson, J. Blum, J. S. Morris, J. A. Baron, and B. 

Klaue, “Design of an epidemiologic study of drinking water arsenic 

exposure and skin and bladder cancer risk in a U.S. population,” Environ. 

Health Perspect., vol. 106, no. SUPPL. 4, pp. 1047–1050, 1998. 

[142] M. J. Aryee et al., “Minfi: A flexible and comprehensive Bioconductor 

package for the analysis of Infinium DNA methylation microarrays,” 

Bioinformatics, vol. 30, no. 10, pp. 1363–1369, 2014. 

[143] Z. Xu, L. Niu, L. Li, and J. A. Taylor, “ENmix: a novel background 

correction method for Illumina HumanMethylation450 BeadChip.,” 

Nucleic Acids Res., vol. 44, no. 3, p. e20, Feb. 2016. 



 158 

[144] W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in 

microarray expression data using empirical Bayes methods,” 

Biostatistics, vol. 8, no. 1, pp. 118–127, 2007. 

[145] W. Zhou, P. W. Laird, and H. Shen, “Comprehensive characterization, 

annotation and innovative use of Infinium DNA methylation BeadChip 

probes,” Nucleic Acids Res., vol. 45, no. 4, p. e22, 2017. 

[146] H. KD, “IlluminaHumanMethylationEPICanno.ilm10b4.hg19: 

Annotation for Illumina’s EPIC methylation arrays.,” R Packag. version 

0.6.0, 2017. 

[147] N. C. Sheffield and C. Bock, “LOLA: Enrichment analysis for genomic 

region sets and regulatory elements in R and Bioconductor,” 

Bioinformatics, vol. 32, no. 4, pp. 587–589, 2016. 

[148] B. Phipson, J. Maksimovic, and A. Oshlack, “MissMethyl: An R package 

for analyzing data from Illumina’s HumanMethylation450 platform,” 

Bioinformatics, vol. 32, no. 2, pp. 286–288, 2016. 

[149] T. J. Peters et al., “De novo identification of differentially methylated 

regions in the human genome,” Epigenetics and Chromatin, vol. 8, no. 1, 

pp. 1–16, 2015. 

[150] W. Zhou, T. J. Triche, P. W. Laird, and H. Shen, “SeSAMe: Reducing 

artifactual detection of DNA methylation by Infinium BeadChips in 

genomic deletions,” Nucleic Acids Res., vol. 46, no. 20, pp. 1–15, 2018. 

[151] M. Aydın et al., “Correlation of neutrophil-lymphocyte ratio and risk 

scores in non-muscle invasive bladder cancer,” Actas Urológicas 



 159 

Españolas (English Ed., vol. 43, no. 9, pp. 503–508, 2019. 

[152] H. D. Yuk, C. W. Jeong, C. Kwak, H. H. Kim, and J. H. Ku, “Elevated 

neutrophil to lymphocyte ratio predicts poor prognosis in non-muscle 

invasive bladder cancer patients: Initial intravesical bacillus Calmette-

Guerin treatment after transurethral resection of bladder tumor setting,” 

Front. Oncol., vol. 9, no. JAN, pp. 1–8, 2019. 

[153] I. Getzler, Z. Bahouth, O. Nativ, J. Rubinstein, and S. Halachmi, 

“Preoperative neutrophil to lymphocyte ratio improves recurrence 

prediction of non-muscle invasive bladder cancer,” BMC Urol., vol. 18, 

no. 1, pp. 1–10, 2018. 

[154] Q. Zhang, Q. Lai, S. Wang, Q. Meng, and Z. Mo, “Clinical value of 

postoperative neutrophil-tolymphocyte ratio change as a detection 

marker of bladder cancer recurrence,” Cancer Manag. Res., vol. 13, pp. 

849–860, 2021. 

[155] F. Cantiello et al., “Systemic Inflammatory Markers and Oncologic 

Outcomes in Patients with High-risk Non–muscle-invasive Urothelial 

Bladder Cancer,” Eur. Urol. Oncol., vol. 1, no. 5, pp. 403–410, 2018. 

[156] J. A. Witjes and K. Hendricksen, “Intravesical Pharmacotherapy for Non-

Muscle-Invasive Bladder Cancer: A Critical Analysis of Currently 

Available Drugs, Treatment Schedules, and Long-Term Results,” Eur. 

Urol., vol. 53, no. 1, pp. 45–52, 2008. 

[157] R. Pichler, J. Fritz, C. Zavadil, G. Schäfer, Z. Culig, and A. Brunner, 

“Tumor-infiltrating immune cell subpopulations influence the oncologic 



 160 

outcome after intravesical bacillus calmette-guérin therapy in bladder 

cancer,” Oncotarget, vol. 7, no. 26, pp. 39916–39930, 2016. 

[158] F. Desgrandchamps et al., “Prediction of non-muscle-invasive bladder 

cancer recurrence by measurement of checkpoint HLAG’s receptor ILT2 

on peripheral CD8+ T cells,” Oncotarget, vol. 9, no. 69, pp. 33160–

33169, 2018. 

[159] S. Akan et al., “Can the systemic immune inflammation index be a 

predictor of BCG response in patients with high-risk non-muscle 

invasive bladder cancer?,” Int. J. Clin. Pract., vol. 75, no. 4, pp. 1–9, 

2021. 

[160] R. G. Douglas, R. H. Alford, T. R. Cate, and R. B. Couch, “The 

leukocyte response during viral respiratory illness in man.,” Ann. Intern. 

Med., vol. 64, no. 3, pp. 521–530, 1966. 

[161] J. E. Woodell-May and S. D. Sommerfeld, “Role of Inflammation and the 

Immune System in the Progression of Osteoarthritis,” J. Orthop. Res., 

vol. 38, no. 2, pp. 253–257, 2020. 

[162] C. Bedel, M. Korkut, and H. H. Armag ăn, “NLR, d-NLR and PLR can 
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