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Unidade de Biologia Celular, Biocant, Cantanhede, Portugal
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Abstract

Polar Mapper is a computational application for exposing the architecture of protein interaction net-
works. It facilitates the system-level analysis of mRNA expression data in the context of the underlying
protein interaction network. Preliminary analysis of a human protein interaction network and compari-
son of yeast oxidative stress and heat shock gene expression responses are addressed as case studies.

Keywords: protein interaction network; functional genomics; systems biology

Overview

Progress in the reliability and throughput of protein physical interaction detection techniques (both exper-
imental [1–3] and computational wise [4]) is gradually leading to the availability of more comprehensive,
higher confidence protein interaction data [5–9]. There is hope that such ’interactome’ maps can serve as
invaluable tools for biological research, in particular for more integrated system-level studies of biological
processes and mechanisms [10]. Notably in this regard, a protein interaction network provides the natural
context for interpreting large-scale gene expression data, as the latter can be viewed as the dynamical expres-
sion of different parts of the protein interaction network [11,12]. Now, interactomes can be very large, with
rough estimates placing the number of interactions in a human cell on the order of 200 000 [13]. Therefore,
for the potential benefits of interactome mapping projects to be realized, proper visualization of interaction
data is essential [14]. As an addition to currently available alternatives [15–26], we present in here a software
application - Polar Mapper - designed for displaying protein interaction networks in a particularly informa-
tive fashion, termed a Polar Map [27]. The software also allows gene expression data to be overlayed on the
generated Polar Map for a visually integrated analysis of expression and interaction data. To exemplify the
usefulness of Polar Mapper, we applied it to two case studies: i) a preliminary analysis of the collection of
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Human protein-protein interaction data obtained via high-throughput Yeast Two-Hybrid (Y2H) assays by
Rual et al. [1], and ii) a preliminary search for relevant differences in the, a priori very similar [28], expression
responses of S. cerevisiae to the distinct hydrogen peroxide and heat shock stresses.

Related tools

Several software applications are available for protein interaction network visualization and analysis [15–26].
While typically representing proteins as nodes and interactions as edges, tools such as Pajek [17], BioLay-
out [23], CNplot [21], PINC [25] or Medusa [20] rely on distinct layout algorithms to produce alternative
graphical representations of an interaction network. Spring-embedded, hierarchical, orthogonal, tree and
circular are amongst the most widely used kinds of structures [29]. Layouts can be accomplished using a
number of distinct approaches, ranging from simulated annealing or gradient-descent minimization of the
energy of the representation [23, 24] to hierarchical clustering techniques that group nodes according to
their similarity [25]. These techniques are commonly combined with heuristics, which are able to prune
the often large set of output arrangements. Moreover, several additional criteria are considered when mea-
suring the quality of the graphical positioning of graph elements: the number of crossing edges, the area
occupied by the representation or the distance between adjacent and non-adjacent nodes [29]. Osprey [16],
Cytoscape [15], VisANT [18], ProViz [19] and BiologicalNetworks [22] further enable the integration of bio-
logical data available at public repositories. Functional annotations can be loaded as node attributes from
Gene Ontology [30] by Osprey, Cytoscape, VisANT and BiologicalNetworks. VisANT also supports Gen-
Bank [31] and SwissProt [32] annotations. Edges can be complemented with information on pathways and
interaction types provided by KEGG [33] database in both VisANT and BiologicalNetworks. The latter fur-
ther accepts interaction data from the BIND [5] and TransPath [34] databases. Moreover, VisANT enables
the integration of homology information and the projection to orthologous genes, based on phylogenetic
profiles available at COG [35]. The superposition of gene expression data as additional node information is
supported by both Cytoscape and BiologicalNetworks. Additional functionalities for querying, navigating
and finding substructures in graphs using either clustering or common algorithms in graphs are also provided
by these tools. Interaction network analysis tools are mostly available as standalone applications. Biologi-
calNetworks, VisANT and Osprey are the exceptions, the first being provided solely as a web-based server
and the others supporting both standalone and online execution forms. While the majority of these software
tools is implemented in Java thus being compatible with a multitude of platforms, a number of them are
restricted to either Windows [17,24] or UNIX environments [23].

Computational algorithms

Polar Mapper introduces an alternative graphical display of networks, designated a Polar Map, in an ap-
plication that was developed to be a practical, useful auxiliary tool in biological research projects involving
the analysis of protein interaction networks. Additional Polar Mapper software key features include: i) a
convenient method for navigating the network based on its modularity analysis; ii) an optional visual super-
position of gene expression data upon the interaction network display; iii) the specification of the nodes’ sizes
as a way to encode further information in the visualization (for instance, the molecular weight of a protein,
or the number of members in a protein complex, for cases in which nodes represent protein complexes, rather
than individual proteins); iv) the ability to save network information as text and export polar maps as raster
(PNG) and vector (SVG and PDF) image files; v) support for maintaining the data and manual annota-
tions associated with a given network in a Polar Mapper session file, enabling users to conveniently have
their network analysis work evolve along with their biological research project. Details on how to use the
Polar Mapper software in practice are provided in the Polar Mapper Guide, available at the Polar Mapper
website [36].

We next provide a description of the Polar Map visualization algorithm [27] integrated in Polar Mapper.
An overview of the key steps in the algorithm is shown in Figure 1, while Figure 2 shows an alternative,
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more detailed flow chart. Representing the proteins as nodes and the interactions between the proteins as
links between those nodes, the question becomes where to place the nodes in the plane, in order to obtain
an as meaningful and as visually clear as possible representation of the interaction network. Now, given
that the position of each node has two degrees of freedom, this allows the encoding of two distinct types of
information in the graph: one, we shall associate with the radial coordinates of the nodes; the other with
their angular coordinates.

The radial coordinate is used to introduce a mathematical hierarchical classification for the nodes based
on their placement within the network [37]. For this hierarchical classification we choose the betweeness
centrality measure [38]. For a node, its betweeness centrality is defined as the total number of shortest
paths (between any two other nodes in the network) that pass through it. In keeping with what is visually
intuitive, we place higher betweenness centrality nodes closer to the center of the graph and lower betweenness
centrality nodes on the periphery of the graph. Due to the long tail of the betweenness centrality values
distribution [39] we use a logarithmic scaling, letting the radial coordinate of a node be proportional to
log

(

maxBC/nodeBC

)

, where nodeBC denotes the betweenness centrality of that node and maxBC the highest
betweenness centrality in the network. Noting that proteins range from those that function only within
specific well-defined cellular processes, to those that play more global, higher-level functional roles, the
inspiration for the above procedure lays in that, perhaps, this biological hierarchy in the role of proteins
finds a correspondence in their placement within the mathematical, abstract protein interaction network.
The true relevance and form of this parallel between the mathematical network betweenness centrality (or
possibly an alternative centrality measure) of proteins and their ’biological hierarchical centrality’ is still an
open question [40–44]. Regardless, at the least, used in this fashion it is very helpful in visually untangling
large protein interaction graphs.

The angular placement of the nodes in the map is going to reflect the modular structure of the mathe-
matical network, in the sense that it contains regions comparatively dense in links. The greedy algorithm of
Clauset et al. [45] is used to search for a partition of the network into disjoint modules that maximizes the
Modularity Score

Q =
intra-module links

total links
−

[

intra-module links

total links

]

random
,

where the first term pertains to the network in question as it is, while the second assumes that the links
in that network were randomized, subject to every node keeping its original degree. In other words, a
high Q score partitioning of the network guarantees that the number of within-module links is maximized
with respect to a base random case, represented by the second term in the above formula. Note that the
algorithm is not guaranteed to find the partition that yields the Q global maximum [45]. However, the so far
significantly modular structure found in protein interaction networks [27,46–50] assures that in practice the
partition found is likely not far off from the optimal one. Combined with the fact that protein interaction
networks are large and this algorithm’s running time scales almost linearly in the number of nodes for sparse
networks (such as protein interaction networks) [45], this makes it a good choice for the purpose at hand.
This partitioning of the network is represented visually by allocating each module to a distinct angular region
in the graph. That is, the angular coordinates of the nodes are assigned so that all nodes in a given module
fall within the same visual conical section. The biological importance of the mathematical partitioning of
the network stems from evidence at present supporting that protein modules dense in physical interactions
tend to correspond to biological functional modules in the cell [27, 46–49] (see Wang and Zhang [50] for a
different view).

Now, the above procedure still leaves the circular ordering of the modules in the graph undetermined.
We would like to choose this ordering based solely on the linkage pattern across the modules, placing, to the
extent that is possible, closer to each other modules that are in some sense more inter-connected. Formally
this is done via the Ring Ordering Algorithm [27], that works as follows. A function that associates an
energy E with each potential circular ordering is defined. Given a circular ordering of the modules, let the
distance between two modules be the shortest of the two possible distances between them around the circle
(i.e., if they are next to each other the distance is 1, if there is a module between them the distance is 2,
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etc.). The energy for this circular ordering is then defined as

E (circular ordering) =
∑

m

∑

em

dem
/|em|,

where, m denotes a module in the network, em denotes an edge between module m and another module,
dem

denotes the distance between the modules connected by the em edge and |em| denotes the total number
of edges between module m and other modules. The normalization by |em| ensures that every module is
given equal weight as far as determining the final arrangement. Now, the lower the energy of an ordering,
the better the ordering is considered to be. The search for a low E ordering is done via a greedy procedure.
Taking a random circular ordering as a seed, module position permutations are successively checked and
performed if they yield a lower E circular ordering. The procedure is also repeated starting from different
random seeds, with eventually the net lowest E circular ordering found being the chosen one. Note that the
procedure does not guarantee that a global minimum for E is achieved. The angular ordering of the nodes
within the angular section assigned to their module is further refined as follows: i) the module is considered
as an isolated network (by ignoring links from the module to the rest of the network); ii) the Q-modularity
based partitioning is applied to the isolated module producing sub-modules; iii) the Ring Ordering Algorithm
is applied to the linkage pattern between these submodules, producing an ordering of the submodules; iv)
the angular section of the module is divided amongst the submodules, respecting their ordering from iii); v)
within the angular section of a submodule, the angular ordering of its nodes is arbitrary. The motivation
for this overall module ordering procedure is again that the density of connections between modules likely
correlates with their biological functional closeness, which can be valuably reflected in the graphical display,
at least to the extent allowed by the linear circular ordering constraint.

The above algorithm produces a Polar Map for an entire island (isolated graph) in the network (or for the
entire network itself, simply by, as a pre-step, assigning separate angular sections to each island). However,
it can be useful to visualize Polar Maps of specific regions in a network. A Local Module Polar Map is
constructed in the same fashion, upon considering the given module as an isolated network. The modular
breakdown into islands, modules and submodules has the additional advantage of providing a structured
organization for navigating the network and it is used for that purpose in the Polar Mapper software.

Biological case studies

Human interactome preliminary analysis

The Center for Cancer Systems Biology - Human Interactome 1 (CCSB-HI1) dataset [1] is one of the two
first ever collections of human protein-protein interaction data experimentally obtained in a large-scale
fashion [1, 2]. In that study, using the yeast two-hybrid assay in a high-throughput format, the products
associated with some 8000 human genome open reading frames were systematically pairwise tested for
possible physical interactions. This yielded some 2800 binary physical interactions. Note that the large-
scale format of the assay is obtained at some cost, for instance, the assay is strictly binary (effects on
the interaction of third party proteins or of post-translational modifications are not addressed), and so is
its output (interaction detected/not detected, rather than a binding affinity type or other more complex
characterization of the interaction). A basic question raised by the above extensive interactome mapping
work is how to organize such a large raw dataset: how to grasp its overall structure and how to profitably
turn the dataset into a useful aid in specific biological research problems. A more concrete fundamental
question is whether indeed some form of functional organization of the cell is present at the level of the
interactome, and if it is, whether it is detectable in such a dataset, given the disputed reliability of the yeast
two-hybrid technique [13] and the other assay limitations alluded to above.

As our first application of Polar Mapper, we use it as an auxiliary tool in a preliminary exploration of
the CCSB-HI1 human interactome dataset. The reader is encouraged to load the associated session file of
the human interactome, HumanInteractome.pm, and select ”Island 1” on Polar Mapper to follow along this
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analysis (see supp. file session intructions for help). Henceforth, module and submodule IDs and names
refer to the annotations in this session file. Figure 3 shows the largest connected component of the network.
We analyzed the generated modules in order to determine whether they reflected biological functions of
the cell. Some modules apparently are not particularly functionally coherent, which may be explained by
the fact that the data covers only a very small part of the interactome (on the order of 1% of the existing
protein interactions are present in the dataset [1]). False-positive Y2H interactions may also account for some
discrepancies [1]. Nevertheless, several modules and submodules clearly show a theme, with the majority of
their proteins possessing related functions or sharing common signaling pathways. We could identify modules
and/or submodules that are related to Regulation of transcription (mod. 17); House-keeping/biosynthetic
pathways (submod. 31); Cell proliferation/death and cancer (mod. 19); Spliceosome/pre-mRNA splicing
(submod. 92); Cell division and cancer (submod. 104); Cytoskeleton and protein scaffolding (submod. 52);
and Survival signaling (mod. 1).

We now describe an interesting module (mod. 3) we identified whose main theme is membrane-interacting
proteins (Figure 4). All its submodules contain membrane-interacting or transmembrane proteins. Three
of the submodules should be highlighted in particular, as they are very coherent and can be further sub-
categorized as Vesicular transport (I and II) and Secretory pathway/Membrane trafficking (Figure 4). The
Vesicular transport I submodule contains well-known SNAREs (soluble N-ethylmaleimide-sensitive factor
attachment protein receptors), known for their important role in diverse vesicle-mediated transport events:
VAMP4 and VAMP3; syntaxin 4, 5 and 11 ; SNAP23 and 25 [51]. NAPA, also known as α-SNAP, is
involved in intra-Golgi transport [51]. SCGN was apparently an outsider, but a recent article described that
this protein binds directly to SNAP25 in response to calcium and may be involved in Ca2+-induced exocytotic
processes [52]. The SCGN-SNAP25 interaction was not present in the Rual et al. [1] Y2H dataset used in
this study. On the other hand, a SCGN-SNAP23 interaction was present. It remains to be seen whether this
is an artifact of the Y2H screening due to homology of the two SNAPs, or if this interaction is biologically
relevant. TAF6L is the only protein unrelated to vesicular transport present in this submodule. The
second vesicular transport submodule we highlight contains: RABAC1, involved in vesicle formation from
the Golgi complex and that interacts with SNARE complexes [53]; RAB1A, involved in vesicular transport
from ER to Golgi [54]; RTN1, shown to bind to several SNAREs [55] and SNX15, involved in endosomal
trafficking [56, 57]. It also contains DUSP12, which seems to be unrelated to this submodule’s general
theme: it is the human ortholog of the Saccharomyces cerevisiae Yvh1 protein tyrosine phosphatase [58]
and is thought to negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily.
The remaining two proteins of the submodule have unknown functions. The third submodule we highlight is
composed of proteins involved in secretory pathway/membrane trafficking. Reticulons (RTN1 thru 4; RTN3
and RTN4 are contained in this submodule) are associated with the endoplasmic reticulum and are involved
in either neuroendocrine secretion or membrane trafficking in neuroendocrine cells (reviewed in [59]). All
members of this family have been shown to interact with and modulate BACE1 (a protease involved in
the secretory pathway and a therapeutic target in Alzheimer’s Disease). Furthermore, overexpression of
any reticulon protein significantly reduces the production of amyloid-beta [60]. RTN3 was described to
be involved in membrane trafficking and protein transport between the ER and Golgi [61]. RAB33A is a
small GTPase Rab family GTP-binding protein that localizes to dense-core vesicles and may be involved in
vesicle transport during exocytosis [62]. LRCH4 is a poorly characterized Leucine-rich protein that contains
a carboxyl terminus that may act as a membrane anchor [63], which indicates putative interaction with
membranes. PTPN9 is a phosphatase that localises on secretory vesicles [64] and is involved in their fusion
control [65]. Finally, COL4A3BP is a kinase involved in non-vesicular ER-to-Golgi transport of ceramide [66],
and may be a phosphorylation target of Casein Kinase 1-gamma 2 (CSNK1G2) [67], which is also present
in this submodule (their direct physical interaction tested positive in the Rual et al. Y2H screen).

For a different example, we now focus on a submodule we found with Polar Mapper, whose interpretation,
although less apparent and necessarily more speculative than in the previous case, may lead to interesting
findings. In fact, one of the main interests for pursuing large-scale interactome mapping projects is the hope
that they can point researchers in a variety of areas to new leads and directions of study. We designated
this submodule (submod. 4) as ”Crosstalk between toll-like receptors (TLRs) and nuclear receptors”. This
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submodule is found in a module (mod. 2) containing two other submodules also with proteins that fit in
this category (Figure 5). RARs and RXRs are nuclear retinoid receptors that form RAR/RXR heterodimers
in response to retinoids (e.g.: retinoic acid), leading to transcription of specific gene networks [68]. RARA,
RXRB and RXRG are present in the submodule. SPOP is a poorly characterized protein that is known
to bind to and modulate DAXX-mediated transcriptional repression [69]. SPOP was later identified as an
adaptor required for the ubiquitination of DAXX by CUL3-based ubiquitin ligase and consequent degradation
by the proteasome [70]. DAXX is a multifunctional protein that is involved in a wide variety of processes, such
as transcription, cell cycle, and apoptosis [71]. Unfortunately, DAXX was not present in the Y2H dataset [1]
used in our study. Members of the nuclear-receptor superfamily repress proinflammatory programs of gene
expression. The use of specific agonists for nuclear receptors such as GR (glucocorticoid receptor), LXR
(liver X receptors), PPARs (peroxisome proliferator-activated receptors), and to a lesser extent, RARs, were
found to modulate both common and distinct subsets of TLR target genes [72]. DAXX mRNA expression
was over 12-fold upregulated upon stimulation of macrophages using LPS, a well known TLR agonist. In the
presence of specific agonists for GR, LXRα/β and PPARγ, the LPS-induced response was inhibited by 48%,
55% and 18%, respectively [72]. Unfortunately this experiment was not done using RARs agonists, since
the authors of the study focused on the receptors that modulated the higher number of genes on the initial
screening, which does not allow confirmation of whether RARs are involved in the modulation of DAXX
expression upon LPS stimulus. Nevertheless, the link between retinoic acid receptors and DAXX is still
present through RXRs, which may also form heterodimeric pairs with other nuclear receptors besides RARs,
such as PPARs and LXR [68], which were shown to modulate DAXX expression [72]. DAXX was also shown
to negatively modulate the transcriptional activity of Androgen Receptor (another nuclear receptor) [73].
MYD88 (present in the current submodule) is downstream of several TLRs and is involved in innate immunity
signaling (namely through the p38 and JNK pathways) [72] and TLR-induced apoptosis, through interaction
with FADD [74].

Overall, this preliminary analysis of the CCSB-HI1 dataset served to confirm the presence and relative
ease of finding of functional coherent modules in high-throughput interactome data. The latter specific
example found and discussed above, also hints at the likely presence of potentially interesting new leads for
a variety of biological research areas in these datasets.

Comparative expression analysis of yeast under hydrogen peroxide and heat

shock stress

Microarray based high-throughput gene expression profiling assays provide in many regards a similar chal-
lenge to high-throughput interactome mapping assays, namely how to handle the associated large quantities
of data and how to extract valuable insights from them. Again, as in the interactome field, the extent to
which the level of noise in microarray gene expression assays affects the usefulness of the produced data is
a point of dispute. It has been shown already that jointly analyzing interaction and expression data can be
particularly informative [11, 12, 75]. Polar Mapper has been set up to allow so in the most straightforward
possible fashion: by visually superposing the expression data (with the standard green/red color scheme; see
Polar Mapper Guide Supp. Mat. file for details on the coloring scheme) over the interactome network. In
the example that follows, we use Polar Mapper, the S cerevisiae Filtered Yeast Interactome (FYI) [76] and
high-throughput expression data from Gasch et al. [28] to probe for differences between the yeast oxidative
stress (hydrogen peroxide) and heat shock gene expression responses in yeast. The heat shock and oxidative
stress responses in yeast are reported to be very similar [28]. This similarity has been explained as a result
of the general environmental stress response (ESR) of yeast [28]. The main difference between the responses
to the two stimuli was identified as being associated with a restricted set of genes related to detoxification
processes and reductive reactions in the cell [28]. We shall see that the Polar Mapper interactome-based
visualization of the expression data can be useful to make apparent other potential differences between these
similar expression responses, in particular, differences associated with specific cellular processes, since the
modular structure of an interactome appears to reflect such processes.

We start with a Polar Mapper analysis of the observed hydrogen peroxide stress (HP) response by itself.
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The reader is encouraged to load the associated session file for the yeast gene expression response to hydrogen
peroxide,Yeast H2O2 fyi.pm (showing the expression data superposed on the interactome network data) and
select ”Island 1” on Polar Mapper at this stage. The module and submodule names and numeric references
in the analysis that follows all refer to that annotated Polar Mapper session. Note that most of the names
annotating the modules are lifted from the analysis in [27]. Overlaying the mRNA expression data [28]
obtained from S. cerevisiae under HP stress (0,30 mM during 20 min.) on the FYI yeast interactome using
Polar Mapper, it becomes immediately evident that the genes in several modules of the largest connected
component of the interactome behave in ensemble, resulting in entire modules having a clear trend towards
repression or induction (Figure 6). This pattern is also visible at the submodular level. Some modules
present clusters of genes that are up or down-regulated, which are consistent with the submodular grouping
[eg.: the Cell cycle control (mod. 23), Signaling (mod. 20), and the RNA processing/translation (mod. 18)
modules]. A very robust repression of ribosomal transcripts (see the Large 60S (mod. 6) and Small 40S
(mod. 25) ribosomal subunit modules) is apparent. This type of response to stress (including oxidative
stress) is well known [28, 77, 78]. Modules composed of genes involved in mRNA related processes are
repressed as well, which is evident in the Exosome (mod. 8) and the Spliceosome (mod. 17) modules.
Additionally, translation has also been reported to be repressed during stress [28, 79], which can be readily
identified in the Translation initiation complex module (mod. 21) and the Translation/Translation initiation
submodule (mod. 18, submod. 74). Genes involved in mitosis are also repressed, as seen in the Anaphase
promoting complex (APC) submodule (mod. 14, submod. 55); the Chromosome condensation/segregation
module (mod. 13); the Cytokinesis/Chromosome segregation module (mod. 22) and submodule 99 of the
Cell cycle control module (mod. 23) (analyzed later in greater detail). These results are consistent with
reports that HP induces a G2/M arrest in yeast [80]. Conversely, some modules are clearly upregulated.
There is induction of genes involved in protein degradation, namely proteasomal genes (see the Proteasomal
regulatory complex and the Proteasomal catalytic complex modules, modules 4 and 3, respectively), which
is in agreement with other studies using HP as a stressor on yeast [77]. The DNA repair submodule (mod.
14, submod. 57) is also upregulated. It is known that HP and other oxidative stress inducers may generate
DNA damage and induce the cellular DNA repair mechanisms [28, 81]. Other modules present upregulated
submodules, but overall, the notion that gene repression is predominant under oxidative stress [28] becomes
rather evident upon visualization of the overall expression profile superimposed on the interactome (Figure
6). The Cell cycle control module (mod. 23) is an interesting example of one module that does not show a
clear trend towards up or down-regulation. However, by zooming in at the module level, it becomes evident
that it contains submodules that are induced, while others are repressed. One of the submodules, named the
G1/S submodule (submod. 98) contains mainly proteins that are involved in the G1 and S phases of the cell
cycle. This submodule is upregulated, which is in agreement with results showing that yeast cells are able
to progress through G1/S upon HP challenge [80]. Interestingly, this study also showed that the S phase
duration was slightly prolonged compared to untreated cells. This fact is consistent with the observation
that, despite many G1/S transcripts being upregulated, CDC6 is downregulated. This gene is essential for
DNA replication initiation during S phase [82]. Several G2/M-related proteins can be found in submodule
99 in which, with the exception of CAK1, all the G2/M related genes are downregulated. This reinforces
the strong effect of HP on this phase of the cell cycle.

We now compare the heat shock (HS) (25 to 37◦C during 20 min, data from [28]) and hydrogen peroxide
(HP) stress responses of yeast. A key technique we use here is to visualize the hydrogen peroxide (HP) stress
expression response relative to the heat shock (HS) stress expression response. This is done by loading into
Polar Mapper the difference between the log expression data for the HP and HS responses (Figure 7; Polar
Mapper session Yeast H2O2-Heat Shock fyi.pm, Island 1). For the most part, the trend towards induction
or repression in any given interactome module is the same under both HP and HS stresses. But by looking
at the above difference, the modules that are more intensely induced or more intensely repressed under
HP than under HS become evident, since they retain their net original color associated with up (red) or
down-regulation (green) respectively, observed in the HP-only image (Figure 6). Conversely, when the color
trend is reversed between Figure 6 and Figure 7, it must be that the induction/repression is more intense in
HS than in HP. It becomes therefore simple to visually identify modules and submodules that may be more
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affected or regulated by each specific stress.
From Figures 6 and 7 it becomes evident that some modules are more strongly upregulated or downreg-

ulated by each particular stimulus (see Table 1, HP vs. HS). During the HP challenge, the repression of the
G2 and mitosis related modules is stronger than in HS stress: see the Chromosome condensation/segregation
module (mod. 13), the APC submodule (submod. 55) and the Cytokinesis/chromosome segregation module
(mod. 22). The Cell cycle control module (mod. 23) provides us with further information: the G2/M
inducers are more repressed or less upregulated in HP compared to HS (Table 2). This suggests that HP has
an effect on the cell cycle, namely on the G2/M phase of the cell cycle. This is in agreement with published
data, reporting the existence of a G2/M block after HP stress [80], but not during HS [83]. In fact, this
heat shock study [83] reports that HS induces a transient G1/S arrest. This is supported by data showing
that several key G1/S genes are differentially expressed between HP and HS: the expression of the G1/S
inhibitor SIC1 remains unchanged in HP and is upregulated in HS; conversely, the G1/S inducers CLB5
and CLB6 (critical for DNA replication) remain unchanged in HP and repressed in HS; SWI4 (involved in
G1/S progression) is also less strongly upregulated in HS then in HP. Although there are some exceptions
and also some incomplete data, in general, the G1/S gene expression comparison on this module fits the
experimental data (see Table 2). Interestingly, the DNA repair submodule (submod. 57 and Table 1) is more
strongly induced in HP than in HS, which is also in line with the general notion that direct DNA damage
is extremely important during oxidative stress [81, 84, 85]. Overall, this analysis suggests a stronger control
of protein and RNA synthesis and degradation and G1/S progression upon heat shock and mitotic control
and DNA repair upon HP stress (Table 1).

Due to the small number of chaperones present in the FYI dataset we analyzed, a relevant matter we
did not explore is the collective change induced by stress in chaperones and their low-affinity, but funda-
mental, transient interactions [86]. For instance, similarly based on a combined gene expression and protein
interaction data analysis, it has been hypothesized that in yeast cellular stress leads chaperones to become
more central in the interactome [75]. A next step in validating and refining some of the ideas related to
the dynamic nature of the interactome will likely require the actual experimental testing of protein-protein
interactions in cells under different conditions. It has also been shown recently that in eukaryotic cells, in
contrast to bacteria, there are two distinct chaperone networks, one being involved in de novo protein folding
(coupled to translation), and the other in rescue of stress-denatured proteins [87]. In this regard, from the 14
chaperones identified as translation-coupled by Albanèse et al. [87], 7 out of the 8 present in the FYI dataset
we analyzed, belonged to the same interactome module (mod. 23, submod. 100; the exception being 1 pro-
tein, present in mod. 23, submod. 101). Conversely, out of the 20 chaperones categorized as stress-coupled
by Albanèse et al. [87], the 4 presented in the FYI dataset were all grouped together by PolarMapper in a
distinct module from the translation-coupled one (mod. 10, submod. 37). The placement in the interactome
of these few chaperones present in the FYI dataset, seems therefore to be consistency with the two separate
functional chaperone classes identified in the study of Albanèse et al. [87].

Overall, our case study showed how this graphical platform, combining expression and interaction data,
can aid in a first-pass analysis and organization of expression data. Note in particular how it allowed a faster
identification of relevant cellular processes, giving hints on biological processes that should be subjected to
a more detailed study. It also serves to note that, in spite of the respective assay reliability limitations,
present day high-throughput interaction and expression data can be already valuable resources in biological
research.

Summary

This article introduces Polar Mapper, a computational application centered around the Polar Map visual-
ization of protein interaction networks. It is meant to be a practical, ready-to-use auxiliary tool in biological
research work that involves the analysis of protein interaction networks. A second objective of the project
is to make available to the scientific community a reusable implementation of the Polar Map algorithm in
order to contribute to the ongoing development of improved biological network visualization tools. To this
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end the source code and documentation are open and freely available to the community. Finally, although
visualization of protein interaction networks was the primary motivation for this application, we note that
it may likely be profitably employed in the display of many other kinds of binary interaction data networks.

Availability

Polar Mapper is implemented in Java and may be used within several platforms and environments, as long
as a Java Virtual Machine installation is provided. Binaries and source code, as well as documentation are
available both as electronic supplementary materials at the Journal of the Royal Society Interface website
and at the Polar Mapper website [36].

Electronic Supplementary Material Files

Session Instructions.pdf — Instructions for using Polar Mapper with the article

case-study sessions

Quick instructions on how to work with the Polar Mapper sessions.

HumanInteractome.pm — Human interactome session

Polar Mapper session containing Human interactome based on Y2H dataset of Rual et al. [1].

Yeast H2O2 fyi.pm — Yeast hydrogen peroxide oxidative stress session

Polar Mapper session containing yeast interactome based on the FYI dataset of Han et al. [76] together with
the hydrogen peroxide oxidative stress expression response data of Gasch et al. [28].

Yeast H2O2-Heat Shock fyi.pm — Yeast hydrogen peroxide oxidative stress ex-

pression response relative to heat shock expression response session

Polar Mapper session containing yeast interactome based on the FYI dataset of Han et al. [76] together with
data showing the difference between the log expression for the hydrogen peroxide oxidative stress response
and the log expression for the heat shock response (expression data from Gasch et al. [28]).

PolarMapper Guide.pdf — Guide to the Polar Mapper software

Polar Mapper Guide providing information on software pre-requisites, installation instructions and usage
scenarios.
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Table 1: Summary of the main modules and submodules identified using Polar Mapper as being more
strongly upregulated or downregulated under the hydrogen peroxide or heat shock stimulus in yeast. See
main text for analysis.

Table 2: Comparative expression of cell cycle genes present in the Cell Cycle control module upon hydrogen
peroxide treatment and upon heat shock in yeast. See main text for analysis.
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Figure 1: The Polar Map algorithm. Overview of the key steps in constructing a Polar Map display of a
network.
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(a) Traffic (b) Modularity

Start ring ordering algorithm

Modules

Start loop

Shuffle the list of modules to produce a 
potentially different order

End loop when a predefined number 

of iterations is reached

End ring ordering algorithm

Start loop

Randomly choose two modules and 

compute the new energy of the list 

considering that the two modules swap 
places in the circular ordering

Swap the placement of the two 
modules in the circumference

Does the new 
configuration have a lower

energy?

YES

NO

End loop when a predefined number 

of iterations is reached

(c) Ring Ordering

Nodes, interactions

Start Polar Map algorithm

Run the traffic algorithm

Traffic.

First version of the Network Navigation 

Structure (NNS): islands > nodes

End Polar Map algorithm

Run the modularity and ring ordering algorithms for each 

island, adding the module level to the NNS.

NNS: islands > ordered modules > nodes

Determine the radial and angular coordinates of each of the Polar Map 

nodes based on the traffic and the modularity structure (established in the 

NNS), respectively.

Assign the radial coordinate based on the traffic (nodes with higher traffic 

get placed closer to the center of the graph). Assign the angular coordinate 

of each node such that: (i) modules are angle-wise kept together and their 

circular ordering is as determined in the NNS, obtained using the ring 

ordering algorithm; (ii) similarly, this holds for the submodules within the 

modules; (iii) some blank angular spaces are added to separate the islands, 

the modules within the islands, the submodules within the modules and the 

nodes within the submodules.

Run the modularity and ring ordering algorithms for each module of 

every island, taken as an isolated network, hence adding the 

submodule level to the NNS. Sort the islands by their size.

NNS: ordered islands > ordered modules 

> ordered submodules > nodes

(d) Polar Map

Figure 2: Detailed flow diagrams of the algorithms used to generate a Polar Map. (a) Traffic computes the
betweeness centrality of each node [38,88] and divides disconnected groups of nodes in islands; (b) modularity
generates modules via the Q-modularity algorithm [45]; (c) The ring ordering procedure [27] finds a good
ordering for the modules; and, finally, (d) the Polar Map algorithm calculates the polar coordinates of each
node based on the results from (a), (b) and (c).
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Figure 3: The Human Interactome. Polar Map showing the largest connected component of the Human In-
teractome based on the Rual et al. Yeast Two-Hybrid high-throughput protein-protein interaction dataset [1]
(1307 proteins, 2441 interactions). Modules are numbered from 1 to 32. Some of them were manually anno-
tated (using Polar Mapper), reflecting the biological function of the proteins that constitute them. Modules
marked with an asterisk (*) contain annotated submodules.
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Figure 4: Membrane-interacting proteins module within the Human Interactome. Local Polar Map of module
3 in Figure 3. Its central theme appears to be membrane-interacting proteins. Note how the submodules
(encircled by grey lines) denser in these proteins are found closer together in the circular ordering of the map.
See main text for a biological analysis of this module. To compose this figure, the Polar Map was exported
into a SVG file using Polar Mapper and the graphical highlight around the sumodules and relatedness of each
protein concerning the module’s theme were edited using an external image processing software (Inkscape).

18

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
66

3.
1 

: P
os

te
d 

15
 D

ec
 2

00
8



Figure 5: Human Interactome module containing ”Cross-talk between toll-like receptors (TLRs) and nuclear
receptors” submodule. Local Polar Map of module 2 in Figure 3. The highlighted submodule contains
proteins involved in cross-talk between toll-like receptors and nuclear receptors. Note that two of the other
submodules also contain some proteins in this category. See main text for a possible functional interpretation
of this submodule. This figure was composed as described in the legend of Figure 4.
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Figure 6: Hydrogen peroxide oxidative stress gene expression response of S. cerevisiae. Polar Map showing S.
cerevisiae hydrogen peroxide oxidative stress mRNA expression data (0.30 mM during 20 min) from Gasch
et al. [28] overlayed on the largest connected component of the yeast protein interaction network, based on
the FYI dataset (741 proteins, 1752 interactions) [76] . Colors show mRNA fold induction relative to control
unchallenged cells. See the main text for a description of this oxidative stress response.

Figure 7: Hydrogen peroxide oxidative stress vs. heat shock gene expression response in S. cerevisiae. Anal-
ogous figure to Figure 6, except this time with colors showing hydrogen peroxide oxidative stress mRNA
fold-induction relative to heat shock stress. See main text for analysis.
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