
 
 
 
 
 
 
 
 
 
 
 
 

Modeling the Transcriptional Landscape of in vitro Neuronal Differentiation and ALS Disease 

 
 

Elena Konstantinovna Kandror 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

Doctor of Philosophy 
under the Executive Committee 

of the Graduate School of Arts and Sciences 
 
 

COLUMBIA UNIVERSITY 
 

2019 
 



	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2019 
Elena Konstantinovna Kandror 

All rights reserved 



	

ABSTRACT 

 

Modeling the Transcriptional Landscape of in vitro Neuronal Differentiation and ALS Disease 

 

Elena Konstantinovna Kandror 

 

 

The spinal cord is a complex structure responsible for processing sensory inputs and motor outputs. As 

such, the developmental and spatial organization of cells is highly organized. Diseases affecting the 

spinal cord, such as Amyotrophic Lateral Sclerosis (ALS), result in the disruption of normal cellular 

function and intercellular interactions, culminating in neurodegeneration. Deciphering disease 

mechanisms requires a fundamental understanding of both the normal development of cells within the 

spinal cord as well as the homeostatic environment that allows for proper function. Biological processes 

such as cellular differentiation, maturation, and disease progression proceed in an asynchronous and cell 

type-specific manner. Until recently, bulk measurements of a mixed population of cells have been key in 

understanding these events. However, bulk measurements can obscure the molecular mechanisms 

involved in branched or coinciding processes, such as differential transcriptional responses occurring 

between subpopulations of cells. Measurements in individual cells have largely been restricted to 4 color 

immunofluorescence assays, which provide a solid but limited view of molecular-level changes. Recently, 

developments in single cell RNA-sequencing (scRNA-Seq) have provided an avenue of accurately 

profiling the RNA expression levels of thousands of genes concomitantly in an individual cell. With this 

increased experimental precision comes the ability to explore pathways that are differentially activated in 

subpopulations of cells, and to determine the transcriptional programs that underlie complex biological 

processes. In this dissertation, I will first review the key features of scRNA-Seq and downstream analysis. 

I will then discuss two applications of scRNA-seq: 1) the in vitro differentiation of mouse embryonic stem 

cells into motor neurons, and 2) the effect of the ALS-associated gene SOD1G93A expression on cultured 

motor neurons in a cellular model of ALS. 
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Introduction 

 

The spinal cord is responsible for processing somatosensory inputs and motor output. It is a 

symmetric structure; the organization of the left and right halves of the spinal cord are largely 

equivalent, and respectively innervate the left and right half of the body. During development, 

highly organized circuits compromised of both neuronal and glial cells are generated and 

compartmentalized into discrete regions of the spinal cord (Figure 1). The positions of these 

regions, defined rostro-caudally by spinal vertebrae and dorso-ventrally by Rexed laminae, 

contain the cell bodies of neurons that are responsible for information processing to and from 

distinct parts of the body. Lower motor neurons, located in the anterior grey column (lamine VIII 

and IX), extend axons out of the spinal cord and directly innervate muscles. Forelimbs are 

innervated by motor neurons located in the cervical segments of the spinal cord, axial muscles by 

the thoracic segments, and hindlimbs by the lumbar segments. Within these segments, motor 

neurons are further organized medio-laterally into motor columns, which are responsible for 

innervating morphogenically similar muscle groups.  During spinal cord development, the 

specification of cell state and spatial location is dictated by the interplay of tightly controlled 

molecular cues and the transcriptional programs they regulate1.  Within the notochord, the 

floorplate and the roofplate establish a dorsal-ventral gradient of Sonic Hedgehog (Shh) and an 

opposing gradient of Bone Morphogenic Protein (BMP).  Cells experiencing dorsal-ventral levels 

of Shh above a particular threshold activate type I homeodomain genes and repress the 

transcription of type II homeodomain genes2.  As a result, ventral boundaries are established, 

with some cells expressing type I or type II homeodomain transcription factors.  In addition, 

boundaries between these cells are enhanced by the cross repressive actions of these two 

classes of homeodomain transcription factors.  In a similar fashion, the opposing BMP gradient 

acts in a dorsal to ventral fashion, ensuring sharp transcriptional domains within the developing 

spinal cord.  MNs arise from a region expressing Class I Nkx6.1 in the absence of Irx3 or Dbx2.  

In addition, within this domain, class II Pax6 is expressed in the absence of Nkx2.2 and Nkx2.9.  

This combination of transcription factors creates a system of de-repression, where pan-neuronal 
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genes are activated. However, those genes that specify neuronal identity other than MNs are 

repressed by the presence of Nkx6.1 and Pax63.  Progenitors within this region then express 

Olig2, a transcription factor responsible for the transcriptional activation of MN specific genes, 

such as the transcription factors Hb9, Mnr2, Lim3 and Isl1/24.  Markers used to monitor the 

maturity of MNs are limited, but include the aforementioned transcription factor, Hb9, and choline 

acetyltransferase (ChAT), with Hb9 expressed early and ChAT expressed late5. Motor columns 

can be identified by the expression of unique combinations of transcription factors and cell 

surface markers6.  Each motor column contains motor pools, which are a collection of motor 

neurons that innervate a single muscle. Each motor pool consists of a combination of motor 

neuron subtypes: Alpha (α) motor neurons that  innervate the extrafusal fibers (standard skeletal 

muscle), and beta (β) and gamma (γ) motor neurons that innervate the intrafusal fibers (muscle 

spindle). α motor neurons  can further be classified based on the type of muscle they innervate: 

fast-twitch fatigable (FF) motor neurons have the largest diameter and innervate large muscles, 

fast-twitch fatigue-resistant (FR) are intermediate size, and slow-twitch fatigue-resistant (S) are 

the smallest6.  

 

Given the precise organization of motor neurons within the spinal cord, disruptions of any part of 

the motor circuit result in impaired motor function. Partial or complete paralysis can result from a 

traumatic spinal cord injury, exposure to venom, bacterial and viral infections, autoimmune and 

developmental disorders, and neurodegenerative diseases. The manner in which these 

occurrences impair motor neuron function are highly variable, as is their prognosis. In cases of 

temporary paralysis, no irreversible damage to the motor neuron occurs. For example, in 

incomplete spinal cord injuries, locomotion may be regained after pressure and inflammation are 

alleviated from the point of trauma. As delineated above, the numbers, positions, and identities of 

motor neurons in the spinal cord are established during early development and maintained 

throughout adulthood.  Consequently, clinical cases involving degeneration of motor neurons 

such as Amyotrophic Lateral Sclerosis (ALS) are linked with a much worse prognosis.  

 



	 3	

ALS is the most common form of adult-onset motor neuron degenerative disease in the United 

States. ALS is uniformly fatal, with a life expectancy of 3 – 5 years post diagnosis. 10% of cases 

are familial, while 90% are sporadic7. Mutations in over 20 genes have been associated with both 

forms of ALS8. Symptoms start with muscle weakness in a focal point, often in the arms or legs 

(called limb-onset ALS), which then progresses to paralysis in all voluntary muscles in the body. 

Patient death is due to respiratory failure, which occurs when muscles controlling breathing 

become affected. While the symptoms of ALS result from loss of muscle function, the onset and 

spread of the disease are due to motor neuron degeneration in the central nervous system. In the 

spinal cord, motor neuron death proceeds in a stereotyped manner, with motor neuron loss being 

most severe in the motor pools innervating muscles at the site of ALS onset. FF α motor neurons 

within motor pools are selectively vulnerable to degeneration, while β and γ motor neurons are 

resistant9. ALS spreads first to neighboring motor pools in a motor column, then contiguously 

propagates both ipsilaterally along the rostrocaudal axis and contralaterally to the complementary 

motor column on the opposite side of the spinal cord. In the cortex, upper motor neurons also 

contribute to disease progression. Upper motor neuron loss is again most severe in the region 

responsible for innervating the site of ALS onset, spreading radially out towards adjacent regions 

in the motor cortex. The degree of upper versus lower motor neuron involvement is variable 

between patients, as is the clinical manifestation of paralysis progression through different 

muscles groups. 

 

While motor neurons are selectively vulnerable to degeneration in ALS, pathology also occurs in 

neighboring glial cells10. This is consistent with the observation that genes associated with familial 

and sporadic ALS are expressed in both neuronal and glial populations. Much of what is known 

about the cell type-specific contributions to, and underlying molecular mechanisms of, disease 

progression come from in vivo and in vitro models based on mutations in these genes. The most 

studied of these is superoxide dismutase 1 (SOD1). Introducing an ALS-associated variant of 

SOD1, such as SOD1G93A, into model organisms results in a phenocopy of ALS disease11. In vivo 

mouse models have revealed the relative contribution of glia and neurons to ALS onset, rate of 
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progression, and lifespan through restricted expression of SOD1G93A to particular cell types12-16. 

Astrocytes, which normally function as support cells to neurons, become reactive: they lose their 

beneficial functions and begin to secrete toxic factors into the microenvironment, inducing and 

accelerating motor neuron degeneration17-20. Microglia, the immune cells of the central nervous 

system, become activated and release pro-inflammatory signaling molecules21-23. Mature 

oligodendrocytes are replaced by an immature population lacking the capacity to myelinate 

axons24, 25. This complicated milieu of pathological events can be modeled more simply with in 

vitro cultures of defined cells. In vitro models can be generated from primary cells isolated from 

animal models or from human patients. Primary astrocytes, microglia, and cortical neurons can 

be expanded in culture and studied directly, while motor neurons are commonly obtained through 

reprogramming stem cells. Despite introducing artificiality into the system, in vitro models have 

the benefit of being scalable, reproducible, and easily testable.  

 

in vitro models use glia-motor neuron cocultures to better replicate the endogenous spinal cord 

environment. Methods have been established for isolating viable astrocytes from the human26 

and murine27  cortex, microglia from the murine cortex and spinal cord28 and postmortem human 

brain29, and oligodendrocytes from the rat optic nerve30. Spinal motor neuron purification and 

culture protocols have also been established for cells from embryonic31, 32 and adult mice33, 

however the yield of motor neurons is limiting. Successful differentiation of motor neurons 

(ESMNs) from murine embryonic stem cells (mESCs) has allowed for large-scale studies of 

ALS34. mESC lines are generated from early stage blastocysts that are cultured, expanded, and 

propagated35. mESCs retain the properties of the blastocyst, so genetic modifications in the 

blastocyst such as inclusion of a fluorescent reporter or insertion of a mutated copy of a gene will 

be retained in the mESC. In context of ALS, mESC lines have been generated from blastocysts 

that have a motor neuron specific promoter Hb9-driven eGFP cassette34, which allows for FACS 

purification of differentiated motor neurons, and expression of a human ALS-associated gene 

such as SOD1G93A,36 TDP43A315T, FUSR514S, FUSR521C, FUSP525L,37 or FUSP517L 38. These studies 

have revealed the non-cell autonomous effects of astrocytes on motor neuron degeneration, 
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transcriptional pathways that are dysregulated in a cell type specific way in ALS, protein 

aggregation, mislocalization, and phenotypic changes such as axonal breakage and 

excitotoxicity.  

 

Differentiation protocols for human embryonic stem cells (hESCs), and human induced 

pluripotent stem cells (hiPSCs) to motor neurons have also been established39, 40. These 

protocols rely on activating the endogenous signaling pathways employed during morphogenesis 

to drive stem cells to differentiate towards a particular lineage41, 42. Alternatively, patient 

fibroblasts can be directly reprogrammed into motor neurons without going through a stem cell-

like state43. A key benefit of these models is that they are patient-specific, and can therefore be 

generated from sporadic patients and carry the genetic background that could predispose an 

individual to develop ALS. hiMNs and hESMNs show may common pathological features of ALS, 

however often (but not always44) remain equally viable to control iMNs under non-cell 

autonomous stress from ALS astrocytes45-48. Stem cell-derived motor neurons not harboring an 

ALS mutation have also been used to study the impact of ALS patient-derived astrocytes and 

primary murine astrocytes on motor neuron degeneration49-52. Fully humanized in vitro models 

have also provided huge advances in understanding ALS. For example, necroptosis was 

implicated as the driving factor behind motor neuron degeneration53. While these studies have led 

to a number of important discoveries in ALS, there are several biological complications 

associated with them that can convolute results and obscure relevant information. 

 

First, iPSCs and directly reprogrammed iMNs retain epigenetic signatures of the parent cell they 

were taken from54, 55. The extent to which these signatures are retained between individual cells 

of a reprogramming protocol has not been fully explored, and can account for variability in 

disease models. Furthermore, the efficiency of motor neuron differentiation varies even within 

replicates of the same protocol, and the heterogeneity of resulting post-mitotic populations has 

not been well characterized. The cells that result from motor neuron differentiations have 

characteristic phenotypic properties including stereotyped electrophysiological responses, ability 
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to form neuromuscular junctions with muscles, and expression of marker genes including Hb9, 

ChAT, and Isl156. Transplantation experiments have shown that these cells can be grafted into 

chick spinal cords where they assemble into appropriate motor columns57. The rostro-caudal 

patterning of cervical, thoracic and lumbar motor neurons can be observed in vitro through 

expression of Hox genes. A common reagent in neuronal differentiations, retinoic acid58, has 

been shown to result in motor neurons with a cervical identity34, 59. Protocols abstaining from 

retinoic acid induction result in a lower efficiency differentiation of motor neurons with more rostral 

identity60. In vivo studies have shown that limb-innervating motor neurons in the lateral motor 

column are Foxp1+/Lhx3-, and iMNs and ESMNs can be generated to reflect this transcriptional 

program41. However, parallel transcriptional studies have shown that human iPSC-derived 

neurons have a transcriptional program that overall most closely resembles immature embryonic 

stages of development61. A comparative study of 7 week old hiMNs and hESMNs with fetal spinal 

cord, adult spinal cord, and laser capture microdissected adult spinal motor neurons also found 

the strongest transcriptional correlation between fetal tissue and in vitro cells62. Positive selection 

for Hb9::GFP positive hESMNs63 did not improve the age-related differences. Neuronal 

maturation can be measured via several methods, including cell morphology and 

electrophysiology. In a timecourse study on Hb9::GFP positive hESMNs, cultured cells displayed 

more mature electrophysiological properties at later timepoints, however the variability between 

cells also increased over time64.  

 

Commonalities between cells arising from motor neuron differentiations have been established 

and standards for defining a successful motor neuron differentiation have been implemented. 

These characteristic transcriptional, electrophysiological, and morphological properties are 

important for controlled experiments, but can belie the heterogeneity in the post-mitotic 

population. As a measurement, the bulk transcriptional profile of ESMNs and iMNs encompasses 

a broad definition of motor neurons, but until high resolution profiling of single cells is achieved, 

these bulk measurements conceal individuality and may obscure ALS-associated changes that 

occur in subsets of cells. As discussed above, spinal motor neurons are a diverse population that 
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are differentially susceptible to degeneration in ALS. Some of this heterogeneity is propagated in 

in vitro models. 

 

Motor neuron differentiations are variable in their efficiency, and produce a heterogeneous 

population of post-mitotic cells. Understanding the dynamics of these differentiations can both 

shed light on molecular pathways that contribute to neuronal commitment, and help improve 

modeling of diseases such as ALS. In mouse models, the bulk transcriptional profiles of motor 

neurons differentiated from mESCs (ESMNs) largely recapitulate the transcriptional profiles of 

laser-capture microdissected spinal motor neurons65. Therefore, the murine model was the 

starting point for single cell experiments. This, however, belies the heterogeneity of motor neuron 

populations that make subsets of cells vulnerable or resistant to degeneration during disease. In 

fact, similar to the progression of ALS in the spinal cord, cultured ESMNs also display 

asynchronous degeneration that is accelerated by exposure to glia harboring an ALS-associated 

mutation. 

 

The variability in ALS disease progression both in vivo and in vitro implies 1) the existence of a 

stochastic trigger for disease onset, and 2) heterogeneous cellular responses to a common 

stimulus. Due to the asynchronous progression of ALS and the unique transcriptional responses 

different cellular subpopulations have to ALS-associated toxicity, bulk measurements taken from 

a mixed cellular population obscure the signaling pathways activated in individual neurons and 

glia. Single cell RNA sequencing (scRNA-seq) overcomes this obstacle. Using scRNA-seq, it is 

possible to measure the transcriptional readouts of individual cells at any timepoint of the 

disease. scRNA-seq applied over a timecourse of disease development allows the ability to track 

the progression of transcriptional changes occurring in the system over time. 

 

In bulk sequencing, the transcriptional readout of a homogeneous cellular population can be 

taken as the equivalent to its identity. Correlation metrics for defining cell types, differential gene 

expression, and population similarities are based on this foundation66, 67. However, it has long 
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been understood that even a clonal population of cells is not homogeneous, and individuals 

residing in a population of genetically identical cells have different responses to inductive cues68. 

These differences were shown to be a result of the stochastic, not predetermined, activity of 

transcriptional templates69, a process known as translational noise and transcriptional bursting70, 

71. Random noise in single cell expression has been found to be critically important in 

development and cellular diversification72. Noise can be measured at a time scale of seconds to 

hours, and is thought to be of both intrinsic (possibly through chromatin remodeling complexes) 

and extrinsic (cell size and shape) origin73. Stochastic gene expression makes analysis of 

scRNA-seq datasets challenging because the level of expression of a gene may not relate to its 

translational readout. Furthermore, in order to calculate accurate similarity between cells, 

effective differential expression analysis needs to be calculated across multiple connected 

transcripts. A second complicating factor is transcript dropout. Due to technical limitations in 

generating single cell libraries, many transcripts that are present in the cell are not captured in the 

library, leading to artificially inflated levels of zero expression. This is especially true for small 

RNAs such as miRNAs, long RNAs that are over 2kb in length, and mRNAs that are expressed at 

low levels. Many technical approaches to single cell sequencing have been established, all of 

which have some benefits and drawbacks associated with them. Protocols can be categorized by: 

linear amplification vs nonlinear amplification, plate-based vs droplet-based, and high coverage 

vs low coverage approaches. As a result of the many variables associated with scRNA-seq, 

single cell data analysis faces challenges that algorithms developed for bulk RNA sequencing do 

not need to contend with.  

 

Traditional computational approaches to analyzing scRNA-seq data depend on clustering cells 

into groups based on the similarity of their transcriptional profiles. These methods fail to account 

for transitioning cells or contiguous processes. Novel algorithms, such as single cell topological 

data analysis (scTDA), have been established to delineate transcriptional trajectories that cells go 

through during a continuous process74. scTDA clusters cells in a high dimensional space, 

allowing for cells to overlap in multiple clusters, before dimensionally reducing the output into a 
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two dimensional representation. In the representation, each cluster in the high dimension is 

represented by a single node, and clusters that shared at least one cell in the high dimensional 

space are connected by a line (Figure 1b). This approach enables statistical analysis of 

transcriptional progression in the representation, which in turn allows for analysis of pathway 

activation in subpopulations of cells during the timecourse. 

 

We have applied two different scRNA-seq approaches to two biological questions. First, we 

aimed to characterize the transcriptional pathways responsible for neurogenic commitment of 

mESCs during motor neuron differentiation. Second, we examined at the effects the SOD1G93A 

mutation had on cell autonomous and non-cell autonomous ESMN degeneration in vitro. 

Combining scRNA-seq of ESMN differentiations and in vitro models of ALS with scTDA analysis 

allows for an in depth exploration of the transcriptional landscape surrounding motor neuron 

identity, heterogeneity, and pathology. It provides a platform for understanding variability in model 

systems and asynchrony in disease onset and progression. This approach is also a powerful tool 

that can be applied to other biological systems that exhibit similar convolutions in data, both 

technical and analytical. 
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Chapter 1: Single Cell RNA-Sequencing 

 

Introduction: Single Cell RNA Sequencing and Analysis 

In 2013, Nature Publishing Group selected single cell sequencing as its Method of the Year, 

stating that “methods to sequence the DNA and RNA of single cells are poised to transform many 

areas of biology and medicine”75. In 2018, Science Magazine named the application of single cell 

sequencing to organism development the Breakthrough of the Year76. Single cell RNA 

sequencing (scRNA-seq) allows transcriptome profiling at a fundamental level of resolution, 

thereby resolving complex system heterogeneity and defining cellular individuality. scRNA-seq 

has enabled revolutionary discoveries, including the identification of rare cell types77, molecular 

rationales for drug resistance78, and pathways involved in lineage commitment79.  

 

Broadly, the layout for scRNA-seq experiments is similar to that for bulk RNA-seq, consisting of 

three steps: 1) reverse transcription of mRNA into complementary DNA (cDNA), 2) amplification 

of cDNA into a sequencing library, and 3) physical sequencing and analysis. However,  technical 

hurdles – such as the limiting amount of starting material (10pg of RNA in a cell, with only 1-10% 

of that being mRNA), high variability in RNA content, and large sample sizes necessary for 

statistical accuracy – a variety of methods exist to perform these steps, all of which have some 

benefits and disadvantages associated with them. Constant progress is being made on both the 

experimental and computational fronts of scRNA-seq, allowing for improved gathering and 

interpretation of data.  

 

scRNA-seq experiments coupled with appropriate computational approaches can yield deep 

insights into biological processes. A cell’s transcriptional and chromatin state reflects both its 

identity and its dynamic response to perturbations in the environment. As such, scRNA-seq and 

ATAC-seq is a useful tool for studying cellular identity and development, disease progression and 

resistance, and other biological events that result in an altered transcriptional state. 
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Origins of Single Cell RNA Sequencing 

The earliest applications of single cell nucleic acid profiling were accomplished not by 

sequencing, but by in situ hybridization in 196880. The molecular foundation of these imaging 

experiments – that a melted DNA molecule can reassociate with a complementary DNA or RNA 

sequence – laid the groundwork for all future molecular biology research. While in situ 

hybridizations were limited to probing for a single gene or transcript of interest, they clearly 

demonstrated that even within a highly similar population of cells there existed transcriptional 

individuality, and that discrepancies in morphologically analogous cells were vital for function81-83. 

In 1976, the first full length in vitro synthesis of cDNA from mRNA transcripts was achieved, 

opening the doors to study specific gene expression in cells84, 85. Almost 20 years later, in 1992, 

the first quantitative single cell RNA profiling studies were published, looking at 8 genes across 

less than 20 cells86-88. Already, two experimental approaches tailored towards two biological 

applications were enacted, the basis of which persists in current scRNA-seq protocols: linear and 

non-linear amplification schemes. After cDNA synthesis, linear amplification uses T7 in vitro 

transcription to generate amplified RNA (aRNA), which then is converted back to cDNA for data 

generation89, 90. This process is more time consuming but introduces less bias into the final data, 

and was purposed towards quantifying the relative abundance of mRNAs in cells. Non-linear 

amplification uses a PCR primer to directly amplify cDNA91 which, while faster, can introduce 

artifacts into the data, absent the use of unique molecular identifiers, that account for PCR based 

artifacts. This approach was purposed towards determining which subunits of the AMPA receptor 

were expressed in a single cell, and for discovering a family of pheromone receptor genes92. The 

analysis of both these experiments was simple: the abundance of a transcript was directly 

proportional to the intensity of its corresponding band on an agarose gel or Southern Blot.  

 

The field then moved towards higher resolution experiments with the development of pipelines 

that allowed quantification of many transcripts within a single cell93. With the invention of laser 

capture microdissection (LCMD)94, 95, innovation of cell sorting instruments96, 97, development of 

microarrays98, improvement in the sensitivity of sequencers99, 100, and generation of reference 
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genomes and annotations for multiple species and splicing events101-103, more advanced 

strategies could be implemented and more information could be generated from single cell 

experiments. In 2003, the first single cell microarray was published104, followed in 2009 by the 

first full-transcriptome scRNA-seq paper105. From then on, single cell sequencing technology and 

methodology have been improved and expanded on106. Sequencing costs, the bottleneck for 

generating large amounts of data, have reduced dramatically. Currently, it is possible to 

sequence thousands of individual cells at once, detecting thousands of transcripts in each cell. 

scRNA-seq could not have been accomplished without foundations laid down by the brilliant 

experiments of early molecular biologists, the productive intersection of industry with academia, 

and impressive advances in the fields of molecular biology, biochemistry, surface chemistry, 

microfluidics, optics, and bioinformatics. 

 

Illumina Sequencing Platforms 

Due to their accuracy and speed, the most widely used instruments for sequencing libraries are 

produced by Illumina106. These include the benchtop MiSeq and NextSeq 500/550, which provide 

rapid turnaround of data (run times range from 11 hours for 75bp sequences to 29 hours for 

300bp sequences), and the larger production-scale sequencers including the HiSeq2500, 

HiSeq4000/X, and NovaSeq 6000 (which can take from 13 to 84 hours per run). Apart from 

accessibility of the instruments – production scale sequencers are often housed in cores, genome 

centers, or companies, while benchtop sequencers can also be available in research labs – two 

key user differences are the amount of input material required, and the amount of data generated. 

Smaller runs generate up to 400 million reads per run, while larger runs can generate up to 20 

billion. The number of reads sufficient for an experiment is highly dependent on the number of 

cells being analyzed, the quality of the library, and the desired number of genes detected. Users 

furthermore have the ability to specify if the run is single-end or paired-end – whether the library 

is sequenced from just the 3’ or both the 3’ and 5’ ends – and the length of the output sequences 

(75bp – 300bp).  Furthermore, the sequencing chemistry utilized on HiSeq4000/X and NovaSeq 
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6000 instruments utilize exAMP approaches, discussed below, which can result in index 

swapping which can obfuscate results107. 

 

Illumina incorporates flow cells, a solid-phase sequencing by synthesis platform, in all of its 

instruments. Adapter sequences flanking the cDNA library anneal to a dense lawn of 

complementary primers that are grafted onto the surface of the flow cell. The immobilized cDNA 

undergoes several rounds of PCR on the flow cell, a process called bridge amplification, until 

microscopic clusters of clonal cDNA are generated. These clusters are the substrates for a 

modified form of Sanger sequencing know as sequencing by synthesis, in which fluorescently 

labeled nucleotides are sequentially incorporated into the nascent strand of cDNA. The flow cell is 

imaged after each incorporation step. The coordinates of consistent and localized fluorescence 

intensity are registered by the software as clusters, and the fluorescent readout from clusters is 

converted nucleotide sequences (a process known as “base calling”). The output fastq file 

contains the sequence of all cDNA clusters registered on the flow cell along with the phred quality 

score (Q-score) for each base, which reflects the probability that a base call is accurate. 

 

Illumina uses two fabrication designs for flow cells and two approaches to color chemistry for 

sequencing, so technical considerations should be made in choosing the appropriate instrument 

for a sequencing run. The HiSeq 4000/X and NovaSeq 6000 use patterned flow cells, in which 

the P5 and P7 primers are grafted into nanowells in the flow cell instead of being uniformly 

distributed as a lawn. This, combined with the innovative exclusion amplification (ExAmp) bridge 

amplification used by these instruments, improves the workable surface area of a flow cell by 

increasing the density of useable clusters while preventing overclustering or mixed cluster 

generation from closely annealed cDNAs. Patterned flow cells and ExAmp significantly cut the 

cost for sequencing, with several drawbacks. First, sequencing runs on these instruments suffer 

from index swapping: in multiplexed samples, up to 6% of reads from one library can be assigned 

an incorrect index that came from a different library, effectively contaminating the data107. 

Specialized dual-index primers can be incorporated into the library to compensate for this107, 108. 
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Second, the recommended library size distribution for patterned flow cells is much tighter than for 

traditional flow cells (300bp-500bp, as opposed to up to 1500bp109), because ExAmp bridge 

amplification is restricted to nanowells. This limits the information accessible through protocols 

that rely on 3’ mRNA priming and amplification (discussed later). While all instruments 

preferentially cluster short cDNA fragments over long ones, the difference is especially 

pronounced in patterned flow cells. Primer dimers are a common by-product of library generation, 

and even a 5% carryover of these short fragments into the final library can result in 60% of the 

reads being overtaken by dimers sequences (unpublished data). Finally, duplication rates in 

patterned flow cells are higher than traditional ones, due to cross-seeding of cDNA into adjacent 

nanowells during ExAmp. While duplicated reads are not unique to patterned flow cells, and 

indeed are universally present in PCR-amplified libraries, they reduce the information content 

gathered from a sequencing run and can impact downstream differential expression analysis110. 

 

Low-diversity libraries, in particular scRNA-seq libraries that contain an oligo-dT stretch, form 

clusters that Illumina software has difficulty distinguishing. This largely stems from confusion in 

the built-in imaging and analysis platform, which attempts to identify clusters based on localized 

and synchronized fluorescence on the flow cell. When adjacent clusters continuously incorporate 

the same fluorescent base, and thereby emit in the same color, the software cannot de-phase 

them or differentiate individual clusters111. In the original MiSeq and HiSeq series of instruments, 

Illumina uses 4 color chemistry for sequencing. Each nucleotide is labeled with a unique 

fluorophore that emits in a different channel (T – green, C – red, A – blue, G – yellow). In order to 

decrease sequencing time and costs, the next generation of instruments (NextSeq and NovaSeq) 

rely on 2 color chemistry (T – green, C – red, A – red and green, G – dark). This further impacts 

the ability of second generation instruments to differentiate homogeneous clusters, as is reflected 

in decreased Q-scores112. Updates in Illumina software, third-party algorithms, and modified 

experimental designs (such as inclusion of the high diversity PhiX spike-in) all improve the 

performance of low diversity libraries. 
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Experimental Considerations of scRNA-Seq 

scRNA-seq experiments can be designed to answer diverse biological questions. Different 

approaches regularly obligate a trade-off between scale (number of cells profiled) and depth of 

coverage (number of genes detected per cell). For example, profiling the cellular composition of a 

tissue requires a large number of cells profiled at minimal depth, while monitoring cellular 

responses to stimuli requires fewer cells at a higher depth113. Optimally, the experimental design 

would allow for both large scale and high depth, however practically this is rarely possible114. 

Outlined below are technical considerations which are included in the design of scRNA-seq 

experiments. 

 

Preparation of single cells: “Garbage in, garbage out” 

Obtainability of single cells is a prerequisite to scRNA-seq. Most often, single cell isolation is 

accomplished by enzymatic digestion of tissue followed by a purification step (e.g. fluorescence 

activated cell sorting [FACS], density gradient centrifugation, or manual picking). Although often 

overlooked, this is a critical step that requires robust optimization. Key optimization points include: 

1) minimization of cellular stress (low incubation temperature, short dissociation time, and gentle 

trituration), 2) maintenance of the transcriptional integrity of cells (inclusion of actinomycin D or 

RNase inhibitors), 3) optimization of the dissociation protocol for specific tissues and cell types 

(digestion conditions based on extracellular matrix composition, cell size and shape, and density 

of cell-cell contacts), 4) validation that live single cells are being used as input for the experiment 

(doublet discrimination, debris removal, live/dead cell stain, and FACS targeting). For cells 

obtained through LCMD, or any tissue which has been stored, fixed, or frozen, a test of RNA 

quality should be performed before the scRNA-seq experiment as degraded RNA can have a 

wide impact on the quality and applicability of data obtained115. 

 

Single Nuclei RNA-Seq 

Individual nuclei sequencing (snRNA-seq) can replace whole cell sequencing in cases where 

healthy, intact cells are difficult to extract116-119. Specifically, nuclei isolations can be more robust 
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than cell isolations when working with frozen tissue (e.g. deteriorated cell membranes), highly 

myelinated tissue (e.g. spinal cord), or heterogeneous tissue containing delicate cell types (e.g. 

large adipocytes). In the central nervous system, snRNA-seq has been shown to be comparable 

to scRNA-seq in terms of transcriptional patterns of activation120 and congruent with gene 

expression121. Naturally, the number of genes detected in snRNA-seq is less than in scRNA-seq, 

with more reads coming from intronic regions of pre-mRNA121. However, snRNA-seq experiments 

can be optimized to detect on average 4500 genes per nuclei (unpublished data), rivaling the 

depth obtained through some protocols of scRNA-seq. Furthermore, because of the high capture 

efficiency of pre-mRNAs, snRNA-seq is a strong platform for calculating RNA velocity. By 

comparing spliced and unspliced mRNA transcripts, RNA velocity can resolve the static 

transcriptional identity of a cell with the transcriptional trajectory it is poised to follow.122 

 

Plate-based vs micro-isolation methods 

Broadly, scRNA-seq experiments can be categorized into two pipelines: 1) monodispersed cells 

are FACS sorted into 96 or 384 well plates, with cDNA synthesis performed individually in each 

well (SMART-Seq123, CEL-Seq124, 125, SCRB-Seq126, Div-Seq116, Split-Seq127), and 2) 

monodispersed cells are loaded into a microfluidics device which either deposits cells into 

microwells or oil droplets, with cDNA synthesis performed individually in a microisolated 

environment (Drop-Seq128, 129, Fluidigm C1130, 10x Genomics131). Traditionally, plate-based 

approaches generate libraries with higher depth (~8,000 genes detected per cell compared with 

~1000 using droplet methods), but are limited in the number of cells that can be processed 

simultaneously (96 or 384 compared with 100 - 100,000), and are more time consuming (several 

days compared to hours)114. Furthermore, commercial pipelines are sensitive to starting RNA 

content: they perform better with large cells that contain more RNA, and may struggle with small 

cells where RNA content is limited. snRNA-seq, for example, has not achieved high depth of 

coverage with droplet-based sequencing. Recently, a split-pooling method (Split-Seq127) has 

been established for generating libraries from over 100,000 individual cells in a plate-based 

format. This approach relies on paraformaldehyde fixation of cells to ensure that, instead of being 
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lysed, the permeablized cell membrane remains intact enough for cells to undergo three 

consecutive rounds of combinatorial indexing before library generation. The ultimate goal of all 

these approaches is to minimize cost per cell while maintaining library quality. Ultimately, the 

choice towards a particular method depends on the quantity of cells available, RNA content per 

cell, access to instruments, and depth of coverage required. 

 

First strand cDNA synthesis: Reverse Transcription primers 

Each cell contains a combination of information poor RNA (rRNA accounting for ~80% of total 

RNA, and tRNA for ~15%)132 and information rich RNA (mRNA, miRNA, lncRNA, etc, combining 

to ~5% of total RNA). It is considered that an average mammalian cell contains 10pg of total 

RNA, and 0.1pg of mRNA133. While in bulk RNA-seq, rRNA is a useful measure of RNA quality 

(RIN) and is often a necessary step in determining how degraded the sample RNA is, for scRNA-

seq it can compromise the information content in a library. Therefore, a rRNA depletion step or a 

mRNA enrichment step needs to be performed. For full transcriptome library preparation, mRNA 

enrichment is usually employed. To this end, the reverse transcription (RT) primer contains a 30 

base pair (bp) 3’ oligo-dT sequence which anneals onto the 3’ poly-A tail of mRNA, but does not 

interact with rRNA or tRNA, effectively enriching for mRNAs via negative selection. In order to 

promote the primer binding at the start of the poly-A tail closest to the coding region, a V base (A, 

C, or G) is often included as the last base of the RT primer sequence. Upstream of this, the RT 

primer also contains a combination of: a unique molecular identifier (UMI)134, a cell specific 

barcode (CSBC), Illumina adapter sequence, T7 promoter sequence, and a universal PCR primer 

sequence. The exact combination of these is determined by the protocol being employed. 

 

UMI: A random 10bp sequence in the RT primer (NNNNNNNNNN). It allows a downstream 

analysis to quantify the exact number of original mRNA molecules that are represented in the 

amplified cDNA library, as each first strand cDNA molecule will incorporate exactly one UMI 

during the RT reaction. Given the large number of possible bp combinations (4^10, or 1,048,576) 

in an UMI, the chances that two mRNA molecules from the same gene will be tagged by an 
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identical UMI is minimal. Some protocols use shorter UMIs, arguing that even a 8bp UMI provides 

sufficient diversity for no two mRNA molecules from the same gene to be identically tagged. 

 

CSBC: A sequence that tags all first strand cDNAs from the same cell with the same sequence. 

This allows cDNA from many cells to be multiplexed and processed together in downstream 

reactions, then assigned back to their cell of origin during data analysis. In plate-based methods, 

CSBCs are a known 6bp or 8bp sequence in the RT primer. Experimentally, each well of the plate 

receives a RT primer containing a distinct CSBC (for example, when working in a 96 well format, 

there will be 96 RT primers – one per well). The number of distinct RT primers determines the 

number of cells that can be pooled together in downstream reactions. In microfluidics-based 

methods, this is an undefined 12bp sequence in the RT primer; for each cell, it can be one of any 

4^12, or 16,777,216, sequences. Probabilistically, this allows for hundreds of thousands of cells 

to be multiplexed together without CSBC duplication. 

 

Illumina Adapter Sequence: For sequencing on an Illumina instrument, adapters complementary 

to those on the Illumina flow cell need to be present in the cDNA library. The 5’ adapter is 

introduced to cDNA via the RT primer.  

 

T7 Promoter: For those protocols that reply on linear T7 RNA polymerase amplification (CEL-Seq 

and CEL-Seq2), a minimal T7 binding sequence is introduced into the cDNA at the RT step. 

 

Universal PCR Primer Sequence: For those protocols that reply on PCR amplification (SMART-

Seq, Div-Seq, SCRB-Seq), a common PCR template sequence is introduced at both the 5’ and 3’ 

end of cDNA libraries. A single PCR primer allows amplification of cDNA with reduced primer 

dimer formation, improved sensitivity, and minimized spurious or nonspecific product formation135. 

In some protocols, the Illumina adapter sequence is used as the universal PCR template. The 5’ 

PCR template is introduced into the cDNA via inclusion in the RT primer. The 3’ PCR primer is 

introduced via a “strand switch” step136-138. Once the RT enzyme reaches the end of the RNA, its 
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inherent terminal nucleotidyl transferase activity nonspecifically extends the first strand cDNA by 

several nucleotides. Under proper conditions, this can be predominantly restricted to 3 

cytosines139. A second primer, called the template switch oligo (TSO), contains 3 guanosines at 

its 3’ end that allow it to anneal to the extended cDNA. Once the TSO is annealed, the first strand 

cDNA synthesis reaction can continue uninterrupted until the end of the TSO primer, thereby 

incorporating the reverse complement of the TSO template sequence into the 3’ end. 

  

cDNA amplification 

Once barcoded cDNAs are generated, they can be pooled together and downstream amplification 

and library generation reactions can be considered “low input” as opposed to “single cell” (with 

the exception of Div-seq, in which cells are pooled post-tagmentation). This is an important 

distinction, as many enzymes are input-dependent and their efficacy is directly correlated with the 

concentration of starting material140-142. Only cells that have distinct CSBCs can be pooled, as 

redundant barcodes lead to convolution of downstream data analysis. Amplification is an 

important step in library preparations because sequencing instruments require a minimal library 

input concentration. The recommended amounts can be as low as 20nmol for one flow cell of an 

Illumina NextSeq 500/550 instrument, or as high as 930nmol for an S4 flow cell of an Illumina 

NovaSeq 6000 instrument (from Illumina Sequencing System Guides). In practice, this means 

that: 

• for a pool of 100 cells that originally each contain 0.1pg of mRNA 

• with 100% efficiency in conversion to double stranded cDNA 

• counting 1 first strand cDNA molecule for 1 molecule of mRNA 

• considering the average length of cDNA in a sequencing library is 500bp 

the pre-amplified pooled cDNA – at 0.03236 fmol – would need to be amplified almost 1 billion 

times before it reaches the minimum recommended concentration for sequencing. PCR 

amplification requires 30 cycles to achieve this, giving the reactions plenty of opportunity to 

introduce bias into the final library (such as base pair mismatches, jackpot artifacts, and skewed 
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library representation)143-145. T7 amplification and split-pool qPCR have been implemented for 

improving the amplification step.  

 

T7 Amplification: In place of ~10 cycles of PCR, commercially available T7 amplification kits are 

available to linearly amplify cDNA up to 1000 fold (NEB, Ambion). Because the T7 RNA 

polymerase produces aRNA (amplified, antisense RNA), these protocols require several 

additional steps which can increase the time to generate libraries by a full day: second strand 

synthesis, T7 DNA polymerase incubation, aRNA cleanup and fragmentation, ligation of a 3’ 

adapter, and finally re-conversion to cDNA. Libraries generated with T7 amplification have been 

shown to have increased accuracy compared to PCR-based amplification protocols146. 

 

Split-pool qPCR: PCR reactions accumulate artifacts such as nonspecific template priming and 

chimera formation when cycled past the log-linear phase147. Given the amplification requirements 

for scRNA-seq library preps, large numbers of PCR cycles exceeding log-linear growth are often 

necessary. In order to avoid artifact formation, cDNA from a single library can be split between 

multiple PCR reactions and (with the addition of a dye such as EvaGreen) monitored on a real 

time thermocycler to ensure the reactions stay in logarithmic growth. Before the reactions start to 

plateau, they are pooled and redistributed as input to new PCR reactions. This can be repeated 

until the necessary library concentration is reached. 

 

Library generation: fragmentation and indexing 

Full length cDNAs (at ~2000bp) are too long to be sequenced on Illumina instruments. A 

fragmentation step, which can be in the form of a chemical or enzymatic reaction, is required for 

library generation. Proper fragmentation results in a library size distribution centered at ~500bp. 

At this stage, the 3’ P7 Illumina adapter is inserted at the fragmentation site. The 5’ P5 adapter 

from RT and the 3’ P7 adapter are used for further rounds of library amplification via PCR. Both 

chemical and enzymatic fragmentation conditions can introduce unique biases into the libraries. 
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Chemical Fragmentation and P7 Adapter Insertion by Ligation: Chemical fragmentation, 

commonly achieved by incubation of RNA with divalent metal cations such as magnesium or zinc, 

is commonly employed in aRNA-based protocols148. Chemical fragmentation results in a largely 

random distribution of break points, which then serve as a blunt end for P7 adapter ligation. While 

the break points are random, RNA ligases are not fully efficient and introduce biases that 

propagate into the library149, 150. The ligated P7 adapter serves as the template for an RT primer, 

which converts fragmented aRNA into a cDNA library. 

 

Enzymatic Fragmentation and P7 Adapter Insertion by Tagmentation: While a modified form of 

chemical fragmentation has been employed on cDNA151, the most popular approach for 

fragmenting cDNA is tagmentation142. Tagmentation relies on a hyperactive variant of the Tn5 

enzyme to simultaneously cleave DNA and insert an oligonucleotide containing the P7 sequence 

onto the broken ends152. Both commercial products (Illumina’s Nextera and Nextera XT kits) and 

homemade recipes for transposome generation142 are available. Tn5 is biased towards its 

preferred substrate, and can introduce insert/deletion errors in the cDNA; however, newly 

engineered Tn5 variants strive to overcome these problems153, 154. 

 

Indexing: The P5 and P7 adapter sequences on cDNA serve as a template for i5 and i7 Illumina 

indexes, which are introduced in primers during the final rounds of PCR amplification. Just like 

cells with unique CSBCs can be pooled, so can libraries with unique i5 and i7 indexes. 

Multiplexing libraries has the added benefit that it minimizes batch effects – technical variations 

during the sequencing run affect all pooled libraries evenly155. 

 

Ligation-Based Library Generation Methods 

For small RNA library generation (miRNA, etc) in which templates do not have a poly-A tail, an 

alternative ligation-based approach can be used. This protocol relies on obstructing accessible 

rRNA sequences with a rRNA-specific blocking primer, followed by adapter ligation onto short 

RNA sequences156. Ligation is also the key component of first-strand cDNA generation in Split-
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Seq, which has three sets of CSBC ligation primers. While most protocols rely on a cell 

membrane lysing and exposing RNA contents to the reaction buffer, Split-seq requires the cells to 

be fixed through paraformaldehyde fixation, with the cell membrane permeabilized but intact, 

effectively forming its own microisolated compartment with RNA immobilized inside. The first set 

of CSBCs, in this case better referred to as “well specific barcodes” (WSBCs), is introduced by 

the RT primer, similar to the aforementioned techniques except that thousands of single cells are 

present in each well and thus receive the same WSBC. Cells in all wells are then all pooled 

together, diluted, and randomly redistributed to new wells. Each cell still has an intact membrane 

and the cDNA generated in the previous step is hybridized to fixed RNA, preventing barcode 

swapping between cells. The second set of WSBCs is distributed and ligated immediately 

upstream of the first WSBC barcode. The cells are again pooled and redistributed into new wells, 

and the third WSBC is ligated immediately upstream of the second WSBC. The final product – 

cells in which the 5’ ends of cDNA have a consecutive sequence of 3 WSBCs – are then pooled 

and processed for library generation. Probabilistically, the chance of cDNA from two cells sharing 

the same combination of WSBCs is minimal. 

 

Gene body coverage 

Gene body coverage can be defined by the portion of a mRNA sequence that is recovered in a 

library. This is influenced by two factors: the size distribution of cDNA in a library, and a bias in 

the library generation. Size distribution is determined by the parameters of the sequencing 

instrument. For example, the optimal cDNA length for an Illumina sequencer is 400-600bp; this 

ensures efficient binding to a flow cell and bridge amplification. Most mRNAs are longer than this, 

and therefore must be sheared during library preparation. Given that the multiple sequences 

introduced via the RT primer are necessary for sequencing and data analysis, cDNA libraries 

generated via oligo-dT priming favor sequencing of 3’ (poly-A) ends of mRNA, leading to a 3’ bias 

in the gene body coverage. Information contained downstream of the shear site of cDNA is lost, 

because they do not contain the necessary information introduced by RT primers. Furthermore, 

because oligo-dT primers constitute ~40bp of non-biological sequence, on a paired-end 
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sequencing run these reads are often not mapped and instead used only for demultiplexing and 

analysis purposes. A 3’ bias also affects mapping of splice sites, which are often located deeper 

into the transcript, and impinges on accurate detection of transcripts that have a conserved 3’ 

end, such as protocadherins, because reads that have multiple alignments are discarded by 

mapping algorithms. 

 

In order to circumvent this, libraries can be generated in a way that incorporates primer 

sequences into the shear sites, either through 1) CSBC-containing primer insertion via 

transposition (Div-seq), or 2) random hexamer, as opposed to oligo-dT, RT priming (Split-seq). 

Separate UMIs are not used with random primers, since absolute quantification of transcript 

number is impossible when an arbitrary number RT primers bind onto a single mRNA molecule. 

Random primers can also bind to rRNA molecules, and therefore a rRNA depletion step is often 

used to ensure libraries contain information-rich sequences. Commercially available methods for 

this include incubation with biotinylated primers antisense to rRNA sequences followed by a 

biotin-streptavidin pulldown (ThermoFisher Scientific’s Ribominus, and Illumina’s Ribozero), or 

addition of specific nucleases to digest away rRNA molecules157.  

 

Depth of Coverage 

The depth of coverage in single cell libraries refers to the number of genes detected per cell. It is 

a function of library preparation (how many genes are present in the cDNA library) and 

sequencing (how many of those gene sequences are recovered). Increasing the amount of 

sequencing done on a cDNA library will improve recovery of genes until saturation is reached. At 

that point, effectively all the unique transcripts have been counted and further sequencing will 

only introduce duplicate reads that had been generated during library amplification. Saturation 

can be visualized by a saturation curve, which is generated by plotting the numbers of reads 

sequenced against the number of genes detected for each cell. Libraries sequenced to saturation 

provide the most rich biological information and introduce the least amount of artificial noise to 

downstream analysis.  
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The optimal amount of sequencing for a library is variable. High quality libraries (those consisting 

of thousands of genes) often require more sequencing to reach saturation than low quality 

libraries (those consisting of hundreds of genes). Likewise, in order to achieve the same number 

of reads per cell, libraries generated from thousands of multiplexed cells require more sequencing 

than libraries generated from hundreds of multiplexed cells. Traditionally, this has resulted in a 

tradeoff between sequencing depth and number of cells sequenced. Considering this balance, 

there are two schools of thought on how best to achieve biological significance through scRNA-

seq: High coverage sequencing of fewer cells vs low coverage sequencing of more cells. Both 

have their merits, and the decision to proceed with one approach or the other largely depends on 

the biology in question. Generally, low depth of coverage is sufficient for characterizing cellular 

diversity in a population where large numbers of cells needed and cell markers are abundantly 

expressed, while high depth of coverage is required for profiling heterogeneity in a subpopulation 

of similar cells or catching transcriptional changes in genes that have low expression. 

 

Technical Considerations for scRNA-Seq 

Over 20 experimental approaches to scRNA-seq are currently available. Naturally, all of them rely 

on maintaining a clean environment, such as a dedicated hood, to provide protection from 

exogenous RNase and DNAse contamination. Minimizing handling time and working at low 

temperature are also both critical to generating high quality data. Given these preconditions, there 

are a number of technical adjustments that improve on the performance of published protocols. 

The two most common of these are reaction conditions and primer modifications. 

 

Reaction conditions 

Enzyme choice, specifically for RT, ligation, IVT, and PCR reactions, varies between protocols. 

Hundreds of enzymes are commercially available, but only a handful are used for single cell 

purposes. The selection criteria for these enzymes include fidelity, efficiency, thermostability, 

processivity, speed, and RNase and template switch activity. As new and improved enzymes are 
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developed, they are employed in successive versions of existing protocols. Consistency is key 

after optimizing a protocol for an enzyme of choice, because different enzymes can introduce 

distinctive biases into data.  

 

Substrate concentration is a fundamental factor that affects reaction efficiency. Crowding agents, 

such as PEG, can increase the effective substrate concentration, and have been implemented in 

some scRNA-seq protocols. Equally effective, and more cost-efficient, is decreasing the reaction 

volumes. Smaller reaction volumes can only be applied when RNA or cDNA is the limiting 

reagent, and evaporation volume should be accounted for thoroughly as it can represent a large 

proportion of the reaction volume. There are a number of compounds that have been shown to 

improve PCR efficiency, especially for GC rich regions, by decreasing the melting temperature of 

DNA. Among them are DMSO and betaine, the first of which is commonly included in GR-rich 

PCR reaction buffers, and the second of which has been used as an additive in some scRNA-seq 

protocols. Unexpectedly, however, betaine has been shown to inhibit PCR efficiency in some 

cases and should be used with care158. Likewise, the concentration of MgCl2 can be adjusted in 

PCR reactions to improve efficiency, but high concentrations will act as an antagonist. 

 

Loss of transcripts after successful cDNA synthesis also decreases depth of coverage, and 

largely occurs during purification steps which rely on a minimum input concentration to be 

effective. Two purification strategies – columns and SPRI beads – are most commonly used in 

scRNA-seq experiments. RNA and DNA binding columns are especially sensitive to high volumes 

and low concentrations, and even low-input grade commercial columns will lose transcripts in the 

flowthrough. Therefore, SPRI beads have become the routine purification method for RNA and 

DNA. The majority of transcript loss from SPRI bead purification occurs when they are used for 

size selection, as lower ratios of SPRI buffer to reaction volume result in higher molecular weight 

capture cutoffs. This property allows them to be used for primer dimer removal, but also removes 

lower molecular weight library. SPRI beads optimized for RNA or DNA cleanup are commercially 

available, but can also be made in house for a fraction of the cost.  
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Primer Modifications 

Apart from sequencing, the most expensive part of scRNA-seq is the initial primer cost. All RT 

primers require HPLC purification to ensure they are RNase free, and many primers incorporate 

modifications or non-standard bases such as iso-bases and locked nucleic acids (LNAs). 

Furthermore, each protocol uses a unique combination of primers that are not interchangeable. 

Primers are designed to be as short as possible because, especially for the TSO, length is 

inversely proportional to capture efficiency159. Primer modifications can be broken into two 

groups: those that enhance efficiency, and those that minimize the potential of primer 

concatamerization. 

 

Two common modifications are used to enhance efficiency. First is inclusion of LNA nucleotides 

in the TSO primer. LNAs are synthetic nucleotides with stronger hybridization properties than 

traditional bases160. Oligonucleotides containing LNA bases therefore have a significantly higher 

melting temperature, and LNA guanines (+G) have been included in the 3’ end of TSOs to allow 

the short (rGrG+G) sequence to efficiently bind to the cytosines (dCTPs) introduced to first strand 

cDNA via nucleotidyl transferase. Alternatively, all three 3’ guanine bases can be ribonucleotides 

(rGrGrG), which also form tight bonds with dCTPs. The second modification is inclusion of 

phosphorothioate bonds between the five 3’ bases of the PCR primer. These bonds make the 

oligonucleotide resistant to exonuclease degradation. An Exo1 incubation is commonly included 

post-RT to degrade free primers, and carryover of Exo1 would degrade any subsequently added 

PCR primer lacking this modification. 

 

Exo1 treatment is an effective way to degrade free single stranded primers, thereby preventing 

downstream dimerization. Primer dimers outcompete cDNA in PCR reactions, making library 

amplification difficult. Exo1 treatment does not, however, prevent primer concatamerization in 

which oligonucleotides serially prime off each other to form a repeating double stranded 

sequence. Primer concatamers appear as a hedgehog pattern on a bioanalyzer trace and, due to 
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both their wide size distribution and preferential amplification, are a source of library 

contamination that is impossible to remove. Two primer modification strategies are commonly 

used to minimize primer concatamerization. First is blocking the 5’ end of a primer through 

attachment of a protein such as biotin, which physically impedes interactions with another 

oligonucleotide. Second is incorporation of isoguanine (iso-dG) and isocytosine (iso-dC) bases at 

the 3’ end. These bases can only form hydrogen bonds with one another, and therefore cannot 

serve as a template for extension. 

 

Computational Considerations of scRNA-Seq 

During a sequencing run, the data is in bcl format: a binary file which contains raw data from the 

detector’s measurement of fluorescence. This is converted for end users into FASTQ format, a 

text-based file which contains the sequence information for each read along with the “Q score”, or 

quality score, for each base. The FASTQ file then needs to be demultiplexed by indexes and 

CSBCs, aligned to the genome, assigned to a transcript, and counted. This process can be very 

computationally expensive and time consuming, and a large number of algorithms are being 

developed and improved to streamline the experience. 

 

Q score and read trimming 

The Q score (or Phred quality score) reflects the probability with which a base is called correctly 

by the sequencer. A Q score of 30 represents a 1/1000 chance that the base was incorrectly 

called, aka 99.9% accuracy. This is the standard cutoff for processing reads. Those reads that 

contain bases with Q <30 can be discarded from analysis. The quality of reads tends to drop over 

time, and bases deeper into read 2 have a lower Q score than the starting bases or bases in read 

1161. Therefore, long read 2 sequences (>50bp) are often trimmed with a Q score threshold 

before analysis to retain the most accurate information. 

 

Demultiplexing 
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Illumina automatically separates reads based on Illumina indexes, however CSBCs within each 

index need to be demultiplexed by the user. For paired end runs, both the reads (only one of 

which contains the CSBC) need to be demultiplexed. There are a number of scripts available on 

GitHub to do this162, 163. When CSBCs have a known sequence, two pieces of information should 

be in place for the algorithms: the number of expected barcodes or the sequences of the 

barcodes, and the hamming distance between barcodes. The hamming distance is the number of 

mismatches between barcodes. Practically, setting a hamming distance of 2 allows a script to 

assign a read to a barcode even if it has 2 mismatches to the known barcode. This is only 

acceptable when the hamming distance between the barcodes is 4 or more, as the script could 

otherwise erroneously assign a read to the wrong barcode. When CSBCs have an unknown 

sequence, other programs can be employed for demultiplexing (FastqMultx, Picard Tools, FASTX 

Toolkit, UMI tools). Most of these programs are multipurpose and also include scripts for read 

trimming, gene counting, calculating gene body distribution, and other basic analyses. 

 

Sequence Alignment 

Aligning read sequences to a reference genome or transcriptome, aka data mapping, requires a 

complex algorithm that takes into account mismatches, splice junctions, intronic sequences, and 

read directionality. Traditional algorithms such as Bowtie164 and BWA were based on Burrows-

Wheeler transformation due to its computational efficiency165. With increased memory in 

computers, newer approaches such as STAR (Spliced Transcripts Alignment to a Reference)166 

can accelerate the time it takes to map data from hours to minutes. STAR sequentially searches 

through an uncompressed suffix array for maximally mapping sequences, and then clusters and 

stitches them together.  Alternatively, pseudo-alignment methods such as Kallisto infer gene 

identity by checking the similarity of short, known sequences with transcripts and directly 

outputting a counts file167. Pseudo-alignment algorithms have the benefit of needing little 

computational space, and can be run on laptop computers as opposed to multi-core workstations. 

There are two commonly used reference genome annotations: Ensembl168 and gene symbol. In 

Ensembl, each transcript variant (eg alternatively spliced variant) is given a unique transcript ID 
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and a common gene ID. With gene symbol, all the transcript variants for a single gene are 

assigned to the same gene symbol. The appropriate reference annotation should be determined 

prior to mapping, as separate alignments for splicing information can either convolute or be 

necessary for data analysis (e.g. differential expression), depending on the model. Reads that do 

not align to a reference genome are usually due to primer concatamerization. Thus, the percent 

alignment is a strong indicator of how well the experiment was designed and executed. A low 

percent alignment (<70%) indicates that there is room for optimization in the experiment. The raw 

number of aligned reads per CSBC is also a computational verification that single cells were used 

as input. An outlier population of CSBCs that map to an excessive number of reads can indicate 

that doublets were processed in the experiment.  

 

Gene Counting  

Once sequences have been mapped, the number of reads that aligned to each gene can be 

counted and a spreadsheet can be generated with gene expression information. This 

spreadsheet containing raw gene counts for each cell is called a counts matrix, and is the input 

for downstream data analysis. The absolute number of mRNA molecules present and processed 

at the RT step can be approximated by reducing the counts matrix by UMIs. UMI correction is 

useful in minimizing jackpot artifacts, in which by random chance a transcript is amplified over 

and over during PCR162. Commonly, the number of genes detected per cell is determined at this 

step. This number can be inflated in two ways, first by considering Ensembl transcript variants as 

separate genes, and second by considering UMIs detected instead of genes detected. A 

saturation curve can also be generated at this step, and is useful for determining whether or not 

additional sequencing runs would lead to greater biological insight (in the form of more genes 

detected per cell). Transcript drop out, or false negative expression, is the most significant source 

of noise in single cell experiments. It is especially prevalent in low coverage data sets, and 

obscures meaningful data that could be accessed with higher coverage169. The only definite way 

of minimizing drop out effects is by increasing the number of genes detected per cell, either by 

experimental design or sequencing strategy. 
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Filtering and Normalization 

Gene counts can be used raw, but aside from UMI correction there are a number of normalization 

techniques that should be considered for accurate analysis. Transcripts per million (TPM) 

accounts for the total number of reads detected in a cell, and normalizes expression values 

based on the proportional representation of each transcript in each cell. TPM can artificially inflate 

the calculated expression of genes in cells that have few genes detected overall, so a filtering 

step should be implemented to discard outlier cells with few genes detected. Reads per kilobase 

per million mapped reads (RPKM) is similar to TPM, but also takes into account the length of the 

transcript. RPKM is useful for normalizing reads that come from multiple sites on a single 

transcript, such as with random hexamer priming or full cDNA tagmentation, and should only be 

utilized with experimental protocols that do not rely on digital 3’ counting. ERCC spike-in 

normalization calculates the relative expression of detected genes to a series of known RNA 

spike-ins for each cell. ERCC normalization accounts for variability in the efficiency of RT 

reactions for each cell, and relies on the measured concentration of ERCCs falling along a linear 

curve to calculate the expression level of genes. Finally, downsampling is used when there is a 

disparity in the number of reads mapped between cells. Downsampling computationally imitates 

lower-depth sequencing conditions and results in a user-determined number of reads mapped per 

cell. It can both help normalize gene expression and mitigate the effects of dropout by equalizing 

dropout effects between cells. 

 Traditional normalization methods that rely on housekeeping genes (such as actin or 

GAPDH) are not feasible for scRNA-seq data. At the single cell level, mRNA synthesis occurs in 

transcriptional bursts, which result in huge stochastic variability of the number of mRNA 

molecules for any given transcriptional locus present between cells70. However, housekeeping 

genes do play a role in scRNA-seq analysis. Lack of expression of a set of housekeeping genes, 

including cell type specific genes that are known to be abundantly present (e.g. Malat1 for 

neurons), is useful for filtering out reads that come from non-cellular origins, such as processes or 

other debris. Furthermore, the transcriptional profiles of cells that were damaged during 
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dissociation are dominated by the expression of stress markers such as Il1a, and should also be 

filtered out to avoid confounding downstream data analysis. 

 

scRNA-Seq Data Analysis 

While the analyses associated with scRNA-seq and bulk RNA-seq experiments share similarities, 

protocols cannot be reused between the two. Similarly, computational approaches designed for 

bulk RNA-seq data analysis cannot be applied to scRNA-seq datasets because single cell 

transcriptional profiles are noisy, sparse, and contain more sequencing artifacts than bulk data. In 

order to find biological information in scRNA-seq data, over a hundred algorithms have been 

developed to separate signal from noise and dropout, identify expression patterns across 

samples, and delineate transcriptional pathway activation. Many of these approaches are 

repurposed from pre-existing algorithms for mathematical models for non-biological data. Broadly, 

statistical analysis of scRNA-seq datasets depends on two factors: similarity matrix generation 

and dimensional reduction. Similarity matrixes can be built off correlation or distance metrics. 

Dimensional reduction can be a linear or non-linear function, and is applied to project high 

dimensional data onto a visualizable two dimensional graph. This visual representation takes the 

form of either cell clustering or cell ordering along a trajectory. 

 

Similarity Matrixes 

A scRNA-seq dataset is a large matrix, with the dimensions being number of cells profiled x 

number of genes detected. In high dimensional space (with each gene representing its own axis), 

a cell can be considered a point defined by the coordinates of its gene expression. The purpose 

of a similarity matrix is to determine how closely cells are related to one another in the high 

dimensional space. This can be accomplished through distance metrics (eg, Euclidean distance), 

which calculates cell-cell similarity based on the number of transcripts counted for each gene, or 

through correlation metrics (eg, Pearson’s correlation), which considers the relative expression of 

each gene. Given the logarithmic amplification schemes (PCR) used for generating scRNA-seq 

data and the non-linear relationships between transcriptional expression an biological function, 
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correlation metrics have proven more reliable than distance metrics for generating similarity 

matrixes170. 

 

Pearson’s correlation is currently the most common non-linear metric employed by scRNA-seq 

algorithms and works well on heterogeneous samples such as those generated for cell atlas 

projects, which aim to identify discrete populations of cell types. Other approaches have been 

implemented for projects that have a more homologous starting population. Density and centrality 

metrics (eg, L-infinity171, 172) and mutual information (eg, Jaccard173) have revealed important 

biological information from highly similar cellular populations. Mutual information is especially 

useful for parsing information from a relatively homogenous population of cells, such as 

transcriptional alterations occurring in a single cell type. 

 

Dimensional Reduction 

Dimensional reduction algorithms determine a subset of genes that account for the greatest 

amount of variance in the overall dataset, and use these genes to project the high dimensional 

point cloud data onto a two-dimensional graphic representation. The goal is to retain as much 

information about the full dataset as possible while considering as few variables as possible. 

Principal Component Analysis174 (PCA) is the most commonly used linear dimensional reduction 

algorithm. In PCA, highly expressed and variable genes are binned into principle component (PC) 

groups that explain variation along a single axis. The first PC often dominates the analysis, and 

may contain genes that are not biologically relevant to the study. Cell cycle genes and stress 

markers arising from poor dissociations are examples of this175. Such genes can be excluded by 

pre-filtering the data, or excluding the first PC from downstream analysis. The statistically 

significant PCs, those that should be included in downstream analysis, can be determined 

through a jack-straw plot or an elbow plot (REF). Both of these charts show the extent to which 

each PC accounts for variability in the data. PCA itself is not a visualization tool, but rather its 

output can be used as input for visualization algorithms. Multidimensional Scaling176 (MDS) is a 
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non-linear dimensional reduction tool similar to PCA, except its focus is to retain similarities in the 

data while PCA aims to retain variability. 

 

T-distributed Stochastic Neighbor Embedding (t-SNE) is another commonly used non-linear 

machine learning approach for dimensional reduction and data clustering177. t-SNE performs 

pairwise comparisons of cells in high dimensional space and uses different transformations on 

subsets of cells to accurately project their relationships onto two dimensions. It relies on a user 

defined value, perplexity, to identify how many neighbors a cell has, and from there to define 

clusters. Because t-SNE requires user input, the output representations can be misleading; 

however with appropriate care, t-SNE is a valuable algorithm for scRNA-seq analysis.  In 

essence, t-SNE generates cell groupings in a dimensionally reduced representation and 

calculates the error between this grouping and that found within the high dimensional space.  

Groupings are iteratively adjusted in a directed manner to minimize this error, known as the 

Kullback Leibler divergence. 

 Supervised dimensional reduction is also possible when the data contain known and 

identifiable elements. Linear Discriminant Analysis (LDA), closely related to PCA, builds models 

on explicitly defined data, and has been used as both a filtering algorithm and a tool to merge cell 

clusters from concatenated datasets178, 179. Alternately, dimensional reduction algorithms can be 

confined to consider a list of pre-defined genes as input. The results of artificially restricted 

analyses are always biased and suffer from loss of information, but may be useful in answering 

targeted questions.  

 

Two Dimensional Representations: Visualization and Analysis 

Once dimensional reduction has been executed, data can be plotted, visualized, and analyzed. 

The two most common visualization techniques are clustering and ordering. Clustering can be 

done either through scatterplots, where each cell is represented by a point on a graph, or through 

heatmaps, where each cell defines a row or column. The x- and y- axes of scatterplots are 

effectively arbitrary units and do not serve any measurement purpose. Instead, they provide a 
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reference point for observing the location and organization of cells on the graph, which reflect the 

relationships between them. The physical distance between clusters on a scatterplot also does 

not have intrinsic meaning, but rather is useful to clearly delineate clusters. In heatmaps, cells are 

hierarchically clustered based on transcriptional profiles such that transcriptionally similar cells 

are adjacent to one another. The heatmap may be a correlation matrix, in which case the rows 

and columns are symmetrically organized cells and the colors represent the global correlation 

between pairs of cells. A heatmap is also useful to show the expression of multiple genes in the 

dataset simultaneously. In this case, the heatmap color indicates the expression level of a gene 

(organized in rows) for each cell (organized in columns). 

 Differential expression analysis between clusters allows identification of marker genes for 

each cluster, thereby revealing the identity of cells in the cluster128, 180. It also allows the 

determination of gene coexpression between clusters. This approach is well suited for studies 

that aim to classify cell types in a heterogeneous population. However, projects that aim to study 

transcriptional transitions, for example during development or disease progression, face two 

innate setbacks in clustering algorithms: 1) they break some transcriptional relationships in favor 

of others, and 2) they struggle with inherent continuity within data. Cell ordering algorithms have 

been developed to overcome this181, 182. Instead of breaking cells into discrete clusters defined by 

marker genes, ordering algorithms search for continuous and overlapping patterns of expression, 

calculating a backbone that traces the patterns, and aligns cells along this path to determine a 

transcriptional trajectory. Cell ordering algorithms can struggle in building the backbone when it 

involves a bifurcation or loop, and specialized algorithms have been developed to trace 

processes that are known to split into two or more populations183-185. However, these algorithms 

can force the data into bifurcations that may not be biologically accurate. Topological data 

analysis (TDA186) is a branch of applied mathematics that creates two-dimensional 

representations of high dimensional data in a way that maintains not only pairwise relationships, 

but also the overall structure of the data. Uniquely, TDA applied to scRNA-seq datasets 

(scTDA74) is able to recapitulate the shape and trajectories of biological processes without any 

pre-defined assumptions or inputs. 
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Alternative representations of single cell data may be generated using k-Nearest Neighbor 

Graphs (k-NNG) and Force Directed Graphs.  k-NNGs constitute a supervised machine learning 

algorithm used for both classification and regression.  Here a pre-specified set of K groups are 

assumed.  In the instance of single cell sequencing data, k-NNGs are utilized to classify individual 

cells into similar groups.  The key assumption underlying k-NNGs is that highly similar cells with 

reside near one another in a low dimensional representation.  Proximity is therefore related to 

similarity.  In the k-NN algorithm, data is loaded, then K is initialized to specify a chosen number 

of neighbors.  Subsequently, for each example cell within the sample, the distance between the 

query cell and the example cell drawn from the data.  An ordered collection is created, consisting 

of the distance and index of the query and currently evaluated example from the data.  The 

ordered collection is sorted by distance and index.  The first K entries from the sorted collection 

are then taken and the labels of individual cells are recorded.  k-NNGs are particularly suited to 

noisy and large datasets, but inherent disadvantages arise owing to the need to specify k and the 

computational cost associated with classification.  Force directed graphs provide a means of 

generating k-NNGs in a format that is considered aesthetically pleasing and accounts for 

topological features present within continuous single cell data.  Such graphs enable the 

recapitulation of deterministic long distance relationships between cells that are often obscured in 

t-SNE plots.  However, force directed layouts are computationally intensive (often limited to 

datasets of 10,000 cells), diminishing their scalable utility for large scale studies. 

 

Conclusions 

 

Single cell RNA-sequencing is an exciting direction in science that has opened the doors to many 

important discoveries. As the field evolves, new experimental and computational approaches will 

make it possible to answer more outstanding questions in biology. Progress in being made on 

several frontiers, pushing the limits of what is currently technically possible. Spatially resolved 

sequencing, which allows simultaneous measurements of cellular orientation in tissue and 
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transcriptional profiling, is underway187, 188. Spatially resolved sequencing can provide direct 

information on intercellular interactions as well as intracellular changes. Combined scRNA-seq 

and single cell chromatin accessibility, or computational algorithms that link the two modalities, 

allows for interrogation of cell-specific mechanistic regulation189, 190.   

  



	 37	

Chapter 2: Applied Topology Reveals Developmental Progression of mESCs With Single-

Cell Resolution 

Introduction 

The differentiation of motor neurons from neuroepithelial cells in the vertebrate embryonic spinal 

cord provides a well characterized example of cellular lineage commitment and terminal cellular 

differentiation2.  Neural precursor cells differentiate in response to spatiotemporally regulated 

morphogen gradients generated in the neural tube by activating a cascade of specific 

transcriptional programs2.  A detailed understanding of this process has been limited by the 

inability to isolate and purify sufficient quantities of synchronized cellular subpopulations from the 

developing murine spinal cord. Alternatively, in vitro approaches have provided the opportunity to 

study the basic mechanisms of motor neuron differentiation at a cellular level34, and to gain 

insights into motor neuron disease mechanisms40, 65. An inherent limitation of the in vitro 

approach is the differential exposure of embryoid bodies (EBs) to inductive ligands and 

uncharacterized paracrine signaling within EBs, which lead to the generation of heterogeneous 

populations of differentiated cell types191.  Consequently, motor neuron disease mechanisms 

must be studied in a heterogenous background of cell types whose contributions to pathogenesis 

are unknown.  The ability to interrogate the transcriptome of individual differentiating cells in this 

context could provide fundamental insights into the molecular basis of neurogenesis and motor 

neuron disease mechanisms.   

 

Single-cell RNA-sequencing conducted as a function of time affords the opportunity to dissect 

complex transcriptional programs and their impact on cellular differentiation of individual cells, 

capturing heterogeneous cellular responses to developmental induction. Several algorithms for 

the analysis of single-cell RNA-sequencing data from developmental processes have recently 

been published181, 183-185, 192, 193. These methods can be used to order cells according to their 

expression profiles, and make possible the identification of lineage branching events. However, 

some of these approaches lack an unsupervised framework for determining the transcriptional 
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events that are statistically associated with each stage of the differentiation process192. With 

some methods, the statistical framework is strongly biased, for example by assuming a 

differentiation process with exactly one branch event183, 185 or a tree-like structure181, 193.  This is 

problematic in settings where the biological process does not fit the assumed model or is 

encumbered by noise. Moreover, the vast majority of these methods do not exploit the temporal 

information available in longitudinal single cell RNA-sequencing experiments, and require the 

user to explicitly specify the least differentiated state181, 183-185, 192. Here we report an unbiased, 

statistically robust mathematical approach to single cell RNA-sequencing data analysis that 

addresses these limitations. 

 

Topological data analysis (TDA) is a nascent branch of mathematics directed towards studies of 

the continuous structure of high-dimensional data sets.  TDA has been utilized to study viral re-

assortment194, human recombination195, 196, cancer197, and other complex genetic diseases198.  

We build upon TDA, and introduce a method (scTDA) that enables the unbiased study of time-

dependent gene expression using longitudinal single-cell RNA-seq data. The scTDA method 

constitutes an improvement over previous approaches in that it provides a robust, unsupervised, 

statistical framework for the detection of transient cellular populations and their transcriptional 

repertoire, without assuming a tree-like structure for the expression space or a specific number of 

branching points. scTDA provides all the necessary components to assess the significance of 

topological features of the expression space, such as loops or holes. In addition, it exploits 

chronological experimental information when available, inferring from the data the least 

differentiated state. 

 

Using scTDA, we dissect the specific transcriptional programs that regulate developmental 

decisions as mESCs transition from pluripotency to fully differentiated motor neurons and 

concomitant cell types.  We comprehensively characterize the dynamic appearance of mRNAs 

encoding signaling proteins, transcription factors, RNA splicing factors and long non-coding RNAs 

(lncRNAs) during the transition from pluripotent cells to neural precursors, progenitors, motor 
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neurons, and interneurons, thus providing a valuable resource for studies of stem cell 

differentiation and neurogenesis, and more generally to any cellular differentiation process 

amenable to single cell transcriptomic analysis. 

Results 

Analysis of Continuous and Asynchronous Processes Using scTDA 

Single-cell expression can be represented as a sparse high-dimensional point cloud, with the 

number of dimensions being equivalent to the number of expressed genes (~10,000). Extracting 

biological information from these data requires reducing the dimensionality of the space. Widely-

used algorithms, such as multidimensional scaling (MDS), independent component analysis 

(ICA), and t-distributed stochastic neighbor embedding (t-SNE), have been adapted to flow 

cytometry, mass spectrometry193, 199, and single-cell RNA-seq measurements181, 200.  These 

strategies, however, were not designed to preserve continuous relationships in high dimensions. 

Figure 2a represents a simple example of a one-dimensional continuous manifold (a circle) 

twisted in three dimensions. Reduction to two dimensions using these algorithms introduces 

artifacts in the low-dimensional representation, including artifactual intersections (in MDS and 

ICA), and tearing of the original continuous structure apart (in t-SNE). As cell differentiation is a 

continuous asynchronous process, we reasoned that longitudinal single-cell data would be best 

analyzed using a mathematical approach that accounts for continuous structures.  

 

We developed a computational approach to the analysis of longitudinal single-cell RNA-seq data 

based on the TDA algorithm Mapper201 (Supplementary Note 1). Mapper builds upon any given 

dimensional reduction algorithm, such as MDS, and produces a low-dimensional topological 

representation of the data that preserves locality. To that end, the projection obtained by the 

dimensional reduction algorithm is covered with overlapping bins, and clustering of the data within 

each bin is performed in the original high-dimensional space (Figure 2b). A network is 

constructed by assigning a node to each cluster, and clusters that share one or more cells are 

connected by an edge. The result is a low-dimensional network representation of the data where 
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nodes represent sets of cells with similar global transcriptional profiles, and edges connect nodes 

that have at least one cell in common (Figure 2b). An important feature of these networks is that 

elements that are connected in the low-dimensional representation lie near each other in the 

original high-dimensional expression space, contrary to what occurs with most of the dimensional 

reduction algorithms currently in use (Figure 2a). This construction is thus robust against complex 

structures in the high-dimensional expression space, including non-tree-like trajectories (Figure 

2a). Additionally, since nodes represent clusters of cells, the approach is highly scalable to large 

datasets. 

Based on these considerations, we adapted the use of topological representations to the analysis 

of longitudinal single-cell RNA-seq data, introducing the necessary mathematical concepts and 

statistics (Supplementary Fig. 1). To identify expression programs associated with different parts 

of the topological representation without predefining any cellular population, we developed the 

concept of gene connectivity.  The connectivity of a gene acquires a significant value when cells 

that share similar global transcriptional profiles express that particular gene more than random 

(Figure 2c). Genes with a significant connectivity are expected to be distinctively involved in a 

particular stage or stages of the differentiation. To identify the least differentiated state in the 

topological representation, we introduced the notion of root node, as the node that maximizes 

correlation between sampling time and graph distance.  Using this root node as a reference, we 

computed the centroid (Figure 2d) and dispersion (the standard deviation) of genes in the 

topological representation. Genes with low centroids are upregulated in stem-like cells, whereas 

genes with large centroids are specific to fully differentiated cells. To identify transient cellular 

subpopulations arising throughout the differentiation, we clustered low-dispersion genes with a 

significant connectivity in the topological representation based on their centroid (Davies-Bouldin 

criterion, Figure 2e). Finally, to assess the significance of topological features of the 

representation, such as loops and holes, we used persistent homology, a framework within TDA 

for deriving and classifying topological features associated to data (Supplementary Note 1). 

Further details of the scTDA method and its mathematical foundations can be found in 

Supplementary Note 1. 
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scTDA Orders Asynchronously Differentiating Cells in Time  

We assessed the capacity of scTDA to order asynchronously differentiating cells using a 

controlled setting where the truth is known. To that end, we first simulated a noisy, branched, 

asynchronous cellular differentiation process with two branching points (Figure 3a). 700 cells 

were sampled at three time points and the expression levels of 500 genes were simulated. From 

this data, scTDA correctly reconstructed the topological structure of the differentiation tree, and 

identified the most stem-like state (Figure 3b). In contrast, the algorithms Diffusion Pseudotime183, 

Wishbone185 and Slicer184 failed to correctly assign some of the branches, producing artifacts in 

the inferred pseudo-temporal ordering of the cells (Figure 3c to 3e), even if the most stem-like 

state was provided by the user of these algorithms.  

To quantify the performance of scTDA more comprehensively, we extended the above 

simulations to processes with one, two, or three branching points. scTDA showed higher 

correlation between the inferred pseudo-time and the actual simulated differentiation time, 

reconstructing the underlying differentiation process more accurately from the data (Figure 3f). 

The improvement was particularly large when drop-out events were included in the simulation 

(Figure 3g), where the graphical representation produced by Diffusion Pseudotime, Slicer, and 

Wishbone were often unable to correctly infer the structure of the differentiation tree 

(Supplementary Fig. 2).  

Single-Cell RNA-Sequencing during Motor Neuron Differentiation  

We applied our method to experimental data collected from longitudinal single-cell RNA-seq of in 

vitro motor neuron differentiation. We differentiated mESCs into motor neurons using a well-

established protocol34. The mESC line expresses enhanced green fluorescent protein (eGFP) 

under the control of the early motor neuron-specific promoter Mnx1, allowing identification of 

committed motor neurons. Using modified  CEL-Seq approach124, we generated cDNA libraries 

from 2,744 single cells, including two biological (non-technical) replicates, sampled across days 

two through six of differentiation, spanning the transition from pluripotency to post-mitotic 

commitment.  The differentiating cells were concomitantly sampled in bulk at each time point.  To 
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assess optimal depth of sequencing coverage, reproducibility, and venues for experimental 

improvement, we initiated our study with a pilot experiment using a modified CEL-Seq protocol 

over 440 cells sampled throughout the time course of motor neuron differentiation. We sought to 

improve amplification and increase statistical power by sequencing more single cells per time 

point with the depth of sequencing coverage near the saturation point.  To accomplish this, we 

modified the CEL-Seq protocol and sequenced 2,304 individual cells in a separate differentiation.  

In this study, herein referred to as the main experiment, we detected 19,009 transcripts across 

the dataset.  Given the improved statistical power associated with the main experiment, we 

focused our attention on the results from the main study, and assessed the reproducibility of the 

results using the pilot study. 

Identification of Cell Populations and Surface Markers as a Function of Differentiation 

We used scTDA to analyze the two longitudinal single-cell motor neuron differentiation RNA-seq 

datasets. We filtered the data, retaining, respectively, 373 and 1,964 individual cells that passed 

stringent quality control tests (Supplementary Fig. 3).  The scTDA analysis recapitulated 

chronological order based on mRNA expression levels alone (Figure 4a and 4b, and 

Supplementary Figs. 4 and 5), and simultaneously detected detailed transcriptional relationships 

between individual cells.  We observed only a mild dependence of the library complexity on 

differentiation time (Supplementary Fig. 6), unlike other experimental settings202, 203. We did not 

observe the presence of large batch effects (Supplementary Fig. 7). Compared to representations 

of the same data generated by PCA, MDS, t-SNE, Monocle, Wishbone, Slicer, and Diffusion 

Pseudotime, we found that scTDA best preserved the continuous chronological structure of the 

differentiation process (Figure 4c and Supplementary Figs. 8 and 9). 

Our analysis identified 7,620 genes with significant gene connectivity (q-value < 0.05, 

Supplementary Fig. 10), compromising 74% overlap with the pilot experiment (p-value < 10-100, 

Fisher exact test, Figure 4d).  This large number of significant genes is indicative of the 

transcriptional heterogeneity of the dataset, encompassing a large spectrum of developmental 

stages.  The centroids of these significant genes were consistent across the two experiments 
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(Pearson correlation = 0.9, p-value < 10-100, Figure 4d), providing another consistency check of 

our approach. The validity of our approach was also confirmed by the progressive expression of 

known markers associated with pluripotent cells, progenitors and mature motor neurons over time 

(Figure 4e and Supplementary Fig. 4c), as well as downregulation of cell cycle genes in the post-

mitotic population of neurons (Supplementary Fig. 11). These results were stable under different 

choices of parameters (Supplementary Fig. 12). 

 

Based on the distribution of the centroid and dispersion of genes (Supplementary Fig. 13), scTDA 

revealed four transcriptionally distinct cellular populations arising throughout the differentiation 

(Figure 5a). In total, 488 genes were assigned to four principal expression groups corresponding 

to these cellular populations (Figure 5b).  Groups 1a and 1b contain genes uniquely expressed 

within early EBs (Oct3/4+ cells), corresponding to pluripotent and neural precursor states.  Genes 

in groups 2 and 3 are uniquely expressed within the progenitor (Olig2+ cells) and post-mitotic 

ensembles (VAChT+ cells), respectively. Ontology enrichment analysis showed an enrichment for 

developmental genes and genes related to DNA replication in groups 1a, 1b, and 2, whereas 

group 3 is enriched for genes related to axonogenesis, neuron migration, and regionalization, 

consistent with the underlying cellular differentiation process.  

 

Our analysis revealed several transcripts that encode proteins with an extracellular domain, which 

constitute suitable cell surface marker candidates for sourcing niche populations for further study.  

Several of these surface markers had not been previously reported in this biological context.  We 

validated the presence of these markers in vitro and in vivo, using immunohistochemistry in EBs 

(Figure 5c, and Supplementary Fig. 14) and in the murine embryonic spinal cord (Figure 5d).  

Topological Characterization of Distinct Proliferative States 

A remarkable feature of the topological representation of the motor neuron differentiation data is 

the presence of numerous loops in the representation of the neural precursor population (Figure 

5a), in contrast to the mESCs and motor neurons. This feature was also observed in the 
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topological representation of the pilot experiment (Supplementary Fig. 4). Neural precursors are 

rapidly proliferating as a consequence of the induction with retinoic acid (RA). To evaluate 

whether the loops in the representation of neural precursors are caused by differences in the cell 

cycle, we built a new topological representation using only cell cycle genes (Supplementary Fig. 

15a). Consistent with this hypothesis, the new topological representation contained substantially 

larger loops in the same region (Supplementary Fig. 15a), separating Stra8up neural precursors 

and progenitors into proliferative and non-proliferative populations according to the expression of 

Mki67 and other markers of proliferation (Supplementary Figs. 15b and 15c). We used persistent 

homology to assess statistically the significance of these loops in the topological representation, 

asking whether loops of similar size could arise from noise effects. This analysis showed a strong 

statistical significance for some of the larger loops (q-value < 0.05, Supplementary Fig. 15d), 

consistent with a biological, rather than technical, origin for these features. 

Characterization of Developmental Transitions  

We next used scTDA to characterize the developmental transitions that occur during the 

differentiation of motor neurons. These results constitute a significant resource for studies of stem 

cell differentiation and neurogenesis, and we have made them available through an online 

database. We summarize here some of the main transcriptional programs that are associated to 

the transitions between the four identified transient cellular populations (Figure 6a).  

 

Expectedly, the transition from a pluripotent to a neural precursor population is characterized by 

the transcriptional dynamics of pathways involved in RA signaling and downstream effector 

proteins204, 205 (Figure 6a). Our analysis resolved with unprecedented resolution the timing of the 

transcriptional events occurring during this transition, identifying upregulation of Stra8 and 

downregulation of Fgf4 as some of the earliest events that mark the transition (Supplementary 

Fig. 16).   Subsequently, there is transcriptional activation of a subset of the homeobox gene 

family, including Hoxa1 and Hoxb2-8, which continue to be expressed during later stages of the 
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differentiation process, and Hoxb1, which is transiently expressed along with caudalizing 

transcription factors (Figure 6a and 6b, and Supplementary Fig. 17). 

 

A second wave of RA inducible gene activation was identified during the formation of neural 

progenitors.  This is accompanied by transcriptional inactivation of Stra8, and activation of 

Crabp1 and a second set of homeobox genes, Hoxa2, Hoxa3, Hoxc5, Hoxd3 and Hoxd4 (Figure 

6a).  This pattern of Hox gene activation suggests that the linear chromosomal arrangement of 

the Hox gene clusters does not necessitate temporal co-linearity in anterior Hox gene expression, 

a phenomenon that has been reported in the developing spinal cord206.  Both waves of homeobox 

gene expression were accompanied by the upregulation of several long non-coding RNAs 

(lncRNAs) derived from the opposite strand (Figure 6b, Supplementary Fig. 17), consistent with 

previously identified lncRNA-based regulation of homeobox gene clusters207-210. 

The transition to mature neurons was marked by exit from the cell cycle and post-mitotic 

differentiation.  In keeping with expectations, scTDA identified Neurog1/2 (modulators of neuronal 

specification, cyclin regulation, cell cycle exit211) as well as Ascl1 and Sox9 among the cohort of 

known mediators of neuronal commitment, concomitant with a marked repression of 

topoisomerase 2A in the neuron population (Figure 6a).  

We observed variability in eGFP expression levels and fluorescent intensities among 

differentiated neurons, suggestive of cellular heterogeneity at late stages of the differentiation.  

We performed a detailed analysis of this cellular population, and classified differentiated neurons 

into motor neurons (n = 343), and V1 (n = 19, En1+), V2a (n = 10, Vsx2+) and V2b interneurons (n 

= 15, Gata3+) (Figure 6c), confirming the presence of cellular heterogeneity. Interestingly, among 

the differentially expressed genes between these populations we observed the presence of 

several lncRNAs. V1 interneurons uniquely express Gm12688, an intergenic lncRNA located near 

Foxd3, and transcribed from the opposite strand, which we validated using qPCR (Supplementary 

Fig. 18). Similarly, we identified a lncRNA located in chromosome 15 (NONCODEv4 accession 

number NONMMUG015572) as being uniquely expressed by V2b interneurons. Both V1 and V2b 
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GABAergic interneurons uniquely express Gm14204, an intergenic lncRNA located near Slc32a1 

and transcribed from the opposite strand. These results suggest a possible role of lncRNAs in 

neural diversification. 

Among the genes associated with developmental transitions identified by scTDA, there were also 

multiple genes encoding RNA-binding proteins. These include known developmental state-

dependent pre-mRNA splicing factors, as well as stage-specific but uncharacterized RNA binding 

proteins, which may guide cellular differentiation and post-mitotic commitment.  In the context of 

the progenitor to neuron transition, our analysis identified Nova1/2, Rbfox3, Srrm4, and the Elav-

like transcripts Elavl4 and Celf3 (Figure 6a), consistent with our expectations212, 213.  scTDA 

further revealed the upregulation of Mex3b in the progenitor and post-mitotic cell populations, and 

constitutive expression of Ptbp1 and Ptbp2. Previously published studies have documented 

Srrm4 directed inclusion of neural specific exon 10 in Ptbp1214. Our results therefore suggest a 

transcriptional switch in splicing factor regulation that culminates in neural specific splicing. 

scTDA as a General Approach to Interpret Heterogeneous Cellular Responses 

The analysis and experimental validation presented above demonstrate that scTDA is an 

unbiased and scalable algorithm that chronologically orders asynchronous populations of single 

cells, while simultaneously preserving high-dimensional relationships between their transcriptional 

programs. We then asked if scTDA, applied to other data sets, could provide insights lacking in 

the previous analyses.  To do so, we implemented scTDA to analyze three different in vivo 

cellular differentiations215-217.  In each case, scTDA enabled an accurate reconstruction of 

developmental trajectories that extended the published analyses. First, we examined 80 single 

cells from the differentiating distal lung epithelium of mouse embryo215. All cells were sampled 

from the same time point (embryonic day E18.5).  As shown in Figure 7a, scTDA recapitulated 

the proposed relationships between differentiating cells in both the bronchiolar and alveolar 

lineages. Moreover, our analysis uncovered a set of alveolar type I cells in which genes 

associated with mitochondrial respiration are down-regulated (Supplementary Fig. 19), 

suggestive of cellular stress or quiescence. This result shows that scTDA is also a valuable tool 
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for the analysis of one-time-point datasets from continuous asynchronous processes. Second, we 

applied scTDA to 1,529 cells from human pre-implantation embryos216. In this case, scTDA 

correctly ordered cells according to embryonic developmental time, and identified the segregation 

of several lineages, including the inner cell mass, the early trophectoderm, and a polar 

trophectoderm216 (Figure 7b). In contrast to previous analysis, the identification and 

characterization of these cellular populations was completely unsupervised. Finally, we used 

scTDA to study 272 differentiating neurons in the mouse neo-cortex. Here, scTDA identified a 

continuum of cellular states with a bifurcation between apical and basal progenitors, and neurons 

(Figure 7c).  The topological representation more accurately reflects a basal to apical progenitor 

migration and a split in potency, with apical progenitors sharing transcriptional profiles that more 

closely reflect their neuronal counterparts. This result highlights the ability of scTDA to faithfully 

represent nonlinear and converging cellular lineages, surpassing the capabilities of tree-based 

algorithms.  From these results, we conclude that scTDA is an unbiased, generalizable and 

scalable approach to study differentiation at a single-cell level. 

Discussion 

We have developed a workflow that enables unsupervised analysis of high-dimensional single-

cell developmental datasets. The biological context requires this approach to preserve the 

continuity of cellular differentiation, account for asynchronous development, and provide rigorous 

statistical interpretation of patterns of gene activation.  We constructed a framework to 

accomplish this using topological data analysis (scTDA), and implemented it in a publicly 

available software. We applied this strategy to the in vitro differentiation of mESCs into neurons2, 

34.  This experimental and analytical approach strikingly recapitulated the continuous dynamic 

nature of cellular differentiation, and provided the necessary statistics to identify and characterize 

the transcriptional programs that accompany lineage restriction.  Furthermore, scTDA revealed 

extensive transcriptional co-regulation of thousands of coding and noncoding genes expressed in 

precursor, progenitor and neuronal populations. Of particular note is the generality of scTDA, 

which can be applied to any biological system responding to inductive cues or environmental 
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perturbations (Figure 7).  For example, scTDA may be used to study other cellular differentiation 

processes such as hematopoiesis, the evolution of cancer cells, neurodegeneration, and 

developmental disorders, all of which arise from extracellular signals and genomic alterations that 

culminate in heterogeneous transcriptional responses and cellular behavior. 

Methods 

Cell Culture and Single Cell Isolation 

Murine embryonic stem cell (mESC) based differentiations were performed using the method of 

Wichterle et al.34.   In brief, stem cell colonies are expanded on an adherent substrate, after which 

they are dissociated and monodispersed in a serum-free suspension (day 0). Individual stem cells 

aggregate into embryoid bodies (EBs), which maintain exclusive expression of pluripotency 

markers until they are induced down the neuron lineage by addition of RA and Smoothened 

Agonist (SAG) (day 2). Metabolized culture medium is replenished on day 5, coincident with the 

appearance of early eGFP positive cells within the EBs. EBs were dissociated into single cells 

using the Worthington Biochemical Papain Dissociation System (LK003178). Single cell 

deposition was accomplished using a Beckman Coulter MoFlo Astrios EQ cell sorter into 96 well 

plates. Cells were then snap-frozen and subsequently lysed. 

Single Cell Library Generation 

To obtain single cell expression profiles, modified CEL-Seq124 was carried out. Briefly, we reverse 

transcribed the mRNA in each cell lysate with barcoded primers, pooled the single cell samples, 

synthesized second strand cDNA, and then linearly amplified by in vitro transcription with T7 RNA 

polymerase. The amplified RNA (aRNA) was chemically fragmented and T4 RNA ligase was 

used to ligate Illumina 3’-RNA adapters. The aRNA was then run on an Agilent Bioanalyzer to 

assess proper fragmentation and then reverse transcribed to generate cDNA and subjected to 

PCR enrichment. The subsequent multiplexed samples were paired end sequenced (2x125 bps) 

on an Illumina HiSeq 2500.  Bulk RNA samples were purified from 2x106 cells in 1 mL of Trizol 
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and standard Qiaquick RNA extraction protocols with a RIN 9.8 or higher.  Stranded RNA-Seq 

libraries were generated at the New York Genome Center using a TruSeq Stranded Total RNA 

Library Prep Kit.  Stranded cDNA libraries were paired end sequenced (2x125 bps) on a HiSeq 

2500, operating in high output mode, yielding 30M reads per indexed library. 

Immunofluorescence 

EBs were washed three times in ice cold PBS and fixed for two hours at room temperature in 4% 

PFA. They were then washed with ice cold PBS and either embedded into OCT and stored at -80 

C for sectioning, or stored in PBS at 4 C for whole EB staining. 20um sections were cut using a 

Leica CM 1950 cryotome and mounted onto a glass slide. Whole and sectioned EBs were 

incubated in blocking solution (0.1% tween-20, 5% donkey serum, 1% BSA) for two hours at 

room temperature followed by primary antibodies diluted in blocking solution overnight. Primary 

antibodies used were: goat-αSlc9a1 (Santa Cruz sc-16097, 1:100), rabbit-αOlig2 (Millipore 

AB9610, 1:100), mouse-αOlig2: clone 21F1.1 (Millipore MABN50, 1:100), rabbit-αEdnrb (Novus 

NLS54, 1:200), guinea pig-αVAChT (gift from Dr. Neil Schneider’s lab, 1:400), rabbit-αSlc10a4 

(Novus Biologicals NBP1-81134, 1:100), mouse-αPou5f1 (BD Biosciences 611202, 1:100), goat-

αPECAM1 (Santa Cruz sc-1506, 1:100), sheep-αCD44 (R&D Systems AF6127, 1:250), goat-

αFoxc1 (Santa Cruz sc-21396, 1:50), and goat-αSstr2 (Santa Cruz sc-11606 , 1:50).  Alexa Fluor-

conjugated secondary antibodies from Life Technologies were used at a 1:1000 dilution for two 

hours at room temperature. CD44, Foxc1 and Sstr2 were respectively conjugated to Cy-5, Alexa-

405, and Cy-3 fluorophores using the DyLight system from Abcam (ab201798, ab188287, 

ab188288). Coverslips were mounted with Vectashield and EBs were imaged on an Olympus 

Fluoview FV1000 microscope using Olympus Fluoview v4.1. 

Processing of Single Cell RNA-seq Data 

Paired-end 125bp reads were de-multiplexed, trimmed, and mapped to the UCSC mouse 

reference (mm10) using Tophat218. Gene expression was quantified using transcript read counts 

as derived from HTSeq219. Read counts were normalized as, 
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!! = log! 1 + 10
! · !!
!  

where !! denotes the unambiguous read count for transcript !, and ! denotes the total number of 

reads that are mapped to transcripts in the cell. A strategy based on spike-in read counts, as 

described by Stegle et al.220, was implemented to filter out cells with a low content of mapped 

RNA and/or low sequencing depth.  Specifically, the ratio !! between average spike-in reads in 

the cell and average spike-in reads in the library (for spike-ins with an average of more than five 

reads in the library) was used to discard cells with low sequencing coverage. Similarly, the ratio 

!! between the total number of spike-in reads in the cell and the total number of mapped reads 

was used to discard cells with a low number of mapped reads, relative to the sequencing 

coverage. Those cells showed very low expression of house-keeping genes, possibly 

representing cells under stressed conditions and/or with large amounts of degraded RNA. Based 

on the distribution of !! and !! in each of the two experiments (Supplementary Fig. 2a), cells with 

!! > 5 · 10!!  and 0.7 > !! > 0.01  in the pilot experiment, and cells with 4.0 > !! > 0.05  and 

1.0 > !! in the main experiment, were kept for subsequent analysis. The distribution of filtered out 

cells across different libraries was uniform in both experiments (Supplementary Fig. 2b). To 

reduce the noise observed near detection threshold in the pilot experiment, read counts with 

!! < 5 were set to zero. Additionally, one of the libraries (RPI36) was discarded from subsequent 

analysis, because it presented a large batch effect. To assess the dependence of the library 

complexity on the differentiation time (Supplementary Fig. 3), we computed at each time point the 

distribution of the geometric library size, defined as the sum of log expression values over all 

genes in a cell203. 

Topological Representation 

The algorithm Mapper201 (Supplementary Note 1) was used to build topological representations of 

the RNA-seq data, through the implementation by Ayasdi Inc. Several open-source 

implementations are also available (https://github.com/MLWave/kepler-mapper, 

http://danifold.net/mapper/, https://github.com/RabadanLab/sakmapper, 

https://github.com/paultpearson/TDAmapper). In brief, the processed RNA-seq data was 
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endowed with a dissimilarity matrix by taking pairwise correlation distance (1 - Pearson 

correlation). To minimize the effect of drop-out events present in single-cell data, we only 

considered the 5,000 genes (for the pilot experiment) and the 4,600 genes (for the main 

experiment) with highest variance across each dataset. These are highly expressed transcripts 

for which the probability of not being captured by the RNA amplification (drop-out events) is 

small221-224. The space was reduced to ℝ! using MDS, as displayed in Figure 4c. A covering of ℝ! 

consisting of 26×26 (62×62) rectangular patches was considered for the pilot (main) experiment, 

respectively. The size of the patches was chosen such that the number of cells in each row or 

column of patches was the same, hence avoiding sampling density biases. The overlap between 

patches was 66% on average. Single linkage clustering was performed in each of the pre-images 

of the patches according to the algorithm described in Singh et al.201. A network was constructed 

where each vertex corresponds to a cluster, and edges correspond to non-vanishing intersections 

between clusters. We checked for the absence of batch effects in the topological representation 

(Supplementary Figs. 3d and 7) and the stability against different choices for the threshold for the 

number of genes used to compute the distance matrix and for the covering of ℝ! (Supplementary 

Fig. 12). 

Gene Connectivity, Centroid and Dispersion within the Topological Representation 

A notion of gene connectivity in the topological representation was introduced, defined as 

!! =
!

! − 1
!!,!!!"!!,!

!!,!!∈!
!

!,!∈!
 

where !!,!  represents the average expression of gene !  in node !  of the topological 

representation, normalized as described in “Processing of RNA-seq” paragraph; Γ denotes the 

set of nodes of the topological representation; !!" is its adjacency matrix; and ! the total number 

of nodes. With this normalization, !! takes values between 0 and 1.  

The gene connectivity score depends on the distribution of expression values of the specific gene 

(Supplementary Fig. 10), and therefore genes cannot be ranked accordingly to their gene 

connectivity score in a meaningful way. To assess the magnitude of the connectivity score 
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relative to genes with the same expression profile, and rank genes accordingly, we introduced a 

non-parametric statistical test. We tested for the null hypothesis of a randomly expressed gene 

with the same distribution of expression values having a higher gene connectivity score. To that 

end, a null-distribution was built for each gene !  using a permutation test. Cell labels were 

randomly permuted 5,000 times for each gene, computing !! after each permutation. A p-value 

was estimated by counting the fraction of permutations that led to a larger value of !! than the 

original one. Gene connectivity and its statistical significance were computed for each gene 

expressed in at least three cells. The resulting p-values were adjusted for multiple testing by 

using Benjamini-Hochberg procedure for controlling the false discovery rate. 

To establish a pseudo-temporal ordering within the topological representation, a notion of root 

node was introduced. The latter was defined as the node that maximizes the function, 

! ! = !"## !! , !  

where corr(x,y) denotes Pearson’s correlation coefficient between x and y; !!  is the graph 

distance function to node !, that assigns to each node of the topological representation a value 

corresponding to the number of edges that are crossed in the shortest path from that node to 

node !; and ! is the chronological sampling time function, that assigns to each node of the 

topological representation the average sampling time (expressed in days) of the cells contained in 

the node. 

Least-squares linear regression was performed to determine the best fit for the coefficients !! 

and !! in the relation 

!!""# ≅ !!! + !! 

where !!""# is the graph distance function to the root node, determined in the previous paragraph. 

These coefficients were used to define the centroid and dispersion of each gene in the topological 

representation, expressed in days, and given respectively by 

!! =
1
!!

!!""# ! !!,!!∈!
!!,!!∈!

− !!  

and 
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!! =
1
!!

!!""# ! − !!!! + !! !!!,!!∈!
!!,!!∈!

− !!  

Such normalization, i.e. using coefficients a0 and a1 to express the centroid and dispersion in 

units of pseudo-time (days), allows comparing the connectivity and dispersion of a gene across 

different topological representations or studies. 

Significance of Topological Features 

We computed the first persistent homology group225, 226 using the graph distance of the 

topological representation. Given the pairwise distances of a set of points sampled from a space, 

persistent homology allows to quantify the topological features (connected components, loops, 

cavities, etc., preserved under continuous deformations of the space) compatible with the data at 

a given scale. The first homology group, in particular, classifies loops of the space 

(Supplementary Note 1). We used persistent homology death times as a proxy of the size of the 

loops, and evaluated their statistical significance using a permutation test. To that end, we 

randomly permuted 500 times the labels of the genes, for each cell independently. For each 

permutation we built a topological representation using the same parameters than in the original 

representation and computed the first persistent homology group. A p-value for each of the loops 

was estimated from the distribution of the number of loops as a function of their death time. The 

resulting p-values were adjusted for multiple testing by using Benjamini-Hochberg procedure for 

controlling the false discovery rate. 

Comparison to Other Methods for Analyzing Longitudinal Single-Cell RNA-seq Data 

We dimensionally reduced the processed single cell RNA-seq data of the main experiment using 

MDS, ICA and tSNE, using the same set of highly expressed, highly variant genes that we used 

for building the topological representation. In each representation we determined the cell that 

maximized the Pearson correlation coefficient between the two-dimensional Euclidean distance to 

the cell and chronological sampling time, corresponding to the least differentiated cellular state.  



	 54	

Additionally, we compared scTDA to the single cell software Monocle181, based on ICA and 

minimum-spanning trees, Wishbone185, based on diffusion coefficients, and SLICER184, based on 

locally linear embedding. We followed all recommendations in the documentation of these 

algorithms. In our tests, Monocle failed in running over the complete main experiment dataset, 

consisting of 2,304 cells, and only a partial set of 834 cells, sampled from all time points was 

analyzed.  

Simulated Data 

Noisy, branched asynchronous cellular differentiation processes were simulated, from which 700 

cell were sampled at three time points. To that end, we used the following strategy: 

1.- We simulated a noisy branched tree-like structure with three parameters (t, u, and v), 

and performed a non-linear transformation into four-dimensional embedding space 

(spanned by the variables g(1), g(2), g(3), and g(4)). This space provides the structure for 

four different groups of correlated genes. 

2.- We randomly sampled 700 points from this space, corresponding to 700 cells, and 

assigned a sampling day based on a multinomial distribution with probabilities given by a 

logistic function of t, to simulate asynchrony. 

3.- We simulated the expression of 300 genes driven by the variables g(1), g(2), g(3), and 

g(4), in addition to 200 genes with non-correlated expression, sampled from normal 

distributions. 

4.- We simulated the effect of drop-out events using the standard logistic dependence of 

the drop-out probability as a function of expression. 

In what follows, we provide a detailed description of each of these steps. 

First, we simulated four groups of correlated genes. These were defined by the equations, 

!!
(!) = 200 !!

!!! + !!! + 0.2
+ !!

(!) 

!!
(!) = 200 !!

!!! + !!! + 0.6
+ !!

(!) 
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!!
(!) = 100 !!! + !!! − 20

!!! + !!! + 0.2
+ !!

(!) 

!!
(!) = 100 !! + !!

(!) 

where !!
(!), are normally-distributed random variables with mean ! = 150 and standard deviation 

! = 8. The index ! = 1,… ,700 runs across the sampled cells, and !! , !! , and !!  are randomly 

sampled from 

!! = 0,    !! = 0       0 ≤ !! < 0.2,    or 

!! = 0.2 − !! ,   !! = 0        0.2 ≤ !! < 0.7,    or 

!! = !! − 0.2,   !! = 0        0.2 ≤ !! < 0.7,    or 

!! = 0.6 − !! ,   !! = 0        0.4 ≤ !! < 0.7,   or 

!! = −0.2,    !! = !! − 0.4        0.4 ≤ !! < 0.7, 

where only the first 2 + ! equations are considered in simulated differentiation processes with ! 

lineage branching points. The variable !! represents the differentiation pseudo-time of cell ! at the 

time of sampling. To simulate asynchrony, each sampled cell was assigned a sampling day 

accordingly to 

1 ≥ !! > ! !! , 0.23     →    day 1 

! !! , 0.23 ≥ !! > ! !! , 0.47     →    day 2 

! !! , 0.47 ≥ !! ≥ 0    →    day 3 

where !! ∈ [0,1] is a random number uniformly distributed, and ! is the logistic function 

! !, ! = 1
1 + !!"(!!!) 

We simulated 75 genes in each of the four groups of genes, with expression values given by 

!!,!
(!) = !!

(!)!′!
(!)!′′!

(!),             ! = 1,… ,4, ! = 1,… ,75, ! = 1,… ,700 

where !′!
(!) and !′′!

(!) are normally-distributed random variables with mean ! = 1 and standard 

deviation ! = 0.2. In addition, we simulated 200 extra genes with non-correlated expression 

!!,!
(!) = !′!

(!)!′′!
(!),            ! = 1,… ,200,          ! = 1,… ,700 

with !′!
(!)  and !′′!

(!)  normally-distributed random variables with mean ! = 200  and 1, and 

standard deviation ! = 50 and 0.2, respectively. Hence, a total of 500 genes were simulated in 
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each of the 700 cells. To model the effect of drop-out events, we randomly set to zero the 

expression of some of the genes in some of the cells, with probability 

! = 1
1 + !!!! 

where ! is the original expression value of the gene in the cell. 

Gene Ontology Annotation 

Gene ontologies were obtained from EMBL-EBI QuickGO227. Specifically, categories 

GO:0006355 “Regulation of transcription, DNA-templated”, GO:0008380 “RNA splicing”, 

GO:0044822 “Poly(A) RNA binding”, GO:0051726 “Regulation of cell cycle”, and GO:0007049 

“Cell cycle” were used to annotate genes. Expression of genes associated to DNA replication was 

analyzed by considering the 99 genes in the category GO:0006260 “DNA replication” expressed 

in less than 1,400 cells in the main experiment. Genes coding for proteins in the cellular surface 

were identified by looking in UniProt database228 for proteins annotated with an extracellular 

topological domain. Gene ontology enrichment analysis was performed using PANTHER 

classification system229. 

Transient Cellular Populations 

Low-dispersion genes (!! < 1.7  days and !! < 2.25  days respectively in the main and pilot 

experiments) with significant gene connectivity (q < 0.05) in the topological representation where 

clustered according to their centroid using k-means clustering (Supplementary Fig. 13b and 13c). 

The optimal number of clusters according to Davies-Bouldin index was four in the main 

experiment (three in the pilot experiment) (Supplementary Fig. 13a), as it was also evidenced 

from visual inspection of the centroid distribution for low-dispersion genes. A state r = 1,…,4 was 

assigned to each node of the topological representation based on the average expression of each 

cluster of low-dispersion genes in the node (Supplementary Fig. 13d). Genes with significant 

gene connectivity according to the permutation test described in the paragraph “Gene 

Connectivity, Centroid, and Dispersion within the Topological Representation” were assigned to 
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each of the four populations based on the number of cells expressing the gene in each state r. 

Only genes expressed in at least 80 cells and at most 1,500 cells were considered. 

Analysis of Long Non-Coding RNAs 

The coordinates of intergenic and antisense lncRNAs were downloaded from NONCODEv4230, 

and read counts were obtained using HTSeq. The connectivity and statistical significance of each 

long non-coding gene in the topological representation was computed using scTDA. Only 

lncRNAs that were significant (q < 0.05) in both the pilot and main experiment, and that were 

supported by at least 50 reads in the longitudinal stranded RNA-seq data were kept. Curation 

was performed to remove lncRNAs whose 3’-end overlapped the 3’-end of another gene, read 

assignment therefore being ambiguous, or that corresponded to possible miss-annotations of the 

3’ UTR of a nearby gene. 

Characterization of Interneuron Populations 

Differential expression analysis between En1+, Gata3+, Vsx2+ and Egfp+ cells in nodes 

characterized as post-mitotic (Supplementary Fig. 13d, state 3) was performed using the software 

SCDE41 with default parameters. 

scTDA Software 

The algorithms described in this work were implemented and documented in an object oriented 

python library for topological data analysis of high-throughput longitudinal single-cell RNA-seq 

data, called scTDA. scTDA is publicly available at https://github.com/RabadanLab/scTDA.  

Online Database 

We developed a database that allows easily exploring the topological representations and 

statistics of the two motor neuron differentiation datasets. The database is publicly available at 

https://rabadan.c2b2.columbia.edu/motor_neurons_tda. 
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CHAPTER 3: Modeling Amyotrophic Lateral Sclerosis in vitro 

 

Amyotrophic Lateral Sclerosis is a paralytic disease that selectively impacts 

subpopulations of motor neurons.  During the onset and progression of ALS, each cell type within 

the spinal cord responds and contributes to a toxic effect on motor neurons10. Whole exome and 

genome sequencing has identified familial and sporadic mutations in genes associated with ALS, 

and these genes are transcriptionally active within both neurons and glia.  Mechanistic insights 

into disease progression have been provided by in vivo and in vitro modeling with such ALS-

associated genes. The most accurate ALS mouse model is based on overexpression of the 

superoxide dismutase 1 (SOD1) gene bearing a mutation shown to cause familial ALS. 

Introducing an ALS-associated variant of SOD1, such as SOD1G93A, into model organisms 

phenocopies ALS disease progression11. In vivo mouse models have revealed the contributions 

of glia and neurons to the onset, and progression of ALS by the conditional expression of 

SOD1G93A in specific cell types12-16. Astrocytes, which normally function as support cells for 

neurons, become reactive and secrete toxic moieties, inducing and accelerating motor neuron 

degeneration17-20. Microglia, the macrophage-like immune cells of the central nervous system, 

become activated and release pro-inflammatory signaling molecules21-23. Mature 

oligodendrocytes are replaced by an immature population lacking the capacity to myelinate 

axons24, 25.  Taken together, these observations motivate a deeper understanding of cell type 

specific effects on ALS disease progression. These complex pathological events can be modeled 

more simply with in vitro cultures of defined cells, which can be generated from primary cells 

isolated from animal models or from human patients. Primary astrocytes, microglia, and cortical 

neurons can be expanded in culture and studied directly, while motor neurons are commonly 

obtained through reprogramming stem cells. Although limited in their in vivo predictive potential, 

in vitro models offer a well-defined, scalable approach to monitor and test hypotheses of ALS 

disease progression. Ensemble averaged transcriptomic studies performed in vitro using 

sandwich cultures have identified key pathways triggered by cell autonomous and cell non-

autonomous effects65. We sought to disentangle the extrinsic effect of glia from the intrinsic 
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alterations occurring within individual motor neurons during ALS disease progression, seeking to 

resolve dynamic events and subpopulations masked in ensemble averaged measurements.  

Chapter two of this thesis provided a computational and experimental paradigm to 

capture the continuous structure associated with single cell studies of heterogeneous cellular 

responses.  In that work, topological data analysis coupled with single cell sequencing enabled an 

unsupervised dissection of the transcriptional programs and accompanying regulatory 

architecture associated with the in vitro differentiation of mouse embryonic stem cells into motor 

neurons.  Given an abundance of in vivo knowledge available, in vitro standardization, and 

stereotypy in results, this system provided several advantages for a proof of concept study.  

Furthermore, the motor neurons generated from chapter two are often utilized to model ALS in 

vitro, supporting their use in feasibility studies. Although that workflow provided a meaningful 

approach to the study of continuously structured cellular responses, further computational and 

experimental innovation was required to its application towards the study of ALS disease 

progression.  

As mentioned in the introduction, subpopulations of a, b, and g motor neurons may be 

defined by transcriptional signatures6.  Despite interest in the identification of new markers for 

motor neuron identity, single cell sequencing is limited by its depth of coverage, limiting further 

refinement of motor neuron subclasses.  In addition, ensembles of highly similar groups of 

individual cells are difficult to classify using traditional similarity metrics such as linear correlation.  

In this study, information theory has been linked with topological data analysis to provide a 

detailed insight into the dynamics associated with, and the relative contribution of, cell 

autonomous and non-autonomous effects on gene expression in motor neurons during ALS 

disease progression.  Although the results from this study are complex, I will focus the discussion 

on three emergent principles identified; glial contributions to accelerated neuronal aging, altered 

nutrient homeostatic signatures, and counteraction against innate immunity. 

Among the methods employed to classify cell types from single cell sequencing, Mutual 

information has been used previously to analyze and interpret subpopulations of projection 

neurons in Drosophila Melanogaster.  In that study, genetic identity was tied to patterns of 
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projection to the mushroom body of the fly brain231.  Further computational studies demonstrated 

that mutual information, defined as the mutual dependence of two random variables on one 

another, is capable of capturing nonlinear and non-monotonic dependencies between genes or 

groups of genes232.  A characteristic metric associated with mutual information is known as the 

Jaccard index, which encapsulates entropic similarity between genes.  Rather than utilize 

Pearson correlation as a metric for similarity across the transcriptomes of individual cells (as 

performed in scTDA), we utilized the Jaccard Index to generate topological representations from 

motor neurons undergoing disease progression. 

Stem cell based models of neurodegenerative disease provide a platform to study 

disease progression in a well-defined environment.  As a corollary, unique contributions of 

individual genes and cell types to disease may be elucidated. Unlike primary motor neurons, 

which are difficult to isolate and culture, stem cell-derived motor neurons allow hundreds of 

thousands of cells to be profiled at once. In vitro models are easily manipulated, and can be 

purposed to studying genetic variants introduced via gene editing, silencing, or overexpression. 

Furthermore, cells can be co-cultured in different combinations, allowing cell type-specific 

contributions to ALS to be identified. Murine stem cell (mESC) derived motor neurons (ESMN), 

human stem cell (hES), and human induced pluripotent stem cell (hiPSC) derived motor neurons 

(hES-MN and hiMN) have been co-cultured with astrocytes, microglia, and myocytes to study 

ALS disease progression233. hES-MN and hiMN models have the advantage of being human-

based and patient-specific, thereby allowing modeling of sporadic ALS and the full spectrum of 

genetic variation in the background of the genome of an ALS patient, However, these models do 

not replicate the ultimate degenerative phenotype of ALS in vivo. Mice that overexpress the 

human ALS-causing SOD1G93A mutation have been used to model ALS since 199411, and ESMNs 

differentiated from their mESCs have been used to study ALS in vitro.  

 ESMNs constitute a FACS-purified population of Hb9::eGFP positive cells from 

dissociated EBs at day 7 of differentiation. They can be generated from mESCs harboring any 

mutation, allowing for interrogation of any gene implicated in ALS for which a mouse model is 

available. Furthermore, non-transgenic mESCs can be genetically manipulated to express a 
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reporter gene or genetic mutation, providing an alternative to mouse models.  ESMNs display 

transcriptional programs consistent with LCMD motor neurons from the spinal cord65, and 

morphologically appear like primary spinal motor neurons. Based on the expression of Hox 

genes, which determine rostro-caudal positioning of motor neurons in the spinal cord, the majority 

of ESMNs most highly resemble cervical motor neurons34. in vitro ESMNs require neurotrophic 

factors from astrocytes to survive in culture, and are plated either in sandwich culture or co-

cultured with primary astrocytes isolated from neonatal mice. In control models, these astrocytes 

come from nontransgenic (NT) or WT hSOD1 (WT) overexpressing mice, while in disease models 

astrocytes are derived from ALS model animals. ESMNs overexpressing SOD1G93A exhibit 

decreased viability compared to SOD1WT ESMNs and accelerated degeneration when cultured in 

the presence of SOD1G93A glia. Astrocyte toxicity has been shown to be ESMN specific, as 

mESC-derived interneurons and ocular neurons display consistent survival in the presence or 

absence of SOD1G93A expressing cells.51, 234  Recently human reprogrammed astrocytes have 

been used in coculture with ESMNs to study the effects of patient astrocytes on motor neuron 

health and viability235. 

 A timecourse study over a two week ESMNG93A – murine SOD1G93A astrocyte sandwich 

culture has revealed transcriptional changes in astrocytes and ESMNs that are ALS specific.65 

These effects can be cell autonomous, taking place in SOD1G93A ESMNs in the presence of WT 

astrocytes, or non-cell autonomous changes that are induced in ESMNs by the presence of a 

secreted factor from mutant astrocytes. Among these are changes in TGFb signaling, which have 

been validated in in vivo, in the murine spinal cord. Axonal degeneration is one of the first signs of 

ALS236. in vitro Axon-Seq has shown differences in the transcriptional profiles of somas of 

SOD1G93A ESMNs and their axons. Over a hundred of these genes are dysregulated in the axons 

of SOD1G93A ESMNs, corresponding to both pathological and compensatory programs237. 

 Although motor neurons in the spinal cord are selectively vulnerable to degeneration in 

ALS, not all spinal motor neurons are equally affected. Fast motor neurons, marked by the 

expression of Matrix Metalloprotease 9, are highly vulnerable.238 Comparative studies of 

vulnerable neurons with resistant ones has further implicated genes involved in protein transport 
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and excitability in marking motor neurons as differentially vulnerable or resistant.239 Given the 

differences in motor neuron disease susceptibility in vivo, and the differential in vitro viability of 

ESMNs, it is possible that there exists an unappreciated underlying heterogeneity in ALS disease 

progression in cultured ESMNs. This heterogeneity is obscured in bulk data, but can be resolved 

with scRNA-seq. A timecourse study with increased resolution of SOD1WT and SOD1G93A ESMNs 

co-cultured with SOD1WT and SOD1G93A murine astrocytes will allow the interrogation of cell 

specific pathway activation, determine the fractional composition of cells expressing a given 

transcript, and identify outlier populations that may contaminate bulk data with strong expression. 

 

Results 

ESMNs differentiated from SOD1WT and SOD1G93A mESCs were cultured over SOD1WT and 

SOD1G93A primary murine astrocytes. At days 3, 7, and 14 post-plating, cells were dissociated 

and eGFP+ ESMNs were FACS-sorted into 384 well plates. scRNA-seq libraries were generated 

using a modified SCRB-seq protocol, with 8500 genes detected per cell on average 

(Supplementary Figure 20). The following annotation will be used do identify ESMN genotype and 

culture condition:  

 

WT/WT =  SOD1WT ESMNs cultured over SOD1WT astrocytes 

WT/G93A = SOD1WT ESMNs cultured over SOD1G93A astrocytes 

G93A/WT = SOD1G93A ESMNs cultured over SOD1WT astrocytes 

G93A/G93A = SOD1G93A ESMNs cultured over SOD1G93A astrocytes 

 

Visualization of transcriptional profiles of single ESMNs using kNN 

As a group, ESMNs have a highly similar transcriptional program regardless of the conditions 

they are sampled. This is because ESMNs have been FACS purified to ensure they are 

Hb9::eGFP positive post-mitotic cells. The most direct approach to find variability in a highly 

homogeneous population is through PCA followed by dimensional reduction using Euclidean 

distance. Cells (nodes) are plotted on a k-nearest neighbor (kNN) graph using a force-directed 
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layout240. Edges in the graph represent connections between neighboring cells in high-

dimensional space, however most of these edges have been removed during visualization and 

can be excluded from the display without compromising data integrity (Figure 8). As with tSNE 

plots, the physical absolute coordinates of the cells have no intrinsic meaning beyond 

visualization, while orientation of cells relative to one another is biologically meaningful. 

Transcriptional variability will be observed not just between cells sampled under different 

conditions, but between cells sampled at different time points. Because the algorithm is not 

focused on maintaining continuity of the data, but rather identifying differences in transcriptional 

profiles, the timecourse is not linear. However, the WT/WT condition at days 3, 7, and 14 can be 

taken as a baseline for normal aging of ESMNs in culture. The clusters identified by kNN do not 

show complete exclusivity for conditions and sampling time. For example, instead of forming a 

cluster of their own, WT/G93A cells at day 7 are divided between the day 7 WT/WT and 

G93A/WT clusters. 

 

Clustering of ESMNs with kNN 

For each cluster, the predominant ESMN populations are outlined below. When fewer than 10 

cells from a different sample are present, they are excluded from the labeling (Table 1). Force 

directed layouts afford flexibility such that clusters can be relocated to a position more consistent 

with the remainder of the graph without altering the information content. The clusters are defined 

in three principal ways: 1) the expression level of a transcript, 2) the number of cells that express 

a transcript, 3) uniqueness of a transcript to a given cluster. 

 

ESMNs sampled at day 3 form 4 distinct but largely continuous clusters in the kNN graph 

(clusters 1-4). The transcripts responsible for segregating the samples are nonexclusive to the 

cluster, but rather are expressed at higher levels in subsets of ESMNs. Cluster 3 appears more 

separated from the others. This is due to a higher sampling depth, not to expression of unique 

transcripts.  

Cluster 1: Day 3 WT_WT 
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Cluster 2: Day 3 WT_G93A 

Cluster 3: Day 3 G93A_WT 

Cluster 4: Day 3 G93A_G93A 

 

ESMNs sampled at day 7 form 3 distinct but continuous clusters in the kNN graph (clusters 5-7). 

Again, the clustering is weighed by expression level more than unique transcripts. The expression 

level differences that started in day 3 become more pronounced at day 7 (eg, Gm1821, Selm). 

New transcripts also appear as differential between clusters (eg, S100a11, Gpx3, Ddx42). 

Cluster 5: Day 7 WT_WT; D7 WT_G93A; D3 G93A_G93A 

Cluster 6: Day 7 G93A_WT; Day 7 WT_G93A 

Cluster 7: Day 7 G93A_G93A; Day 7 G93A_WT 

 

ESMNs sampled at day 14 form 4 main clusters and 2 less populated clusters which are subsets 

of two of the main ones. Again, within clusters there are cells sampled at different conditions. 

There are now concrete differences in the transcripts that are expressed between clusters 

(Hspb2, Saa3, Mlkl), the number of cells in each cluster that express a given transcript (Pvalb), 

and the expression level of the transcript (Ftl1). 

Cluster 8: Day 7 G93A_G93A, Day 14 WT_WT 

Cluster 9: Day 14 WT_WT, Day 14 WT_G93A 

Cluster 10: Day 14 WT_G93A; Day 14 G93A_WT 

Cluster 11: Day 14 G93A_WT; Day 14 G93A_G93A 

Cluster 12: Day 14 WT_WT, Day 14 WT_G93A 

Cluster 13: Day 14 G93A_WT; Day 14 G93A_G93A 

 

Dying populations 

At day 14, two populations of ESMNs strongly enriched for stress markers (Lyz1, C1qa, C1qb, 

and C1qc) appear (clusters 12 and 13, Supplemental Figure 22A). The first (cluster 12), 

projecting from a predominantly day 14 WT/G93A cluster, is composed of 9 WT/WT and 28 
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WT/G93A ESMNs and corresponds to non-cell autonomous cell death pathway. The second 

(cluster 13), projecting from cluster 11, is composed of 11 G93A/WT and 48 G93A/G93A ESMNs, 

corresponding to a cell autonomous cell death population. Expression of genes spanning several 

pathways, including cytoskeletal genes such as Cnn1 and Acta2, segregate the two populations. 

Between clusters 11 and 13, the expression level of stress markers in cells is a continuum such 

that the cells in cluster 11 most distant from cluster 13 have the least expression of stress 

markers while the cells more adjacent to cluster 13 have a stronger expression of stress markers. 

The same pattern of expression can be seen between clusters 10 and 12, however the dropoff of 

stress markers is more pronounced in the distal cells of cluster 10.  

 

Shared profiles of ESMNs between sampling days 

Excluding subgranular and subventricular zones, within the mammalian body neuronal cells are 

resident for the lifespan of the animal. Interestingly, the data indicate a surprising accelerated 

aging process in SOD1G93A neurons co-cultured with mutant glia. While SOD1G93A results in 

distinct transcriptional changes in ESMNs both cell autonomously and non-cell autonomously, it 

also results in a previously unappreciated acceleration of aging in a subset of G93A/G93A 

ESMNs. Out of 383 G93A/G93A ESMNs sampled at day 3, 26 (7%) clustered with WT/WT 

ESMNs sampled at day 7. This trend becomes more apparent at day 7, when 51 out of 363 

(14%) G93A/G93A ESMNs exhibit a transcriptional program that results in them clustering with 

WT/WT ESMNs sampled at day 14. 

 

Continuum of transcriptional changes associated with ALS 

Overlap between ESMNs sampled at different conditions shows a continuity in ALS-associated 

transcriptional changes. At timepoints 7 and 14, each cluster is composed of a mix of cells 

representing a combination of either: 1) WT_WT and WT_G93A; 2) WT_G93A and G93A_WT; 3) 

G93A_WT and G93A_G93A. Interestingly, these combinations are consistent – WT_WT ESMNs 

do not appear in the same cluster as G93A_WT or G93A_G93A ESMNs. This implies a hierarchy 

governing cell autonomous and non-cell autonomous effects. The non-cell autonomous 
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contributions of SOD1G93A astrocytes can induce a transcriptional program in a subset of SOD1WT 

ESMNs that change their transcriptional profiles to more closely resemble those of SOD1G93A 

ESMNs cultured with SOD1WT glia. However, this effect is not sufficient to reproduce the 

“disease” transcriptional program of G93A_G93A ESMNs. This is time-dependent, as day 3 

ESMNs form distinct clusters that are delineated by the condition under which they were 

sampled. 

 

Expression of non-neuronal genes in ESMNs sampled at day 14 

Surviving ESMNs at day 14 start displaying transcriptional signatures of astrocytes, microglia, 

and oligodendrocytes (Figure 9). We limit our analytical focus to earlier timepoints, given the 

preponderance of motor neuron death at later stages and the subsequent enrichment of non-

neuronal cell type contaminants. That said, such non-neuronal transcriptional signatures have 

previously been shown to occur both in vivo and in vitro studies of neurons in disease and 

health.241-244 It is possible that the expression of these RNAs in ESMNs are a consequence of 

artificial culturing conditions, as they have previously been seen in transcriptional studies of 

ESMNs65. Likewise, it is possible that the presence of SOD1G93A promotes the expression of 

these genes in late-stage ESMNs. It has also been shown that astrocytes secrete extracellular 

vesicles (EVs) containing miRNAs that have a functional on ESMNs.245-247 It is possible that the 

altered transcriptional programs of late-stage ESMNs is impacted by exposure to EVs containing 

regulatory elements from support cells. 

 

Single Cell Topological Data Analysis applied to post-plated ESMNs 

Clustering approaches such as kNN can provide strong insights into the transcriptional 

differences between groups of cells, but lose resolution for continuity in the data. scTDA coupled 

with mutual information allows the determination of a “map” of transcriptionally continuous data in 

a background of high similarity. In order to gain insights into both cell autonomous contributions of 

SOD1G93A in ESMNs and the non-cell autonomous contributions of SOD1G93A primary astrocytes, 

as well as cumulative changes occurring in ALS disease, I generated three separate topological 
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representation of the timecourse data using only the cells sampled at days 3 and 7, which show 

high expression of pan-neuronal markers (Figure 10, Supplemental Figure 23). For generating 

the representations, I used ~1500 genes of maximum variance. One key difference between 

these representations and the one in Chapter 2 is the circular structure found in autonomous and 

disease states (Figure 10A, C). This is a result of continuity in the data from shared transcriptional 

programs between cells sampled at different conditions. In combination, ESMN genotype and 

culture time result in loops, or holes, in the representation, while nonautonomous astrocyte 

contributions result in a spreading of time-ordered data. Biologically, this structure suggests that 

the ESMN genotype and in vitro culture time have a greater impact on the transcriptional readout 

of ESMNs than the extrinsic effects of SOD1G93A glia. It is important to remember that in scTDA 

representations, greater physical distances (longer edges) in the graph do not correlate with 

greater transcriptional differences, but are rather a function of visualization. Distance between 

nodes is calculated as the fewest number of edges connecting two nodes. 

 The first is a comparison of cell autonomous changes: SOD1WT and SOD1G93A ESMNs 

cultured over SOD1WT astrocytes (Figure 10A). The structure shows of a time-dependent 

bifurcation the data. Starting from closely related day 3 SOD1WT and SOD1G93A ESMNs, which 

occupy adjacent and overlapping nodes, the representation branches into two connected day 7 

populations demarcated by ESMN genotype. The nodes connecting two populations of ESMNs at 

day 7 imply shared transcriptional programs in subpopulation of cells within those nodes, while 

the nodes connecting the day 7 populations to their respective day 3 populations retain 

transcriptional similarity to the earlier timepoints. The cells within these nodes can be considered 

transitioning cells, and we are in the process of examining the transcriptional programs that they 

encompass to understand the basis for asynchronous disease progression. 

 The second representation is a comparison of non-cell autonomous changes in SOD1WT 

ESMNs cultured over SOD1WT and SOD1G93A astrocytes (Figure 10B). In this representation, the 

cells are still time-ordered, however both the day 3 and the day 7 populations are adjacent and 

overlapping without loops in the structure. Interestingly, the ESMNs cultured over SOD1G93A 

astrocytes have very few direct connections between day 3 and day 7 samples, instead 
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transitioning through the late day 3 and early day 7 ESMNs cultured over SOD1WT astrocytes. 

This is consistent with accelerated aging that, in the kNN clustering, was called out in the disease 

condition.  

 The third representation is a comparison of disease changes in SOD1WT and SOD1G93A 

ESMNs cultured over SOD1WT and SOD1G93A astrocytes (Figure 10C). This representation shows 

not bifurcation in the data, but rather condensation of SOD1WT and SOD1G93A conditions over 

time. The starting populations at day 3 are largely distinct, with connecting nodes containing 

subsets of cells that are transcriptionally similar. Over time, the transcriptional programs coalesce 

into a largely connected day 7 population. One reason for this may be that that the surviving 

SOD1G93A neurons at day 7 in the disease model show greater transcriptional similarity to the 

SOD1WT neurons, while the selectively vulnerable population has degenerated. To understand 

the connections between the disease and the control conditions, we are again in the process of 

examining the transcriptional programs activated in nodes that connect populations.  

 

Accelerated aging in SOD1WT ESMNs under stress of SOD1G93A astrocytes 

 Astrocytes provide neurons metabolic substrates and precursors utilized for energy 

production, neurotransmitter synthesis, along with lactate and glutathione regulation.  

Furthermore, astrocytes remediate neuronal accumulation of oxidized products and glutamate248.  

We sought to understand how diseased astrocytes contribute to oxidative stress within motor 

neurons and the resulting impact on canonical aging signatures.   Thioredoxin interacting protein, 

Txnip, is upregulated across multiple species during aging, and is one of 9 genes that is 

transcriptionally upreguated in ten regions of the human brain during aging.  Furthermore, it has 

been shown to be responsible for accelerating aging in cells and organisms249, 250. It functions 

through suppressing the actions of thioredoxin (Txr, encoded by the cytoplasm and nuclear 

localized Txn1 and mitochondrial localized Txn2), an antioxidant protein that promotes longevity 

through protective mechanisms against oxidative stress251. While both Txnip and Txr are 

constitutively expressed, overexpression of Txnip is induced in neurons by oxidative stress and 

contributes to neuronal apoptosis252. In these data, we found Txnip upregulation in subsets of 
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Day 3 SOD1WT and SOD1G93A ESMNs cultured over SOD1G93A astrocytes, but not in SOD1G93A 

ESMNs cultured over SOD1WT astrocytes, implying a non-cell autonomous role for the early 

activation of this gene (Figure 11). In congruence with this observation, Txr levels are low at the 

early timepoint and rise at day 7 in the nonautonomous and disease conditions, while remaining 

consistent in the cell autonomous condition, further implicating the contribution of astrocytes to 

the control of the Txr/Txnip pathway.  We cross validated this phenomenon with spatial 

transcriptomics data collected from SOD1G93A spinal cords from mice253.  The results are in 

agreement, with elevated P30 SOD1G93A observed within the spinal cord when compared to P30 

SOD1WT (Supplementary Figure 26A).  Oxidative stress is implicated as a key mechanism for 

motor neuron death in ALS, and understanding the early responses of motor neurons to oxidative 

damage, both through intrinsic and extrinsic signaling pathways, is important for further 

understanding disease onset and progression254.  Outside of the central nervous system, Txnip 

dissociation from Txr accelerates inflammasome activation through its subsequent binding with 

the Nod like receptor protein 3, Nlrp3, and further provides a mechanistic switch between an 

adaptive versus terminal unfolded protein response255.  The phenomenon, points to a potentially 

novel early stage mechanism that has gone unappreciated in motor neuron disease. 

 

Dysregulation of iron homeostatic genes 

Nutrient homeostasis is classically defined by a cell’s ability to dynamically maintain a constant 

intracellular concentration of a given nutrient.  Clearly, neurons are relatively unique in that they 

must cope with dramatic intracellular changes in calcium, sodium, potassium, and glutamate 

concentrations.  These alterations, of course, are integral to the electrical activity occurring within 

neurons, which mediates synaptic communication.  Supporting this activity are cell autonomous 

buffering mechanisms, such as calcium buffering by the endoplasmic reticulum256.  Furthermore, 

astrocytes mediate glutamate clearance and provide nutritive support to neurons within the 

mammalian spinal cord257. Given our interest in cell autonomous and non-cell autonomous 

changes contributing to disease progression, we sought to identify alterations in nutrient 

homeostatic mechanisims during our time course experiments.  We hypothesized that changes in 



	 70	

nutrient availability, namely availability and usage, may lend deep insights into changes in 

neuronal survival and susceptibility.  Iron homeostasis is of critical importance to neuronal 

function, as iron is a critical cofactor in many enzymes responsible for electron transfer in redox 

reactions, including proteins involved in the electron transport chain for respiration, control of 

gene expression, and DNA repair.258 Excess iron is also a source of free radicals and oxidative 

damage in cells.259 Iron homeostasis is dysregulated in a number of neurodegenerative 

conditions, resulting in the accumulation of iron deposits in neurons.260  

 Biologically, iron is present in two forms: ferric iron (Fe3+) and ferrous iron (Fe2+). Iron is 

transported and stored in the ferric state, however metabolically it is used in the ferrous state. Iron 

is imported into cells through two pathways, one for ferric iron involving the transferrin receptor 

(Tfrc), the other for ferrous iron through a divalent metal ion transporter (eg, Slc11a2 and 

Slc39a14). While transferrin is not expressed in the sequencing data as it is not produced by 

neurons, it is present to the culturing medium through N2 supplement (see Methods). The 

transferrin receptor, Tfrc, is highly expressed in days 3 and 7 of culture, however expression is 

tapered in day 14 ESMNs, especially those in the diseased state corresponding to clusters 11 

and 13. This is consistent with the expression of Tfrc in the spinal cord of SOD1G93A mice, as 

seen by spatial transcriptomics through ALS-ST.NYGENOME.ORG (Supplemental Figure 26B) 

253. Expression of Slc11a2 and Slc39a14 is ubiquitous throughout the timecourse, but Slc11a2 is 

more sparsely represented in clusters 3, 5 and 10 (Supplemental Figure 22B). Decreased 

expression of iron import proteins indicates diminished uptake of iron into ESMNs and surplus 

iron in these cells. 

In order to better understand the trends in expression of the iron transport genes, we 

looked at the expression of the ferric iron transporter Tfrc and the ferrous iron transporter Slc11a2 

in the scTDA representations (Figure 12). Tfrc and Slc11a2 are constitutively expressed across 

all samples, but their expression levels vary between conditions. Tfrc has higher expression at 

day 7 than day 3 in all conditions except for the day 3 nonautonomous ESMNs cultured over 

SOD1G93A astrocytes, which has comparable expression to day 7 timepoints. This is consistent 

with the “accelerated aging” of these ESMNs observed in the previous section. Slc11a2 
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expression is consistent in all samples of the non-cell autonomous condition. In day 7 of the 

SOD1G93A ESMNs in the disease condition, Slc11a2 is down-regulated while the expression of 

Tfrc is upregulated, suggesting a switch in the iron transport system. Tfrc has also been shown to 

be upregulated in presymptomatic stages of ALS in laser-capture microdissected motor neurons 

from the murine spinal cord (p = 0.002)261. Slc11a2 is lowly expressed in the day 3 SOD1G93A 

ESMNs of the cell autonomous condition, but by day 7 (and in the nodes connecting the day 3 

with the day 7 population) has comparable expression in both genotypes. This suggests either a 

delayed activation of Slc11a2 in SOD1G93A ESMNs, or degradation of Slc11a2 mRNA in those 

cells. As I will talk about in the next paragraph, the transcripts for Tfrc and Slc11a2 are post-

transcriptionally regulated and are tightly correlated with iron availability in the cell. 

 Ferric iron is converted into ferrous iron through iron reductases such as Cxcl12 and 

Frrs1l, which are expressed throughout the timecourse. Intracellular ferrous iron concentrations 

are sensed and maintained by two iron responsive proteins, Irp1 and Irp2, through post-

transcriptional modifications of mRNAs encoding iron storage and transport proteins.262 When 

iron availability is low, Irp2 stabilizes transcripts with a 3’ iron response element (IRE) in the pre-

mRNA (eg TfR1 and Slc11a2, but not Slc39a14), and destabilizes transcripts with a 5’ IRE (eg 

Fth1, Ftl). A mouse model with Irp2 knockout leads to neurodegeneration, and specifically an 

ALS-like phenotype.263, 264 This signifies that despite accumulation of ferric iron in ferritin, a non-

metabolically available iron storage system, neurons can be effectively starved for metabolically 

active ferrous iron. 

 Iron response is tightly correlated with immune and stress responses such as anoxia. 

However, canonical transcriptional changes for these pathways (such as C reactive protein 

overexpression) are not seen in these data, suggesting an SOD1G93A specific response. In order 

to see if Irp2 could play a role in SOD1G93A mediated motor neuron degeneration, the SOD1G93A 

and SOD1WT mouse spinal cords were stained for Irp2 expression. While published data suggest 

that Irp2 is a cytoplasmic protein, strong nuclear Irp2 signal was seen in motor neurons in the 

cervical, thoracic, and lumbar regions of the SOD1WT mouse spinal cord. The nuclear localization 

was disrupted in the SOD1G93A motor neurons, and was replaced by cytoplasmic aggregation that 
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was p62 negative (Figure 13).  This suggests altered activity by this key regulator of iron 

homeostasis.   

 

Topological Representations of Days 3, 7, and 14 of the Autonomous Condition 

The day 3, 7, and 14 combined data were also visualized through scTDA74. SOD1WT and 

SOD1G93A ESMNs plated over SOD1WT astrocytes were examined using Jaccard mutual 

information (Figure 14).  Mutual information offers the ability to detect nonlinear correlation within 

transcriptional signatures, offering exquisite discrimination within highly similar ensembles of 

neurons231. Continuity between the transcriptional profiles of ESMNs sampled at day 3 and 7 was 

retained, and ESMNs from the two genotypes separated at day 14 into two distinct paths. The 

possible early aging of day 3 and 7 SOD1G93A ESMNs was evident as overlap between day 7 

SOD1WT and day 3 SOD1G93A nodes, and day 14 SOD1WT and day 7 SOD1G93A nodes, when 

nodes were colored by library (Figure 14). Genes involved in two key pathways, calcium 

regulation and lipogenesis, were among those differentially regulated between genotypes at day 

14 and are partially responsible for the bifurcation between them (Figure 15, Supplemental Figure 

22C). 

 

Single nuclei sequencing of the SOD1G93A spinal cord 

Isolating cells from the spinal cord is challenging because dissociation is inhibited by the high 

myelin content in the tissue. Tissue homogenization followed by nuclei purification through 

centrifugation is an alternate method of gaining access to transcriptional information in single 

cells. As a proof of concept, single nuclei from a SOD1G93A end-stage mouse were isolated and 

sequenced (Figure 16A,B,C). Glial and neuronal nuclei showed discrete transcriptional programs 

(Figure 16D). Subpopulations of neurons (excitatory and inhibitory interneurons) as well as highly 

stressed cells could be identified via clustering (Figure 16E). Glial populations (astrocytes, 

microglia, oligodendrocytes) and endothelial cells were also identified (Figure 16F). This pilot 

experiment shows that single nuclei sequencing can discern differences in cell populations and 

be used as a platform to study in vivo ALS disease progression with high resolution. 
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Methods 

 

Cell culture and single cell isolation 

ESMNs were differentiated according to published protocols, and co-cultured on poly-D lysine 

and laminin coated coverslips with primary astrocytes harvested from p2 mice.34, 65 At days 3, 7, 

and 14, cells were dissociated off coverslips using the Worthington papain digest system 

(Worthington cat. # PDS) with >95% viability. Single GFP+ DAPI- ESMNs were sorted into a 384 

well plate containing 1ul of PBS+1:100 superasin. 384 well plates were immediately frozen in 

liquid nitrogen and stored at -80C before processing. 

 

Spinal cord nuclei purification and isolation 

The lumbar region of the spinal cord was grossly dissected from a sacrificed p150 SOD1G93A 

mouse in one minute to preclude overwhelming transcription of stress genes. The spinal cord was 

immediately placed into ice cold homogenization buffer (1x salt solution [5mM CaCl2, 3mM 

Mg(Ac)2, 10mM Tris HCl pH 7.5], 1mM b-mercaptoethanol, 320mM sucrose, 0.1mM EDTA, 0.1% 

NP-40) with DAPI. Homogenization was performed 25 times with a lose pestle followed by 20 

times with a tight pestle on ice. The homogenized solution was filtered through a 100um mesh 

and incubated with primary Cy3-conjugated NeuN antibody (abcam ab104225, ab188287) for 10 

minutes on ice. An equal volume of 50% optiprep solution (diluted in 1x salt solution, 1mM b-

mercaptoethanol, 320mM sucrose) was added, mixed gently, and layered over 10ml of 29% 

optiprep solution (diluted in 1x salt solution, 1mM b-mercaptoethanol, 320mM sucrose). The 

gradient was spun at 10,100g in a swinging bucket ultracentrifuge for 30mins at 4C. The upper 

layer was fully removed first to prevent carryover of debris, then the bottom layer was also fully 

removed. Pelleted nuclei were resuspending in PBS with 1:100 superasin. Neuronal (Cy3+) and 

glial (Cy3-) nuclei were sorted into separate 384 well plates. 

 

Single cell library generation 
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Library generation was done using a modified version of SCRB-seq, with 4 plates done in 

parallel.265 Briefly, 1ul of a 2uM reverse transcription primer containing a universal primer, cell 

specific barcode, and UMI was added to each well. Plates were incubated at 72C and placed 

immediately on ice. 3ul of RT master mix (864ul 10mM dNTP, 1728ul 5x RT buffer, 69ul 1:5*10^6 

ERCC, 175ul RNase inhibitor, 150ul Maxima H-, 2200ul water) were added to each well, and RT 

was performed with 42C extension for 90 mins, followed by 10 cycles of 50C 2mins and 42C 2 

mins. The reaction was terminated with a 15 min 70C step. 7ul of a PCR master mix (40ul 100uM 

PCR primer, 4ml 5x Kapa HiFi Buffer, 600ul 10mM dNTP, 400ul KAPA HiFi Polymerase, 7ml 

water) was added per well, and PCR was done with 98C 3 mins, 15 cycles of 98C 15sec, 67C 

30sec, 72C 6 mins, followed by a 72C 5 min extension. All wells from a single plate were pooled 

and 0.8x ampure was performed. cDNA was eluted in a 60ul volume of water. Tagmentation was 

done on cDNA from each plate according to Illumina Nextera XT protocol. Tagmented cDNA was 

amplified using a unique N7XX index primer and universal P5 primer with a 72C extension step 

for 3mins, followed by 95C for 30 sec and 12 cycles of 95C 10sec, 55C 30sec, 72C 1min, 

followed by a 72C extension for 5min. Libraries were purified by one round of 0.8x ampure 

followed by one round of 0.65x ampure with a final elution volume of 20ul in water. Libraries were 

KAPA quantified and submitted for sequencing on a NovaSeq. 

 

Immunofluorescence 

SOD1WT and SOD1G93A animals were perfused with PBS followed by 4% PFA. Spinal cords were 

dissected and allowed an overnight post-fixation at 4C, then cryopreserved in 30% sucrose, 

sectioned into cervical, thoracic, and lumbar segments, and embedded in OCT. IRP1 antibody 

(1:200 Santa Cruz #sc-166022) and IRP2 antibody (1:500 Novus biological #NB100-1798) were 

incubated on sections in blocking buffer (5% donkey serum, 1% BSA, 0.3% Triton X-100) 

overnight at 4C, washed, and secondary labeled with abcam Alexa-fluor conjugated pre-adsorbed 

antibodies. Imaging was performed on a Axio Imager Z2 with an Andor iXon3 EMCCD camera. 

 

Processing of scRNA-seq Data 
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Reads were demultiplexed and deduplicated using UMItools162. Processed reads were mapped 

against a combined mm10 and ERCC reference genome using STAR mapper166. Cells were 

filtered based on processed read counts (cells with >40,000 reads and <1,000,000 reads were 

retained) and percent ERCC (cells for which ERCC counts accounted for >0.15% of reads were 

discarded). Counts for genes detected per cell were normalized to transcript per million (TPM). 

kNN clustering and force-directed graphing was done using SPRING240. scTDA visualization was 

done using the Ayasdi platform. Spinal nuclei clustering was done using RaceID77. 

 

Future Directions 

 

Topologically mapping single cells in a disease timecourse has not yet been done, and 

topological modeling of this data poses new computational challenges. Combining 4 separate 

timecourse studies into a single representation is an attractive approach, and a platform for 

intersecting these data is being developed. Computational analysis will require new statistical 

frameworks to identify pseudotime in the representation. 

 

The role of iron homeostasis in ALS disease progression will be examined more closely. Ferric 

(Prussian Blue) and ferrous (Turnbull Blue) iron stains can reveal the relative concentrations of 

stored and available iron in spinal cord tissue. While ferric iron buildup is a common symptom of 

neurodegenerative disorders, and ferric iron chelators are being examined as possible 

therapeutic tools in ALS266, the relative levels of metabolically available ferrous iron should be 

considered. Furthermore, the activity of Irp1 and Irp2 should also be measured both in motor 

neurons and surrounding glial cells. This can be done by looking at the mRNA levels of 

transcriptional targets containing IRE. A comparative study of transcriptional programs in nuclei 

isolated from the SOD1WT and SOD1G93A spinal cords should be done to assess the differential 

expression of IRE containing transcripts in vivo. 
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While in vitro human models of ALS do not show selective MN degeneration like the ESMN 

models do, they do exhibit aberrant RNA and protein aggregation, transcriptional changes, and 

axonal breakage. The lack of degeneration phenotype could be a result of the late-onset of ALS, 

with the newly generated iMNs not aging sufficiently in vitro to exhibit end-stage properties. 

Alternatively, iMNs may be sufficiently artificial that they cannot respond to the presence of a 

disease-associated gene in the same manner as purified ESMNs. Purity or heterogeneity in iMNs 

and hES-MNs has not been well characterized. One approach to purifying iMNs is by introducing 

a reporter gene, such as is done with Hb9::eGFP in mESC-derived models. While this can be 

achieved with human stem cells, the characteristics of differentiation may be different and the 

resulting population may have more variability or artificiality than in mESC-derived models. Using 

scRNA-seq to characterize the heterogeneity in iMNs and hES-MNs prior to disease modeling 

can help interpret biological results from these studies. 
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Discussion 
 

 

Single cell RNA sequencing studies provide us with the unique capability of measuring the 

transcriptional activity of individuals within a heterogeneous population. This approach allows the 

determination of cellular subpopulations, and, coupled with timecourse studies, altered 

transcriptional dynamics and pathway activation. In order to gain access to this information, 

computational approaches with sufficient sensitivity and statistical strength need to implemented. 

Single cell topological data analysis (scTDA74) is a powerful approach that enables in-depth 

studies of transcriptional progression, and in this thesis was applied to in vitro neuronal 

differentiation and ALS disease progression. 

 

Early transcriptional alterations in ALS have been difficult to identify261. However, given that these 

events may mediate the onset of ALS and catalyze disease progression, understanding them is 

of critical importance. Due to the asynchronous progression of ALS in subsets of motor neurons 

within the spinal cord, bulk sequencing studies of early transcriptional changes are easily 

drowned out by variability of expression within cells and the low representation of susceptible 

motor neurons in tissue. in vitro modeling allows for a purified population of motor neurons to be 

studied, thus enriching for the target cell type. Furthermore, the experimental setup allows for the 

dissection of cell autonomous changes, driven by the presence of the SOD1G93A mutation within 

motor neurons themselves, from non-cell autonomous changes, driven by the presence of the 

SOD1G93A mutation in co-cultured astrocytes. In order to understand the relative contributions of 

these pathways, I performed scRNA-seq across 3 timepoints (days 3, 7, and 14) on mESC-

derived motor neurons (ESMNs) overexpressing either SOD1WT or SOD1G93A cultured over 

primary murine astrocytes overexpressing either SOD1WT or SOD1G93A. I then generated 3 

distinct scTDA models to compare early transcriptional changes associated with cell autonomous 

(CA), non-cell autonomous (NCA), and disease culture conditions.  
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Visualization of the scTDA models shows unique patterns in the organization of ESMNs within the 

representations, which reflect differences in global transcriptional programs over time under CA, 

NCA, and disease culture conditions. In CA, ESMNs sampled at day 3 have similar global 

transcriptional profiles regardless of their genotype, as can be seen by shared and closely linked 

nodes. However, over time in culture, the SOD1WT and SOD1G93A ESMN populations diverge, 

suggesting that transcriptional alterations associated with SOD1G93A expression in ESMNs 

accumulate over time and progressively impact neuronal health. In NCA, the timecourse 

trajectories intersect such that the ESMNs cultured over SOD1G93A astrocytes sampled at day 3 

reside in nodes located between days 3 and 7 of the control ESMNs. The localization of these 

cells is reminiscent of a (theoretical) day 5 control sample, and suggests an accelerated aging of 

the ESMNs driven by expression of SOD1G93A in astrocytes. Comparing control samples with 

disease samples shows  convergence of ESMN populations over time. Given that by day 7 many 

of the vulnerable ESMNs cultured in disease conditions have degenerated, this pattern suggests 

that the resistant population of ESMNs is transcriptionally more similar to the control ESMNs than 

the vulnerable population is. These kinetics indicate that the early timepoint provides crucial 

information for transcriptional profiling in ALS. 

 

Using the statistical analyses built into scTDA (centroid, dispersion, and connectivity), I identified 

altered gene activity patterns that defined the progression of ALS in ESMNs under CA, NCA, and 

disease stress. In this discussion I will focus on two pathways, iron import and oxidative-stress 

mediated accelerated aging, which converge on the unfolded protein response pathway through 

ER stress. While both iron dysregulation267 and oxidative stress254 have been associated in ALS, 

the resolution to study these phenomenon at the transcriptional level has previously been 

missing. Furthermore, the activation of these pathways suggest a novel mechanism of instigation 

of ER stress and the terminal unfolded protein response, which has been implicated as a key 

pathogenic feature of ALS268. 
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Iron homeostasis is critical for neuronal function, and its dysregulation has been implicated in 

many neurodegenerative diseases269. Iron import is largely controlled by two proteins, transferrin 

receptor (Tfrc) and divalent metal transporter 1 (DMT1)269, the expression of which is tightly 

regulated at the transcriptional level270, 271. Both of these proteins are downregulated in SOD1G93A 

ESMNs at day 3, suggesting a kinetic delay in the activation of iron response genes. While iron 

accumulation has traditionally been thought to be the predominant pathogenic feature in 

neurodegeneration, work done on an iron response protein (IRP2) knockout mouse line has 

shown that effective iron deficiency results in a model that phenocopies ALS264. This IRP2 

knockout mouse displays compromised mitochondrial function, which is an early feature of ALS 

and a major source of oxidative and ER stress in motor neurons272, 273. Impaired iron import early 

in SOD1G93A motor neurons may poise these cells to be selectively vulnerable to oxidative 

damage and ER stress later in the disease, despite the recovery of transcript expression over 

culture time. 

 

Mitochondrial dysfunction, oxidative stress, and ER damage are also all functions of aging, which 

is a major risk factor for the development of many neurodegenerative diseases including ALS274. 

The intermediate localization of day 3 NCA-stress ESMNs between the day 3 and day 7 control 

ESMNs in the NCA scTDA representation raises the possibility that ESMN aging could be 

accelerated by the presence of SOD1G93A astrocytes. While aging is difficult to define 

transcriptionally, recent work has identified the antioxidant inhibitor Thioredoxin Interacting 

Protein (Txnip) as consistently upregulated in aged brains249. Overexpression of Txnip has also 

been shown to be sufficient to induce aging in a Drosophila model through decreased resistance 

to oxidative damage250. Consistent with these findings, we see elevated expression of Txnip in 

the day 3 NCA ESMNs. The role of Txnip in the ALS spinal cord has not been studied, however a 

number of studies suggest that it may play a role in both selective motor neuron degeneration 

and ER-stress mediated neuroinflammation. 
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One function of Txnip is to bind to and inhibit Thioredoxin (cytoplasmic Trx1, and mitochondrial 

Trx2), a vital antioxidant protein known to be involved in mitigating oxidative damage275. Trx1 

expression is tissue specific, and has been shown to be expressed in motor neurons of the spinal 

cord276. Trx1 is upregulated after nerve injury277 and in lesioned cortical tissue278, and is thought 

to contribute to regeneration in the CNS278. In in vitro model systems, it is also secreted by U251 

astrocytoma cells and promotes survival of primary murine neurons279. Trx1 shows the highest 

upregulation in lumbar spinal cord of ALS patients compared to controls (600%), where it possibly 

constitutes an endogenous defense mechanism in motor neurons against oxidative damage280. 

Elevated expression of Txnip inhibits the protective function of Txr by directly binding to it and 

sequestering it away from target proteins281. Thus, upregulation of Txnip in ESMNs may leave 

them poised for susceptibility to oxidative stress. 

 

Txnip is upregulated through Atf5,  a downstream effector of ER stress and the unfolded protein 

response (UPR)282. In type 1 and type 2 diabetes, this Txnip activation pathway has been shown 

to switch cells from a protective ER response to a terminal apoptotic UPR through the activation 

of the NLRP3 inflammasome282, 283. Atf5 is also upregulated in NCA day 3 ESMNs, and may 

explain the upregulation of Txnip. Through this mechanism, the ER stress response in ESMNs 

may play a role in NCA ALS-associated motor neuron generation. 
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Conclusion 

 

The mammalian spinal cord conveys complex somatosensory and motor signals, the propagation 

of which depends on the interactions of a diverse ensemble of neurons and glia.  During 

amyotrophic lateral sclerosis (ALS) disease progression, altered function amongst all of these 

cells contributes to selective motor neuron death.  In this thesis, I have outlined single cell 

transcriptomic and computational approaches to dissect the relative contribution of these cell 

types to disease progression. 

 

To do so, I have optimized single cell and single nuclei sequencing approaches of in vitro and in 

vivo models to be able to determine transcriptional definitions corresponding to cellular state, with 

high depth of coverage.  Contending with continuous structure in an unsupervised manner within 

single cell sequencing data describing heterogeneous cellular responses was previously 

computationally lacking in feasibility.  As described, Topological Data Analysis enables the direct 

determination of transcriptional programs accompanying differentiating ensembles of single 

cells74. The work presented in this thesis leaves the field well poised to determine cellular 

markers associated with transitory cell states and their associated patterns of gene regulation, 

and was applied to the study of cell autonomous and non-cell autonomous contributions to ALS 

disease progression. 

 

Furthermore, this work comprises an important technological platform to delineate the 

transcriptional responses triggered by inductive cues.  A defined transcriptional program (such as 

one responsible for neurogenic commitment of a neural progenitor cell, or motor neuron cell 

death in ALS) can be initiated or disregarded in individual cells. Whether or not it is enacted 

depends both on the identity and molecular properties of the cell, and the stochastic nature of 

gene expression73.  A computational approach for determining to what extent underlying 

heterogeneity is responsible for differences in transcriptional pathway activation, or to what extent 

the transcriptional activation is a result of stochastic choice in a clonal population, remains to be 
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developed.  Especially in context of ALS, where disease onset occurs in a stochastic location284, 

understanding the genetic landscape that promotes pathology is critical. Using the high resolution 

scRNA-seq timecourse experiments presented here, I hope to be able to better understand the 

transcriptional settings that steer cells towards developing disease phenotypes or surviving them. 

 

The single cell sequencing field is progressing rapidly.  On the leading edge are multi-modal 

investigations where simultaneous readout of seemingly disparate biological observables are 

measured from individual cells.  By way of example, protein abundance and RNA content, 

chromatin accessibility and RNA content, and methylation are being integrated to expand depth 

of coverage and mechanistic insight into the origins of diversity and heterogeneous cellular 

responses that accompany285, 286.  Furthermore, spatially resolved transcriptomic approaches 

offer insights into cellular individuality, while simultaneously revealing a Cartesian coordinate axis 

associated with cellular diversity and response287.  All of these technological directions serve a 

valuable function beyond validation of single cell measurements.  They confer upon the 

experimentalist the ability to develop approaches to interrogate cell type specific interactions and 

exchange of information.  This, of course, is of paramount importance when considering cell 

autonomous and non-cell autonomous changes, such as those associated with localized 

neurodegenerative events and changes in glia-neuron communication.  Furthermore, spatially 

resolved approaches offer much to the understanding of the spread of ALS.  It is well 

documented that the pathology progresses laterally and rostro-caudally from the location of 

onset, however the mechanism underlying disease spread is poorly understood288, 289. 

 

Taken together, the future is bright for single cell technologies and their capacity to yield insights 

into ALS disease progression. 
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Figure 1. Schematic representation of neuronal organization in the spinal cord. 

Motor neurons are located in the ventral horn (rexed laminae vii, viii, ix). 

  



	 84	
  



	 85	

Figure 2. Topological analysis of longitudinal single-cell RNA-seq data.  

a. Comparison of several methods for reducing the dimensionality of data. A toy example is 

shown, illustrating the artifacts that can emerge when standard dimensional reduction methods 

are used to represent differentiation trajectories. A total of 1,000 points are sampled from a 

twisted circle in three-dimensional space. MDS, ICA, t-SNE, and Mapper were utilized to 

represent the above points in two dimensions. Of these methods, only Mapper was able to 

capture the continuous circular trajectory of the three-dimensional space without introducing 

artificial intersections or disrupting the trajectory. 

b. A schematic illustrating the Mapper algorithm. Top: Mapper builds upon any dimensional 

reduction function f mapping the high-dimensional single-cell RNA-seq point cloud data into ℝ! 

(for simplicity we take k = 1 in this figure). Bottom: under the inverse function !!!, a covering of 

ℝ! maps into a covering of the single-cell point cloud data. Clustering is performed independently 

in each of the induced patches in the high-dimensional space. In the low-dimensional 

representation, a node is assigned to each cluster of cells. If two clusters intersect, the 

corresponding nodes are connected by an edge. Topological features in the low dimensional 

representation are guaranteed to also be present in the original high-dimensional RNA-seq 

space. 

c. Gene connectivity. Gene connectivity allows for the identification of genes that are differentially 

expressed by a cellular subpopulation of the differentiation process, without predefining any 

cellular subpopulation. Represented is a toy example of two genes with very different gene 

connectivity on the topological representation. Top: An example of a gene with high gene 

connectivity in the topological representation.  This signifies that there is a set of cells with similar 

global expression profiles and high expression levels of the gene. Bottom: An example of a gene 

with low gene connectivity in the topological representation. 

d. Illustration of gene centroid. The centroid of a gene, measured in pseudotime, quantifies where 

the expression of a gene sits in the topological representation with respect to the root node. The 

root node represents the least differentiated cellular state, and is determined from the 

experimental sampling times. A toy example of two genes with very different centroid can be used 
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to illustrate the concept. Top: a gene with low value for the expression centroid, being mostly 

associated to pluripotent cells. Bottom: a gene with a high value for the centroid, being mostly 

associated to differentiated cells.  

e. Identification of transient cellular states. Transient cellular states are identified in an 

unsupervised manner by clustering low-dispersion genes with significant gene connectivity 

according to their centroid in the topological representation. In the figure, an example of 

distribution of centroids and dispersions for genes with significant gene connectivity is shown. 

Four clusters of low-dispersion genes are identified, which correspond to four transient cellular 

states arising throughout the differentiation process. 
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Figure 3. Comparison of several algorithms for ordering cellular states.   

a. A noisy, branched, asynchronous cellular differentiation process was simulated. The 

differentiation tree of the process is represented. 700 cells were sampled from this process at 

three time points. Using this data, we attempted to reconstruct the structure of the differentiation 

tree with scTDA, alongside the algorithms Diffusion Pseudotime, SLICER, and Wishbone, which 

rely on branch assignments for downstream statistical analysis. 
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b. Reconstructed differentiation trajectory using scTDA. scTDA recovered the structure of the 

simulated differentiation process and correctly rooted the tree using the experimental 

chronological information. Nodes correspond to sets of cells sharing similar global transcriptional 

profiles, with the node sizes proportional to the number of cells in the node.  Nodes that are 

connected by an edge have at least one cell in common. For reference, an inset with the latent 

MDS representation of the data, colored by sampling day, is also shown. 

c. Reconstructed differentiation trajectory using Diffusion Pseudotime. While the representation of 

the data using the first two diffusion coefficients reproduces the structure of the differentiation 

tree, the branches were not correctly assigned.  

d. Reconstructed differentiation trajectory using SLICER. The representation constructed by 

SLICER using locally linear embedding was unable to capture the complete structure of the 

differentiation tree and branch assignments.  

e. Reconstructed differentiation trajectory using Wishbone. The t-SNE representation of the data 

used by Wishbone reproduces the structure of the differentiation tree and identified correctly the 

first branching point. However, Wishbone was unable to identify the second branching point.  

f, g. Pearson’s correlation coefficient between the pseudo-time, inferred from the data by scTDA, 

Diffusion Pseudotime (D. Pt), SLICER, and Wishbone, and the actual simulated differentiation 

time. Cellular differentiation processes with one, two, or three branching points were considered, 

both in the absence (f) and the presence (g) of drop-out events. 
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Figure 4. Topological representation of longitudinal single-cell RNA-seq data from the 

differentiation of mESCs into MNs.   
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a. Topological data analysis recapitulates chronological order based on expression data alone.  

The topological representation of the expression data of 1,964 single cells, sampled from the 

differentiation of mESCs into MNs, is labeled by sampling time. The root node, inferred from the 

experimental chronological information, is indicated with a red circle.  

b. The distance of each node to the root node, represented as a function of sampling time.  The 

chronological time of a node is defined as the mean of the sampling times of the cells in the node. 

c. Comparison to standard dimensional reduction algorithms. Dimensional reduction of the same 

expression data of 1,964 single cells, sampled from the differentiation of mESCs into MNs, using 

PCA, MDS, and t-SNE. The Pearson’s correlation coefficient between the sampling time and the 

two-dimensional Euclidean distance to the root cell (defined as the one that maximizes this 

correlation) is indicated in each case. 

d. Consistency between main and pilot experiments. Left: Venn diagram of genes with significant 

gene connectivity (q < 0.05) in the topological representations of the two datasets. Both 

experiments are highly consistent in their calls (Fisher exact test p-value < 10-100). The number of 

significant genes is larger in the main experiment, consistent with its higher statistical power (due 

to the larger number of cells considered). Right: correlation between the centroid (expressed in 

pseudo-time) of the n = 2,701 genes with significant (q < 0.05) gene connectivity in both 

topological representations. The distribution of transcript centroids is highly consistent across the 

two experiments.  
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Figure 5. Cellular populations arising throughout the differentiation of mESCs into MNs 

and novel candidate surface markers.   

a. scTDA identifies four transient populations arising throughout the differentiation of mESCs into 

MNs. Represented is the topological representation colored by mRNA levels of genes belonging 

to these four groups of low-dispersion genes, corresponding to pluripotent, precursor, progenitor 
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and post-mitotic populations. In total, 488 genes were uniquely assigned to these four populations 

based on their expression profiles in the topological representation.  

b. Reconstructed expression timeline for each of the four groups of low-dispersion genes. 

c. Direct detection of state specific cell surface markers identified by scTDA. Topological 

representation colored by mRNA levels of surface proteins Pecam1, Ednrb and Slc10a4, and 

immunostaining of cultured EBs. The scale bar in the immunostaining images denotes a length of 

50 mm. Details of three regions are presented on the right. For reference, the topological 

representation colored by mRNA levels of the Mnx1::eGFP reporter is also shown. 

d. In vivo validation of the motor neuron surface marker Slc10a4. Spinal cord section of an E9.5 

mouse immunostained for Slc10a4 (red). The pool of motor neurons is also marked by 

Mnx1::eGFP expression (green). The scale bar denotes a length of 50 mm. 
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Figure 6. Differentially expressed transcripts associated with neurogenesis.  

a. Differentially expressed regulators and downstream genes across the four populations arising 

throughout the differentiation.  Genes are annotated according to their role in transcriptional, cell 

cycle, RNA binding protein regulation and RA response.  
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b. Topological representations labeled by mRNA levels of Hoxb5, Hoxb6 and the antisense 

lncRNA Hoxb5os, showing concordant expression of these transcripts during the generation of 

motor neurons from mESCs.  

c. Post-mitotic neuronal populations. Differentially expressed genes between Vsx2+, Gata3+ and 

En1+ cells that were marked as post-mitotic neurons by the scTDA analysis. Hierarchical 

clustering of cells leads to five groups, four of which correspond to MNs, and V1, V2a and V2b 

interneurons. Hierarchical clustering of genes produces four groups of genes, uniquely expressed 

by each of the above cell types, and a fifth group associated to GABAergic neurons. lncRNAs are 

marked in blue.   

 

  



	 95	

  
 



	 96	

Figure 7. Application of scTDA to several in vivo datasets.  

a. Topological representation of 80 embryonic (E18.5) mouse lung epithelial cells labeled 

according to cell type. scTDA correctly resolves the alveolar and bronchiolar lineages, and 

identifies a previously unreported set of cells with low expression of NADH dehydrogenase. 

b. Topological representation of 1,529 individual cells from 88 human preimplantation embryos. 

Top-left, bottom: topological representation labeled by expression levels of genes associated to 

cellular populations arising throughout the differentiation identified by scTDA. scTDA correctly 

identifies, absent supervision, the segregation of the trophectoderm and inner cell mass from pre-

lineage cells (bottom), as well as a polar trophectoderm (top-left). Top-right: topological 

representation labeled by embryonic day.  

c. Topological representation of 272 newborn neurons from the mouse neocortex, labeled by 

sampling time after mitosis (top) and expression levels of Cntr2, Neurog2, and Wwtr1 (bottom). 

scTDA correctly recapitulates converging developmental relations between apical and basal 

progenitors, and neurons. 
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Figure 8. kNN clustering of timecourse ESMN data 

Individual cells are shown colored by the condition they were sampled. Clusters of cells with 

similar transcriptional programs can be seen. These clusters are identified in table 1 and 

supplementary figure 21.  
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Figure 9. Heatmap of cell type specific transcriptional signatures 

FACS-purified eGFP+ ESMNs show contaminating transcriptional signatures of astrocytes, 

microglia, and oligodendrocytes after 14 days in culture. 
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Figure 10. Topological representations of cell autonomous, non-cell autonomous, and 

disease changes in days 3 and 7 of the ESMN timecourse 

A) Cell autonomous changes between SOD1WT and SOD1G93A ESMNs plated over SOD1WT 

astrocytes 

B) Non-cell autonomous changes between SOD1WT ESMNs plated over SOD1WT and SOD1G93A 

astrocytes 

C) Disease changes between SOD1WT and SOD1G93A ESMNs plated over SOD1WT and SOD1G93A 

astrocytes 

 

  



	 101	

 

Figure 11. Changes in Txr/Txnip activation in day 3 SOD1WT and SOD1G93A ESMNs 

mediated by SOD1G93A astrocytes  
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Relative expression of Txn1 and Txnip across conditions. (Txn1 expression log scale 10 – 12.5;  

Txnip expression log scale 0.5 – 2.5) 
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Figure 12. Changes in iron transporter expression between timepoints and conditions 

Relative expression of Tfrc and Scl11a2 across conditions. (Tfrc expression log scale 6 – 7.5; 

Slc11a2 expression log scale 3 – 6) 
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Figure 13. Loss of nuclear IRP2 in large neurons in the ventral horn of the spinal cord 

IRP2 signal is largely nuclear in the large neurons of the ventral spinal cord in SOD1WT animals. 

At p100, many large nuclei in the SOD1G93A animal retain nuclear IRP2 signal (marked by 

arrowheads). At p150, most of these large nuclei are lost in the SOD1G93A animals and the IRP2 

signal in the remaining nuclei is often localized to p62- cytoplasmic aggregates (marked by 

asterisk). However, low expression of p62 in cells corresponds with retained IRP2 nuclear 

localization (marked by arrowheads). (Figures at 20x unless otherwise noted; blue, DAPI; green, 

p62; red, IRP2) 
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Figure 14. scTDA of SOD1WT and SOD1G93A ESMNs plated over WT glia. 

A clear transcriptional progression is seen between SOD1WT ESMNs (blue) and SOD1G93A 

ESMNs (red) sampled at different timepoints in the topological representation. 
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Figure 15. Two GO pathways that are alternately enriched in the two branches of day 14 

ESMNs in the topological representation. 

The expression of 3 genes involved in calcium regulation (left) and 3 genes involved in 

lipogenesis (right) are shown to be differentially enriched in the day 14 populations of 

predominantly SOD1WT  (left) and SOD1G93A  (right) ESMNs. 
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Figure 16. Pilot experiment of nuclei sequencing from the p150 SOD1G93A lumbar spinal 

cord. 

Homogenization (A) and purification through centrifugation (B) results in a clean nuclei isolation. 

Nuclei are labeled with DAPI. Cy3-NeuN (red) additionally labels neuronal nuclei. In the FACS 

sort, Cy3+/DAPI+ neuronal nuclei can be discerned from Cy3-/DAPI+ glial nuclei. 

C. Consistent with expectations, on a FACS plot, Cy3+ neuronal nuclei are larger than Cy3- glial 

nuclei.  

D. Clustering of glial and neuronal markers. 4 populations appear in the heatmap, two for 

neuronal nuclei and two for glial nuclei. The left neuronal and glial populations are under-

sequenced compared to the populations on the right.  

E. Neuronal nuclei identified by the clustering in (D) can be further defined as excitatory and 

inhibitory through RaceID. Clusters are identified through enriched expression of neurotransmitter 

transporters, and genes involved in GO pathways for DNA repair and proteosome. 

F. Glial nuclei identified by the clustering in (D) can be further identified based on expression of 

selected marker genes as microglia (cluster 1; Selplg), oligodendrocytes (cluster 2; Plp1), 
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endothelial cells (cluster 3; Nrp1), astrocytes (cluster 5; Trim9), and cells undergoing stress 

response (cluster 6; GO pathway activation). 
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Table 1. Sampled ESMNs that populate the clusters. 

ESMNs that have more than 10 cells in the cluster are marked as being present in the cluster. 
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Supplementary Note 1 

Single Cell Library Generation 

In one biological replicate, we sorted a small sample size from a differentiation, sequencing 80 cells per 

differentiation time-point utilizing standard CEL-Seq primers with anchor bases at the 3’ end of reverse 

transcription primers, pooling 40 cells at a time prior to in vitro transcription (IVT).  To assess library 

saturation and capture efficiency, two single cell libraries from each differentiation time point (consisting of 

40 cells each) from the pilot experiment were paired end sequenced (2x125 bps) on an Illumina HiSeq 

2500, operating in high output mode, sequencing with Illumina v4 chemistry.  To increase capture 

efficiency, enhanced in vitro transcription based amplification, and leveraging the library saturation curves 

from our pilot experiment, we utilized 96 barcoded CEL-Seq RT primers (Supplementary Table 4), 

forgoing the usage of anchor bases at the 3’ terminus.  We then conducted a differentiation on a second 

biological replicate, sampling 384 cells per time-point (inclusive of 96 FACS purified mid-level GFP 

expressing, and 288 high GFP expressing cells), collected into 96 well plates and implemented CEL-Seq, 

now pooling 96 cells per IVT reaction. Following IVT, aRNA was fragmented using magnesium (NEBNext 

Magnesium RNA Fragmentation Module) for 90 seconds and column purified (Zymo Research RNA 

Clean & Concentrator-5).   Purified aRNA was then subjected to treatment with Antarctic Phosphatase 

and T4 polynucleotide kinase.  Ligation of Illumina RA3 adapters was conducted using truncated T4 RNA 

Ligase 2 for 1 hour at 28 C.  Following adapter ligation, adapter ligated aRNA was reverse transcribed 

using Illumina RTP at 50 C for 1 hour and placed on ice.  To avoid amplification based batch effects, the 

resultant cDNA was PCR amplified with Illumina RPIX primers to no more than 15 cycles.  The 

sequencing libraries were then twice purified using AmpureXP beads, held at a ratio of 1:0.65, yielding 

size selected libraries with an insert size of ~250 bps.  The single cell libraries were then multiplexed to a 

total representation of 384 cells per lane at equimolar concentrations and mixed with 50% exome libraries 

generated using an Illumina TruSeq Exome Kit.   
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Supplementary Figures

 

Supplementary Figure 1. Workflow for single cell Topological Data Analysis (scTDA).  

Longitudinal single-cell RNA-Seq data is mapped, demutiplexed and pre-processed, which removes cells 

that do not pass stringent quality controls (QC). A topological representation is built using the Mapper 

algorithm, and is based on highly-expressed genes that have a large variability. The expression of each 

transcript is a function that supports the topological representation. A pseudo-time ordering is established 

and different statistics (gene connectivity, centroid, dispersion) are computed, making it possible to 
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identify expression programs associated with different stages and populations of cells generated 

throughout the differentiation process. 
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Supplementary Figure 2. Comparison of various algorithms for the analysis of single cell 

expression data from developmental processes, using simulated data.  

Noisy, branched, asynchronous differentiation processes were simulated, including the effect of drop-out 

events. 700 cells were sampled at three time points. The reconstruction of the differentiation process 

produced by scTDA, Differentiation Pseudotime, Slicer, and Wishbone is shown, colored by the inferred 
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pseudotime, for processes with one, two, or three branching points. scTDA reproduces the topology of 

the differentiation process and its temporal structure in complex situations with more than one branching 

point. 
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Supplementary Figure 3. Single-cell RNA-seq data filtering in the main (left) and pilot (right) motor 

neuron differentiation experiments.  
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 a. The fraction of reads from each cell, represented by ERCCs (the ratio between ERCC reads and 

uniquely mapped reads), was plotted against the relative level of ERCCs per cell (the ratio between 

ERCC reads and the average number of ERCC reads in the library). This was done for each of the 2,208 

cells sequenced in the main experiment (one library demonstrating a large batch effect was removed from 

the analysis), and the 440 cells in the pilot experiment. Cells that are filtered out are represented in red. 

The ordinate is represented in logarithmic scale. 

b. The distribution of filtered-out cells across each of the libraries.  

c. The distribution of expression values for all genes in the complete set of cells before (blue) and after 

(red) filtering. In the pilot experiment (right), the expression of genes supported by less than 5 reads in a 

cell was set to zero to remove noise near the mRNA capture threshold. 

d. Hierarchical clustering of the expression centroids of each library, based on correlation distance. 

Libraries cluster according to day, with substantial overlap between libraries from the same day. 
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Supplementary Figure 4. Topological representation of longitudinal single-cell RNA-seq data from 

mESC differentiation into motor neurons in the pilot experiment.  

a. The topological representation labeled by sampling time. 

b. The distance of each node to the root node (marked with a red arrow in a), represented as a function of 

sampling time. The chronological time of a node is defined as the mean of the sampling times of the cells 

in the node.  

c. The topological representation labeled by mRNA levels of known markers of pluripotent cells (Oct3/4, 

red), motor neuron progenitors (Olig2, green) and post-mitotic neurons (VAChT, blue). 
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Supplementary Figure 5. Statistics of the topological representation in the main (a) and pilot (b) 

experiments. 

Left: The distribution of the number of cells associated to each node of the topological representation. 

Middle: The distribution of the number of cells that are shared between nodes connected by an edge. 

Right: The distribution of the number of nodes in which an individual cell appears.  
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Supplementary Figure 6. Dependence of the library complexity on the sampling time in the main 

motor neuron differentiation experiment.  

The distribution of the geometric library size is plotted as a function of the sampling time, showing a mild 

dependence between these two quantities. 
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Supplementary Figure 7 (1/3). Distribution of different sequencing libraries across the topological 

representation in the main experiment.  

Libraries from the same day have a substantial overlap in the topological representation, reflecting the 

absence of large batch effects. 
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Supplementary Figure 7 (cont., 2/3). Distribution of different sequencing libraries across the 

topological representation in the main experiment.  

Libraries from the same day have a substantial overlap in the topological representation, reflecting the 

absence of large batch effects. 
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Supplementary Figure 7 (cont., 3/3). Distribution of different sequencing libraries across the 

topological representation in the main experiment.  

Libraries from the same day have a substantial overlap in the topological representation, reflecting the 

absence of large batch effects. 
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Supplementary Figure 8. Correlation between distance to root node and chronological time for 

PCA, MDS, and tSNE representations of the single cell expression data from mESC differentiation 

into motor neurons.  

The two-dimensional Euclidean distance to the root cell (defined as the one that maximizes the 

correlation with the chronological sampling time) is shown as a function of the chronological sampling 

time. 
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Supplementary Figure 9. Comparison to other algorithms for the analysis of longitudinal single-

cell RNA-seq experiments, using data from mESC differentiation into motor neurons.  
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a. Output produced by Monocle. Monocle was run on 834 cells from the main experiment to build a two 

dimensional minimum spanning tree representation of the data. Cells are colored by sampling day. 

b. Output produced by SLICER. SLICER was run on the 1,964 cells from the main experiment to build a 

two dimensional representation of the data, where cells are assigned a branch in the differentiation tree 

inferred from the data. Left: Cells are colored by sampling day. Right: Cells are colored according to the 

branch assignments made by SLICER.  

c. Output produced by Wishbone. Wishbone was run on the 1,964 cells from the main experiment to build 

a two dimensional t-SNE representation of the data where cells are assigned a pseudo-time and a branch 

in the differentiation structure inferred from the data. Left: Cells are colored by pseudo-time. Right: Cells 

are colored according to the branch assignments made by Wishbone. 

d. Output produced by Diffusion Pseudotime. Diffusion Pseudotime was run on the 1,964 cells from the 

main experiment to build a two dimensional representation of the data based on the first two diffusion 

components, where cells are assigned a pseudo-time and a branch in the differentiation structure inferred 

from the data. Left: Cells are colored by pseudo-time. Right: Cells are colored according to the branch 

assignments made by Diffusion Pseudotime.  
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Supplementary Figure 10. Distribution of the gene connectivity score against the number of cells 

expressing the gene in the main (left) and pilot (right) motor neuron differentiation experiments.  

Statistical significance was evaluated by means of a permutation test (Online Methods). Genes with a 

significant gene connectivity (q < 0.05) after controlling for multiple hypothesis testing are shown in red. 
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Supplementary Figure 11. Expression levels of genes associated to DNA replication in the main 

(a) and pilot (b) motor neuron differentiation experiments.  

Topological representation labeled according to the expression of 99 genes related to DNA replication. 

Differentiated neurons exhibit very low levels of DNA replication, consistent with post-mitotic arrest. 
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Supplementary Figure 12. Stability of topological representations against different parameter 

choices.  

Topological representations of the single cell RNA-seq data of the main motor neuron differentiation 

experiment using different choices for the number of patches and their overlap considered in the Mapper 

algorithm, as well as for the number of genes that are used to compute the distance matrix. The Venn 

diagram displays the number of genes with significant gene connectivity (q < 0.05) in three topological 

representations, showing a large degree of consistency across different representations. For each pair of 

representations, the correlation between the centroids (expressed in pseudo-time) of the n = 5,088 genes 

with significant (q < 0.05) connectivity in all representations is also shown. The distribution of gene 

centroids is highly consistent across different choices of parameters, with Pearson’s correlations in the 

range 0.98 – 0.99. 
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Supplementary Figure 13. Cellular populations arising throughout the differentiation of mESCs 

into motor neurons in the main (left) and pilot (right) experiments.  

a. Davies-Bouldin index for k-means clustering of the centroid of low-dispersion genes in the topological 

representation of the main experiment (ki < 1.7) and the pilot experiment (ki < 2.25). The minimum is 

achieved for four and three clusters, respectively, in the main and pilot experiments. 

b. Distribution of the centroid and dispersion of significant genes (q < 0.05) in the topological 

representation of the main experiment. Four principal gene groups (1a, 1b, 2 and 3) naturally arise from 

clustering the centroids of low-dispersion genes, corresponding to four transient cellular populations 

arising throughout the differentiation. 

c. Topological representation of the two experiments labeled by mRNA levels of genes in each of the 

gene clusters obtained by k-means. 

d. Topological representation of the two experiments labeled by the state assigned to each node based 

on the expression levels of each of the gene clusters. 
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Supplementary Figure 14. Immunostaining of murine EBs against stage-specific surface markers 

identified by scTDA.  

a. Immunostaining against the pluripotent surface marker Pecam1. Immunostaining of day 2 EBs against 

Pecam1 (red), Oct3/4 (blue), and MNx1::eGFP (green), showing overlap between Pecam1+ cells and 

Oct3/4+ cells.  
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b. Immunostaining against the neural progenitor surface marker Ednrb. Immunostaining of day 5 EBs 

against Ednrb (red), Olig2 (blue), and Mnx1::eGFP (green), showing partial overlap between Ednrb+ cells 

and Olig2+ cells, and mutual exclusivity between Ednrb+ cells and Mnx1::eGFP+ cells. 

c. Immunostaining against the post-mitotic neuron surface marker Slc10a4. Immunostaining of day 6 EBs 

against VAChT (red), Slc10a4 (blue), and Mnx1::eGFP (green), showing overlap between VAChT+ cells 

and Slc10a4+ cells, and partial overlap with Mnx1::eGFP+ cells. 

  

156



24	

	

	
	 	 	

	

 

Supplementary Figure 15. Topological representation of single cell expression data from mESC 

differentiation into motor neurons, based on cell cycle genes only.  

a. The topological representation is labeled by mRNA levels of known markers of pluripotent cells 

(Oct3/4, red), motor neuron progenitors (Olig2, green) and post-mitotic neurons (VAChT, blue). 

b. The region of the topological representation corresponding to neural precursors has numerous loops. 

The topological representation is labeled by mRNA levels of Stra8, a marker of neural precursors.  

c. Neural precursors separate into proliferative and non-proliferative populations. The topological 

representation is labeled by Mki67, a known marker of cellular proliferation. 

d. Distribution of the number of loops of a given size (as measured by their first persistent homology 

death time) across the representation (blue), compared to that of random complexes built by permuting 

157



25	

	

	
	 	 	

	

the genes independently in each cell. Some of the larger loops in the topological representation are 

statistically significant, consistent with a biological origin for these loops. 
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Supplementary Figure 16. Transcriptional events occurring during the transition between 

pluripotent and neural precursor, and between neural precursor and neural progenitor 

populations of cells.  

Reconstructed expression timeline for some of the transcriptional changes identified by scTDA in the 

transitions between pluripotent and neural precursor, and between neural precursor and neural progenitor 

populations, in the main motor neuron differentiation experiment. scTDA identified upregulation of Stra8 

and downregulation of Fgf4 as one of the early events in the transition between a pluripotent and a neural 

precursor state. The topological representation labeled according to the mRNA expression levels of Stra8 

and Hoxb5 is also shown. 
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Supplementary Figure 17. Expression of antisense lncRNAs derived from homeobox gene 

clusters during the differentiation of mESCs into motor neurons.  

a. Topological representations of the main experiment labeled by mRNA levels of Hoxb5, Hoxb6, and the 

antisense lncRNA Hoxb5os, showing concordant expression of these genes during the generation of 

motor neurons from mESCs. Stranded bulk RNA-seq reads from day 5 of the differentiation process are 

also depicted. 

b. Topological representations of the main experiment labeled by mRNA levels of Hoxa3 and the 

antisense lncRNA AK142386, and stranded bulk RNA-seq reads.  

c. Topological representations of the main experiment labeled by mRNA levels of Hoxa1, Hoxa2, and the 

antisense lncRNA Hotairm1, and stranded bulk RNA-seq reads. 
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Supplementary Figure 18. Sorting of V1 interneurons validates the exclusive expression of 

lncRNA Gm12688.  

a. Dissociation of day 6 EBs and immunostaining against Engrailed (En1) enabled purification of V1 

interneurons through flow cytometry. Alexa 568 expressing cells are En1 positive. Mnx1::eGFP 

expressing motor neurons are low in Alexa 568 signal, but high in eGFP fluorescence. 

b. RT-PCR of eGFP expressing motor neurons and En1+ cells demonstrates enrichment of expected 

markers, and a high enrichment of Gm12688 in V1 interneurons. 
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Supplementary Figure 19. Differential expression of genes across the two populations of alveolar 

type I cells in the developing distal lung epithelium.  

The topological representation is labeled by the mRNA levels of genes coding for proteins from the 

mitochondrial respiratory chain NADH dehydrogenase that are differentially expressed between the two 

populations of alveolar type I cells identified by scTDA. 
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Supplementary Figure 20. Histogram of numbed of genes detected per cell. 

An average of 8500 genes were detected per cell of the ESMN timecourse. Cells that had less than 5000 

genes detected were discarded from the analysis. 

  

164



32	

	

	
	 	 	

	

 

Supplementary Figure 21: Clusters of ESMNs in kNN graph 

Clusters are identified based on cell density and labeled for reference. 
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Supplementary Figure 22: Gene expression in kNN graph 

A) Apoptotic markers define clusters 12 and 13 

B) Iron responsive genes indicate disbalance in iron homeostasis in SOD1G93A ESMNs 

C) Calcium regulators and lipogenesis genes identified by scTDA show common expression patterns 

in clusters on the kNN graph 
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Supplemental Figure 23. Motor neuron markers in the Day 3 and Day 7 populations of ESMNs. 

(expression log scale 0 -- Max)  
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