217 research outputs found

    Technology and reliability of normally-off GaN HEMTs with p-type gate

    Get PDF
    GaN-based transistors with p-GaN gate are commonly accepted as promising devices for application in power converters, thanks to the positive and stable threshold voltage, the low on-resistance and the high breakdown field. This paper reviews the most recent results on the technology and reliability of these devices by presenting original data. The first part of the paper describes the technological issues related to the development of a p-GaN gate, and the most promising solutions for minimizing the gate leakage current. In the second part of the paper, we describe the most relevant mechanisms that limit the dynamic performance and the reliability of GaN-based normally-off transistors. More specifically, we discuss the following aspects: (i) the trapping effects specific for the p-GaN gate; (ii) the time-dependent breakdown of the p-GaN gate during positive gate stress and the related physics of failure; (iii) the stability of the electrical parameters during operation at high drain voltages. The results presented within this paper provide information on the current status of the performance and reliability of GaN-based E-mode transistors, and on the related technological issues

    Technology and reliability of normally-off GaN HEMTs with p-type gate

    Get PDF
    open4siopenMeneghini, Matteo*; Hilt, Oliver; Wuerfl, Joachim; Meneghesso, GaudenzioMeneghini, Matteo; Hilt, Oliver; Wuerfl, Joachim; Meneghesso, Gaudenzi

    Impact of buffer charge on the reliability of carbon doped AlGaN/GaN-on-Si HEMTs

    Get PDF
    Charge trapping and transport in the carbon doped GaN buffer of an AlGaN/GaN-on-Si HEMT have been investigated. Back-gating and dynamic RON experiments show how the onset of leakage in the strain relief layer at a lower field than that through the upper part of the structure can result in serious long-term trapping leading to current collapse under standard device operating conditions. Controlling current-collapse requires control of not only the layer structures and its doping, but also the precise balance of leakage in each layer

    Review and Characterization of Gallium Nitride Power Devices

    Get PDF
    Gallium Nitride (GaN) power devices are an emerging technology that have only recently become available commercially. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This thesis reviews the characteristics and commercial status of both vertical and lateral GaN power devices from the user perspective, providing the background necessary to understand the significance of these recent developments. Additionally, the challenges encountered in GaN-based converter design are considered, such as the consequences of faster switching on gate driver design and board layout. Other issues include the unique reverse conduction behavior, dynamic on-resistance, breakdown mechanisms, thermal design, device availability, and reliability qualification. Static and dynamic characterization was then performed across the full current, voltage, and temperature range of this device to enable effective GaN-based converter design. Static testing was performed with a curve tracer and precision impedance analyzer. A double pulse test setup was constructed and used to measure switching loss and time at the fastest achievable switching speed, and the subsequent overvoltages due to the fast switching were characterized. The results were also analyzed to characterize the effects of cross-talk in the active and synchronous devices of a phase-leg topology with enhancement-mode GaN HFETs. Based on these results and analysis, an accurate loss model was developed for the device under test. Based on analysis of these characterization results, a simplified model was developed to describe the overall switching behavior and some unique features of the device. The consequences of the Miller effect during the turn-on transient were studied to show that no Miller plateau occurs, but rather a decreased gate voltage slope, followed by a sharp drop. The significance of this distinction is derived and explained. GaN performance at elevated temperature was also studied, because turn-on time increases significantly with temperature, and turn-on losses increase as a result. Based on this relationship, a temperature-dependent turn-on model and a linear scaling factor was proposed for estimating turn-on loss in e-mode GaN HFETs

    The 2018 GaN Power Electronics Roadmap

    Get PDF
    Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here

    AlGaN/GaN ์ „๋ ฅ์†Œ์ž์˜ ํŠน์„ฑ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์‹๊ฐ๊ณผ ์ ˆ์—ฐ๋ง‰์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์„œ๊ด‘์„.์ตœ๊ทผ ์—๋„ˆ์ง€ ์œ„๊ธฐ์™€ ํ™˜๊ฒฝ๊ทœ์ œ ๊ฐ•ํ™”, ์นœํ™˜๊ฒฝ ๋…น์ƒ‰์„ฑ์žฅ ๋“ฑ์˜ ์ด์Šˆ๊ฐ€ ๋Œ€๋‘๋˜์–ด ์—๋„ˆ์ง€ ์ ˆ๊ฐ๊ณผ ํ™˜๊ฒฝ ๋ณดํ˜ธ ๋ถ„์•ผ์— IT ๊ธฐ์ˆ ์„ ์ ‘๋ชฉ, ํ™œ์šฉํ•˜๋Š” ๊ทธ๋ฆฐ IT ํŒจ๋Ÿฌ๋‹ค์ž„์ด ๋ถ€๊ฐ๋˜๊ณ  ์žˆ๋‹ค. ํ˜„์žฌ ๊ณ ์œ ๊ฐ€ ํ™˜๊ฒฝ๊ทœ์ œ ๊ฐ•ํ™”์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ž๋™์ฐจ, ์ „๊ธฐ์ž๋™์ฐจ ๋“ฑ ์นœํ™˜๊ฒฝ ๋ฏธ๋ž˜ํ˜• ์ž๋™์ฐจ ๊ฐœ๋ฐœ์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ž๋™์ฐจ์—์„œ ์ „์žฅ๋ถ€ํ’ˆ์ด ์ฐจ์ง€ํ•˜๋Š” ์›๊ฐ€๋น„์ค‘์€ ์•ฝ 40%๊นŒ์ง€ ๋‹ฌํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜๊ณ  ์ด ์ค‘ ๋ฐ˜๋„์ฒด๊ฐ€ ์ฐจ์ง€ํ•˜๋Š” ๋น„์šฉ์€ ์•ฝ 30% ์ •๋„๋กœ ์ถ”์ •๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ž๋™์ฐจ ์ „์žฅ๋ถ€ํ’ˆ์—์„œ ์ „๋ ฅ์†Œ์ž๊ฐ€ ํ•ต์‹ฌ๋ถ€ํ’ˆ์œผ๋กœ ์ž๋ฆฌ ์žก์„ ์ „๋ง์ด๋‹ค. ์ง€๊ธˆ๊นŒ์ง€๋Š” ์‹ค๋ฆฌ์ฝ˜ ๊ธฐ๋ฐ˜์˜ ์ „๋ ฅ์†Œ์ž ๊ธฐ์ˆ ์ด ์ „๋ ฅ๋ฐ˜๋„์ฒด ์‹œ์žฅ์˜ ๋Œ€๋ถ€๋ถ„์„ ์ฃผ๋„ํ•˜๊ณ  ์žˆ์ง€๋งŒ ์ „๋ ฅ๊ธฐ๊ธฐ ๋กœ๋“œ๋งต์— ์˜ํ•˜๋ฉด ์ „๋ ฅ๋ฐ€๋„๊ฐ€ ํ•ด๋ฅผ ๊ฑฐ๋“ญํ•˜๋ฉด์„œ ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‚ด์—ด, ๋‚ด์••, ์ „๋ ฅ์†์‹ค, ์ „๋ ฅ๋ฐ€๋„ ๋“ฑ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋งŽ์€ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ํ˜„์žฌ์˜ ์‹ค๋ฆฌ์ฝ˜ ๊ธฐ๋ฐ˜ ์ „๋ ฅ์‹œ์Šคํ…œ์€ ํšจ์œจ์ด ๋ˆˆ์— ๋„๊ฒŒ ๊ฐ์†Œํ•  ๊ฒƒ์ด ์ž๋ช…ํ•˜๋ฏ€๋กœ ์ „๋ ฅ์‹œ์Šคํ…œ์˜ ์ „๋ ฅ์ „์†กํšจ์œจ๊ณผ ์‹ ๋ขฐ์„ฑ์˜ ์ค‘์š”์„ฑ์ด ํฌ๊ฒŒ ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ์ด ๊ฐ™์€ ์‚ฌํšŒ์  ์š”๊ตฌ๋กœ ๋ณผ ๋•Œ ํ˜„์žฌ์˜ ์‹ค๋ฆฌ์ฝ˜ ์ „๋ ฅ์†Œ์ž์˜ ๊ธฐ์ˆ ์  ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ๊ณ ํšจ์œจ์˜ ์ฐจ์„ธ๋Œ€ ์ „๋ ฅ๋ฐ˜๋„์ฒด ์†Œ์ž์˜ ๊ฐœ๋ฐœ์ด ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋ฉฐ SiC์™€ GaN์™€ ๊ฐ™์€ ๊ด‘๋Œ€์—ญ ๋ฐ˜๋„์ฒด๊ฐ€ ์ฐจ์„ธ๋Œ€ ์ „๋ ฅ๋ฐ˜๋„์ฒด ์†Œ์žฌ๋กœ ์œ ๋ ฅํ•ด์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ๋Š” ์‹œ์Šคํ…œ์˜ ์•ˆ์ „์„ฑ๊ณผ ํšŒ๋กœ์˜ ๊ฐ„๋žตํ™”๋ฅผ ์œ„ํ•˜์—ฌ normally-off (์ฆ๊ฐ•ํ˜•) ์ „๋ ฅ์†Œ์ž๊ฐ€ ์š”๊ตฌ๋˜๊ธฐ ๋•Œ๋ฌธ์— normally-off (์ฆ๊ฐ•ํ˜•) GaN ์ „๋ ฅ์†Œ์ž์— ๋Œ€ํ•œ ๊ฐœ๋ฐœ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๊ทธ๋ฃน์—์„œ๋Š” gate-recess ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ normally-off ๋™์ž‘์„ ์‹คํ˜„ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ , gate-recess ์‹œ ๋ฐœ์ƒํ•˜๋Š” ์‹๊ฐ ๋ฐ๋ฏธ์ง€๋ฅผ ์ค„์ด๊ณ  ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์˜ ๊ฒŒ์ดํŠธ ์ ˆ์—ฐ๋ง‰์„ ๊ฐœ๋ฐœํ•˜์—ฌ GaN ์ „๋ ฅ ๋ฐ˜๋„์ฒด ์†Œ์ž์˜ ์ „๊ธฐ์  ํŠน์„ฑ ๋ฐ ์‹ ๋ขฐ์„ฑ์„ ๊ฐœ์„ ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‹๊ฐ ์—ฐ๊ตฌ์—์„œ๋Š” ์ตœ์ข…์ ์œผ๋กœ ์…€ํ”„ DC ๋ฐ”์ด์–ด์Šค๊ฐ€ ๋‚ฎ์€ O2, BCl3 ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์ด์šฉํ•œ atomic layer etching์„ ๊ฐœ๋ฐœํ•˜์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๊ฑฐ์น ๊ธฐ๊ฐ€ ์ž‘๊ณ  ํ‘œ๋ฉด N vacancy๊ฐ€ ์ ์€ ๊ณ ํ’ˆ์งˆ์˜ (Al)GaN ํ‘œ๋ฉด์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฐ•๋ง‰ ์—ฐ๊ตฌ์—์„œ๋Š” Oxide ๋ฐ•๋ง‰ ์ฆ์ฐฉ ์‹œ, (Al)GaN ํ‘œ๋ฉด์— ์ƒ์„ฑ๋˜์–ด ๊ณ„๋ฉด ํŠน์„ฑ์„ ์•…ํ™”์‹œํ‚ค๋Š” Ga2O3 ์ƒ์„ฑ์„ ๋ง‰๊ธฐ์œ„ํ•ด ALD AlN layer๋ฅผ ๊ฐœ๋ฐœ ๋ฐ ์ ์šฉํ•˜์—ฌ ๋ฐ•๋ง‰/(Al)GaN ๊ณ„๋ฉด ํŠน์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ์ด๋กœ ์ธํ•ด ์†Œ์ž์˜ ๋™์ž‘์ „๋ฅ˜ ์ฆ๊ฐ€ ๋ฐ Dit ๊ฐ์†Œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๊ณ  ์ŠคํŠธ๋ ˆ์Šค์— ๋”ฐ๋ฅธ ๋ฌธํ„ฑ์ „์•• ์ด๋™ ํŠน์„ฑ์˜ ๊ฐ์†Œ๋กœ ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ ๋˜ํ•œ ๊ฐœ์„ ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Š” ํƒ€ ๊ธฐ๊ด€์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•ด๋„ ๋’ค๋–จ์–ด์ง€์ง€ ์•Š๋Š” ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์˜ ์ž‘์€ ํ”Œ๋ผ์ฆˆ๋งˆ ๋ฐ๋ฏธ์ง€๋ฅผ ๊ฐ–๋Š” ์‹๊ฐ๊ณต์ •๊ณผ ๊ณ ํ’ˆ์งˆ ์ ˆ์—ฐ๋ง‰ ๊ฐœ๋ฐœ์„ ํ†ตํ•ด ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์˜ GaN ์ „๋ ฅ์†Œ์ž๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ  ํ–ฅํ›„ ์ฐจ์„ธ๋Œ€ ์ „๋ ฅ์†Œ์ž์— ์ ์šฉ์„ ์œ„ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค.The Si technology for power devices have already approached its theoretical limitations due to its physical and material properties, despite the considerable efforts such as super junction MOSFET, trench gate, and insulated gate bipolar transistors. To overcome these limitations, many kinds of compound materials such as GaN, GaAs, SiC, Diamond and InP which have larger breakdown voltage and high electron velocity than Si also have been studied as future power devices. GaN has been considered as a breakthrough in power applications due to its high critical electric field, high saturation velocity and high electron mobility compared to Si, GaAs, and SiC. Especially, AlGaN/GaN heterostructure field-effect transistors (HFETs) have been considered as promising candidates for high power and high voltage applications. However, these AlGaN/GaN heterostructure field-effect transistors with the 2DEG are naturally normally-on, which makes the devices difficult to deplete the channel at zero gate bias. Among the various methods for normally-off operation of GaN devices, gate-recess method is a promising method because it can be easier to implement than other approaches and ensure normally-off operation. However, charge trapping at the interface between gate dielectric and (Al)GaN and in the gate dielectric is a big issue for recessed gate MIS-HEMTs. This problem leads to degradation of channel mobility, on-resistance and on-current of the devices. Especially, Vth hysteresis after a positive gate voltage sweep and Vth shift under a gate bias stress are important reliability challenges in gate recessed MIS-HEMTs. The scope of this work is mainly oriented to achieve high quality interface at dielectric/(Al)GaN MIS by studying low damage etching methods and the ALD process of various dielectric layers. In the etching study, various etching methods for normally-off operation have been studied. Also, etching damage was evaluated by various methods such as atomic force microscopy (AFM), photoluminescence (PL) measurements, X-ray photoelectron spectroscopy (XPS) measurements and electrical properties of the recessed schottky devices. Among the etching methods, the ALE shows the smoothest etched surface, the highest PL intensity and N/(Al+Ga) ratio of the etched AlGaN surface and the lowest leakage current of the gate recessed schottky devices. It is suggested that the ALE is a promising etching technique for normally-off gate recessed AlGaN/GaN MIS-FETs. In the study of dielectrics, excellent electrical characteristics and small threshold voltยฌage drift under positive gate bias stress are achieved by employing the SiON interfacial layer. However, considerable threshold voltage drift is observed under the higher positive gate bias stress even at the devices using the SiON interfacial layer. For further improvement of interface and reliability of devices, we develop and optimize an ALD AlN as an interfacial layer to avoid the formation of poor-quality oxide at the dielectric/(Al)GaN interface. We also develop an ALD AlHfON as a bulk layer, which have a high dielectric constant and low leakage current and high breakdown field characteristics. Devices with AlN/AlON/AlHfON layer show smaller I-V hysteresis of ~10 mV than that of devices with AlON/AlHfON layer. The extracted static Ron values of devices with AlN/AlON/AlHfON and AlON/AlHfON are 1.35 and 1.69 mโ„ฆยทcm2, respectively. Besides, the effective mobility, Dit and threshold voltage instability characteristics are all improved by employing the ALD AlN. In conclusion, for high performance and improvement of reliability of normally-off AlGaN/GaN MIS-FETs, this thesis presents an etching technique for low damage etching and high-quality gate dielectric layer and suggests that the ALE and ALD AlN/AlON/AlHfON gate dielectric are very promising for the future normally-off AlGaN/GaN MIS-FETsChapter 1. Introduction 1 1.1. Backgrounds 1 1.2. Normally-off Operation in AlGaN/GaN HFETs 3 1.3. Issues and Feasible Strategies in AlGaN/GaN MIS-HFETs 11 1.4. Research Aims 15 1.5. References 17 Chapter 2. Development and Evaluation of Low Damage Etching processes 22 2.1. Introduction 22 2.2. Various Evaluation Methods of Etching Damage 24 2.3. Low-Damage Dry Etching Methods 29 2.3.1. Inductively Coupled Plasma-Reactive Ion Etching Using BCl3/Cl2 Gas Mixture 29 2.3.2. Digital Etching Using Plasma Asher and HCl 34 2.3.3. Atomic Layer Etching Using Inductively Coupled Plasmaโ€“Reactive Ion Etching System (ICP-RIE) 50 2.4. Conclusion 75 2.5. References 76 Chapter 3. SiON/HfON Gate Dielectric Layer by ALD for AlGaN/GaN MIS-FETs 80 3.1. Introduction 80 3.2. ALD Processes for SiON and HfON 83 3.3. Electrical Characteristics of ALD SiON, HfON and SiON/HfON Dual Layer on n-GaN 87 3.4. Device Characteristics of Normally-off AlGaN/GaN MIS-FETs with SiON/HfON Dual Layer 95 3.5. Conclusion 113 3.6. References 114 Chapter 4. High Quality AlN/AlON/AlHfON Gate Dielectric Layer by ALD for AlGaN/GaN MIS-FETs 120 4.1. Introduction 120 4.2. Development of ALD AlN/AlON/AlHfON Gate Stack 122 4.2.1. Process Optimization for ALD AlN 122 4.2.2. ALD AlN as an Interfacial Layer 144 4.2.3. Thickness Optimization of AlN/AlON/ AlHfON Layer 149 4.2.4. ALD AlHfON Optimization 159 4.2.5. Material Characteristics of AlN/AlON/AlHfON Layer 167 4.3. Device Characteristics of Normally-off AlGaN/GaN MIS-FETs with AlN/AlON/AlHfON Layer 171 4.4. Conclusion 182 4.5. References 183 Chapter 5. Concluding Remarks 188 Appendix. 190 A. N2 Plasma Treatment Before Dielectric Deposition 190 B. Tri-gate Normally-on/off AlGaN/GaN MIS-FETs 200 C. AlGaN/GaN Diode with MIS-gated Hybrid Anode and Edge termination 214 Abstract in Korean 219 Research Achievements 221Docto

    Design, Fabrication and Characterization of GaN HEMTs for Power Switching Applications

    Get PDF
    The unique properties of the III-nitride heterostructure, consisting of gallium nitride (GaN), aluminium nitride (AlN) and their ternary compounds (e.g. AlGaN, InAlN), allow for the fabrication of high electron mobility transistors (HEMTs). These devices exhibit high breakdown fields, high electron mobilities and small parasitic capacitances, making them suitable for wireless communication and power electronic applications. In this work, GaN-based power switching HEMTs and low voltage, short-channel HEMTs were designed, fabricated, and characterized.In the first part of the thesis, AlGaN/GaN-on-SiC high voltage metal-insulator-semiconductor (MIS)HEMTs fabricated on a novel โ€˜buffer-freeโ€™ heterostructure are presented. This heterostructure effectively suppresses buffer-related trapping effects while maintaining high electron confinement and low leakage currents, making it a viable material for high voltage, power electronic HEMTs. This part of the thesis covers device processing techniques to minimize leakage currents and maximize breakdown voltages in these โ€˜buffer-freeโ€™ MISHEMTs. Additionally, a recess-etched, Ta-based, ohmic contact process was utilized to form low-resistive ohmic contacts with contact resistances of 0.44-0.47 ฮฉโˆ™mm. High voltage operation can be achieved by employing a temperature-stable nitrogen implantation isolation process, which results in three-terminal breakdown fields of 98-123 V/ฮผm. By contrast, mesa isolation techniques exhibit breakdown fields below 85 V/ฮผm and higher off-state leakage currents. Stoichiometric low-pressure chemical vapor deposition (LPCVD) SiNx passivation layers suppress gate currents through the AlGaN barrier below 10 nA/mm over 1000 V, which is more than two orders of magnitude lower compared to Si-rich SiNx passivation layers. A 10% dynamic on-resistance increase at 240 V was measured in HEMTs with stoichiometric SiNx passivation, which is likely caused by slow traps with time constants over 100 ms. SiNx gate dielectrics display better electrical isolation at high voltages compared to HfO2 and Ta2O5. However, the two gate oxides exhibit threshold voltages (Vth) above -2 V, making them a promising alternative for the fabrication of recess-etched normally-off MISHEMTs.Reducing the gate length (Lg) to minimize losses and increase the operating frequency in GaN HEMTs also entails more severe short-channel effects (SCEs), limiting gain, output power and the maximum off-state voltage. In the second part of the thesis, SCEs were studied in short-channel GaN HEMTs using a drain-current injection technique (DCIT). The proposed method allows Vth to be obtained for a wide range of drain-source voltages (Vds) in one measurement, which then can be used to calculate the drain-induced barrier lowering (DIBL) as a rate-of-change of Vth with respect to Vds. The method was validated using HEMTs with a Fe-doped GaN buffer layer and a C-doped AlGaN back-barrier with thin channel layers. Supporting technology computer-aided design (TCAD) simulations indicate that the large increase in DIBL is caused by buffer leakage. This method could be utilized to optimize buffer design and gate lengths to minimize on-state losses and buffer leakage currents in power switching HEMTs
    • โ€ฆ
    corecore