9 research outputs found

    Error-block codes and poset metrics

    Get PDF
    Let P = ({1, 2,..., n}, <=) be a poset, let V-1, V-2,...,V-n, be a family of finite-dimensional spaces over a finite field F-q and let V = V-1 circle plus V-2 circle plus ... V-n. In this paper we endow V with a poset metric such that the P-weight is constant on the non-null vectors of a component V-i, extending both the poset metric introduced by Brualdi et al. and the metric for linear error-block codes introduced by Feng et al.. We classify all poset block structures which admit the extended binary Hamming code [8; 4; 4] to be a one-perfect poset block code, and present poset block structures that turn other extended Hamming codes and the extended Golay code [24; 12; 8] into perfect codes. We also give a complete description of the groups of linear isometrics of these metric spaces in terms of a semi-direct product, which turns out to be similar to the case of poset metric spaces. In particular, we obtain the group of linear isometrics of the error-block metric spaces.Let P = ({1, 2,..., n}, <=) be a poset, let V-1, V-2,...,V-n, be a family of finite-dimensional spaces over a finite field F-q and let V = V-1 circle plus V-2 circle plus ... V-n. In this paper we endow V with a poset metric such that the P-weight is cons2195111FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOsem informaçã

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Coding in the Presence of Semantic Value of Information: Unequal Error Protection Using Poset Decoders

    Get PDF
    In this work we explore possibilities for coding when information worlds have different (semantic) values. We introduce a loss function that expresses the overall performance of a coding scheme for discrete channels and exchange the usual goal of minimizing the error probability to that of minimizing the expected loss. In this environment we explore the possibilities of using poset-decoders to make a message-wise unequal error protection (UEP), where the most valuable information is protected by placing in its proximity information words that differ by small valued information. Similar definitions and results are shortly presented also for signal constellations in Euclidean space

    Subject Index Volumes 1–200

    Get PDF

    Subject index volumes 1–92

    Get PDF

    Incidence geometry from an algebraic graph theory point of view

    Get PDF
    The goal of this thesis is to apply techniques from algebraic graph theory to finite incidence geometry. The incidence geometries under consideration include projective spaces, polar spaces and near polygons. These geometries give rise to one or more graphs. By use of eigenvalue techniques, we obtain results on these graphs and on their substructures that are regular or extremal in some sense. The first chapter introduces the basic notions of geometries, such as projective and polar spaces. In the second chapter, we introduce the necessary concepts from algebraic graph theory, such as association schemes and distance-regular graphs, and the main techniques, including the fundamental contributions by Delsarte. Chapter 3 deals with the Grassmann association schemes, or more geometrically: with the projective geometries. Several examples of interesting subsets are given, and we can easily derive completely combinatorial properties of them. Chapter 4 discusses the association schemes from classical finite polar spaces. One of the main applications is obtaining bounds for the size of substructures known as partial m- systems. In one specific case, where the partial m-systems are partial spreads in the polar space H(2d − 1, q^2) with d odd, the bound is new and even tight. A variant of the famous Erdős-Ko-Rado problem is considered in Chapter 5, where we study sets of pairwise non-trivially intersecting maximal totally isotropic subspaces in polar spaces. A combination of geometric and algebraic techniques is used to obtain a classification of such sets of maximum size, except for one specific polar space, namely H(2d − 1, q^2) for odd rank d ≥ 5. Near polygons, including generalized polygons and dual polar spaces, are studied in the last chapter. Several results on substructures in these geometries are given. An inequality of Higman on the parameters of generalized quadrangles is generalized. Finally, it is proved that in a specific dual polar space, a highly regular substructure would yield a distance- regular graph, generalizing a result on hemisystems. The appendix consists of an alternative proof for one of the main results in the thesis, a list of open problems and a summary in Dutch

    Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces

    No full text

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic
    corecore