
Coding in the Presence of Semantic Value of
Information: Unequal Error Protection Using Poset

Decoders
Marcelo Firer

UNICAMP - IMECC
Campinas, Brazil

Email: mfirer@ime.unicamp.br

Luciano Panek
UNIOESTE - CECE
Foz do Iguaçu, Brazil
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Abstract—In this work we explore possibilities for coding
when information worlds have different (semantic) values. We
introduce a loss function that expresses the overall performance
of a coding scheme for discrete channels and exchange the usual
goal of minimizing the error probability to that of minimizing
the expected loss. In this environment we explore the possibilities
of using poset-decoders to make a message-wise unequal error
protection (UEP), where the most valuable information is pro-
tected by placing in its proximity information words that differ
by small valued information. Similar definitions and results are
shortly presented also for signal constellations in Euclidean space.

Index Terms—Maximum likelihood decoding, nearest neighbor
decoding, poset metric, unequal error protection, informations
with values.

I. INTRODUCTION

Since the mid 1990s, some new metrics were introduced in
the study of error-correcting codes, mainly metrics determined
by a partial order in the set of positions coordinates of linear
codes, called for simplicity just poset metrics. The relevance
of such metrics is being determined considering channels for
which such metric structures are more appropriate than the
usual Hamming metric (see [21] and [26]). In this work we
generally assume the most usual setting of coding theory, the
use of linear codes over discrete channels (DC), but introduce
a new parameter, the value of the information, that turns poset
metrics into a valuable tool for getting decoders with a good
performance.

As noted by Claude Shannon at the introduction of his
seminal work (see [23]), the “... semantic aspects of com-
munication are irrelevant to the engineering problem”. In this
work, we do not consider the semantic of information, only the
possibility of considering its semantic value, something that
should be defined by experts in the different fields producing
information to be communicated. Considering such a value
function, that associates to each information word a non-
negative real number, allows us to make a slight but relevant
change in one of the main questions that drives coding theory:
instead of searching for codes that minimize the quantity of
errors, we can look for codes that minimize the overall value

of the decoded errors1.
In this work we establish a general framework for consider-

ing value of information in coding theory, presenting first some
existence results that open a wide range of new questions. The
introduction of expected loss functions generalizes the usual
approach of maximum likelihood decoders (ML) and poses
a new theoretical goal: instead of looking for a code (with
given properties, such as dimension and length) that minimizes
the expectation of the number of errors after decoding, we
are actually looking for a triple, consisting of a code, the
way information is mapped into the code and a decoder that
minimizes the expected loss.

To deal with such a larger and difficult goal, we bring
into the picture a family of decoders that are in some sense
more manageable, decoders that are nearest-neighbor de-
coders, according to a family of metrics called poset-metrics.
Considering those metrics we are able to show, in a general
setting, the existence of nearest-neighbor decoders that beats
the performance of classical ML decoders. This a posteriori is
not surprising since ML decoders answer a different question
(minimizing the number of errors). Moreover, considering a
particular set of poset, those called hierarchical posets, we
are able to move forwards and determine efficient decoding
algorithms (see [8] and [20]).

The approach adopted in this work goes somehow in the
same direction that has been followed in some recent works.
In the decoding process, the use of nearest-neighbor decoders
determined by poset-metrics is actually a decoding process
that gives unequal error protection for bits (bit-wise UEP),
in a similar way as proposed in 1967 by Masnick and Wolf
in [16] and since then extensively studied by many authors.
Considering unequal error protection of messages (message-
wise UEP) instead of bits is the approach adopted by Borade,
Nakiboğlu and Zeng in [5], when they consider the necessity
of protecting in different ways information that are different

1Concerning the question of semantics, we must stress we do not aim
to settle a mathematical-theoretical framework that will allow semantical
communication, as for example the one being carried by Juba and Sudan
([13]), but we are just assuming that in some sense, a semantical value was
attributed to information.
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in their nature (like data and control messages) or different
type of errors (erasures and mis-decoded messages), showing
the possibility to achieve the channel capacity exponentially
for some more protected bits (by ”stealing” the capacity from
other bits). The approach given in this work in some sense
is more general and combines unequal error protection of
messages and bits. Moreover, in the approach adopted in
[5], more valuable information is over-protected by assigning
larger decoding regions while in this work the approach to
message-wise unequal error protection is significantly differ-
ent: in the former, more valuable information is protected by
placing in its neighborhood information with similar semantic
value.

Fig. 1. Message-wise UEP and ordered bit-wise UEP.

Also, we do not consider an [n; k]q code just as a subset
C ⊆ Fn

q , but as a map g : I → Fn
q , where I = Fk

q may be
thought as a source code. If we fix such an encoding function
g : I → Fn

q , we are actually distinguishing between g and g◦σ,
where σ : I → I is any permutation of the information set.
In this sense, we may say are making a joint source-channel
coding (JSCC), in the same sense adopted for instance in [9]
where some quantized informations are more relevant than
others.

As a very simple application, we consider the picture bellow.
It is a picture in scale-of-gray encoded in the source with
4 bits of information. The information was encoded as the
perfect [7, 4]2 binary Hamming code, one codeword assigned
for each pixel.

Fig. 2. Original picture.

Using a random number generator, an error was created for
each of the seven bits of each pixel, with error probability
p = 0.3. The same received picture was corrected twice, once
using usual ML decoder and once using a decoder determined
by a given poset (details in Appendix B), which we call for
the moment just a P -decoder.

In Figure 3 we can see in a unique different color (purple
in the colored version) the pixels that were correctly decoded.

The pixels that were incorrectly decoded are presented in the
(wrong) color they were decoded. On the left side we see the
result for ML decoder and on the right side the result for the
P -decoder.

Fig. 3. Right corrected pixels are colored with purple; on the left ML
decoding and on the right P -NN decoding

As expected, the picture on the left is much more color
homogeneous (purple-like), since using ML to decode with a
perfect code minimizes the amount of errors. However, one can
identify the pixels to be painted in purple only when having
the original picture. When looking at the picture as it was
decoded using the two different decoding schemes, one gets a
quite different perception:

Fig. 4. On the left ML decoding and on the right P -decoding.

The right-hand image seems to be more sharp, closer to the
original picture (Figure 2). This perception about the quality
of those decoded pictures is an example of a way of valuing
information, in a situation in which each of us, ordinary
viewers, may be considered as a kind of expert.

Despite the fact those pictures2 were made considering a
very basic model for encoding a gray-scale palette of colours,
they are a good illustration to the main points proposed in this
work, including the fact that ML decoding is not always better
and poset decoders may give better results.

II. ORGANIZATION

Along this work, we study only linear codes and consider
transmission either on a general but not specified discrete
channel or sometimes over a discrete symmetric memoryless
channel (DSMC). All along the work we assume that every
codeword is transmitted with the same probability. Although
the fact those restrictions are not essential for most definitions
introduced in this work (except the linearity of the codes under
consideration) we prefer to restrict ourselves to this context,
since actually dealing with more general channels or codes

2All the pictures illustrating this section were produced using a software
developed by Vanderson Martins do Rosario, a first year undergraduate student
at Universidade Estadual de Maringá (UEM) to whom we are in debt.



words with different frequencies of transition becomes too
intricate for this initial approach.

This work is organized as follows. In Section III we recall
the basic facts about maximum likelihood (ML), maximum
a posteriori (MAP) and nearest-neighbor (NN) decoders. In
Section IV we introduce the main concepts and definitions
used in this work: value function, loss function, overall
expected loss and Bayes decoder. The main result in this
section, Proposition 1, characterizes the expected loss for a
DSMC. In Section V we describe an analogue of Shannon’s
theorem for valued information (Theorem 1). After proving
those general and structural results, in Section VI we restrict
the set of decoders to the set of NN decoders relative to the
poset metrics. Considering the difference between the expected
loss of different NN poset decoders we determine a simple
condition that assures the existence of two nonempty subsets
where one of those NN poset decoders is better than the other
(in terms of minimizing the expected loss) and vice-versa
(Theorem 2). In Section VII we present the existence results
of this work. The first one states that for any linear code and
any ML decoder, there are always value functions for which
it is better to use a non-ML decoder (Theorem 4). In another
result we show that, for a large infinite family of pairs (P,Q)
of posets (called (I, J)-decomposable posets) there are codes
for which better results (in term of total expected loss) may
be attained either by a P -NN decoder or a Q-NN decoder,
according to the value given to each information (Theorem
6). On Section VIII, we work with signal constellations in a
continuous channel, defining in a similar way what an expected
loss function is and showing (Theorem 8) that ML decoders
are not necessarily better than other decoders.

This is not a work that gives answers to known questions,
but rather a work that aims to show both the convenience
and the viability of considering the value of information.
Inasmuch, many questions that arise are not answered. Section
IX is devoted to some final remarks and open problems, but
there are also some open questions stated along the text,
connected to the matter and propositions that made them arose.

In order to make the reading of the work more fluent, we
decided to gather most of the proofs in Appendix A. Finally, in
Appendix B, we present the details about the coding schemes
used to produce the pictures presented in the Introduction.

III. USEFUL BACKGROUND: ML, MAP AND NN
DECODERS

Let Fn
q be the linear space of n-tuples over a finite field Fq

and C ⊆ Fn
q be an [n; k]q linear code. Let dH (·, ·) be the usual

Hamming distance: dH (x, y) is the number of coordinate
positions in which the x and y differ.

A discrete channel (DC) over Fq is characterized by the
set of conditional probabilities {P (b| a) : a, b ∈ Fq} where
P (b| a) represents the probability of receiving the symbol b
given that the symbol a has been transmitted. We assume that

the channel is memoryless (DMC), that is

P (y|x) =
n∏

i=1

P (yi|xi)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) represent n
consecutive transmitted and received symbols, respectively. A
DMC over Fq is called symmetric (DSMC) with crossover
probability p if

P (y|x) = (1− p)
n−dH(x,y)

(
p

q − 1

)dH(x,y)

.

Considering that a vector y is received through the channel,
there are two plausible criteria to decide how to decode it. We
can decode y as a codeword cy such that

P (y| cy) = max
c∈C

P (y| c)

or we can decode y as a codeword cy such that

P (cy| y) = max
c∈C

P (c| y) .

The first decoding criterion is called maximum likelihood de-
coder (ML). The second decoding criterion is called maximum
a posteriori decoder (MAP). Since we are assuming that each
codeword c is transmitted with probability P (c) = 1

M , with
M = qk, it follows from Bayes’ rule that both ML and MAP
decoders coincide with the nearest-neighbor decoder (NN) in
DSMC:

dH (y, cy) = min
c∈C

dH (y, c) .

For each decoding criterion above we may define a (generally
not unique) map a : Fn

q → C such that

dH (y, a (y)) = min
c∈C

dH (y, c) .

In general, a decoding scheme (or just decoder) is just a map

a : Fn
q → C.

It is reasonable to require that a (c) = c for all c ∈ C and
in this situation we call a an ordinary or reasonable decoder.
Let D (c) be the decision region of c relative to the decoding
scheme a:

D (c) := a−1 (c) =
{
y ∈ Fn

q : a (y) = c
}

.

The decision regions D (c) of a decoder a determine a partition
of Fn

q . Given a decoding scheme, an error occurs if c is sent
and the received codeword lies in some decision region D (c′),
with c′ ̸= c. The probability of error is therefore

Pe (c) = 1−
∑

y∈D(c)

P (y| c)

where the sum runs over all y ∈ D (c). As the probability
distribution of C is uniform, the decoding error probability of
C is the average

Pe (C) =
1

M

∑
c∈C

Pe (c) .



We let now R+ denotes the set of non-negative real numbers
and consider the map

µ0-1 : C → R+

given by

µ0-1 (c) =
{

0 if c = 0
1 if c ̸= 0

.

It follows that

Pe (C) =
1

M

∑
c∈C

∑
y∈Fn

q

µ0-1 (a (y)− c)P (y| c) .

We remark that at this point it is essential to consider C to be a
linear code, in order to ensure that a (y)−c ∈ C. The function
µ0-1 is a characteristic function that only detect decoding
errors, but do not distinguish different decoding. We will use
the notation µ0−1 for any such function, independently of the
code under consideration.

In many real situations, it is reasonable to attribute different
values to different codewords, and this is what will be done
in this work, considering instead of µ0-1 value functions that
may assume any (non-negative) real value. A typical example
of this situation is the transmission of digital images illustrated
in the introduction: small variations in the color values of each
pixel does not affect the quality perception of the image. This
work is inspired by this very common kind of situation.

IV. VALUE FUNCTIONS AND EXPECTED LOSS

A value function for a linear code C is just a map µ that
associates to each codeword a non-negative real number

µ : C → R+,

and a loss function

l : C × Fn
q → R+

given by l (c, y) = µ (a (y)− c) gives a measure of the loss
when the information c ∈ C was send and the information y ∈
Fn
q was received and decoded as a (y) ∈ C. We remark that,

since C is linear, the difference a (y)−c is actually a codeword
hence it makes sense to consider the value µ (a (y)− c). By
doing so, we are evaluating the errors that may occur during
the process consisting of encoding, transmitting and decoding
information. In such a situation it is reasonable to require that
µ (0) = 0 (we should not lose anything if everything was right
along the process). If this happens, we say the value function
is reasonable. We make this distinction since we will use some
“unreasonable” value functions that proved to be valuable for
proving Theorem 4 in section VII.

Given a linear code C, a decoder a for C, and a value
function µ : C → R+, we define the expected loss of a
relative to µ and to a received information y to be the average

Ly (a, µ) := E (l (c, y)) =
∑
c∈C

l (c, y)P (c|y)

=
∑
c∈C

µ (a (y)− c)P (c| y) .

We define the overall expected loss of a as the average of
the expected loss for all possible informations y ∈ Fn

q ,

E (L(a, µ)) =
∑
y∈Fn

q

Ly (a, µ)P (y),

where P (y) =
∑

c P (c)P (y|c) is the probability of receiving
y. That expression can be rewritten as

E (L(a, µ)) =
∑
c∈C

∑
y∈Fn

q

µ (a (y)− c)P (y| c)P (c).

Making the change of variable τ = a (y)− c we have that

E (L(a, µ)) =
∑
τ∈C

Ga (τ)µ (τ)

where

Ga (τ) =
∑
y∈Fn

q

P (y| a (y)− τ)P (a (y)− τ) . (1)

We remark that E (L(a, µ)) actually depends on C and should
be denoted as E (L(a, µ, C)), but this dependence on C will
be omitted when it should not cause any confusion. Also, to
shorten the notation and since no confusion may arise we will
denote

E (a, µ) := E (L(a, µ)) .

Moreover, since we are considering the value of informa-
tion, the total expected loss depends not only on the code itself
but also on the way the information is mapped into the code.
In other words, we are actually considering a value function
µ̃ : I → R+ where I is a source code. When we say that a
code C is given we are assuming that it is given an embedding
g : I → C ⊆ Fn

q and the function µ : C → R+ is the unique
function such that µ ◦ g = µ̃.

We say that a decoder a∗ is a Bayes decoder for C relative
to the value function µ and to the loss function l if for each
received information y ∈ Fn

q it minimizes the expected loss,
i.e.,

Ly (a
∗, µ) = min

a
Ly (a, µ) ,

where the minimum is taken over the set of all decoders a of
C.

Given a DSMC with crossover probability p and an [n; k]q
linear code C such that P (c) = 1

M for all c ∈ C, we have
that

P (y| c) = (1− p)
n−dH(y,c)

(
p

q − 1

)dH(y,c)

.

Thus, in expression (1),

Ga (τ) = z
∑
y∈Fn

q

sdH(y,a(y)−τ)

where
z = z (p) :=

(1− p)
n

M

and
s = s (p) :=

p

(1− p) (q − 1)
.



Dropping the multiplicative scaling factor z in Ga we obtain:
Proposition 1: For a DSMC we have

E (a, µ) =
∑
τ∈C

Ga (τ)µ (τ)

where
Ga (τ) =

∑
y∈Fn

q

sdH(y,a(y)−τ).

V. SHANNON’S THEOREM ANALOGUE FOR E (a, µ)

Shannon’s coding theorem of 1948 (see [23]) states that for
a broad class of communication channel models, given δ > 0
and R lesser than the channel capacity, there exists an [n; k]q
linear code with k

n ≥ R such that Pe (C) < δ. In this section
we state and prove a version of Shannon’s theorem for valued
information on a DSMC.

Let C be an [n; k]q linear code. Given value functions
µ1, µ2 : C → R+ that differ by a constant, µ1 = λµ2 for
some λ > 0, the expected loss functions differ by the same
constant hence we may say that µ1 and µ2 are equivalent.
Let [µ] be the equivalence class of the value function µ. The
canonical representative of the class [µ] is defined to be the
value function ν ∈ [µ] such that ∥ν∥∞ = 1, where ∥ν∥∞
denotes the maximum norm

∥ν∥∞ = max {ν (c) : c ∈ C} .

We can identify

[V (C)] = {[µ] : µ : C → R+ value function} ,

the space of equivalence classes of value function, with the set
of canonical representatives and consequently with the faces
of the cube [0, 1]

qk . The value function µ0-1 corresponds to a
vertex of [0, 1]q

k

.
Let V0 (C) be the set of canonical representatives µ of of

reasonable value functions on C (i.e. µ (0) = 0). Since 0 ≤
µ (c) ≤ 1 for all c ∈ C, it follows that:

E (a, µ) =
∑
c∈C

∑
y∈Fn

q

µ (a (y)− c)P (y| c)

P (c)

=
∑
c∈C

 ∑
y/∈D(c)

µ (a (y)− c)P (y| c)

P (c)

≤
∑
c∈C

1−
∑

y∈D(c)

P (y| c)

P (c) .

Thus E (a, µ) is bounded by the decoding error probability:

E (a, µ) ≤ Pe (C) .

Therefore we have a version of Shannon’s theorem for valued
information on DSMC:

Theorem 1: For a DSMC let C > 0 be the capacity of the
channel. For each ε > 0 , R < C and µ ∈ V0 there exists an
[n; k]q linear code with k

n ≥ R such that E (a, µ) < ε.

Open Problem 1: As was seen in the proof of the preceding
theorem, since E (a, µ) ≤ E (a, µ0−1) = Pe (C), we ask
if it is possible to achieve reliable communication at rates
superior to the Shannon capacity. In other words, for a given
value function µ, given ε > 0 there is a code C such that
EC (a, µ) < ε (Theorem 1). Let nµ (ε) be the minimal possible
length of such a code, so that the code has information
rate k

nµ(ε)
(where k is the dimension of the code)3. Since

E (a, µ) ≤ E (a, µ0−1) we have that nµ (ε) ≤ nµ0−1 (ε) and
we ask for a characterization of the value functions for which
nµ (ε) < nµ0−1 (ε) for every ε. Moreover, we ask if there is
a value function µ such that

lim
ε→0

nµ (ε)

nµ0−1 (ε)
< 1

or even

lim
ε→0

nµ (ε)

nµ0−1 (ε)
= 0.

VI. POSET METRICS AND EXPECTED LOSS DIFFERENCES

The determination of Bayes decoders is a hard (in terms of
complexity) problem. In order to have any hope to actually
developing a communication process that needs, at its very
end, a decoding algorithm, we shall consider a particular but
large class of decoders, the nearest-neighbor (NN) decoders
determined by poset metrics. Besides the fact of being a
metric, those metrics profiteers well the structure of linear
codes, since they are invariant by translations. As we shall
explain latter, for many of those metrics there are very efficient
decoding algorithms available.

Poset metrics were introduced in the context of coding
theory by Richard Brualdi et. al. in 1995 (see [6]). Since its
introduction in 1995 many contributions have been established
for the theory of poset codes. The works on the existence of
new classes of perfect codes (see [10], [12]), determination of
identities of MacWilliams type ([1], [14]), Wei duality theorem
([17]), P -MDS codes ([11]) and the isometry groups ([18])
are examples of these contributions. Some particular families
of poset metrics are also studied, the most common one is
the family of Niederreiter-Rosenbloom-Tsfasman metrics ([3],
[19], [20], [21]), since transmission over a set of parallel
channels subject to fading and the noise process in a wireless
fading system (see [21], [26]) are suitable to be modeled with
such metrics.

We start defining what a poset metric is. Let [n] :=
{1, 2, . . . , n} be a finite set with n elements and let ≼ be a
partial order on [n]. We call the pair P = ([n] ,≼P ) a poset.
When no confusion may arise we will write simply ≼ instead
of ≼P . An ideal in P is a subset I satisfying the following
condition: if j ∈ I and i ≼ j, then i ∈ I . Given a subset
X in P , we denote by ⟨X⟩ the smallest ideal containing X ,
called the ideal generated by X . If x = (x1, . . . , xn) and
y = (y1, . . . , yn) are two vectors in Fn

q , then their P -distance

3The decoder that is used to achieve such minimality is not relevant at this
point, only the minimality of nµ (ε).



dP (x, y) is defined by

dP (x, y) = |⟨{i : xi ̸= yi}⟩| ,

where |A| denotes the cardinality of A. Since the P -distance is
a metric on Fn

q , it is also called poset metric (or P -metric). If
P is an antichain order (or Hamming order), that is, an order
where i ≼ j iff i = j, the P -distance is just the classical
Hamming distance.

Before we move to look for expected loss for poset de-
coders, we introduce briefly two families of posets that will
be considered along this work.

A chain order over [n] is an an order where every two
elements are comparable (see figure 5). A Niederreiter-
Rosenbloom-Tsfasman (n,m)-order (NRT) over [nm] is an
order formed by the disjoint union of n chains, each chain
having m elements (we call m the length of the chain).

A hierarchical order P over [n] is an order for which there
is a partition

[n] =

h∪
δ=1

Aδ

such that given i ∈ Aδi and j ∈ Aδj , then i ≼P j if, and
only if, δi ≤ δj . If we denote |Aδ| = lδ we may say P is an
(l1, . . . , lh) hierarchical poset (see Figure 5). We remark that
an (1, . . . , 1) hierarchical poset is the (1, n) NRT-order and an
(n) hierarchical poset is the chain order.

Fig. 5. Hierarchical poset of type (4), (1, 1, 1) and (4, 2, 3).

We stress that the first poset (with only trivial relations)
gives rise to the usual Hamming metric dH and the second
one may also be viewed as a (1, 3) NRT order.

An ordinary decoder aP of an [n; k]q linear code C is called
an nearest-neighbor P -decoder (P -NN) if

dP (y, aP (y)) = min
c∈C

dP (y, c)

for every y ∈ Fn
q . The set of all P -NN decoders associated

with C will be denoted by OP (C). We denote by O (C) the
set of all such decoders, for all poset metrics dP in Fn

q :

O (C) :=
∪
P

OP (C) = {aP : aP is a P -NN decoder of C} .

We remark that all those are reasonable decoders.
Decoders in O (C) are called poset decoders. A Q-NN

decoder a∗Q ∈ O (C) such that

E
(
a∗Q, µ

)
= min

aP∈O(C)
E (aP , µ)

is said to be a Poset-Bayes decoder for C relative to the
value function µ. The determination of Poset-Bayes decoders
is a hard problem, since the quantity of such decoders (for a
fixed code C) grows exponentially with n. Our strategy is to
consider the difference between the total expected loss relative
of pairs of decoders in O (C).

Let P = ([n] ,≤) and Q = ([n] ,≤) be posets on [n].
Given a linear code C ⊆ Fn

q , we consider two P -NN and
Q-NN decoders aP , aQ : Fn

q → C with total expected loss
functions EaP

(µ) := E (aP , µ) and EaQ
(µ) := E (aQ, µ) re-

spectively. The total expected loss difference between EaP
(µ)

and EaQ
(µ) is

E(aP ,aQ) (µ) := EaP
(µ)− EaQ

(µ) .

From Proposition 1 it follows that for each 0 < s < 1 (we
recall that s depends only on the crossover probability p) the
total expected loss difference can be viewed as the restriction
to the positive octant RM

+ ⊆ RM (M = qk) of the linear
functional E(aP ,aQ) : RM → R given by

E(aP ,aQ) (µ) =
∑
c∈C

T(aP ,aQ,c) (s)µ (c)

where

T(aP ,aQ,c) (s) = GaP
(c)−GaQ

(c) := G(aP ,c) (s)−G(aQ,c) (s)

and G(a(·),c) (s) is defined as in Proposition 1. Let us label
the codewords as C = {c0, c1, . . . , cM−1}. Assuming that
EaP (µ) ̸= EaQ (µ), E(aP ,aQ) is a non-null operator, then

τ(aP ,aQ) (s) =
(
T(aP ,aQ,c0) (s) , . . . , T(aP ,aQ,cM−1) (s)

)
is a vector in RM orthogonal to N(aP ,aQ), the kernel of
E(aP ,aQ), and it points toward the connected component
of RM − N(aP ,aQ) containing those functions µ for which
E(aP ,aQ) (µ) > 0.

If V denotes the set of all value functions (the positive octant
of RM ), it can be decomposed as

V = V+
(aP ,aQ) ∪

(
N(aP ,aQ) ∩ V

)
∪ V−

(aP ,aQ)

where V+
(aP ,aQ) and V−

(aP ,aQ) are the subsets of value functions
µ ∈ V for which E(aP ,aQ) (µ) > 0 and E(aP ,aQ) (µ) < 0
respectively. We note that V+

(aP ,aQ) and V−
(aP ,aQ) are both non-

empty iff N(aP ,aQ) intersect the set of value functions V , the
positive octant of RM . Since each µ (c) ≥ 0, a necessary
and sufficient condition for the kernel N(aP ,aQ) intersecting
the first quadrant of RM is that at least two coordinates of
the normal vector τ(aP ,aQ) (s) (the coefficients of the linear
combination E(aP ,aQ) (µ)) have different signs.

With this notation we give the following natural definition:
Definition 1: Given an [n; k]q linear code C, a value func-

tion µ for C, and decoders aP , aQ ∈ O (C), we say that aP
is better than aQ relative to µ if

E(aP ,aQ) (µ) < 0,

that is, if EaP
(µ) < EaQ

(µ).



We note that saying that aP is better than aQ relative to
µ is just a way of emphasizing the meaning of the statement
µ ∈ V+

(aP ,aQ). With the definition and notation above, we have
actually proved the following:

Theorem 2: Let C be an [n; k]q linear code. Given two
poset decoders aP , aQ ∈ O (C) , then there are value functions
for which aP is better than aQ and value functions for which
aQ is better than aP iff there are c, c′ ∈ C such that

T(aP ,aQ,c) (s) < 0 < T(aP ,aQ,c′) (s) .

In this case, both V+
(aP ,aQ) and V−

(aP ,aQ)are nonempty subsets
of V .

Bayes decoders associated to the value function µ0-1 are the
classical ML decoders (see for example [2, Theorem 4.1.1]).
In the context of expect loss and restricting the problem to the
class of Poset-Bayes decoders, we have:

Theorem 3: Let H be the Hamming order on [n] and C be
an [n; k]q linear code. Then

E(aH ,aP ) (µ0-1) ≤ 0

for any poset P and any aP ∈ O (C), that is, H-NN is better
than P -NN for all order P on [n]. Therefore, H-NN decoders
are Poset-Bayes decoders for the value function µ0-1.

Up to this point there is no real advantage in dealing with
poset decoders. Such advantages will arise if we can give
positive answer to the following questions:

(1) Given a linear code C and the Hamming metric dH , are
there a H-NN decoder aH and a poset decoder aP such
that V+

(aH ,aP ) and V−
(aH ,aP ) are nonempty? A positive

answer would means that, for a nonempty set of value
functions, the poset decoder aP is better than any H-NN
decoder aH .

(2) Given P and Q posets, are there a linear code C
and decoders aP and aQ of C such that V+

(aP ,aQ)

and V−
(aP ,aQ) are nonempty? A positive answer to this

question means that every poset decoder is relevant,
depending on the code under consideration.

Partial answers to those questions are given in Section VII.
The following examples illustrate the concepts and ques-

tions presented in this section.
Example 1: Let H be the Hamming order and P be the

total order 1 ≼P 2 ≼P 3 ≼P 4 ≼P 5. For the [5; 2]2 binary
code

C = {c0 = 00000, c1 = 11100, c2 = 00111, c3 = 11011}

and appropriate decoders aH and aP of C we have

EaH (µ) =
(
4 + 20s+ 8s2

)
µ (c0) +(

12s2 + 12s3 + 8s4
)
µ (c1) +(

12s2 + 12s3 + 8s4
)
µ (c2) +(

8s2 + 16s3 + 4s4 + 4s5
)
µ (c3) ,

EaP (µ) =
(
4 + 10s+ 10s2 + 6s3 + 4s4

)
µ (c0) +(

6s+ 14s2 + 10s3 + 2s4
)
µ (c1) +(

2s+ 6s2 + 10s3 + 10s4 + 4s5
)
µ (c2) +(

2s+ 10s2 + 14s3 + 6s4
)
µ (c3) ,

hence

E(aH ,aP ) (µ) =
(
10s− 2s2 − 6s3 + 2s4

)
µ (c0) +(

−6s− 2s2 + 2s3 + 6s4
)
µ (c1) +(

−2s+ 6s2 + 2s3 − 2s4 − 4s5
)
µ (c2) +(

−2s− 2s2 + 2s3 − 2s4 + 4s5
)
µ (c3) .

Since for each 0 < s < 1

T(aH ,aP ,c0) (s) = 10s− 2s2 − 6s3 + 2s4 > 0

and

T(aH ,aP ,c1) (s) = −6s− 2s2 + 2s3 + 6s4 < 0,

it follows from Theorem 2 that both V+
(aH ,aP ) and V−

(aH ,aP )are
nonempty subsets of V , that is, depending on the value
function, the P -NN decoder aP may be better or worse then
the usual H-NN decoder aH .

Example 2: Let us now consider the repetition code
{c0 = 000, c1 = 111}. Although trivial, this is an MDS perfect
code. Considering the ML decoder aH and a poset decoder
aP determined by the poset P defined by the relations
1 ≼P 2 ≼P 3 we find that

E(aH ,aP ) (µ) =
(
2s− s2

)
µ (000) +

(
−2s+ s2

)
µ (111)

hence
V+
(aP ,aH) = {µ : µ (000) > µ (111)}

and
V−
(aP ,aH) = {µ : µ (000) < µ (111)} .

VII. RELEVANCE OF DECODERS AND CODES

In this section we show that in quite general instances, every
encoding and every decoder may be relevant, depending on the
value functions to be considered. All proofs are postponed to
Appendix A.

We start with the result which shows that for any linear
code and any ML decoder, there are always value functions
for which is better to use an non-ML decoder.

Theorem 4: Let C be an [n; k]q linear code and ã an ML
decoder. Than, there exist a decoder a and value functions µ
and µ̃ such that

E (a, µ) > E (ã, µ)

and
E (a, µ̃) < E (ã, µ̃) ,

for any given discrete channel.
In the proof of this theorem we make use of a decoder

a0 : Fn
q → C such that a0 (y) = 0 for all y ∈ Fn

q and of a
value function µ1-0 defined by µ1-0 (0) = 1 and µ1-0 (c) = 0
if c ̸= 0. Both this decoder and the value function are not
reasonable ones.



We can make some progress concerning the question of
reasonable decoders considering a discrete channel. Before
proceeding, we given an [n; k]q linear code and y ∈ Fn

q we
define arg (dH (C, y)) as the set of all codewords of C closest
to y in the usual Hamming metric:

arg (dH (C, y)) =

{
c ∈ C : dH (y, c) = min

θ∈C
dH (y, θ)

}
.

Theorem 5: Let C be an [n; k]2 binary linear code and ỹ =
(1, 1, . . . , 1). If |arg (dH (C, ỹ))| > 1, there are ML decoders
aH and ãH of C such that V +

(aH ,ãH) and V −
(aH ,ãH) are both

nonempty.
Let us state a important class of linear codes that satisfies

the condition of the Theorem 5.
Corollary 1: Let dH be the Hamming metric on Fn

2 and C
be an [n; k]2 binary linear code of constant weight w. If k > 1,
then there is a P -NN decoder aP and an H-NN decoder aH
of C such that V+

(aH ,aP ) and V−
(aH ,aP ) are nonempty.

Open Problem 2: Does Theorem 4 still hold if we impose
the use of reasonable decoders and value functions? In The-
orem 5 we considered a reasonable decoder (every P -NN
decoder is reasonable), but had to impose some restrictions
on the code. Is it possible to rule those conditions out? We do
believe the answer to those questions is positive, but were not
able to prove it.

Up to this moment we were considering a given (and fixed)
code, and showed there are value functions for which it is
better (in the sense of minimizing the expected loss) to decode
using a non-Hamming decoder. Now we fix two different
posets, one of them a poset P that satisfies a special condition
and the usual Hamming poset H and show the existence of a
code for which both V+

(aH ,aP ) and V−
(aH ,aP ) are non empty.

Before stating the results we need some definitions. Given
an order P = ([n] ,≤P ) the dual order P ∗ = ([n] ,≤P∗) is
defined by the opposite relations: x ≤P∗ y ⇔ y ≤P x. For
simplicity, we shall omit the indices in ≤P and ≤P∗ when
no confusion may be caused. We remark that (P ∗)

∗
= P . An

ideal in P ∗ is called a filter in P .
Given a nontrivial and proper filter I in P and ∅ ≠ J ⊂ I ,

we define

I+J := {i ∈ I − J : i > j for some j ∈ J}

and
I−J := {i ∈ I − J : i < j for some j ∈ J} .

We will say that a filter I of P is J-decomposable if

I = I+J ∪ J ∪ I−J

is a partition of I with both I+J and I−J nonempty. If there
exists a filter I in P that is J-decomposable, we will say that
P is (I, J)-decomposable.

Let now {ei : 1 ≤ i ≤ n} be the usual base of Fn
q . For each

nonempty subset X ⊆ [n] let

CX = span {ei : i ∈ X}

be the coordinate subspace with support in X . Given y =∑n
i=1 yiei ∈ Fn

q we denote by yX its projection onto CX :

yX =
∑
i∈X

yiei.

Given an (I, J)-decomposable order P , with |I| = K and
|J | = k, it determines an [n;K − k]q linear code C(I,J) that
is just the coordinate space CI−J , i.e.,

C(I,J) = span {ei : i ∈ I − J } .

We name those subspaces as a BGL code, after the description
of perfect codes given by Brualdi, Graves and Lawrence in
1995 ([6, Theorem 2.1]).

The complement of a subset X ⊂ [n] is denoted by Xc.
Theorem 6: Let P = ([n] ,≤P ) be an (I, J)-decomposable

order and H = ([n] ,≤H) be the Hamming order. Considering
the [n; |I| − |J |]q BGL code C(I,J), there are NN decoders
aH and aP of C and codewords c, c′ ∈ C(I,J) such that both
V+
(aH ,aP ) and V−

(aH ,aP ) are non empty for every 0 < s < 1.
In general is not easy to compute the polynomial

T(aH ,aP ,c) (s). However, for appropriate P -NN decoders of
C(I,J) it is possible to determine T(aH ,aP ,c) (s):

Corollary 2: Consider an (I, J)-decomposable order P on
[n]. For the BGL code C(I,J) and for the P -NN decoder aP
determined in Theorem 6 we have that

T(aH ,aP ,c) (s) = sdH(ỹ,c) − sdH(ỹ,c̃−c)

for every c ∈ C(I,J).
It is easy to see that the class of (I, J)-decomposable orders

includes the (n,m)-NRT poset for m ≥ 4, hence the following
corollary holds:

Corollary 3: Let H be the Hamming order on [nm] and let
P be the NRT (n,m)-order on [nm].Then, for m ≥ 4 there
exists an [n; k]q linear code C and c, c′ ∈ C such that

T(aH ,aP ,c) (s) < 0 < T(aH ,aP ,c′) (s)

for some H-NN and P -NN decoders aH and aP of C
respectively. Therefore, V+

(aH ,aP ) and V−
(aH ,aP ) are nonempty.

If we consider the particular case when P is the (1,m)-
NRT order and m ≥ 4, then every filter I of J with |I| ≥ 3
is decomposable: given I = {m− k + 1, . . . ,m}, then

I = I+{m−k+j} ∪ {m− k + j} ∪ I−{m−k+j}

is a non trivial partition of I and the following holds:
Corollary 4: Let H be the Hamming order on [m] and let

P be the NRT (1,m)-order. If m ≥ 4, then for each 2 ≤
k < m − 2 there exists an [m; k]q linear code C such that
both V+

(aH ,aP ) and V−
(aH ,aP ) are nonempty for some H-NN

and P -NN decoders aH and aP .
We remark that, in the proof of Theorem 6, the only property

of the Hamming poset H we used was the fact that aH (y) =
yI−J is an H-NN decoder. Actually it is true for any poset
on [n] that is (I, J)-decomposable. It follows that the result
obtained in Theorem 6 also holds for any such pair of posets.
Let P and Q be a pair of orders on [n]. Suppose that P is



(I, J)-decomposable. We will say that P is (I, J)-isomorphic
to Q if I in Q is still a filter. In this condition I is also J-
decomposable on Q.

Theorem 7: Consider proper subsets ∅ ̸= J ⊂ I ⊂ [n]. Let
P and Q be posets on [n] such that I is filter in both P and
Q. Then, if both P and Q are (I, J)-decomposable there is
an [n; k]q linear code C and NN decoders aP and aQ of C

such that V+
(aP ,aQ) and V−

(aP ,aQ) are nonempty4.
Open Problem 3: We do believe that the (I, J)-

decomposable condition in the statement of Theorem 6
is not necessary, as much as the condition that the channel
being symmetric. The right question we believe should
be posed is the following: to find necessary and sufficient
conditions on two posets that guarantee the existence of a
code that may be better corrected by using either the poset
metrics (depending on the value functions).

VIII. VALUE FUNCTIONS FOR THE CONTINUOUS
CHANNEL

The concept of expected loss defined for a discrete channel
can naturally be adapted for continuous channels. We do not go
as further as in the discrete channel case and restrict ourselves
to giving appropriate definitions.

Let S = {s1, . . . , sM} be a finite signal constellation on the
Euclidean N -dimensional space RN . We should now proceed
to introduce value to the signal. In a manner of fact, in a
situation similar to that developed for the discrete channel,
we are actually valuing the errors (after decoding), what was
not totally evident in the discrete case since we considered just
linear codes, hence every error (after decoding) is a codeword.
For this reason we consider the difference set

∆S := S − S = {si − sj : si, sj ∈ S} .

A value function for the constellation S is any function

µ : ∆S → R+.

Consider the continuous channel defined by the family of
probability density functions p (y|x), with x, y ∈ RN . We
define the overall expected loss of S relative to the value
function µ : ∆S → R+ and decoder a : RN → S as the
average

E (L (a, µ)) =

∫
Rn

Ly (a, µ) p (y) dy

where

Ly (a, µ) =
∑
si∈S

µ (a (y)− si) p (si| y) dy

is the expected loss for an observed y. As in the discrete
channel case, E (a, µ0-1) coincides with the decoding error
probability Pe (S) of S. As in the discrete case, we denote
E (L (a, µ)) simply by E (a, µ)

4BGL codes have some nice properties, including the possibility of express-
ing the packing radius as a function of the minimal distance, what is not an
easy task for general codes and posets.

Also the overall expected loss E (a, µ) can be interpreted as
the restriction of a linear functional with domain R|∆S| into
R+:

E (a, µ) =
∑

τ∈∆S

Ga (τ)µ (τ)

with

Ga (τ) =
∑

si,sj∈S:sj−si=τ

∫
R(sj)

p (y| si) p (si) dy

where R (si) = a−1 (si) is the decision region of the signal
si.

Now consider the difference of the expected losses

E(a,ã) (µ) = E (a, µ)− E (ã, µ)

relative to the value function µ and the pair (a, ã) of decoders
of S, we have that

E(a,ã) (µ) =
∑

τ∈∆S

T(a,ã) (τ)µ (τ)

where
T(a,ã) (τ) := Ga (τ)−Gã (τ)

for each τ ∈ ∆S.
With the definitions properly established, it is possible to

prove that ML decoders on RN , determined by the Voronoi
regions, are not always the best decoders. More generally:

Theorem 8: Let S = {s1, . . . , sM} be a signal constellation
in RN such that for some τ ∈ RN there is a unique sj − si ∈
∆S such that sj−si = τ . Consider a decoder a : RN → S for
S and assume that each decision region of the decoder a has
non-empty interior. Then there is another decoder ã : RN → S
for S such that

T(a,ã) (si − sj) < 0 < T(a,ã) (sj − si) .

IX. FINAL REMARKS

In this final section we present some remarks concerning
many aspects of coding theory that either demand a different
formulation in the context of expected loss or raise interesting
problems we believe are deserve to be explored.

A. Remarks about Poset Decoders

Poset codes were given a distinctive position in this work,
but its actual importance was not truly explained. The first
motivation to consider poset decoders is the fact that some
of them admit efficient algorithm decoding, what is a deep
contrast with the usual setting of ML decoders case, where
finding general decoding algorithms is known to be NP-
complete (see [4]). Indeed, for an (n)-hierarchical poset (or
equivalently, an NRT (1, n)-order), the kind used to produce
the right-side pictures in the Introduction, decoding algorithm
is linear in the co-dimension of the code [20, Section IV-D].
Besides those posets, for a general hierarchical poset, there are
algorithms that are at least as efficient as syndrome decoding
and with high probability significantly faster [8]. If an (n)-
hierarchical poset is unique (up to order isomorphism) for any
n ∈ N, the hierarchical posets in their generality are a large



family, corresponding to ordered partitions of n, hence there
are ∼ 2

√
n such posets, what should provide many possibilities

in each code length.
When considering the dimension k and the length n of a

code as given, the usual task of error correcting is to find a
code with better performance. If this is already an untractable
computational problem, the goal posed in this work is much
more complex: finding a pair, consisting of a code and a
decoder. Here comes another reason to restrict ourselves to
poset decoders, or more specifically, to hierarchical poset
decoders, since there is an heuristic approach to find better
results for the expected loss function: since coordinates that
has large value (it means, |⟨i⟩| is large) are best protected, we
should make a code such that the more relevant information
is concentrated as non-null entries in those coordinates and to
define a poset that has those coordinates as maximal elements
of the poset.

Open Problem 4: Is it possible to prove that under suitable
conditions this kind of heuristics will work? To be more
explicit. Suppose there are M = qk informations Λ =
{x1, . . . , xM} with µ (xi) ∼ λi for some constant λ > 1.
Is it true that given an [n, k]q linear code C it is possible
to find an aP decoder determined by an NRT (1, n)-order P
for which E (aP , µ) < E (aH , µ) for every Hamming decoder
aH? Can we make the same statement when C is a perfect
or MDS code? More generally, if the information set can be
partitioned as

Λ =

r∪
i=1

Λi

with µ (xj) ∼ λi if xj ∈ Λi, should we use a decoder
determined by an hierarchical poset?

B. Remarks about the Space of Codes and Decoders

The introduction of value functions and the need to consider
decoders that may not be ML decoders enlarges considerably
the space where we are actually working. We can assume as
reasonable that the quantity qk of information and the value
of the information are given, depending on the application
and the kind of knowledge the information constitute. If we
suppose for instance that the cost of transmission is determined
by the length n (the same would hold if a maximal bound was
established for the expected loss), we are looking for a pair
consisting of an [n; k]q linear code and a decoder associated
to the code. Moreover, we are not only interested in the code
C ⊆ Fn

q , but actually how the set of information Λ is mapped
onto C, so we are actually considering a code not only as a
subset C ⊆ Fn

q but as an embedding in Fn
q . In other words,

we should consider not only the subset C ⊆ Fn
q but also

all the permutations σ : C → C. In this sense, the pair
(code, decoder) where we are searching for possibilities to
minimize the expected loss function is a space with

n∏
k=1

(
qn − qi−1

)
(qk − qi−1)

×
(
qk
)
!× (qn)(

2k)

elements, where the first factor corresponds to the cardinality
of the Grasmannian G (n, k), the second to the permutations
of total quantity of C and the last one to the decoders of a
given [n; k]q code (including the unreasonable ones).

Open Problem 5: To estimate asymptotically, the quotient

(qn)(
2k)

DPn

where DPn is the number of NN poset decoders may be an
interesting question for itself. There is no known estimative of
DPn but for Pn, the number of posets on a set of n elements,
the exact asymptotic is known [25]: for odd n

Pn ∼
√

2

π

(
+∞∑

x=−∞
2−x2

)
2

n2

4 + 3
2n−

1
2 logn

and for even n

Pn ∼
√

2

π

(
+∞∑

x=−∞
2−(x

2− 1
2 )

2

)
2

n2

4 + 3
2n−

1
2 logn.

C. Remarks about Bounds for Expected Loss

The error probability function Pe (C) is one of the fun-
damental parameters to measure de performance of a coding
scheme. Despite the fact it has a simple formulation,

Pe (C) =
1

M

∑
c∈C

∑
y∈Dc(c)

P (y| c) ,

actual calculations are generally hard problems. For this rea-
son, finding good (lower and upper) bounds is a fundamental
question. Among the well known such bounds we can find
union bound, Bhattacharyya, Gallager, Caen and sphere pack-
ing (see [22]).

Considering the total expected loss, we already saw that the
error probability Pe (C) is an upper bound for E (a, µ), but it
is obviously far from being a tight one. Calculating E (a, µ)
it is not only prohibitive, but involves many parameters that
should be treated separately.

Open Problem 6: Consider a fixed family of value func-
tions and search for upper bounds for E (a, µ). One relevant
family that may be interesting for protecting information
of different nature (as done in [5]) suggests to consider
a value function µ0-λ-1 such that C can be partitioned as
C = C0 ∪ Cλ ∪ C1 where µ0-λ-1 (c) = j if c ∈ Cj . More
general situations are found where C is expressed as

C = C0 ∪ C1 ∪ . . . ∪ Cr

and the value function is either linear (µL) or exponential
(µE), in the sense that

µL (c) = j
1

r
if c ∈ Cj

µE (c) = bj
1

br
if c ∈ Cj

where b > 1 is a constant. We remark that the fractions 1
r and

1
br are just scaling factors.



Open Problem 7: Considering a family of value functions
concerns aiming to produce coding schemes for families of
applications with similar semantic value, and this is a data
that is determined by the practical (or theoretical) problem. If
instead we look at the way we are able to manage, the natural
question would be to find bounds for the expected loss when
considering a particular family of NN poset decoders, specially
those determined by hierarchical posets.

Finally:
Open Problem 8: Both the problems presented above are

still very hard, in each of them there is one free parameter
we do not find in the classical case where both the value
function (µ0-1) and the decoder type (ML) are fixed. So we can
combine the two previous problems and ask to find bounds for
the expected loss function fixing a family of value functions
and a type of NN decoder.

D. Remarks about Rate Distortion Theory

The basic question concerning rate distortion theory, as
posed Kolmogorov ([15]) and Shannon ([24]) is: given a
source distribution and a distortion measure, what is the
minimum rate description required to achieve a particular
distortion? For expected loss function, the question may be
stated as follows:

Open Problem 9: Let ⌊x⌋ denote the integer part of x ∈ R.
Let I be a set of information and µ a value function defined
on I. Given a loss E, what is the maximal information rate
R for which there is an

[⌊
k
R

⌋
; k
]
q

linear code C and a P -NN
decoder aP of C such that

E (aP , µ) ≤ E?

The basic definitions of rate distortion theory (see [7]) can
be re-stated in the context of value functions and expected
loss.

Definition 2: Let I = {x1, . . . , xk} be an information set
and µ a value function on I . We say that the rate loss pair
(R,E) is realizable if there is an

[⌊
k
R

⌋
; k
]
q

linear code C

and a P -NN decoder aP such that E (aP , µ) ≤ E. The rate
loss region of I is the closure of all realizable rate loss pairs.
The rate loss function R (E) is the maximum R such that
(R,E) is in the rate loss region of I . The capacity Cµ of
the channel to transmit information from I given the value
function µ is

Cµ = lim
E→0

R (E) .

Open Problem 10: Determine Cµ for a family of value
functions, restricted to a family of poset decoders.

APPENDIX A
PROOFS

A. Proof of Theorem 4

Let C be an [n; k]q linear code and µ1-0 : C → R+ be the
value function such that µ1-0 (0) ̸= 0 and µ1-0 (c) = 0 for all
0 ̸= c ∈ C. Let us consider the decoder a0 : Fn

q → C such that
a0 (y) = 0 for all y ∈ Fn

q . The total expected loss E (a0, µ1-0)

may be determined without utilizing the expressions in Section
IV.

When a codeword c ∈ C is transmitted, a word yc is re-
ceived and it is decoded as a0 (yc). We remark that this decod-
ing results in a loss µ1-0 (a0 (yc)− c). However, a0 (yc) = 0
for every yc hence the loss is just µ1-0 (0− c) = µ1-0 (−c).
But µ1-0 (−c) ̸= 0 iff c = 0 and since we are assuming
codewords are to be send with probability equal to 1

qk
we

find that

E (a0, µ1-0) =
µ1-0 (0)

qk

and this does not depends on the channel.
Given a decoder a we have that

E (a, µ1-0) =
∑
τ∈C

Ga (τ)µ1-0 (τ)

= Ga (0)µ1-0 (0) .

Considering a discrete channel determined by the set of
conditional probabilities P (y|x) we have (as in expression
(1)) that

Ga (τ) =
∑
y∈Fn

q

P (y| a (y)− τ)P (a (y))

hence
Ga (0) =

∑
y∈Fn

q

P (y| a (y))P (a (y)) .

Assuming that the probability distribution P (c) of C is
uniform, we find that

Ga (0) =
1

qk

∑
y∈Fn

q

P (y| a (y)) .

Considering an ML decoder ã, we have by definition of ML
decoder that

P (y| ã (y)) ≥ P (y| c)

for every c ∈ C so that∑
y∈Fn

q

P (y| ã (y)) ≥
∑
y∈Fn

q

P (y| c) = 1 (2)

for every c ∈ C. Since for c ∈ C and y /∈ ã−1 (c) we have
that

P (y| ã (y)) > P (y| c) ,

we find that inequality (2) is actually strict:∑
y∈Fn

q

P (y| ã (y)) > 1. (3)

So, since

E (ã, µ1-0) =
∑
τ∈C

Gã (τ)µ1-0 (τ)

= Gã (0)µ1-0 (0)

=
1

qk

∑
y∈Fn

q

P (y| ã (y))µ1-0 (0) , (4)



by (3) and (4) we have that

E (ã, µ1-0) >
µ1-0 (0)

qk

and since E (a0, µ1-0) =
µ1-0(0)

qk
we conclude that

E (ã, µ1-0) > E (a0, µ1-0) .

To finish we just consider the decoder ã = a0 above defined,
µ = µ0-1 and µ̃ = µ1-0.

B. Proof of Theorem 5

Let dH be the usual Hamming metric and let c1, c2 ∈
arg (dH (C, ỹ)) with c1 ̸= c2. Define aH (ỹ) = c1 and let
ãH be defined by

ãH (y) =

{
aH (y) if y ̸= ỹ
c2 if y = ỹ

.

With this definitions of aH and ãH we find that

dH (ỹ, aH (ỹ)− c1) = n,

dH (ỹ, ãH (ỹ)− c1) = dH (ỹ, c2 − c1) ,

dH (ỹ, aH (ỹ)− c2) = dH (ỹ, c1 − c2)

and

dH (ỹ, ãH (ỹ)− c2) = n.

Setting m = dH (ỹ, c2 − c1) = dH (ỹ, c1 − c2) we get

T(aH ,ãH) (c1) = sn − sm

and

T(aH ,ãH) (c2) = sm − sn.

Since c1 ̸= c2, we have that m < n and hence

T(aH ,ãH) (c1) < 0 < T(aH ,ãH) (c2)

for every 0 < s < 1.

C. Proof of Corollary 1

Let ỹ = (1, 1, . . . , 1). Since k > 1 and C has constant
weight we have that ỹ /∈ C. If 0 ̸= c ∈ C is a codeword, since
C has constant weight w it follows that

dH (ỹ, c) = n− wH (c) = n− w

and consequently arg (dH (C, ỹ)) = C − {0} and
|arg (dH (C, ỹ))| = 2k − 1. Since we are assuming k > 1,
we conclude that |arg (dH (C, ỹ))| > 1 and the result follows
from Theorem 5.

D. Proof of Theorem 6

In this proof the complement of a subset X of [n] is denoted
by Xc.

A vector y ∈ Fn
q can be decomposed as

y = yIc + yJ + yI−J

where yIc , yJ and yI−J are the projections of y in the
coordinate subspaces CIc , CJ and C(I,J) respectively. From
this decomposition follows that

dH (y, c) = wH (yIc) + wH (yJ) + dH (yI−J , c)

for every c ∈ C(I,J). It follows that

arg min
θ∈C(I,J)

dH (y, θ) = arg min
θ∈C(I,J)

dH (yI−J , θ)

= yI−J ,

hence aH (y) = yI−J .
We claim that

aP (y) = yI−J

for every y ∈ CJc , that is, for such an y we have that yJ = 0.
Indeed, this happens because

dP (y, c) =

{
|⟨supp (yIc) ∪ supp (yI−J − c)⟩| if c ̸= yI−J

|⟨supp (yIc)⟩| if c = yI−J
.

It follows that

aP (y) = arg min
θ∈C(I,J)

dP (y, θ) = yI−J ,

hence
aP (y) = aH (y)

for y ∈ CJc .
We should now define a P -NN decoder for y /∈ CJc . So, we

consider y = yIc + yJ + yI−J with yJ ̸= 0. If J ′ = supp (yJ )
and yI+

J
is the projection of y on CI+

J
, then

ỹI−
J′

+ yI+
J
= arg min

θ∈C(I,J)

dP (y, θ)

for every ỹI−
J′

∈ CI−
J′

. At this point we should note that the
H-NN decoder aH already defined is also a P -NN decoder,
since yI−J = ỹI−

J′
+ yI+

J
for some ỹI−

J′
∈ CI−

J′
. But this will

not serve to our purpose, since in this case the total expected
loss difference is 0. However, there are other possibilities for
a P -NN decoder and we will define aP in such a way that

T(aH ,aP ,c′) (s) < 0 < T(aH ,aP ,c′) (s) (5)

for some pair c, c′ ∈ C(I,J).
Let

ỹ = x̃Ic + eJ

with x̃Ic ∈ CIc and eJ ∈ CJ . Consider

c̃ ∈ CI−
J

with c̃ ̸= 0. In this situation ⟨supp (ỹ − c̃)⟩ = ⟨supp (ỹ)⟩. Thus
aP (ỹ) := c̃ is a P -NN decoder for ỹ. We conclude defining
aP (y) = yI−J for ỹ ̸= y /∈ CJc .



We now choose vectors c1, c2 ∈ C(I,J) that will ensure
condition (5). We define

c1 =
∑
i∈I+

J

ei ∈ C(I,J)

and
c2 = c̃.

Since aH (ỹ) = 0 and aP (ỹ) = c̃, we have:

n1 := dH (ỹ, aH (ỹ)− c1) = dH (ỹ, 0− c1)

= wH (ỹ) +
∣∣I+J ∣∣

and

m1 := dH (ỹ, aP (ỹ)− c1) = dH (ỹ, c̃− c1)

= wH (ỹ) + wH (c̃) +
∣∣I+J ∣∣ ,

hence n1 < m1.
Moreover,

n2 := dH (ỹ, aH (ỹ)− c2) = dH (ỹ, 0− c2)

= wH (ỹ) + wH (c̃)

and

m2 := dH (ỹ, aP (ỹ)− c2) = dH (ỹ, c̃− c2) = wH (ỹ) ,

and hence n2 < m2. By Proposition 1

G(aH ,ci) (s) = sni +
∑

y∈Fn
q ,y ̸=ỹ

sdH(y,aH(y)−ci)

and

G(aP ,ci) (s) = smi +
∑

y∈Fn
q ,y ̸=ỹ

sdH(y,aP (y)−ci).

As T(aH ,aP ,ci) (s) = G(aH ,ci) (s)−G(aP ,ci) (s), i = 1, 2, and
aH (y) = aP (y) for all y ̸= ỹ, we obtain

T(aH ,aP ,c1) (s) = sn1 − sm1

and
T(aH ,aP ,c2) (s) = sn2 − sm2 .

Therefore T(aH ,aP ,c2) (s) < 0 < T(aH ,aP ,c1) (s) for all 0 <
s < 1 and the result follows from Theorem 2

E. Proof of Theorem 8
Let R (s1) , . . . , R (sM ) be the decision regions of the

decoder a : RN → S. Consider a partition{
R̃ (si) , R̃ (sj)

}
of R (si)∪R (sj), different from the partition {R (si) , R (sj)},
and such that R̃ (si) = R (si) ∪ Sj for some open subset
Sj ⊆ R (sj) with sj /∈ Sj . It is obvious that such a partition
exists since the decision regions of a has non-empty interior.
Under those conditions we have that R̃ (sj) = R (sj)− Sj .

Let
ã : RN → S

be the decoder of S determined by the decision regions{
R (s1) , . . . , R̂ (si), . . . , R̂ (sj), . . . , R (sM )

}
∪
{
R̃ (si) , R̃ (sj)

}
.

Since τ = sj − si admits a unique solution on ∆S, the same
holds for −τ = si − sj and we find the following:

Ga (sj − si) =

∫
R(sj)

p (y| si)P (si) dy,

Gã (sj − si) =

∫
R(sj)−Sj

p (y| si)P (si) dy,

Ga (si − sj) =

∫
R(si)

p (y| sj)P (sj) dy,

and

Gã (si − sj) =

∫
R(si)∪Sj

p (y| sj)P (sj) dy.

It follows that

T(a,ã) (sj − si) =

∫
Sj

p (y| si)P (si) dy > 0

and

T(a,ã) (si − sj) = −
∫
Sj

p (y| sj)P (si) dy < 0,

as desired.

APPENDIX B
DETAILS ABOUT “HELLO WORLD” ENCONDING SCHEME

In the introduction of this work we simulated the transmition
of the scale-of-grey image of the words “Hello World” (Fig-
ure 2) through a binary memoryless channel with crossover
probability p = 0.3 and decoded the received word twice,
once using the ML decoder and once using a P -NN decoder
(Figure 4). The poset P we used was the total order defined
by the relations 1 ≼ 2 ≼ . . . ≼ 7. We now describe in details
the codification process.

The code itself is a [7; 4]2 binary Hamming code, but in the
encoding process not only the code as a subset is important,
but also the particular color that is attributed to each codeword.
The choice of the encoding is intimately related to the nature of
the information and the characteristics of the P -NN decoder.
We assumed that in the transmitted images the darker tones of
gray carries the more important information, the tones used in
the letters. Since the P -decoder is more susceptible to errors
in the last coordinates we associated the darker tons of gray
to codewords that has nonzero entries in the last coordinates
(7 and 6), the middle range of grays to the codewords that has
non-zero coordinates in the intermediate coordinates (5, 4 and
3) and the lighter tones of grays in the remaining positions.
The actual association is shown in the following table, where
the tones of gray are described by the scale in the RGB palette.
Since the actual meaning of each information is relevant to



decide where to place it as a codeword, we may say we are
adopting a message-wise UEP encoding scheme.

RGB codeword ci value µ (ci)
(101, 101, 101) c15 = 1111111 1.00
(102, 102, 102) c14 = 0001111 0.90
(103, 103, 103) c13 = 0010011 0.89
(104, 104, 104) c12 = 1100011 0.88
(105, 105, 105) c11 = 1010101 0.87
(106, 106, 106) c10 = 0100101 0.86
(107, 107, 107) c9 = 0111001 0.85
(108, 108, 108) c8 = 1001001 0.84
(109, 109, 109) c7 = 0110110 0.83
(110, 110, 110) c6 = 1000110 0.82
(187, 187, 187) c5 = 1011010 0.50
(188, 188, 188) c4 = 0101010 0.40
(189, 189, 189) c3 = 0011100 0.30
(190, 190, 190) c2 = 1101100 0.20
(191, 191, 191) c1 = 1110000 0.10
(192, 192, 192) c0 = 0000000 0.00

Considering this encoding and the values listed in the
previous table, we can list all the 32 polynomials GaP

(ci)
and GaH (ci), i = 0, 1, . . . , 15, associated to the expected
loss functions E (aP , µ) e E (aH , µ) respectively. We remark
(without proving) that for the Hamming case the polyno-
mial GaH

(τ) depends only on the weight wH (τ) hence it
is sufficient to know the polynomials GaH (c0), GaH (c13),
GaH

(c14) and GaH
(c15):

GaH (c0) = 16 + 112s

GaH
(c13) = 48s2 + 16s3 + 64s4

GaH (c14) = 64s3 + 16s4 + 48s5

GaH
(c15) = 112s6 + 16s7

As for E (aP , µ) we have that:

GaP
(c0) = 16 + 39s+ 39s2 + 25s3 + 9s4

GaP
(c1) = 25s+ 57s2 + 39s3 + 7s4

GaP (c2) = 10s+ 42s2 + 54s3 + 22s4

GaP
(c3) = 6s+ 22s2 + 42s3 + 42s4 + 16s5

GaP (c4) = 7s+ 39s2 + 57s3 + 25s4

GaP
(c5) = 9s+ 25s2 + 39s3 + 39s4 + 16s5

GaP
(c6) = 16s2 + 42s3 + 42s4 + 22s5 + 6s6

GaP (c7) = 22s3 + 54s4 + 42s5 + 10s6

GaP
(c8) = 10s+ 42s2 + 54s3 + 22s4

GaP (c9) = 6s+ 22s2 + 42s3 + 42s4 + 16s5

GaP
(c10) = 16s2 + 39s3 + 39s4 + 25s5 + 9s6

GaP
(c11) = 25s3 + 57s4 + 39s5 + 7s6

GaP (c12) = 16s2 + 42s3 + 42s4 + 22s5 + 6s6

GaP
(c13) = 22s3 + 54s4 + 42s5 + 10s6

GaP (c14) = 7s3 + 39s4 + 57s5 + 25s6

GaP
(c15) = 9s3 + 25s4 + 39s5 + 39s6 + 16s7

In the following figure we can see the graphs of the
differences T(aP ,aH ,c) (s).

Fig. 6. Difference between overall expected functions.

Computing the difference between the overall expected
functions relative to the value function µ as a function of s
we get:

E(aP ,aH) (µ) = 27.10s− 58.34s2 − 58.79s3 +

+58.97s4 + 40.33s5 − 9.27s6.

The graph bellow shows us that for s > 0.4 (equivalently, for
p > 0.29) decoder aP performs better then aH .

Fig. 7. Graph of E(aP ,aH ) (µ) as a function of s.

Now we come back to the “Hello World” picture. Since
the darker tones of gray are represented by codewords that
have at least one of the last two coordinates with non-zero
entry and since the probability of occurring an error in one of
the first five entries is higher than in the last two ones, when
you transmit a dark gray message, there is a higher probability
that the P -NN decoder decodes the received message as a dark
tone of gray that may be not the correct one, but looks like the
original message (see Figure 4). In other words, the last two
coordinates are more protected than the others for decoding



in scale-of-gray. In this sense we are making a bit-wise UEP
decoding.

Fig. 8. Each image contains 6400 pixels. The original message was the dark
gray (101, 101, 101) in RGB; on the left we used ML decoding and on the
right the P -NN decoding.

Of course a repetition code could attain similar results, but
in order to get a similar quality of the “Hello World” picture
under severe transmission conditions (crossover probability
0.3 ≤ p < 0.45), the rate of information would be much
smaller than the rate achieved in this case. In Figure 9 we can
see that even under a very high error probability (p = 0.4 and
p = 0.43) that it is possible to grasp something of the original
message.

Fig. 9. Image “Hello World” decoded after being transmitted through a
BSMC with crossover probability p = 0.4 and p = 0.43 respectively.
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