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Av. Tarqúınio Joslin dos Santos, 1300

CEP 85870-650
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Abstract. Let P = ({1, 2, . . . , n},≤) be a poset, let V1, V2, . . . , Vn be a family
of finite-dimensional spaces over a finite field Fq and let

V = V1 ⊕ V2 ⊕ . . . ⊕ Vn.

In this paper we endow V with a poset metric such that the P -weight is con-
stant on the non-null vectors of a component Vi, extending both the poset
metric introduced by Brualdi et al. and the metric for linear error-block codes
introduced by Feng et al.. We classify all poset block structures which admit
the extended binary Hamming code [8; 4; 4] to be a one-perfect poset block
code, and present poset block structures that turn other extended Hamming
codes and the extended Golay code [24; 12; 8] into perfect codes. We also give
a complete description of the groups of linear isometries of these metric spaces
in terms of a semi-direct product, which turns out to be similar to the case of
poset metric spaces. In particular, we obtain the group of linear isometries of
the error-block metric spaces.

1. Introduction

Classically, coding theory takes place in finite-dimensional linear spaces Fn
q over

a finite field Fq that are equipped with a metric, the most common ones being the
Hamming and Lee metrics. One of the main problems of the theory is to find a
k-dimensional subspace in Fn

q , the space of n-tuples over the finite field Fq, with
the largest possible minimum distance.
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96 M. M. S. Alves, L. Panek and M. Firer

In Hamming spaces this problem has a matricial version, which was general-
ized by Niederreiter in 1987 (see [13]). Inspired in this work, Brualdi, Graves and
Lawrence (see [3]) provided in 1995 a wider setting for the same problem: using
partially ordered sets and defining the concept of poset-codes, they introduced the
concept of codes with a poset-metric. This has been a fruitful approach, since many
new perfect codes have been found with such poset metrics (see [1], [3], [8], [7] and
[11]). The existence of new perfect codes is related to the fact that the packing ra-
dius with respect to a poset metric is greater than the packing radius with respect
to the Hamming metric.

A particular and important instance of poset-codes and poset metric spaces are
the spaces introduced by Rosenbloom and Tsfasman in 1997 (see [18]), where the
posets taken into consideration have a finite number of disjoint chains of equal size.
These metrics are useful in the case of interference in several consecutive channels,
starting from the last, which are occupied by a priority user. This poset space has
been investigated by several authors, such as Skriganov [19], Quistorff [17], Ozen
and Siap [14], Lee [10], Dougherty and Skriganov [5] and Panek, Firer and Alves
[15].

Another generalization of the classic Hamming distance was recently proposed
by Feng, Xu and Hickernell, the so-called π-distance (or π-metric) (see [6]). As
opposed to what happens with a poset metric, the packing radius of a given code
with respect to a π-distance is smaller than its Hamming packing radius.

In this work we show how the problem with the packing radius can be ameliorated
when a π-metric is weighted by a partial order P , just as it was done in [3] with the
Hamming metric. We combine the usual poset metric on a vector space, proposed
by Brualdi et al. in [3] and studied by several authors in the following, with the
recently introduced error-block metric by Feng et al. in [6]. In section two we
describe how it can be used to turn classical codes (extended binary Hamming code
[8; 4; 4] and extended binary Golay code [24; 12; 8]) into perfect codes. In section
three we determine and describe the group of linear isometries of a poset block
space and finally, in the last section, we work out the cases when the block and
poset structures are considered separately.

2. Poset block metric spaces

Let [n] := {1, 2, . . . , n} be a finite set with n elements and let ≤ be a partial
order on [n]. We call the pair P := ([n] ,≤) a poset. We say that k is smaller than
j if k ≤ j and k 6= j. An ideal in ([n] ,≤) is a subset I ⊆ [n] that contains every
element that is smaller than or equal to some of its elements, i.e., if j ∈ I and k ≤ j
then k ∈ I. Given a subset X ⊂ [n], we denote by 〈X〉 the smallest ideal containing
X , called the ideal generated by X ; if X = {i} then we write 〈i〉 instead of 〈X〉 or
〈{i}〉. We denote by 〈i〉∗ the difference 〈i〉 − {i} = {j ∈ [n] : j < i}.

Two posets P and Q are isomorphic if there exists an order-preserving bijection
φ : P → Q, called an isomorphism, whose inverse is order preserving; that is, x ≤ y
in P if and only if φ (x) ≤ φ (y) in Q. An isomorphism φ : P → P is called an
automorphism.

Now let

π : [n] → N

Advances in Mathematics of Communications Volume 2, No. 1 (2008), 95–111



Error-block codes and poset metrics 97

be a map such that π (i) > 0 for all i ∈ [n]. We will call this map π a label∗ over
[n]. If ki = π (i), we take Vi as the Fq-vector space Vi = Fki

q for every 1 ≤ i ≤ n,
and we define the vector space V as the direct sum

V := V1 ⊕ V2 ⊕ . . . ⊕ Vn

which is isomorphic to FN
q , where N = k1 + k2 + . . . + kn. Each vector in V can be

written in a unique way as

v = v1 + v2 + . . . + vn,

vi ∈ Vi for 1 ≤ i ≤ n. Denoting by Bi = {ei1, ei2, . . . , eiki
} the canonical basis of

Vi, 1 ≤ i ≤ n, each vector vi in Vi can be written uniquely as

vi = ai1ei1 + ai2ei2 + . . . + aiki
eiki

,

aij ∈ Fq, 1 ≤ j ≤ ki.
Given a poset P = ([n] ,≤) and v = v1 + v2 + . . . + vn ∈ V , the π-support of v

is the set
supp (v) := {i ∈ [n] : vi 6= 0} ,

and we define the (P, π)-weight of v to be the cardinality of the smallest ideal
containing supp(v):

w(P,π) (v) = |〈supp (v)〉| .

If u and v are two vectors in FN
q , then their (P, π)-distance is defined by

d(P,π) (x, y) = w(P,π) (x − y) .

If
Θj (i) = {I ⊆ P : I ideal, |I| = i, |Max (I)| = j}

where Max (I) is the set of maximal elements in the ideal I ⊆ P and

B(P,π) (u; r) =
{

v ∈ V : d(P,π) (u, v) ≤ r
}

is the ball with center u and radius r, then the number of vectors in a ball of radius
r equals

∣

∣B(P,π) (u; r)
∣

∣ = 1 +

r
∑

i=1

i
∑

j=1

∑

I∈Θj(i)

∏

m∈Max(I)

(

qkm − 1
)

∏

l<m;m∈Max(I)

qkl .

The number of vectors in a ball of radius r does not depend on its center.
An

[

N ; k; δ(P,π)

]

linear poset block code is a k-dimensional subspace C ⊆ FN
q ,

where FN
q is endowed with a poset block metric d(P,π) and

δ(P,π) (C) = min
{

w(P,π) (c) : 0 6= c ∈ C
}

is the (P, π)-minimum distance of the code C.
The (P, π)-distance is a metric† on V which combines and extends both the usual

poset metric on a vector space, proposed by Brualdi et al. in [3] and studied by

∗The pair (P, π) can be identified with a quoset (quasi-ordered set); see [2], for instance.
†It is clear that the (P, π)-distance is symmetric and positive defined. We now claim that the

(P, π)-distance satisfies the triangle inequality. In fact, if u, v ∈ F
N
q then

dP (u, v) = |〈supp (u − v)〉| = |〈supp (u + z − z − v)〉|

≤ |〈supp (u − z)〉 ∪ 〈supp (z − v)〉|

≤ |〈supp (u − z)〉| + |〈supp (z − v)〉|

= dP (u, z) + dP (z, v)

for all z ∈ F
N
q .

Advances in Mathematics of Communications Volume 2, No. 1 (2008), 95–111



98 M. M. S. Alves, L. Panek and M. Firer

several authors, and the recently introduced error-block metric by Feng et al. in
[6]; we will call (V, d(P,π)) a poset block metric space. When the label π satisfies
π (i) = 1 for all i ∈ [n] the (P, π)-distance is the poset metric dP proposed by
Brualdi et al. and when P is the antichain order of n elements, i.e., i ≤ j in P
if and only if i = j, the (P, π)-distance is the error-block metric dπ proposed by
Feng et al.. In case both conditions occur (π (i) = 1 for all i ∈ [n] and P is the
antichain order), the poset-block-metric reduces to the usual Hamming metric dH

of classical coding theory. In this case, whenever needed to stress that we refer to
the Hamming space, we use the index H to denote the Hamming metric dH , the
parameters of a linear code, [N ; k; δH ]H , and the support suppH (u) = {i : ui 6= 0}
of a vector u = (u1, u2, . . . , uN ) ∈ FN

q .

3. Perfect poset block codes

Let d be a metric on V and let C be a subset of V . The packing radius Rd (C) of
C is the greatest positive real number r such that any two balls of radius r centered
at (distinct) elements of C are disjoint. We say a code C is Rd (C)-perfect if the
union of the balls of radius Rd (C) centered at the elements of C covers all V .

The number of vectors in (V, dH), (V, dP ) and (V, dπ) whose distance to a fixed
vector u ∈ V is at most equal to r, respectively, is given by

|BH (u; r)| =

r
∑

i=0

(

n

i

)

(q − 1)
i
,

|BP (u; r)| = 1 +

r
∑

i=1

i
∑

j=1

(q − 1)
j
qi−jΩj (i)

and

|Bπ (u; r)| = 1 +

r
∑

i=1

∑

J⊂[n]
|J|=i

∏

m∈J

(

qkm − 1
)

,

where Ωj (i) equals the number of ideals of P with cardinality i having exactly j
maximal elements.

Note that

BP (u; r) ⊆ BH (u; r) ⊆ Bπ (u; r)

for any u ∈ V ; this implies

Rdπ
(C) ≤ RdH

(C) ≤ RdP
(C) .

In [7] Hyun and Kim, based on the second of the inequalities above, classified all
the posets P that make the extended binary Hamming code a 2-perfect code or
a 3-perfect code. For spaces with a π-metric we have a more delicate situation:
the packing radius of the extended binary Hamming code is equal either to zero or
one (details in the example below). In this sense, the (P, π)-metrics improve this
situation. In the following, we list all poset block metrics that turn the extended
binary Hamming code [8, 4, 4]H into a 1-perfect code and some orders that turn the
extended binary Golay code [24, 12, 8]H into a 1-perfect or 2-perfect code. We begin
by classifying all perfect codes over V when P is a chain.

Proposition 3.1. Let π be a label over [n] and V = V1 ⊕ V2 ⊕ . . . ⊕ Vn a vector
space such that dim (Vi) = π (i) for each 1 ≤ i ≤ n. Consider on V the (P, π)-metric

Advances in Mathematics of Communications Volume 2, No. 1 (2008), 95–111



Error-block codes and poset metrics 99

where P is the linear order defined by 1 < 2 < . . . < n. Then, a linear code C ⊆ V
is r-perfect iff there is a linear transformation

L : Vr+1 ⊕ Vr+2 ⊕ . . . ⊕ Vn → V1 ⊕ V2 ⊕ . . . ⊕ Vr

such that

C = {(L (v) , v) : v ∈ Vr+1 ⊕ Vr+2 ⊕ . . . ⊕ Vn} .

Proof. Indeed, we know that w(P,π) (u) = max {i : ui 6= 0}, hence

B(P,π) (0; r) = V1 ⊕ V2 ⊕ . . . ⊕ Vr.

Given such a linear transformation L, we have that

C = {(L (v) , v) : v ∈ Vr+1 ⊕ Vr+2 ⊕ . . . ⊕ Vn}

is a linear code and (L (v) , v) = (0, 0) iff v = 0, so that δ(P,π) (C) = r+1. It follows
that B(P,π) (0; r) does not contain any element of C other then its center. Moreover,
it is immediate to see that, given

0 6= c = (L (v) , v) ∈ C

then

B(P,π) (c; r) = {(y, v) : y ∈ V1 ⊕ · · · ⊕ Vr}

is disjoint from B(P,π) (0; r). Since

|C| = |Vr+1 ⊕ Vr+2 ⊕ . . . ⊕ Vn|

and
∣

∣B(P,π) (0; r)
∣

∣ = |V1 ⊕ V2 ⊕ . . . ⊕ Vr |

it follows that C is an r-perfect code.
Assuming now that C is r-perfect. Given (u, v) , (u′, v) ∈ C, then (u, v)−(u′, v) =

(u − u′, 0) ∈ C. So the weight of (u − u′, 0) ∈ C is at most r, which implies
(u − u′, 0) ∈B(P,π) (0; r). Since C is r-perfect it follows that u − u′ = 0. Therefore
every element v ∈ Vr+1 ⊕ Vr+2 ⊕ . . . ⊕ Vn determines a unique element ṽ ∈ C and
hence determines a function L (v) such that ṽ = (L (v) , v). Since C is a linear
subspace of V it follows that L is a linear transformation.

We note that if π (i) = 1 for i = 1, 2, . . . , n then we get the poset space
(

Fn
q , dP

)

over the chain P ; this result shows that there are more perfect codes in this space
than the ones described in [11, Corollary 3.2].

Example 3.2. Let π : [n] → N be a label such that π (1)+ π (2)+ . . .+ π (n) = 2m

and define mj = π (1) + π (2) + . . . + π (j) for j ∈ {1, 2, . . . , n} and m0 = 0. Let
V = V1⊕V2⊕. . .⊕Vn be a vector space such that dim (Vi) = π (i) for each 1 ≤ i ≤ n.
Note that v ∈ Vj if and only if suppH(v) ⊂ {mj−1 + 1, . . . , mj−1 + π (j) − 1, mj}.

We denote by H (m) the [2m; 2m − 1 − m; 4]H extended binary Hamming code
(see [12]). Let

B = {supp (c) : c ∈ H (m) , wH (c) = 4}

be the set of the supports of all minimal weight codewords in H (m) and P :=
{1, 2, . . . , 2m}. It is well known (see [12]) that the pair (P ,B) is a 3-(2m, 4, 1)
design, that is, given a subset X ⊂ P with three elements, there is a unique block
supp(c) ∈ B such that X ⊂supp(c).

Advances in Mathematics of Communications Volume 2, No. 1 (2008), 95–111



100 M. M. S. Alves, L. Panek and M. Firer

Suppose there is some i ∈ {1, 2, . . . , n} such that π (i) = 2. Since supports of
the codewords of minimum weight 4 in H (m) form a 3-(2m, 4, 1) design, there is a
minimal codeword c ∈ H (m) satisfying

|suppH (c) ∩ {mi−1 + 1, mi}| = 2.

It follows that wπ (c) ≤ 3 and hence

Rdπ
(H (m)) =

⌊

dπ (H (m)) − 1

2

⌋

≤ 1.

Suppose now that π (i) > 2 for some i ∈ {1, 2, . . . , n}. The design structure of the
pair (P ,B) implies the existence of a codeword c ∈ C such that wH (c) = 4 and
such that

|supp (c) ∩ {mi−1 + 1, mi−1 + 2, . . . , mi}| ≥ 3

which implies wπ (c) ≤ 2 and hence

Rdπ
(H (m)) =

⌊

dπ (H (m)) − 1

2

⌋

= 0.

Let H (3) be the [8; 4; 4]H extended binary Hamming code. Then a parity check
matrix for H (3) is

H =









1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0









.

Let π : [s] → N be a label such that π (1) + π (2) + . . . + π (s) = 8 and π (i) = 4 for
some i ∈ {1, 2, . . . , s} (note that 1 < s ≤ 5). It follows from the last example that
the packing radius of H (3) with respect to a block metric dπ is zero. This situation
can be avoided if we endow V = F8

2 with a poset block metric.
Given X ⊆ [8], we define VX to be the subspace

VX =
{

v ∈ F8
2 : suppH (v) ⊆ X

}

.

Since the supports of the codewords of minimum weight of H (3) form a 3− (8, 4, 1)
design, there is X ′ ⊆ [8], with |X ′| = 4, such that |suppH (c) ∩ X ′| ≤ 3 for every
c ∈ H (3) with wH (c) = 4. We denote by

Γ(1) (P ) := {j ∈ [s] : |〈j〉| = 1}

the set of minimal elements of the poset P = ([s] ,≤).

Theorem 3.3. Let X ′ be as above, π be a label on [s] such that

π (1) + π (2) + . . . + π (s) = 8

and V = V1 ⊕ V2 ⊕ . . . ⊕ Vs with Vj isomorphic to Fπ(j)
2 for all j ∈ [s], where

Vi = VX′ . Then an order P = ([s] ,≤) turns the extended binary Hamming code
H (3) into a 1-perfect code if and only if Γ(1) (P ) = {i}, where π(i) = 4, and the
block Vi does not contain any codeword of minimum weight.

Proof. Let X ′ ⊂ [8] be as above and assume that Γ(1) (P ) = {i}, where π(i) = 4
and that Vi does not contain any codeword of minimum weight. We claim first that
the (P, π)-minimum weight of H (3) is at least 2. In fact, X ′ was chosen in a way
that no non-zero vector of H (3) has its support contained in X ′; since i is the only
minimal element of P , any non-zero c ∈ H (3) has a non-zero coordinate j > i and
its (P, π)-weight is at least 2.

Advances in Mathematics of Communications Volume 2, No. 1 (2008), 95–111



Error-block codes and poset metrics 101

The balls of radius 1 in
(

V, d(P,π)

)

have the right size: since I = 〈i〉 = {i} is the
only ideal in P = ([n] ,≤) which has only one element and dim (VX′) = 4,

∣

∣B(P,π) (u; 1)
∣

∣ = 1 +
(

24 − 1
)

= 24.

We claim now that the balls of radius 1 centered at elements of H (3) are pairwise
disjoint. Suppose that there are u ∈ V and c ∈ H (3) such that d(P,π) (0, u) ≤ 1 and
d(P,π) (c, u) ≤ 1. The first inequality yields suppH(u) ⊆ X ′; hence w(P,π) (c − u) =
d(P,π) (c, u) ≥ 2, which is a contradiction. It follows that

B(P,π) (c; 1) ∩ B(P,π) (c′; 1) = ∅

for every c 6= c′ ∈ H (3). From this and from the fact that
∣

∣B(P,π) (u; 1)
∣

∣ · |H (3)| = 24 · 24 = 28,

we conclude that H (3) is a 1-perfect code.
Assume now that (P, π) is a poset block structure that turns H (3) into a 1-perfect

code. If there is a minimal coordinate i ∈ Γ(1) (P ) such that the corresponding block
space has dimension ki > 4, then

∣

∣B(P,π) (0; 1)
∣

∣ ≥ 1 +
(

2ki − 1
)

= 2ki > 24,

and hence H (3) cannot be 1-perfect, since the code has 24 elements of length 8 and
2ki · 24 > 28.

Suppose now that
∣

∣Γ(1) (P )
∣

∣ = r > 1. Let k1, k2, . . . , kr be the dimension of the
corresponding block spaces. In this case we have that

∣

∣B(P,π) (0; 1)
∣

∣ = 1 +

r
∑

i=1

(

2ki − 1
)

= 1 − r +

r
∑

i=1

2ki .

Since the code is 1-perfect, we must have that 1− r+
∑r

i=1 2ki = 24 or equivalently
∑r

i=1 2ki = 15 + r. Being the sum in this last equation an even number, we can
discard the cases when r is also even and so we are left with the cases r = 3, 5 or
7. Considering that

∑r

i=1 ki ≤ 7, direct computations show that the above equality
cannot hold if r = 5 or 7 and, if r = 3, it holds only if (k1, k2, k3) = (3, 3, 1) (up
to permutation) and if there is a unique coordinate i0 such that |〈i0〉| = 2. In this
case, there is a codeword c of minimum Hamming weight such that i0 /∈ suppH(c).
In every binary linear code either the i-th coordinate ci is 0 for each codeword c,
or half the codewords have ci = 0; since H(3) has 16 codewords, 14 of which are of
minimum weight, there is c ∈ H(3) such that wH(c) = 4 and i0 /∈ suppH(c). Hence
suppH(c) = {i1, i2, i3, i4} ⊂ Γ(1) (P ) and w(P,π)(c) = 1. Now, if v 6= c is any vector
with w(P,π)(v) = 1, then w(P,π)(c − v) = 1 and hence B(P,π) (0; 1)∩B(P,π) (c; 1) 6= ∅
and the code is not 1-perfect. It follows that if P turns H (3) into a 1-perfect code
then

∣

∣Γ(1) (P )
∣

∣ = 1.

Let Γ(1) (P ) = {i}. We already know that ki ≤ 4. Since |B (0; 1)| = 2ki , if
ki < 4 it follows that the poset block structure (P, π) does not turn H (3) into a
1-perfect code. Assuming ki = 4, we find that the block space Vi cannot contain any
codeword of minimum weight c ∈ H (3), since this would imply w(P,π) (c) = 1.

We remark that if P , in the theorem 3.3, is a chain, the extended Hamming code
H (3) is one of the codes described in Proposition 3.1 (as it should be). Reordering
the blocks if necessary, we may take i = 1 (VX′ = V1); denoting the remaining

Advances in Mathematics of Communications Volume 2, No. 1 (2008), 95–111



102 M. M. S. Alves, L. Panek and M. Firer

component V2 ⊕ V3 ⊕ . . . ⊕ Vs by W we can write V = V1 ⊕ W . Consider the
canonical projection

T : V → W

defined as T (c1, c2, . . . , c8) = (c5, c6, c7, c8). Since ker(T ) = V1 and no non-zero
codeword v ∈ H (3) is contained in V1, ker (T ) ∩H(3) = 0 and therefore S := T |V1

is a linear isomorphism from V1 onto W . It follows that

H (3) =
{

(S−1(v), v) : v ∈ W
}

.

Example 3.4. Let π : [n] → N be a label such that π (1) + π (2) + . . . + π (n) = 24
and π (i) = 2 for some i ∈ {1, 2, . . . , n}, and define mj = π (1) + π (2) + . . . + π (j)
for j ∈ {1, 2, . . . , n}. Let V = V1 ⊕ V2 ⊕ . . . ⊕ Vn be a vector space such that
dim (Vi) = π (i) for each 1 ≤ i ≤ n. Note that v ∈ Vj if and only if suppH(v) ⊂
{mj−1 + 1, . . . , mj−1 + π (j) − 1, mj}.

Let G24 be the [24; 12; 8]H extended binary Golay code (see [12]) and c ∈ G24 be
such that wH (c) = 8. As the supports of the codewords of weight 8 in G24 form a
5-(24, 8, 1) design (see [12]), we can choose c in such a way that

|suppH (c) ∩ {mi−1 + 1, mi}| = 2.

Under these conditions we have that wπ (c) ≤ 7 and therefore

Rdπ
(G24) =

⌊

dπ (G24) − 1

2

⌋

≤ 3.

We remark that if π (i) > 2 then Rdπ
(G24) < 3: since the supports of the codewords

of minimum weight of G24 form a 5-(24, 8, 1) design, there is c ∈ G24 such that

|suppH (c) ∩ {mi−1 + 1, mi−1 + 2, . . . , mi}| ≥ 3

and therefore wπ (c) < 7.
However, there are non-trivial poset-block structures in [24] that turn G24 into a

1-perfect code. We just need a subset Y ⊂ [24] with |Y | = 12 that does not contain
the support of any codeword of minimum weight of G24. There is at least one such
subset; otherwise, every subset of 12 elements contains the support of a codeword
of minimum weight. For each 12-subset, pick one vector whose support is contained
in it; since each 8-subset is contained in

(

16
4

)

of the 12-subsets, there should be at

least
(

24
12

)

/
(

16
4

)

codewords of minimum weight in G24; since
(

24
12

)

/
(

16
4

)

> 749, the
number of codewords of minimum weight in G24, there is at least one subset Y with
12 elements containing no codewords of minimum weight of the Golay code.

Let Y be as above and consider a label π : [s] → N such that π (1)+π (2)+ . . .+
π (s) = 24 and π (i) = 12 for some i ∈ [s] with Vi = VY . If Γ(1) (P ) = {i}, then we
have that

(1) B(P,π) (0; 1) =
{

v ∈ F24
2 : supp (v) ⊂ Y

}

and hence
∣

∣B(P,π) (0; 1)
∣

∣ = 2|Y | = 212. If c is a codeword of minimum weight then
w(P,π) (c) ≥ 2, because supp (c) must have an element not contained in Y and Y is
the only block of height 1. On the other hand, if v ∈ B(P,π) (0, 1), it follows from

(1) that supp (c − v) * Y , and hence that w(P,π) (c − v) ≥ 2. We conclude that
B(P,π) (0, 1) ∩ B(P,π) (c, 1) = ∅ for every c ∈ G24. Since

∣

∣B(P,π) (0, 1)
∣

∣ · |G24| = 224
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we find that G24 is 1-perfect for any poset block structure satisfying the following
condition: it has a unique block of weight 1 with 12 elements that does not contain
any codeword of minimum weight of the Golay code.

A similar reasoning shows that G24 is a 2-perfect code with a poset block structure
such that Γ(1) (P ) and Γ(2) (P ) have each a unique block Vi and Vj respectively, such
that dim (Vi)+dim (Vj) = 12 and Vi ⊕Vj does not contain (non-zero) codewords of
G24.

4. Groups of linear isometries

Let
(

V, d(P,π)

)

be a poset block space. A linear isometry T of the metric space
(

V, d(P,π)

)

is a linear transformation T : V → V that preserves (P, π)-distance:

d(P,π) (T (u) , T (v)) = d(P,π) (u, v)

for every u, v ∈ V . Equivalently, a linear transformation T is an isometry if
w(P,π) (T (u)) = w(P,π) (u) for every u ∈ V . A linear isometry of

(

V, d(P,π)

)

is
said to be a (P, π)-isometry. Since an isometry must be injective, a linear isometry
is an invertible map and it is easy to see that its inverse is also a linear isometry.
It follows that the set of all linear isometries of the poset block space

(

V, d(P,π)

)

is
a group. We denote it by GL(P,π) (V ) and call it the group of linear isometries of
(

V, d(P,π)

)

.
Linear isometries are used to classify linear codes in equivalence classes, since they

take linear code onto linear code and preserve length, dimension, minimum distance
and other parameters. So it is just natural to call two linear codes equivalent if one
is the image of the other under a linear isometry.

In [4], [18], [10] and [16] the groups of linear isometries (with label π (i) = 1
for all i ∈ P ) were determined for the Rosenbloom-Tsfasman space, generalized
Rosenbloom-Tsfasman space, crown space and arbitrary poset-space respectively.
In [15] we describe the full symmetry group (which includes non-linear isometries) of
a poset block space (with constant label equal to 1) that is a product of Rosenbloom-
Tsfasman spaces. In this work, we give a complete description of the groups of linear
isometries, for any given label π and poset P .

We remark that the initial idea is the same as in [16]: to associate to each
isometry T an automorphism φT of the underlying poset P (Theorem 4.10). The
main differences are that we follow a more coordinate-free approach and that the
dimensions of the blocks pose a new restraint. We first study two subgroups of
isometries, one of isometries induced by automorphisms of P that preserve labels
and the other of isometries that induce the identity map on P . Next we prove some
results on linear isometries analogous to those of [16], plus a result on preservation
of block dimensions, and conclude that GL(P,π)(V ) is the semi-direct product of
those subgroups.

4.1. Two subgroups of linear isometries. In this section we present two
subgroups of linear isometries of (V, d(P,π)). Afterwards it will be shown that
GL(P,π)(V ) is the semi-direct product of these groups.

Let B = {ei,j : 1 ≤ i ≤ n, 1 ≤ j ≤ ki} be a basis for V where for each i,
Bi = {ei,j : 1 ≤ j ≤ ki} is the canonical basis of Vi = Fki

q .
Given a poset P = ([n] ,≤) we denote by Aut (P ) the group of order automor-

phisms of P .
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Definition 4.1. Let π : [n] → N be a label and P = ([n] ,≤) be a poset. The
subgroup of automorphisms φ ∈ Aut (P ) such that

kφ(i) = π(φ (i)) = π(i) = ki

for all i ∈ [n] is denoted by Aut (P, π) and is called the group of automorphisms of
(P, π).

To each φ ∈ Aut (P, π) we associate the linear mapping Tφ : V → V defined by

Tφ(ei,j) = eφ(i),j .

Note that the definition of Tφ only makes sense if dim (Vi) = dim
(

Vφ(i)

)

, i.e, if
kφ(i) = ki, and this is why we only use automorphisms that preserve labels.

Proposition 4.2. Let φ be an automorphism of (P, π). The linear mapping Tφ

associated to φ is a linear isometry of
(

V, d(P,π)

)

, and the map Φ : Aut(P, π) →
GL(P,π)(V ) defined by φ 7→ Tφ is an injective group homomorphism.

Proof. Let v =
∑

i,j

aijei,j ∈ V . Then

supp (Tφ(v)) = supp





∑

i,j

aijeφ(i),j





= {φ(i) ∈ P : aij 6= 0 for some j}

= {φ(i) ∈ P : i ∈ supp(v)} .

Since φ is an automorphism of P , if I = 〈supp(v)〉, then |I| = |φ(I)| and

φ(I) = 〈{φ(i) : i ∈ supp(v)}〉 = 〈supp (Tφ(v))〉.

Hence Tφ preserves (P, π)-weights. The map φ 7→ Tφ is trivially a homomorphism,
for

Tφσ(ei,j) = e(φσ)(i),j = Tφ(eσ(i),j) = TφTσ(ei,j)

and injectivity is also straightforward from the definition of Φ.

From the last result we conclude also that the image of Φ is a subgroup of
GL(P,π)(V ), isomorphic to Aut(P, π), which will be called A from here on. Note
also that Tφ(Vi) = Vφ(i).

Given X ⊆ P , we define VX to be the subspace

VX = {v ∈ V : supp(v) ⊆ X}.

Proposition 4.3. Let T : V → V be a linear isomorphism that satisfies the fol-
lowing condition: for each non-zero vector vi ∈ Vi there are a non-zero v′i ∈ Vi

and a vector ui ∈ V〈i〉∗ such that T (vi) = v′i + ui. Then T is a linear isometry of
(

V, d(P,π)

)

.

Proof. Note that T (Vi) ⊆ V〈i〉. Let v = v1 + . . . + vn. We have

T (v) = (v′1 + u1) + . . . + (v′n + un)

and T (vj) = v′j + uj with v′j 6= 0 for all j such that vj 6= 0.
Let

ul = u1
l + . . . + un

l
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be the the canonical decomposition of ul in V , where uj
l ∈ Vj . Note that if ui

l 6= 0
then i < l, because ul ∈ V〈l〉∗ . Then the decomposition of T (v) is

T (v) =
∑

i

(

v′i + (ui
1 + · · · + ui

n)
)

.

Let M be the set of maximal elements of 〈supp(v)〉. Clearly, M ⊆ supp(v). Note
that if i ∈ M then all ui

k are zero for each k, because if ui
k 6= 0 then k ∈ supp(v)

and i < k, but i is maximal in supp(v).
Suppose that there is i ∈ M such that i /∈ supp(T (v)). The decomposition of

T (v) yields

v′i + ui
1 + . . . + ui

n = 0.

But each ui
k = 0, and we conclude that v′i = 0, a contradiction. Hence M ⊂

supp(T (v)),

〈supp(v)〉 = 〈M〉 ⊆ 〈supp(T (v))〉

and w(P,π)(T (v)) ≥ w(P,π)(v).
Now let j be maximal in supp(T (v)). The j-th component of T (v) is

v′j + (uj
1 + · · · + uj

n).

If uj
l 6= 0 then l ∈ supp(v) and j < l < i for some i ∈ M , which implies j is

not maximal, contradiction. Hence all uj
k are zero, v′j 6= 0, and j ∈ M . Therefore

w(P,π)(T (v)) = w(P,π)(v).

Let T be the set of mappings defined in the previous proposition. We will prove
in Theorem 4.10 that T is a subgroup of GL(P,π)(V ). We can also obtain a matricial
version of this group.

Now let B = (Bi1 , Bi2 , . . . , Bin
) be a total ordering of the basis of V such that

Bis
appears before Bir

whenever |〈is〉| < |〈ir〉| for all ir, is = 1, 2, . . . , n. Renaming
the elements of P = ([n] ,≤) if necessary, we can suppose that ir = r for all
r = 1, 2, . . . , n. In this manner, B = (B1, B2, . . . , Bn) and if |〈s〉| < |〈r〉| then all
elements of Bs come before the elements of Br.

Theorem 4.4. Let Bi = {ei,j : 1 ≤ j ≤ ki} be a basis of Vi, B = (B1, . . . , Bn) be
an ordered basis of V where |〈r〉| ≤ |〈s〉| implies r ≤N s. If T ∈ T then

T (ei,j) =
∑

s≤i

ks
∑

t=1

aij
stes,t

where each block
(

arj
ri

)1≤j≤kr

1≤i≤kr

, r = 1, 2, . . . , n, is an invertible matrix. Every ele-

ment of T is represented as an upper-triangular matrix with respect to B.

Proof. Since T ∈ T we have that T (Vi) ⊆ V〈i〉. So

T (e1,1) = a11
11e1,1 + . . . + a11

1k1
e1,k1

T (e1,2) = a12
11e1,1 + . . . + a12

1k1
e1,k1

...

T (e1,k1) = a1k1
11 e1,1 + . . . + a1k1

1k1
e1,k1
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T (e2,1) =
(

a21
11e1,1 + . . . + a21

1k1
e1,k1

)

+
(

a21
21e2,1 + . . . + a21

2k2
e2,k2

)

T (e2,2) =
(

a22
11e1,1 + . . . + a22

1k1
e1,k1

)

+
(

a22
21e2,1 + . . . + a22

2k2
e2,k2

)

...

T (e2,k2) =
(

a2k2
11 e1,1 + . . . + a2k2

1k1
e1,k1

)

+
(

a2k2
21 e2,1 + . . . + a2k2

2k2
e2,k2

)

...

T (en,1) =
(

an1
11 e1,1 + . . . + an1

1k1
e1,k1

)

+ . . . +
(

an1
n1en,1 + . . . + an1

nkn
en,kn

)

T (en,2) =
(

an2
11 e1,1 + . . . + an2

1k1
e1,k1

)

+ . . . +
(

an2
n1en,1 + . . . + an2

nkn
en,k2

)

...

T (en,kn
) =

(

ankn

11 e1,1 + . . . + ankn

1k1
e1,k1

)

+ . . . +
(

ankn

n1 en,1 + . . . + ankn

nkn
en,kn

)

where
(

aij
s1, a

ij
s2, . . . , a

ij
sks

)

= 0 if s � i and
(

aij
i1, a

ij
i2, . . . , a

ij
iki

)

6= 0 for all i ∈

{1, 2, . . . , n}. Therefore, if [T ]
s

Br
=
(

arj
si

)1≤j≤kr

1≤i≤ks

, r, s ∈ {1, 2, . . . , n}, then the ma-

trix [T ]B of T relative to the base B has the form

[T ]B =

















[T ]
1
B1

[T ]
1
B2

[T ]
1
B3

· · · [T ]
1
B3

0 [T ]
2
B2

[T ]
2
B3

· · · [T ]
2
B3

0 0 [T ]
3
B3

· · · [T ]
3
B3

...
...

...
. . .

...
0 0 0 · · · [T ]nBn

















where [T ]
s

Br
= 0 if s � r and [T ]

r

Br
6= 0 for all r ∈ {1, 2, . . . , n}. To see that

each [T ]iBi
is invertible, we notice that [T ]B is assumed to be invertible, so that

0 6= det ([T ]B). But det ([T ]B) =
∏

i det
(

[T ]iBi

)

and it follows that each [T ]iBi
is an

invertible matrix.

4.2. Group of linear isometries of (V, d(P,π)).

Lemma 4.5. Let T ∈ GL(P,π)(V ) and 0 6= vi ∈ Vi. If j ∈ supp (T (vi)) then
|〈j〉| ≤ |〈i〉|.

Proof. By assumption 〈j〉 ⊆ 〈supp (T (vi))〉. It follows from this and (P, π)-weight
preservation that |〈j〉| ≤ |〈supp (T (vi))〉| = |〈supp (vi)〉| = |〈i〉|.

An ideal I of a poset P is said to be a prime ideal if it contains a unique maximal
element.

Lemma 4.6. If T ∈ GL(P,π)(V ) and 0 6= vi ∈ Vi then 〈supp (T (vi))〉 is a prime
ideal.

Proof. We will first show that there is an element j ∈ supp (T (vi)) satisfying |〈j〉| =
|〈i〉|. Assume the contrary, namely that |〈j〉| < |〈i〉| for every j ∈ supp (T (vi)). If
supp (T (vi)) = {i1, i2, . . . , is} then

T (vi) = vi1 + . . . + vis
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with 0 6= vik
∈ Vik

, k ∈ {1, 2, . . . , s} and, by assumption, |〈ik〉| < |〈i〉| for k ∈
{1, 2, . . . , s}. It follows from the linearity of T−1 that we have {i} = supp (vi) ⊆
∪s

k=1supp
(

T−1 (vik
)
)

, which implies i ∈ supp
(

T−1 (vil
)
)

for some l ∈ {1, 2, . . . , s}.
Using this and Lemma 4.5, we obtain |〈i〉| ≤ |〈il〉| < |〈i〉|, which is a contradiction.
Hence, there is j ∈ supp (T (vi)) such that |〈i〉| = |〈j〉|. By the (P, π)-weight
preservation, such an element j is unique and the result follows.

Lemma 4.7. If T ∈ GL(P,π)(V ), i ≤ j and 0 6= vt ∈ Vt for t = i, j, then

〈supp (T (vi))〉 ⊆ 〈supp (T (vj))〉 .

Proof. Lemma 4.6 states that 〈supp (T (vi))〉 and 〈supp (T (vj))〉 are prime ideals, so
there are elements k and l such that 〈k〉 = 〈supp (T (vi))〉 and 〈l〉 = 〈supp (T (vj))〉.
If k = l, then we are done, so assume that k 6= l. This means that either

k ∈ supp (T (vi) − T (vj)) or l ∈ supp (T (vi) − T (vj)) .

We have three cases to consider.
(1) k /∈ supp (T (vi) − T (vj)). In this case, k ∈ supp (T (vj)). It follows that

〈supp (T (vi))〉 = 〈k〉 ⊆ 〈supp (T (vj))〉.
(2) l /∈ supp (T (vi) − T (vj)). In this case, l ∈ supp (T (vi)), so l < k. Hence,

〈supp (T (vj))〉 = 〈l〉 ( 〈k〉 = 〈supp (T (vi))〉, so

w(P,π) (vj) = w(P,π) (T (vj)) < w(P,π) (T (vi)) = w(P,π) (vi) .

However, the hypothesis i ≤ j implies w(P,π) (vi) ≤ w(P,π) (vj), a contradiction.
(3) k, l ∈ supp (T (vi) − T (vj)). In this case,

|〈k, l〉| ≤ |〈supp (T (vi) − T (vj))〉|

= |〈supp (T (vi − vj))〉|

= |〈supp (vi − vj)〉| = |〈i, j〉| .

By hypothesis, i ≤ j, so |〈k, l〉| ≤ |〈j〉| = |〈supp (vj)〉| = |〈supp (T (vj))〉| = |〈l〉|.
We conclude that 〈k〉 ⊆ 〈l〉, that is, 〈supp (T (vi))〉 ⊆ 〈supp (T (vj))〉.

Proposition 4.8. If T ∈ GL(P,π)(V ) then, for each i ∈ [n], there is a unique j in
[n] such that |〈i〉| = |〈j〉| and

(i) For each non-zero v ∈ Vi, T (v) = v′ + u′, where v′ is a non-zero vector in Vj

and u′ ∈ V〈j〉∗ .
(ii) T (V〈i〉) ⊆ V〈j〉.

Proof. Let 0 6= v ∈ Vi; Lemma 4.6 provides j ∈ [n] such that T (v) ∈ V〈j〉 and
|〈i〉| = |〈j〉|. We will show that j depends only on i. If u ∈ Vi, u 6= 0, u 6= v, then
there is k ∈ [n] such that T (u) ∈ V〈k〉 and |〈i〉| = |〈k〉|. Since

|〈i〉| = w(P,π)(u − v) = w(P,π)(T (u) − T (v)) ≥ |〈j, k〉| ≥ |〈j〉| = |〈i〉|

we conclude that |〈j, k〉| = |〈j〉| and therefore k = j. Hence, T (Vi) ⊂ V〈j〉, with
|〈i〉| = |〈j〉|. Since T preserves weights, if v 6= 0 then T (v) = v′ + u′, where
0 6= v′ ∈ Vj and u′ ∈ V〈j〉∗ .

Suppose now that v ∈ V〈i〉∗ ; then v = vi1 + · · · + vik
, where il < i for each l. It

follows from Lemma 4.7 that

〈supp(T (vil
))〉 ⊆ 〈supp(T (v)〉 = 〈j〉.
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Hence

〈supp(T (v))〉 =

k
⋃

l=1

〈supp(T (vil
))〉 ⊆ 〈j〉

and therefore T (V〈i〉) ⊆ V〈j〉.

Theorem 4.9. Let T : V → V be an automorphism of (V, dP ), let i ∈ P and let
j be the unique element of P determined by T (Vi) ⊆ V〈j〉 and |〈i〉| = |〈j〉|. Then
dim(Vi) = dim(Vj).

Proof. Let T , i and j be as above.
Since T (Vi) ⊆ V〈j〉, we may consider T as map from Vi into V〈j〉. Being V〈j〉∗ a

subspace of V〈j〉, we can form the quotient space V〈j〉/V〈j〉∗ . Since every element of
V〈j〉 is expressed in a unique manner as vj + uj, where vj ∈ Vj and uj ∈ V〈j〉∗ , that
quotient space is isomorphic to Vj via the map vj + uj + Vj 7→ vj . Therefore we
have a sequence of linear maps

Vi → V〈j〉 →
V〈j〉

V〈j〉∗
→ Vj

where the first map is T , the second is the canonical projection and the last one is
the isomorphism above. The composite map is injective because if 0 6= v ∈ Vi then
T (v) /∈ V〈j〉∗ . Hence dim(Vi) ≤ dim(Vj).

On the other hand, T−1(Vj) ⊆ V〈i〉. In fact, if v ∈ Vi, v 6= 0, and T (v) = v′ + u′,

then T−1(v′) = v − T−1(u′). Hence i ∈ supp(T−1(v′)) and, since

w(P,π)(T
−1(v′)) = w(P,π)(v

′) = |〈j〉| = |〈i〉|,

it follows that
〈

supp(T−1(v′))
〉

= 〈i〉. We conclude from Proposition 4.8 that

T−1(Vj) ⊆ V〈i〉; switching the roles of Vi and Vj we get an injective map from Vj

into Vi, and this proves that the dimensions are equal.

Theorem 4.10. Let T ∈ GL(P,π)(V ), and consider the map φT : P → P given by
φT (i) := max 〈supp(T (vi))〉, where vi is an arbitrary non-zero vector in Vi. Then

(i) φT is an automorphism of the labelled poset (P, π).
(ii) The map Φ : GL(P,π)(V ) → Aut(P ) given by T 7→ φT is a group homomor-

phism from GL(P,π)(V ) onto Aut(P, π) with kernel equal to T . In particular,
T is a normal subgroup of GL(P,π)(V ).

(iii) The map ι : Aut(P, π) → GL(P,π)(V ) given by ι(φ) = Tφ satisfies Φ◦ ι(φ) = φ
for all φ ∈ Aut(P, π) ( i.e., ι is a section of Φ).

Proof. The map φT is well-defined by Proposition 4.8 and Lemma 4.7 assures that
φT is an order preserving map.

We claim that φT is one-to-one. In fact, let us suppose that φT (i) = φT (j)
with i 6= j. Since φT (i) = max 〈supp (T (vi))〉 and φT (j) = max 〈supp (T (vj))〉,
0 6= vi ∈ Vi and 0 6= vj ∈ Vj , it follows that

〈supp (T (vi))〉 = 〈supp (T (vj))〉 .

By the (P, π)-weight preservation and the linearity of T ,

(2) |〈i, j〉| = |〈supp (T (vi + vj))〉| = |〈supp (T (vi) + T (vj))〉| .

But

〈supp (T (vi) + T (vj))〉 ⊆ 〈supp (T (vi))〉 ∪ 〈supp (T (vj))〉
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and since both ideals in the right hand are assumed to be equal and T is an isometry,
it follows that

(3) |〈supp (T (vi) + T (vj))〉| = |〈supp (T (vi))〉| = |〈i〉|

and

(4) |〈supp (T (vi) + T (vj))〉| = |〈supp (T (vj))〉| = |〈j〉| .

From equations (2), (3) and (4) it follows that

|〈i, j〉| = |〈i〉| = |〈j〉| .

On the other hand, if i 6= j and |〈i〉| = |〈j〉|, then |〈i, j〉| > |〈i〉|. This contradiction
proves that i = j and we conclude that φT is one-to-one.

Since P is finite, it follows that φT is a bijection that preserves order, that is, an
order automorphism. Theorem 4.9 shows that φT lies in Aut(P, π), and this takes
care of the first item.

Consider now T, S ∈ GL(P,π)(V ), i ∈ P and v ∈ Vi a non-zero vector as usual.
We write φT (i) = j and φS(j) = k. This means that T (v) = vj + uj , with vj ∈ Vj ,
vj 6= 0, and uj ∈ V〈j〉∗ , and S(vj) = vk + uk, where vk and uk satisfy analogous
conditions. Now

ST (v) = S(vj + uj) = vk + S(uj)

and, since w(P,π)(uj) < w(P,π)(vj) = w(P,π)(vk), it follows that w(P,π)(S(uj)) <
w(P,π)(vk). Since S(Vj) ⊆ V〈k〉∗ and w(P,π)(S(uj)) < w(P,π)(vk) = |〈k〉| it follows
that S(uk) ∈ V〈k〉∗ and ST (v) = vk + u′

k, with vk ∈ Vk, vk 6= 0, and u′
k = S(uk) ∈

V〈k〉∗ . Hence φST (i) = φSφT (i) and Φ is a group homomorphism.
Given φ ∈ Aut(P, π), Φ(Tφ) = φ. This proves that Φ is surjective and that

Φ ◦ ι(φ) = φ for all φ ∈ Aut(P, π), i.e., ι is a section of Φ.
Finally, T ⊆ ker(Φ) because by definition T (Vi) ⊆ V〈i〉 for each T ∈ T . Con-

versely, if T ∈ ker(Φ) then T (Vi) ⊆ V〈i〉 for all i and, since w(P,π)(T (v)) = w(P,π)(v)
for all v ∈ V , if v ∈ Vi is a non-zero vector then T (v) = v′ + u′, with v′ ∈ Vi, v′ 6= 0
(and u′ ∈ V〈i〉∗); hence ker(Φ) = T . This shows also that T is a normal subgroup
of GL(P,π)(V ).

Let Mr×t (Fq) be the set of all r × t matrices over Fq and

U(P, π) =







(Aij) ∈ MN×N (Fq) :
Aij ∈ Mki×kj

(Fq)
Aij = 0 if i � j
Aii is invertible







.

As a consequence of the last result we have a structure theorem for GL(P,π)(V ).
We recall that T is the group of the isometries that satisfy the hypotheses of Propo-
sition 4.3, and that A is the group of isometries of the form Tφ, φ ∈ φ ∈ Aut(P, π).

Theorem 4.11. Every linear isometry S can be written in a unique way as a
product S = F ◦ Tφ, where F ∈ T and Tφ ∈ A. Furthermore,

GL(P,π)(V ) ∼= T ⋊ A ∼= U(P, π) ⋊ Aut(P, π)

where T ⋊ A is the semi-direct product of T by A induced by the action of A on T
by conjugation and ∼= denotes group isomorphism.

Advances in Mathematics of Communications Volume 2, No. 1 (2008), 95–111



110 M. M. S. Alves, L. Panek and M. Firer

Proof. Given S ∈ GL(P,π)(V ), if φ = φS , then F = S ◦ (Tφ)−1 = S ◦ (Tφ−1) is in T
and

S = (S ◦ (Tφ−1)) ◦ Tφ.

This expression shows that GL(P,π)(V ) = T A. We have seen that Φ ◦ ι(φ) = φ
for every φ ∈ Aut(P, π) and that Φ(T ) = Id, the identity, for all T ∈ T . Since
A = ι (Aut(P, π)), it follows that A ∩ T = {Id}; from this and from the fact that
T is a normal subgroup of GL(P,π)(V ) we have the first isomorphism. The second
one follows from the isomorphisms A ∼= Aut(P, π) and T ∼= U(P, π).

5. P -isometries and π-isometries

The cases when π (i) = 1 for all i ∈ [n] and when P = ([n] ,≤) is an antichain give
rise to spaces endowed with a P -metric and a π-metric respectively. Determination
and description of the group of linear isometries of those spaces can be done as
particular instance of Theorem 4.11.

In the case that the label π is such that π (i) = 1 for all i ∈ [n], each Vi reduces
to a copy of Fq and the poset-block-space reduces to the poset space introduced in
[3]. Immediate substitution gives that‡

U(P, π) = {(aij) ∈ Mn×n (Fq) : aij = 0 if i � j and aii 6= 0}

and Aut (P, π) = Aut (P ). Then, the characterization of GLP

(

Fn
q

)

given in [16,
Corollary 1.3] follows from Theorem 4.11 as a particular case:

GL(P,π)

(

Fn
q

)

∼= U(P, π) ⋊ Aut (P ) .

We consider now the case when P is an antichain. Let N be a positive integer
and π be a partition (k1, k2, . . . , kn) of N where

k1 = . . . = km1 = l1

...

km1+...+ml−1+1 = . . . = km1+...+ml
= lr

with l1 > l2 > . . . > lr > 0. We denote such a partition π by [l1]
m1 [l2]

m2 . . . [lr]
ml .

The π-weight of v = v1 + v2 + . . . + vn ∈ V is defined to be

wπ (v) = |{i : vi 6= 0}| .

In our approach, this corresponds to taking Vi = Fki
q , V =

⊕n

i=1 Vi, and P =
([n] ,≤) as the antichain of n elements, i.e., i ≤ j in P if and only if i = j. In this
case w(P,π)(v) = wπ(v) for all v ∈ V .

Since 〈i〉 = {i} for each i ∈ [n], the upper-triangular maps T take Vi isomorphi-
cally onto itself. Hence,

T ∼= GL(k1, Fq) × GL(k2, Fq) × . . . × GL(kn, Fq).

On the other hand, Aut(P ) ∼= Sn and Aut(P, π) can be identified with a subgroup
of Sn. If π = [l1]

m1 [l2]
m2 . . . [lr]

ml , then Aut(P, π) only permutes those vertices with
same labels and therefore

Aut(P, π) ∼= Sm1 × Sm2 × . . . × Sml
.

‡In this case, U(P, π) is the group of units of the incidence algebra I(P, Fq); if π is another label,
one can identify the labelled poset (P, π) with a quoset (quasi-ordered set) Q and then U(P, π) is
the group of units of the structural matrix algebra of Q; see for instance [2, 20].
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From Theorem 4.11 it follows that

GL(P,π)(V ) ∼=

(

n
∏

i=1

GL(ki, Fq)

)

⋊

(

l
∏

i=1

Smi

)

.
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