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Preface

This thesis presents the result of my work as a PhD student at the Department
of Mathematics at Ghent University, which started in October 2007 and was
supported by the Research Foundation Flanders-Belgium (FWO-Vlaanderen).

When obtaining my master’s degree, I had already very often encountered
beautiful theorems and puzzling problems in incidence geometry. Chapter 1
introduces its basic notions, in particular projective and polar spaces. It was
in this area that I was keen to do research afterwards. Very roughly speaking,
the problems in finite geometry I am mostly interested in, usually come down
to this:

“If something has to be like this, how large can it be, and what happens if it is
that large?”

There are several ways to deal with such problems, and many are solved by use
of clever combinatorial arguments. However, my supervisors Frank De Clerck
and John Bamberg made me get into contact with several other mathemati-
cians, such as Tim Penttila, Peter Cameron, Chris Godsil and Bill Martin, all
of whom focus on algebraic graph theory and geometry. It became clear that
such a point of view could be fruitful for me as well.

Chapter 2 essentially summarizes what I learned when digging into literature,
learning new terminology,... A substantial part of this chapter deals with the
theory of Delsarte, who made fundamental contributions to algebraic combi-
natorics. One of the most important concepts is that of an association scheme,
which is a set together with relations on them, behaving in a very regular way.
Graphs are distance-regular when they define an association scheme in a cer-
tain way, and such graphs appear very often in geometry. This chapter is then
used as a reference throughout this thesis.
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I enjoyed experimenting with these techniques. Their advantage is that they
can sometimes very quickly lead to a result, but on the other hand, these
results are very often already known. This explains why you will see many
alternative proofs in this thesis. Most of the time, I was not really looking for
a technique to solve a problem, but rather for some unsolved problem where
the technique could be useful.

Chapter 3 deals with the Grassmann association schemes, or more geometri-
cally: with the projective geometries. Delsarte linked algebraic and geometric
properties of subsets in Grassmann schemes, as well as in many other schemes.
Several examples of interesting subsets are given, and we can easily derive
completely combinatorial properties of them.

Chapter 4 discusses the association schemes from classical finite polar spaces.
Here, using an explicit description of the eigenspaces, eigenvalues of some
specific graphs will be explicitly computed. One of the main applications is
obtaining bounds for the size of substructures known as partial m-systems. In
most cases the bound is already known, except in one specific case, where the
partial m-systems are partial spreads in the polar space H(2d − 1, q2) with d
odd. In this case, the bound is new and even tight.

In late 2009, Valentina Pepe and Leo Storme started working on the Erdős-Ko-
Rado problem in polar spaces, which can be described as the converse problem
to that of studying partial spreads. Here, one looks at sets of pairwise non-
trivially intersecting generators in a polar space, and one tries to describe
those of the maximum size. It soon became clear that only a combination of
geometric and algebraic arguments could solve this problem. We decided to
join our efforts, and after months of trying, speculating, guessing... we were
able to completely solve the problem, except for one specific polar space, which
was ironically the easiest case when studying partial spreads. The results of
this joint work are presented in Chapter 5.

In the mean time, I kept thinking about the bound for partial spreads, which I
really wanted to “feel” to be true. In the end, it became clear that the related
dual polar graphs have properties, not only appearing for generalized polygons
as well, but in fact for all near polygons. I decided to learn more about these
structures, and to see what could be done there. These results are discussed
in the first half of Chapter 6 on near polygons. It is in this context that more
properties of partial spreads of maximum size in H(2d− 1, q2) with d odd will
be presented, as well as results for spreads in the polar spaces Q(2d, q) and



| iii

W (2d− 1, q) with d odd as well, where we in fact find the well-known bound
“twice”, which we then exploit. In the same way, this yields some results on
similar extremal substructures in generalized hexagons and octagons.

For d = 3, the bound for partial spreads in H(2d− 1, q2) was already obtained
by De Beule and Metsch, and it puzzled me why their proof is so different
from my own. It relied on a beautiful property of this specific polar space due
to J.A. Thas, which I wanted to see in a graph-theoretical context. It turned
out that the associated dual polar graph has these properties because it is
extremal with respect to an inequality for near polygons. Further exploiting
the case of equality has led to a possible construction of a distance-regular
graph with specific parameters, namely with classical parameters, and of new
type for d ≥ 3. These new results form the main part of the second half
of Chapter 6. For diameter d = 2, that inequality comes down to the well
known Higman inequality for generalized quadrangles, and the construction to
a result by Thas on hemisystems.

Although I certainly recognized the power of new techniques, I always tried to
see if things could be proved in more than one way. In the end, it turned out to
be possible to prove the bound for partial spreads in a completely combinatorial
way. This alternative proof is given in Appendix A, and is intentionally written
in a language which can be understood after just reading Chapter 1. The proof
was inspired by concepts from algebraic graph theory though, and on the other
hand served as a motivation to study extremal near polygons. This way the
last part of the thesis should close the circle and express the appreciation I
gained of both approaches.

Frédéric Vanhove
January 2011
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Summary of main new results

The reader is referred the specified parts of the thesis and the Index for defi-
nitions. For the sake of brevity, some results are presented in a weaker form
in this summary.

1. Corollary 3.3.14 on page 53: For any non-degenerate alternating form on
V (2n, q), the number of totally isotropic subspaces in any t − (2n, t +
1, λ; q)-design with 0 ≤ t ≤ n− 1 and t even, can be computed explicitly.

2. Corollary 3.3.16 on page 54: If S is a 2n− (4n+ 2, 2n+ 1, λ; q)-design in
V (4n+ 2, q), and Q is a non-degenerate elliptic quadratic form, then the
number of (2n+ 1)-spaces in S on which Q has a restriction of a certain
type can be computed explicitly.

3. Theorem 4.4.16 on page 89: A partial spread S in H(2d− 1, q2), d odd,
has size at most qd + 1 (algebraic proof). (This bound is tight.)

4. Section 5.10 on page 125: Classification of Erdős-Ko-Rado sets of gen-
erators of maximum size in classical finite polar spaces of rank d ≥ 3,
except for H(2d− 1, q2) for odd d ≥ 5.

5. Theorem 6.4.19 on page 148: In a generalized hexagon of order (s, t), a
maximal partial distance-3-ovoid has size at most min((

√
st)3 +1, s3 +1),

with equality if and only if S is completely regular in the point graph.

6. Theorem 6.4.20 on page 150: If S and S ′ are distance-2-ovoids in a gen-
eralized hexagon of order (s, s3), s > 1, then |S ∩S ′| is 0 or h(s2 + s+ 1)
for some integer h ≥ s3 − s+ 1.

7. Theorem 6.4.21 on page 151: If S is the point set of a suboctagon of order
(s′, t′) in a generalized octagon of order (s, t), then s = s′ or s ≥ s′t′.

vii
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8. Theorem 6.4.27 on page 155: Partial spreads of size q3 +1 in H(5, q2) are
completely regular codes in the dual polar graph.

9. Theorem 6.4.30 on page 158: Spreads in Q(10, q) or W (9, q) are com-
pletely regular codes in the dual polar graph.

10. Corollary 6.4.31 on page 159: If S is a spread in Q(2d, q) or W (2d− 1, q)
with d odd, and T is an m-ovoid of the dual polar space, then |S ∩ T | =
m(qd + 1)/(q + 1).

11. Theorem 6.6.1 on page 164: The intersection number ci of the point graph
of a regular near 2d-gon of order (s, t), d ≥ 2 and s > 1, satisfies:

ci ≤ (s2i − 1)/(s2 − 1).

12. Theorem 6.7.8 on page 174: If S is a (q + 1)/2-ovoid in the dual polar
space on H(2d− 1, q2) with q odd and d ≥ 2, then the induced subgraph
Γ′ on S of the point graph Γ is distance-regular with classical parameters:

(d, b, α, β) =

(
d,−q,−

(
q + 1

2

)
,−
(

(−q)d + 1

2

))
.

13. Corollary 6.7.12 on page 176: If S is a partial spread of size qd + 1 in
H(2d− 1, q2) for odd d ≥ 3, and T is a (q + 1)/2-ovoid of the dual polar
space, then |S ∩ T | = (qd + 1)/2.

14. Theorem 6.8.7 on page 183: Consider a partial quadrangle PQ(s, t, µ)
with µ = st/(s + 1). If for a set of points S, χS is orthogonal to the
eigenspace for s of the point graph, then every two parallel lines intersect
S in the same number of points.

15. Theorem A.2.1 on page 188: Suppose S is a partial spread inH(2d−1, q2),
d odd and d ≥ 3. Then |S| is at most qd + 1. If |S| > 1 and π ∈ S,
then every generator intersecting π in a (d− 1)-space intersects the same
number of other elements of S in just a point, if and only if |S| = qd + 1.
In that case, that number must be qd−1 (geometric proof).
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Chapter 1

Incidence geometries

1.1 Incidence geometries

An incidence geometry of rank n is an ordered set (S, I,∆, σ), with S a non-
empty set of varieties, I a binary symmetric incidence relation, ∆ a finite set
of size n and σ a surjective type map from S to ∆, such that no ordered pair
of elements of S of the same type is in I. A flag is a set of pairwise incident
varieties, and the type of a flag is its image under σ.

A point-line geometry is an incidence geometry of rank 2, where the varieties
of the two types are referred to as points and lines. We will also denote such a
geomety with set of points P and set of lines L by (P,L, I). If a point and line
are incident, we say the line passes through the point or contains the point, or
the point is on the line. Two distinct points incident with a common line are
said to be collinear, and two distinct lines incident with a common point are
said to intersect or meet, and are skew otherwise. If there is exactly one line
incident with two distinct points p1 and p2, we will often denote this line by
p1p2. A point-line geometry is called a partial linear space if every two distinct
points are incident with at most one line and every line is incident with at
least two points. A partial linear space is a linear space if every two distinct
points are on exactly one line. The dual of (P,L, I) is (L, P, I).

An isomorphism from (S, I,∆, σ) to (S ′, I′,∆, σ′) is a bijection φ : S → S ′ with
xIy ⇐⇒ φ(x)I′φ(y) and σ(x) = σ(y) ⇐⇒ σ′(φ(x)) = σ′(φ(y)), ∀x, y ∈ S. An
automorphism of (S, I,∆, σ) is an isomorphism from this geometry to itself.

1



2 | Chapter 1. Incidence geometries

A duality from a point-line geometry (P,L, I) to (P ′, L′, I′) is an isomorphism
from the first geometry to the dual of the second. A correlation of (P,L, I) is a
duality from this geometry to itself. A polarity is an involutive correlation. A
point-line geometry admitting a correlation or polarity is said to be self-dual
or self-polar, respectively.

1.2 Projective geometries

The projective geometry PG(n,K) is the incidence geometry (S, I,∆, σ) of
rank n, derived from a left vector space V (n + 1,K) of dimension n + 1 over
a division ring K. The set S consists of the subspaces of V (n+ 1,K) different
from the trivial and full subspace, I is symmetrized strict inclusion, ∆ is the
set {1, . . . , n}, and σ maps each subspace onto its vectorial1 dimension over K.
For every prime power q, there is a finite field of order q, which is unique up
to isomorphism, and which we will denote by GF(q). The projective geometry
PG(n,GF(q)) will also be denoted by PG(n, q).

An axiomatic approach to projective geometries is also possible. A projective
space is defined as a point-line geometry satisfying the following axioms.

(i) For every two distinct points, there is exactly one line incident with both.

(ii) If p1, p2, p3 and p4 are four distinct points, such that the lines p1p2 and
p3p4 intersect, then the lines p1p3 and p2p4 intersect as well.

(iii) Every line contains at least three points.

A subspace of a projective space is a subset S of points, such that every line
containing two elements of S, only contains points of S. The projective dimen-
sion of a projective space is the largest number n for which there is a strictly
increasing chain ∅ ⊂ S0 ⊂ · · · ⊂ Sn = P of subspaces of the projective space,
where P denotes the full set of points.

Veblen and Young [166] proved that if the projective dimension is an integer
n ≥ 3, the projective space is isomorphic to the point-line geometry derived

1Unless stated otherwise, dimensions are assumed to be vectorial and not projective in this
thesis.



1.3. Polar spaces | 3

from PG(n,K) by restricting to the 1- and 2-dimensional subspaces. In par-
ticular, Wedderburn’s Little Theorem2, which states that every finite division
ring is a field (see for instance [2]), implies that the only finite projective spaces
of projective dimension at least three are those derived from a PG(n, q).

A projective space of projective dimension 2, also referred to as a projective
plane, can alternatively be defined as a point-line geometry satisfying the
following axioms:

(i) every two distinct points are on a unique common line,

(ii) every two distinct lines contain a unique common point,

(iii) there are four distinct points, no three of which on a common line,

and if it is finite, then one can easily prove that for some n ≥ 2, there are
exactly n + 1 points on each line and n + 1 lines through each point (see for
instance [34]). The number n is the order of the projective plane.

A projective plane is said to be Desarguesian if it is isomorphic to a PG(2,K)
for some division ring K. Many constructions for finite non-Desarguesian
planes are known, but the classification is far from done (see for instance
[97]).

1.3 Polar spaces

Polar spaces are important types of incidence geometries from which many
interesting association schemes and graphs (see Chapter 2 for the definitions)
can be derived, such as the dual polar graphs. They will play a fundamental
role in this thesis.

1.3.1 Axiomatic definition

Veldkamp [167] was the first to axiomatically describe polar spaces, and the
theory was later refined by Tits [158]. A distinction must be made between
polar spaces of rank two and those of higher rank.

2See [117] for a detailed discussion on the history of this result.
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A polar space of rank n with n ≥ 3 is an incidence geometry (S, I, {1, . . . , n}, σ),
with all varieties subsets of σ−1(1), the set of varieties of type 1 (referred to as
the points), and incidence defined as symmetrized strict inclusion, satisfying
the following axioms.

(i) The incidence structure obtained by considering all varieties strictly con-
tained in one given variety of size at least two, is isomorphic to a projec-
tive space of projective dimension m with 1 ≤ m ≤ n− 1, in which case
the variety is said to be of projective dimension m.

(ii) The intersection of two varieties is either a variety or empty.

(iii) If π is a variety of projective dimension n − 1 and p is a point not in
π, then there is a unique variety π′ such that p ∈ π′ and π ∩ π′ has
projective dimension n− 2. Moreover, it contains all points in π that are
in a common variety with p.

(iv) There exist two disjoint varieties of projective dimension n− 1.

The varieties of projective dimension n− 1 and n− 2 in a polar space of rank
n will be referred to as the generators or maximals , and the next-to-maximals,
respectively. We will also refer to the varieties of projective dimension 2 as the
planes of the polar spaces.

A polar space of rank two or generalized quadrangle is a partial linear space
satisfying the following axioms.

(i) For any point p not on a line `, there is a unique point on ` collinear with
p.

(ii) Every point is incident with at least two lines.

Here, we will also refer to the lines as generators or maximals, and to the
points as next-to-maximals.

Generalized quadrangles were introduced by Tits [156]. Note that the above
definition of generalized quadrangles is self-dual. A finite generalized quad-
rangle with s+ 1 points on each line and t+ 1 lines through each point is said
to be of order (s, t) and is denoted as a GQ(s, t). A generalized quadrangle of
order s is a GQ(s, s).

A fundamental difference between projective spaces and polar spaces is that
two points do not have to be on a common line in the latter.
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1.3.2 Classical polar spaces

Many polar spaces can be constructed by considering certain subspaces of a
vector space. We will now describe the possible constructions of these classical
polar spaces. It will turn out that in some sense, almost all finite polar spaces
are constructed in this way. Proofs and much more information on polar spaces
can be found in for instance [140, Chapters 7 and 9] or [34].

Consider a vector space V = V (m,K) over some field K3.

• A bilinear form on V is a map f : V ×V → K such that f(av1 +bv2, v) =
af(v1, v) + bf(v2, v) and f(v, av1 + bv2) = af(v, v1) + bf(v, v2) for every
a, b ∈ K and v, v1, v2 ∈ V .

• A sesquilinear form on V is a map f : V × V → K such that f(av1 +
bv2, v) = af(v1, v) + bf(v2, v) and f(v, av1 + bv2) = aθf(v, v1) + bθf(v, v2)
for every a, b ∈ K and v, v1, v2 ∈ V , for some field automorphism θ of K.

• A quadratic form on V is a map Q : V → K such that Q(av) = a2Q(v)
for every a ∈ K and v ∈ V , and with f : V × V → K : (v1, v2) →
Q(v1 + v2)−Q(v1)−Q(v2) a bilinear form on V .

A bilinear form f is symmetric if f(v1, v2) = f(v2, v1),∀v1, v2 ∈ V , and al-
ternating or symplectic if f(v, v) = 0, ∀v ∈ V . A sesquilinear form is Hermi-
tian if the field automorphism θ is an involution and f(v1, v2) = f(v2, v1)θ,
∀v1, v2 ∈ V . Note that if the characteristic of K is different from 2, symmetric
bilinear forms are in one-to-one correspondence with quadratic forms.

With respect to a bilinear form or sesquilinear form f , a vector v0 is singular
if f(v0, v) = 0, ∀v ∈ V . With respect to a quadratic form Q, a vector v0 is said
to be singular if both Q(v0) = 0 and Q(v0 + v) = Q(v),∀v ∈ V . The singular
vectors form a subspace in both cases, known as the singular subspace, and we
say the form is non-degenerate if the singular subspace is trivial.

A bijective linear map from one vector space to another, both equipped with
a form, is an isometry if it transforms the first form into the second. For a
proof of the following theorem, see for instance [140].

3More generally, one can use division rings, but for our purposes in this thesis, we can restrict
ourselves to a field K.
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Theorem 1.3.1. [Witt’s Theorem] Suppose f is a non-degenerate quadratic,
symmetric, alternating or Hermitian form on V . Any isometry between two
subspaces U1 and U2 of V extends to an isometry of V .

A non-zero vector v is isotropic if f(v, v) = 0 (for a bilinear or sesquilinear
form f) or Q(v) = 0 (for a quadratic form Q). A form with no isotropic
vectors is anisotropic. A subspace is said to be isotropic with respect to a
form if it contains an isotropic vector, and a subspace W is totally isotropic if
the restriction of the form to W ×W is trivial (for a bilinear or sesquilinear
form) or its restriction to W is trivial (for a quadratic form). For quadratic
and Hermitian forms, the isotropic subspaces are precisely those subspaces,
all non-zero vectors of which are isotropic. The Witt index is the maximal
dimension of the totally isotropic subspaces. It follows from Theorem 1.3.1
that every totally isotropic subspace is in a totally isotropic subspace of this
maximal dimension.

For any non-degenerate quadratic form Q on V (m,K), a basis can be found
such that

Q(x1, . . . , xm) = x1x2 + · · ·+ x2g−1x2g +Q′(x2g+1, . . . , xm),

where Q′ is some anisotropic quadratic form. The Witt index is then given
by g. If K = GF(q), then anisotropic forms can only exist in vector spaces
of dimension at most two, and thus 2g must be m − 2,m − 1 or m. The
quadratic form is said to be of elliptic, parabolic or hyperbolic type in these
cases, respectively. More generally, a quadratic form on V (m, q) is said to be
of one of these three types if its (non-degenerate) restriction to some subspace,
complementary to its singular subspace, is of that type. Up to a non-zero
scalar, two non-degenerate quadratic forms on V (m, q) of the same type can
be transformed into each other by some linear transformation.

Non-degenerate alternating forms on V (m,K) only exist for even m. For any
non-degenerate alternating form on V (2n,K), a basis {e1, . . . , en, e

′
1, . . . , e

′
n}

can be found such that f(ei, ej) = f(e′i, e
′
j) = 0 and f(ei, e

′
j) = δij, ∀i, j. The

Witt index is then given by n.

A finite field has an involutive automorphism if and only if the order is a square
q2 for some prime power q, and in that case the involution is the unique map-
ping x→ xq and fixes the unique subfield of order q. For any non-degenerate
Hermitian form f on V (m, q2), a basis {e1, . . . , em} can be found such that
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f(ei, ej) = δij. The Witt index is given by m/2 for even m and (m− 1)/2 for
odd m.

For any non-degenerate form f , let f̃ denote f̃ : V × V → K : (v1, v2) →
f(v1 + v2) − f(v1) − f(v2) (if f is quadratic) or simply f if it is symmetric,
alternating or Hermitian. We define for any subspace U in V :

U⊥ := {v ∈ V |f̃(u, v) = 0, ∀u ∈ U}.

Note that U ⊆ U⊥ for any totally isotropic subspace U .

Consider a non-degenerate form with Witt index n ≥ 2. Consider the inci-
dence structure (S, I, {1, . . . , n}, σ), where S is the set of all non-trivial totally
isotropic subspaces, I is symmetrized strict inclusion, and σ maps each element
of S onto its dimension. This is the classical polar space of rank n induced
by the form. Note that all classical finite polar spaces can be embedded in
PG(m, q) for some m. We now introduce notation for these finite polar spaces
of rank n, based on these embeddings in projective spaces over GF(q).

• The polar spaces induced by non-degenerate quadratic forms are the
quadrics , and they are elliptic, parabolic or hyperbolic if the form is of
that type. When constructed in V (m, q) (and hence embedded in PG(m−
1, q)), they are denoted by Q−(m − 1, q),Q(m − 1, q) and Q+(m − 1, q),
respectively.

• The polar space induced by a non-degenerate symplectic form on V (2n, q)
(and hence embedded in PG(2n−1, q)), is known as the symplectic space
W (2n− 1, q).

• The polar space induced by a non-degenerate Hermitian form on V (m, q2)
(and hence embedded in PG(m−1, q2)), is the Hermitian variety H(m−
1, q2).

For even q, the embedding of the parabolic quadric Q(2n, q) is such that there
is a unique point p in PG(2n, q), not on the quadric and all lines through
which in PG(2n, q) have exactly one point in common with the quadric. This
point p is known as the nucleus of the parabolic quadric (see for instance
[94, Lemma 22.3.1 (Corollary 2)]). In this case, the projection of the to-
tally isotropic subspaces of Q(2n, q) from the nucleus onto any hyperplane
in PG(2n, q) not through p yields an isomorphism between the polar spaces
Q(2n, q) and W (2n− 1, q).
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The classical generalized quadrangles are the classical polar spaces of rank two.
For each such GQ(s, t), we give its parameters in Table 1.1.

(s, t)

Q−(5, q) (q, q2)

Q(4, q) (q, q)

Q+(3, q) (q, 1)

W (3, q) (q, q)

H(3, q2) (q2, q)

H(4, q2) (q2, q3)

Table 1.1: The classical generalized quadrangles and their parameters

For proofs of the following fundamental results on isomorphisms between clas-
sical generalized quadrangles, we refer to [122, 3.2.1 and 3.2.3].

Theorem 1.3.2. The generalized quadrangles Q(4, q) and W (3, q) are dual to
each other, and are isomorphic (and hence self-dual) if and only if q is even.

Theorem 1.3.3. The generalized quadrangles H(3, q2) and Q−(5, q) are dual
to each other.

1.3.3 Characterizations

Polar spaces of rank at least three were characterized by Tits [158]. In partic-
ular, all finite4 polar spaces of rank at least three are classical.

The situation is completely different for polar spaces of rank two. Many non-
classical finite generalized quadrangles are known, some of which of the same
order as certain classical generalized quadrangles, and some of order (q−1, q+1)
with q a prime power. Up to duality, no other orders (s, t) with s, t > 1
are known, but a complete classification of all generalized quadrangles seems
hopeless. We refer to [122] for much more details.

4A similar result holds in the infinite case, but there are non-embeddable infinite polar spaces
of rank three.
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1.4 SPBIBDs

The following definition is due to Bridges and Shrikhande [19].

Definition 1.4.1. A special partially balanced incomplete block design (SP-
BIBD) with parameters (v, b, r, k, λ1, λ2) of type (α1, α2), with v, b, r, k ≥ 2,
λ1, λ2, α1, α2 ≥ 0, λ1 6= λ2 and r < b, is a finite point-line geometry (P,B, I)
satisfying the following axioms.

(i) There are v points and b lines.

(ii) Every point is on exactly r lines and every line contains exactly k points.

(iii) Two distinct points are either on exactly λ1 common lines (when they
are λ1-associated) or on exactly λ2 common lines (when they are λ2-
associated).

(iv) A point p is λ1-associated to exactly α1 points on a line ` if p is on `,
and to α2 points on ` if p is not on `.

We will be mostly interested in the case λ2 = 0 and α1 = k − 1, where two
points are either on exactly λ1 common lines or none at all.

Definition 1.4.2. A partial geometry pg(s, t, α) is a partial linear space with
s, t, α ≥ 1, satisfying the following axioms.

(i) Every line contains exactly s + 1 points, and every point is on exactly
t+ 1 lines.

(ii) If a point is not on a line `, then it is collinear with exactly α points on
`.

Note that the partial geometries pg(s, t, α) with v points and b lines are pre-
cisely the SPBIBDs (v, b, t+1, s+1, 1, 0) of type (s, α). The dual of a pg(s, t, α)
is a pg(t, s, α). The generalized quadrangles of order (s, t) are precisely the
partial geometries pg(s, t, 1).

We will later see how both projective and polar spaces give rise to SPBIBDs.
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Chapter 2

Association schemes

Finite incidence geometries often yield interesting combinatorial structures,
such as distance-regular graphs and association schemes. The goal of this
thesis is to study geometric structures by use of techniques from algebraic
combinatorics. In this chapter, we will give an overview of some of the most
important concepts and techniques in this area of mathematics.

2.1 Graphs

A graph Γ is an ordered pair (V (Γ), E(Γ)) where V (Γ) is a non-empty set
of elements called vertices , and E(Γ) is a set of subsets of V (Γ) of size two,
called edges . Hence our graphs are assumed to be undirected, without loops
and without multiple edges. We say two vertices x and y are adjacent or
neighbours if {x, y} is an edge, and we denote this by x ∼ y.

A path of length i from vertex x to vertex y is a sequence x = x0, . . . , xi = y
of vertices of Γ with every two successive vertices adjacent. The subset of
V (Γ)×V (Γ), consisting of those ordered pairs of vertices (x, y) such that either
x and y are equal or there is a path from x to y, is an equivalence relation on
V (Γ), and its classes are the connected components of the graph. A graph with
only one connected component is connected . The distance between two vertices
x and y in the same connected component is the minimal length of all paths
from x to y, and is denoted by d(x, y). The diameter of a connected graph is
the maximal distance between any two vertices in the graph. For any vertex x

11
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and any non-empty subset S, the distance from x to S is min{d(x, y)|y ∈ S},
denoted by d(x, S). We will write Γi(x) for the set of vertices in Γ at distance i
from a given vertex, and we will refer to it as the i-th subconstituent of Γ with
respect to x. The sphere of radius e around a vertex x is the set of vertices
in the graph at distance at most e from x. A sequence of vertices x0, . . . , xi is
a circuit of length i (i ≥ 3) if x1, . . . , xi are distinct, x0 = xi and every two
successive vertices are adjacent. The girth of Γ is the length of its shortest
circuit.

The subgraph induced by a subset of vertices X is the graph with vertex set
X whose edges are the edges of Γ contained in X.

The degree of a vertex is its number of neighbours, and we say a graph is
regular with valency k or simply k-regular if every vertex has degree k.

A graph is complete if every two distinct vertices are adjacent. We say a graph
Γ is bipartite if there is a partition {V1, V2} of V (Γ) such that no two vertices
in the same class of the partition are adjacent.

A clique in a graph is a set of pairwise adjacent vertices, and a coclique or
independent set is a set of pairwise non-adjacent vertices. A triangle in a
graph is a clique of size three.

The complement of a graph Γ is the graph Γ̄ with the same set of vertices, but
with two distinct vertices adjacent if and only if they are not adjacent in Γ.

A graph isomorphism from one graph Γ = (V (Γ), E(Γ)) to another Γ′ =
(V (Γ′), E(Γ′)) is a bijection θ : V (Γ) → V (Γ′) such that xθ ∼ yθ ⇐⇒ x ∼
y,∀x, y ∈ V (Γ). An automorphism of a graph Γ is an isomorphism from Γ to
itself.

The point graph of a point-line geometry (P,L, I) is the graph whose vertex set
is P and in which two points are adjacent if they are incident with a common
line. The incidence graph of a point-line geometry is the bipartite graph with
vertex set P ∪L and edge set {{p, `}|pI`}. For a point p and line `, the distance
d(p, `) with respect to the point graph is short for d(p, {p′|p′I`}).

For any subset S of a finite non-empty set Ω, we will denote by χS its charac-
teristic vector in RΩ, with (χS)ω = 1 if ω ∈ S and (χS)ω = 0 if ω /∈ S. Note
that the orthogonal projection of χS onto 〈χΩ〉 is given by (|S|/|Ω|)χΩ.

The adjacency matrix of a finite graph on Ω is the symmetric (0, 1)-matrix,
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the rows and columns of which are indexed by its vertices, and with

(Ai)x,y =

{
1 if x ∼ y
0 if x 6∼ y

.

Another ordering of the vertices yields an adjacency matrix that only differs by
conjugation with a permutation matrix. Hence we can define the eigenvalues
of a graph as the eigenvalues λ of its adjacency matrix A (i.e. Av = λv
for some v 6= 0). Its spectrum is its set of eigenvalues together with their
multiplicities. Since the adjacency matrix is real symmetric, all eigenvalues are
real and the vector space RΩ orthogonally decomposes into eigenspaces1. The
following results follow from the Perron-Frobenius theorems (see for instance
[23, Chapter 3]).

Theorem 2.1.1. Let Γ be a graph with largest eigenvalue θ0.

(i) θ0 is at most the maximum degree kmax, and if Γ is connected, then equal-
ity holds if and only if the graph is regular with valency θ0.

(ii) If Γ is k-regular, then the multiplicity of k is the number of connected
components of Γ.

(iii) The smallest eigenvalue is bigger than or equal to −θ0, and if Γ is con-
nected, then equality holds if and only if Γ is bipartite, and in that case
the spectrum is symmetric around 0.

Note that a k-regular graph always has the all-one vector χΩ as an eigenvector
for k.

A simple but important observation is that, given the adjacency matrix A and
a subset of vertices S, the vector AχS has the following interpretation:

(AχS)ω = |{ω′|ω′ ∈ S, ω ∼ ω′}|.

The elements of a partition {C1, . . . , Cm} of the set of vertices V (Γ) are known
as its cells. A partition is said to be equitable if every xi ∈ Ci is adjacent
to exactly cij vertices in Cj, where cij only depends on i and j and not on
xi. The quotient matrix of the equitable partition is the (m × m)-matrix C

1Kernels, eigenspaces and eigenvectors will be assumed to be right kernels, right eigenspaces and
right eigenvectors, respectively.
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with (C)ij = cij. The characteristic matrix of the equitable partition is the
(|V (Γ)| ×m)-matrix, the i-th column of which is the characteristic vector of
Ci. The following fundamental properties are proved in [82, Chapter 5].

Theorem 2.1.2. Consider a graph Γ with adjacency matrix A. A partition
{C1, . . . , Cm} is equitable if and only if the characteristic matrix Π satisfies
AΠ = ΠC for some (m ×m)-matrix C. In that case, C must be the quotient
matrix, and the following holds.

(i) The characteristic polynomial of C divides that of A.

(ii) If v 6= 0 satisfies Cv = λv, then Πv is an eigenvector of A for the
eigenvalue λ.

(iii) The column span of Π is spanned by m eigenvectors of A, and contains
the all-one vector if Γ is regular.

In particular, the previous theorem yields that if the number of cells is less
than the number of distinct eigenvalues of Γ, the characteristic vectors of the
cells are orthogonal to some of the eigenspaces of its adjacency matrix.

We say a subset S of vertices in a regular graph is intriguing with parameters
(h1, h2) if the number of neighbours in S of a vertex x is h1 if x ∈ S, and h2

if x /∈ S. If ∅ 6= S 6= V (Γ), then this is the case if and only if {S, V (Γ)\S} is
an equitable partition into two parts.

Lemma 2.1.3. A subset S of vertices in a k-regular graph Γ on Ω is intriguing
if and only if χS is a linear combination of χΩ and an eigenvector v for some
eigenvalue λ of the adjacency matrix A. In that case, S is intriguing with
parameters (h1, h2):

h1 =
|S|
|Ω|

(k − λ) + λ, h2 =
|S|
|Ω|

(k − λ).

Proof. We may suppose ∅ 6= S 6= Ω. If S is intriguing, then {S,Ω\S} is an
equitable partition in two parts and hence it follows from Theorem 2.1.2 that
χS can be written as a linear combination of two eigenvectors of A, one of
which χΩ. Conversely, if S is a linear combination of χS and an eigenvector of
v for the eigenvalue λ of Γ, then

χS =
|S|
|Ω|

χΩ + v.
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Note that AχΩ = kχΩ as A is k-regular. Hence:

AχS = A

(
|S|
|Ω|

χΩ + v

)
=
|S|
|Ω|

kχΩ + λv

=
|S|
|Ω|

kχΩ + λ

(
χS −

|S|
|Ω|

χΩ

)
=

(
|S|
|Ω|

(k − λ) + λ

)
χS +

|S|
|Ω|

(k − λ)(χΩ − χS).

2.2 Association schemes

2.2.1 Definitions

Bose and Shimamoto [16] introduced the notion of association schemes. A d-
class association scheme on a finite non-empty set Ω is an ordered pair (Ω,R)
with R = {R0, R1, . . . , Rd} a set of symmetric non-empty relations on Ω, such
that the following axioms hold.

(i) R0 is the identity relation.

(ii) R is a partition of Ω2.

(iii) There are constants pkij, known as the intersection numbers , such that
for (x, y) ∈ Rk, the number of elements z in Ω for which (x, z) ∈ Ri and
(z, y) ∈ Rj equals pkij.

We give two simple and fundamental examples of association schemes (see for
instance [23]).

(i) Let X be a set of size v ≥ 1, and let Ω denote the set of all subsets of X
of size k. We define the relation Ri as {(ω1, ω2)||ω1 ∩ ω2| = k − i} with
0 ≤ i ≤ d = min(k, v− k). Now (Ω, {R0, . . . , Rd}) is a d-class association
scheme, known as a Johnson scheme. This scheme is studied in design
theory.
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(ii) Let X be a set of size q ≥ 2, and let Ω denote the Cartesian pro-
duct Xd for some d. For every i ∈ {0, . . . , d}, we define Ri such that
(ω1, ω2) ∈ Ri if and only if w1 and w2 differ in exactly i coordinates. Now
(Ω, {R0, . . . , Rd}) is a d-class association scheme, known as a Hamming
scheme. This scheme is studied in coding theory.

2.2.2 The Bose-Mesner algebra of an association scheme

Proofs of the results in this subsection can be found in for instance [23, Chapter
2]. Consider an association scheme (Ω, {R0, . . . , Rd}). For each Ri, we define
its adjacency matrix Ai as the symmetric (0, 1)-matrix with rows and columns
indexed by the elements of Ω, such that (Ai)ω1,ω2 = 1 if (ω1, ω2) ∈ Ri and
(Ai)ω1,ω2 = 0 if not. The axioms of an association scheme now imply:

(i) A0 is the identity matrix,

(ii) A0 + · · ·+ Ad is the all-one matrix,

(iii) AiAj =
∑d

k=0 p
k
ijAk.

The last axiom implies that the vector space 〈A0, . . . , Ad〉 is closed under ma-
trix multiplication, and forms a (d + 1)-dimensional commutative algebra of
symmetric matrices over R, known as the Bose-Mesner algebra of the associa-
tion scheme. We will usually use the notation Ai for the adjacency matrix for
Ri.

An idempotent E in the Bose-Mesner algebra (i.e. E2 = E) is minimal if it
cannot be written as the sum of two non-zero idempotents.

Theorem 2.2.1. The Bose-Mesner algebra of a d-class association scheme
(Ω, {R0, . . . , Rd}) has a unique basis {E0, . . . , Ed} of minimal idempotents.

Any two minimal idempotents Ei and Ej satisfy: EiEj = δijEi. Every minimal
idempotent defines an orthogonal projection, and the subspaces Im(Ej) form
an orthogonal decomposition of RΩ. These subspaces are the strata of the
association scheme. Projection onto the all-one vector χΩ is always one of
the minimal idempotents, and we will always denote it by E0. The matrix
of eigenvalues of the association scheme is the (d + 1) × (d + 1)-matrix P =

(Pji)i,j=0...d with Ai =
∑d

j=0 PjiEj, ∀i ∈ {0, . . . , d}. The reason for this term is
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that if v ∈ Im(Ej), then Aiv = AiEjv = PjiEjv = Pjiv. Hence every non-zero
vector in any stratum is an eigenvector for all Ai. The zeroeth column of P
is an all-one column, and the zeroeth row consists of the valencies ki of each
relation Ri. The sum of entries in the zeroeth row is |Ω|, and is zero for all
other rows (see for instance Table 4.2 on page 70 for an example).

Note that matrix multiplication with respect to the basis {A0, . . . , Ad} is rather
complicated while it is very simple with respect to the basis {E0, . . . , Ed}.
We will now introduce a second multiplication for which these two bases will
switch roles. We will refer to entrywise multiplication as Schur multiplication
and denote it by ◦. Since Ai ◦ Aj = δijAi, the Bose-Mesner algebra is cer-
tainly closed under this multiplication and {A0, . . . , Ad} is a basis of minimal
idempotents (i.e. Ai ◦ Ai = Ai) with respect to it. Now we can also write

Ei ◦ Ej = 1
|Ω|
∑d

k=0 q
k
ijEk for certain real numbers qkij known as the Krein pa-

rameters of the association scheme. Scott [127] proved that these parameters
qkij must be non-negative, yielding important conditions on the parameters of
association schemes known as the Krein conditions .

We will also write u ◦ v for the entrywise product of two vectors u, v ∈ RΩ.

The dual matrix of eigenvalues of the association scheme is the (d+ 1)× (d+

1)-matrix Q = (Qij)i,j=0...d with Ej = 1
|Ω|
∑d

i=0 QijAi,∀j ∈ {0, . . . , d}. The

zeroeth column of Q is an all-one column, and the zeroeth row consists of the
ranks mj of each idempotent Ej. The sum of entries in the zeroeth row is |Ω|,
and is zero for all other rows.

Table 2.1 exhibits a nice duality between ordinary and Schur multiplication,
and between the parameters pkij and qkij. The matrix J is the all-one matrix
with |Ω| rows and columns.

If ∆k and ∆m denote diagonal (d+ 1)× (d+ 1)-matrices with (∆k)ii = ki and
(∆m)jj = mj, then P and Q satisfy the following relations:

PQ = |Ω|I, ∆kQ = P T∆m.

These relations yield the following handy expression for minimal idempotents
and their ranks.

Lemma 2.2.2. Suppose Ej is a minimal idempotent with rank mj of an as-
sociation scheme (Ω, {R0, . . . , Rd}), such that every relation Ri has eigenvalue
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λi for Ej and has valency ki. Then:

Ej =
mj

|Ω|

(
λ0

k0

A0 + · · ·+ λd
kd
Ad

)
,

and

mj =
|Ω|∑d

i=0 λ
2
i /ki

=

∑d
i=0 ki∑d

i=0 λ
2
i /ki

.

AiAj =
∑d

k=0 p
k
ijAk Ei ◦ Ej = 1

|Ω|
∑d

k=0 q
k
ijEk

Ai ◦Aj = δijAi EiEj = δijEi
AiEj = PjiEj Ej ◦Ai = 1

|Ω|QijAi

AiE0 = kiE0 Ej ◦A0 =
mj
|Ω|A0

A0 + · · ·+Ad = J E0 + · · ·+ Ed = I

A0 = I E0 = J/|Ω|
pkijkk = pikjki qkijmk = qikjmi

Table 2.1: Duality between parameters of association schemes

2.2.3 P - and Q-polynomial association schemes

Roughly speaking, association schemes are P - and Q-polynomial if they have a
meaningful ordering of their relations and minimal idempotents, respectively.

Let (Ω, {R0, . . . , Rd}) be an association scheme. We say it is metric with
respect to the ordering R0, . . . , Rd if pkij 6= 0 implies k ≤ i + j and pi+jij 6= 0 if
i+ j ≤ d. Dually, we say it is cometric with respect to the ordering E0, . . . , Ed
of its minimal idempotents if qkij 6= 0 implies k ≤ i+ j and qi+jij 6= 0 if i+ j ≤ d.
We refer to [23, Section 2.7] for proofs of the following two theorems.

Theorem 2.2.3. For any association scheme (Ω, {R0, . . . , Rd}) the following
are equivalent:

(i) the scheme is metric with ordering R0, . . . , Rd,

(ii) pi+1
1i 6= 0, pk1i = 0 for k > i+ 1 and 0 ≤ i ≤ d− 1,
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(iii) for every i ∈ {0, . . . , d}, there is a real polynomial pi of degree i such that
Pji = pi(Pj1) for every j ∈ {0, . . . , d},

(iv) (ω1, ω2) ∈ Ri if and only if d(ω1, ω2) = i with respect to R1.

Theorem 2.2.4. For any association scheme (Ω, {R0, . . . , Rd}) with minimal
idempotents E0, . . . , Ed, the following are equivalent:

(i) the scheme is cometric with ordering E0, . . . , Ed,

(ii) qi+1
1i 6= 0, qk1i = 0 for k > i+ 1 and 0 ≤ i ≤ d− 1,

(iii) for every j ∈ {0, . . . , d}, there is a real polynomial qj of degree j such
that Qij = qj(Qi1) for every i ∈ {0, . . . , d}.

The two previous theorems justify the alternative terms P -polynomial and Q-
polynomial association schemes for metric and cometric schemes, respectively,
which were introduced by Delsarte [65].

It is worth noting that schemes can be (co)metric with respect to more than
one ordering (see for instance [13, Section III.6]).

2.2.4 Subsets and vectors in association schemes

We will now give an introduction to the concepts and results by Delsarte
regarding subsets in association schemes.

Definition 2.2.5. Consider an association scheme (Ω, {R0, . . . , Rd}) with v ∈
RΩ. The inner distribution of v, if v 6= 0, is the (d+ 1)-vector a with:

ai :=
vTAiv

vTv
, ∀i ∈ {0, . . . , d}.

The outer distribution of v is the |Ω| × (d+ 1)-matrix B = (Bx,i) with:

Bx,i :=
∑

(x,x′)∈Ri

vx′ = (χ{x})
TAiv, ∀i ∈ {0, . . . , d},∀x ∈ Ω.

Note that the i-th column of B is given by Aiv, and a by (vTB)/(vTv).
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We warn the reader that different normalizations are used in other works. We
will also write Bx for the row of the outer distribution B, corresponding to
x ∈ Ω.

The vector aQ is called the MacWilliams transform of a.

Lemma 2.2.6. [23, Lemma 2.5.1 ] Let (Ω, {R0, . . . , Rd}) be an association
scheme. Suppose every Ri has valency ki and eigenvalue λi for some idempo-
tent Ej with rank mj. Consider a vector v 6= 0 in RΩ with inner distribution
a. Then:

(aQ)j =
|Ω|
vTv

vTEjv = mj

(
λ0

k0

a0 + · · ·+ λd
kd

ad

)
.

The following result is due to Delsarte [65, 67]. It yields non-negativeness of
the MacWilliams transform and discusses the meaning of its entries equal to
zero.

Theorem 2.2.7. Consider an association scheme (Ω, {R0, . . . , Rd}). If every
Ri has valency ki and eigenvalue λi for some idempotent Ej, then for any
non-zero vector v ∈ RΩ the inner distribution a of v satisfies:

λ0

k0

a0 + · · ·+ λd
kd

ad ≥ 0,

with equality if and only if Ejv = 0. In that case, the outer distribution B of
v satisfies:

λ0

k0

Bx,0 + · · ·+ λd
kd
Bx,d = 0,

for every x ∈ Ω.

Proof. Since vTEjv ≥ 0 with equality if and only if Ejv = 0, the inequality
follows immediately from Lemma 2.2.6. Working out (χ{x})

TEjv = 0 by use
of Lemma 2.2.2 and applying Bx,i = (χ{x})

TAiv yields the last part.

We define the inner distribution a of a non-empty subset S of Ω as simply the
inner distribution of its characteristic vector, and hence:

ai =
1

|S|
|(S × S) ∩Ri|,∀i ∈ {0, . . . , d}.
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The degree of S is defined as the number of non-zero indices i with ai 6= 0.

In an association scheme with minimal idempotents E0, . . . , Ed, the dual degree
set of a vector v in RΩ is the set of indices j ∈ {1, . . . , d} such that Ejv 6= 0.
The dual degree of S is the cardinality of its dual degree set.

The outer distribution B of a subset S of Ω is simply the outer distribution of
its characteristic vector, and hence:

Bx,i = |{x′ ∈ S|(x, x′) ∈ Ri}|.

Note that for a non-empty subset S, the entries of the inner distribution and
the entries of each row in the outer distribution, must add up to |S|.

Lemma 2.2.8. [23, Section 2.5] Let (Ω, {R0, . . . , Rd}) be a d-class association
scheme with minimal idempotents E0, . . . , Ed and a subset S ⊆ Ω with inner
distribution a. For every x ∈ Ω and i ∈ {0, . . . , d}, the following holds:

Bx,i =
d∑
j=0

(EjχS)xPji.

The row span of B is precisely the space spanned by the rows of P with an
index j such that (aQ)j 6= 0.

If the association scheme is metric, then the width (with respect to the metric
ordering of the relations) of a non-empty subset S with inner distribution a is
defined as max{i|ai 6= 0} (i.e. the maximum distance between elements of S
with respect to the first non-trivial relation). If the scheme is cometric, then
the dual width (with respect to the cometric ordering of the idempotents) of a
non-empty subset is the maximum index in its dual degree set.

Corollary 2.2.9. Suppose S is a non-empty clique of Ri (i > 0) in an asso-
ciation scheme (Ω, {R0, . . . , Rd}), with k and λ the valency and eigenvalue for
some non-trivial idempotent E, respectively. If λ < 0 then:

|S| ≤ 1− k/λ,

and EχS = 0 if and only if λ < 0 and |S| = 1 − k/λ. In that case, the outer
distribution B of S satisfies:

λ0

k0

Bx,0 + · · ·+ λd
kd
Bx,d = 0, ∀x ∈ Ω.
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Proof. The inner distribution a of S satisfies a0 = 1 and ai = |S| − 1, while
all other entries are zero. The result now follows immediately from Theorem
2.2.7.

Two vectors v1 and v2 in RΩ are said to be design-orthogonal if their dual
degree sets are disjoint. Dual degree sets and design-orthogonality of subsets
is again defined by demanding these properties for their characteristic vectors.

Lemma 2.2.10. Consider an association scheme (Ω, {R0, . . . , Rd}).

(i) If v1 and v2 are design-orthogonal vectors, then:

vT1 v2 =
((v1)TχΩ) · ((v2)TχΩ)

|Ω|
.

(ii) If S1 and S2 are design-orthogonal subsets, then:

|S1 ∩ S2| =
|S1| · |S2|
|Ω|

.

Proof.

(i) Let E0, . . . , Ed denote the minimal idempotents. Each vector v ∈ RΩ

can be decomposed orthogonally as v = E0v + · · · + Edv with E0v =
((vTχΩ)/|Ω|)χΩ. Working out (v1)Tv2 = (E0v1)T (E0v2) now yields the
first part.

(ii) This follows from (i) by substituting χS1 and χS2 for v1 and v2, respec-
tively, and by using the identities (χS1)

TχS2 = |S1 ∩ S2| and (χSi)
TχΩ =

|Si| with i = 1, 2.

The previous lemma motivates the following definitions.

Definition 2.2.11. Let (Ω, {R0, . . . , Rd}) be an association scheme, and let T
be a subset of {1, . . . , d}. We say S ⊆ Ω is a T -design if its dual degree set is
disjoint from T , and a T -antidesign if its dual degree set is a subset2 of T .

2Some authors use a slightly different definition of T -antidesigns, and demand that the dual
degree set is exactly T .
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The concepts of T -designs and design-orthogonality were introduced by Del-
sarte [65, 67], and T -antidesigns were introduced by Roos [126]. In cometric
schemes, we will also refer to T -designs and T -antidesigns with T = {1, . . . , t}
as simply t-designs and t-antidesigns, respectively, if the cometric ordering of
the minimal idempotents is clear.

There is also a very general converse of the last lemma. We first need a
technical result.

Lemma 2.2.12. Let (Ω, {R0, . . . , Rd}) be an association scheme with idem-
potents E0, . . . , Ed. Let v1, . . . , vm be (possibly equal) vectors in RΩ and let M
denote the (|Ω| ×m)-matrix with these vectors as columns. If MMT is in the
Bose-Mesner algebra, then the column span of M is the sum of those Im(Ej)
with Ejvk 6= 0 for at least one k ∈ {1, . . . ,m}.

Proof. If MMT is in the Bose-Mesner algebra, we can write it as
∑d

j=0 µjEj.

Now Im(M) = Im(MMT ) is the span of those Im(Ej) with µj 6= 0. We can
now write:

µj = 0⇐⇒ EjMMT = 0⇐⇒ EjM = 0,

and the latter is equivalent to Ejvk = 0 for every k ∈ {1, . . . ,m}.

We now state a result by De Bruyn and Suzuki [57] in a slightly more general
form.

Lemma 2.2.13. Let S1, . . . , Sm, denote (possibly equal) subsets of the same
size X in an association scheme (Ω, {R0, . . . , Rd}). Suppose there are constants
ai such that if (ω1, ω2) ∈ Ri, there are exactly ai indices λ with ω1, ω2 ∈ Sλ. A
subset S intersects every Sλ in the same number of elements if and only if S
is design-orthogonal to every Sλ.

Proof. Let M denote the matrix with the characteristic vector χSi as i-th
column. Note that the assumption implies MMT = a0A0 + · · ·+ adAd.

For a subset S, there will be such a constant size of intersection c if and only
if (

χS −
c

X
χΩ

)T
χSλ = 0, ∀λ ∈ {1, . . . ,m}.

This is equivalent to orthogonality of χS − c
X
χΩ to the span of all χSλ . Hence

it follows from Lemma 2.2.12 that it must be orthogonal to all strata Im(Ej)
with j = 0 or in the dual degree set of any of the Sλ. As the projection of χS
onto 〈χΩ〉 must be given by |S|

|Ω|χΩ, we also see that in that case the constant

c must be |S|X/|Ω|.
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We can say something about the dual degree sets of intersections as well.

Theorem 2.2.14. [106, Theorem 1] Consider an association scheme
(Ω, {R0, . . . , Rd}) with minimal idempotents E0, . . . , Ed. If u ∈ Im(Ei), v ∈
Im(Ej) and qkij = 0, then Ek(u ◦ v) = 0.

Martin [106] observed that the above property has combinatorial applications.

Corollary 2.2.15. Consider an association scheme (Ω, {R0, . . . ,Rd}) with a
fixed cometric ordering. If S is a t-antidesign and S ′ is a t′-antidesign, then
S ∩ S ′ is a (t+ t′)-antidesign.

Proof. First note that the characteristic vector of S ∩ S ′ is given by χS ◦ χS′ .
The cometric property of the ordering implies that qkij = 0 if k > i + j. The
result now follows from Theorem 2.2.14.

2.3 Distance-regular graphs

We have already defined P -polynomial association schemes in Subsection 2.2.3
as those schemes with a certain type of ordering of the relations. The first non-
trivial relation then determines the entire scheme, and the corresponding graph
is known as a distance-regular graph.

2.3.1 Definitions

Definition 2.3.1. A finite connected graph Γ with diameter d is distance-
regular if there are numbers bi and ci, known as the intersection numbers, such
that for any two vertices x and y at distance i in Γ:

|Γi−1(x) ∩ Γ1(y)| = ci, if i ∈ {1, . . . , d},
|Γi+1(x) ∩ Γ1(y)| = bi, if i ∈ {0, . . . , d− 1}.

Note that such a graph is regular with valency k = b0 and that c1 = 1. We
will always use the notation bi and ci as in the above definition. We will also
write ai for |Γi(x) ∩ Γ1(y)|, and it is clear that ai + bi + ci = k for every
i ∈ {1, . . . , d− 1}.

The following theorem explains the link between distance-regular graphs and
metric association schemes (see for instance [23, Section 4.1]).
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Theorem 2.3.2. Let Γ be a connected graph of diameter d with set of vertices
Ω, and let (x, y) be in Ri if and only if d(x, y) = i in Γ. Then Γ is distance-
regular if and only if (Ω, {R0, . . . , Rd}) is an association scheme, and in that
case, the scheme is metric with respect to the ordering R0, . . . , Rd.

For a distance-regular graph Γ, we will refer to (Ω, {R0, . . . , Rd}) as in Theorem
2.3.2 as the association scheme defined by Γ. We will often assume that the
relations of this scheme are ordered in this natural way.

The relations R1 from the Johnson and Hamming schemes as defined in Sub-
section 2.2.1 yield distance-regular graphs. They are known as the Johnson
graphs , denoted by J(v, k), and the Hamming graphs , denoted by H(n, q),
and they define the Johnson and Hamming schemes, respectively (with the
ordering of the relations as given in Subsection 2.2.1).

In a distance-regular graph Γ of diameter d, every vertex x yields an equitable
partition {Γ0(x),Γ1(x), . . . ,Γd(x)}. This allows us to compute the eigenvalues
of Γ in a relatively easy way.

Theorem 2.3.3. [23, Section 4.1B] A distance-regular graph Γ with diameter
d has exactly d+1 distinct eigenvalues, and they are precisely the eigenvalues of
the tridiagonal quotient matrix L of the equitable partition {Γ0(x),Γ1(x), . . . ,
Γd(x)} for any vertex x:

L =


0 b0

c1 a1 b1 O
c2 . .

. . .
O . . bd−1

cd ad

 .

The eigenvectors of Γ are eigenvectors for all distance-i relations.

We say a distance-regular graph is Q-polynomial if it defines a P -polynomial
scheme which is also Q-polynomial.

A graph with diameter d is distance-transitive if for every two ordered pairs
of vertices (ω1, ω2) and (ω′1, ω

′
2) with d(ω1, ω2) = d(ω′1, ω

′
2), there is a graph

automorphism sending the first to the second. All finite distance-transitive
graphs are distance-regular, but the converse is not true (the graph on 16
vertices constructed by Shrikhande [130] is the smallest counterexample in
terms of the number of vertices).
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Definition 2.3.4. A graph Γ on v vertices is strongly regular if there are in-
tegers k, λ, µ with v, k ≥ 1 such that:

(i) every vertex has exactly k neighbours,

(ii) every two adjacent vertices have exactly λ common neighbours,

(iii) every two non-adjacent vertices have exactly µ common neighbours.

We then say Γ is an srg(v, k, λ, µ).

The complement of an srg(v, k, λ, µ) is an

srg(v, v − k − 1, v − 2k + µ− 2, v − 2k + λ).

The parameters of an srg(v, k, λ, µ) satisfy: k(k − λ− 1) = (v − k − 1)µ.

If µ = 0, then an srg(v, k, λ, µ) is a disjoint union of cliques, and if µ = k, then
it is the complement of such a graph. If 0 < µ < k < v − 1, then both the
strongly regular graph Γ and its complement are connected. The connected
non-complete strongly regular graphs (i.e. with k < v − 1 and µ > 0) are
precisely the distance-regular graphs of diameter two.

The graphs J(n, 2) with n ≥ 4, known as triangular graphs and denoted by
T (n), are strongly regular graphs:

srg(n(n− 1)/2, 2(n− 2), n− 2, 4).

Another well known example is the Petersen graph, which is an srg(10, 3, 0, 1)
and can be constructed as the complement of T (5).

We refer to [23, 27] for proofs and more information on strongly regular graphs.

Theorem 2.3.5. If Γ is an srg(v, k, λ, µ) with 0 < µ < k < v − 1, then it has
precisely 3 distinct eigenvalues: k and the roots x1, x2 of this equation in x:

x2 + (µ− λ)x+ (µ− k) = 0,

and the multiplicities are respectively:

1, f =
k(x2 + 1)(k − x2)

(k + x1x2)(x2 − x1)
, g =

k(x1 + 1)(k − x1)

(k + x1x2)(x1 − x2)
.

The absolute bounds must hold:

v ≤ f(f + 3)/2 and v ≤ g(g + 3)/2.



2.3. Distance-regular graphs | 27

Many incidence geometries give rise to strongly regular graphs. For a more
general version of the following result, we refer to [19].

Lemma 2.3.6. [75, Lemma 3.2] The point graph of an SPBIBD (P,B, I) with
parameters (v, b, r, k, λ1, 0) of type (k − 1, α) with 1 ≤ α < k and 1 ≤ λ1 < r
is an srg(v, r(k − 1)/λ1, λ, µ) with

λ = (k − 2) +
(r − λ1)(α− 1)

λ1

,

µ =
rα

λ1

.

The vector space RP decomposes into three eigenspaces:

RP = 〈χP 〉 ⊥ (Im(CT ) ∩ 〈χP 〉⊥) ⊥ ker(C),

with eigenvalues r(k−1)/λ1, k−α−1 and −r/λ1, respectively, where C denotes
the incidence matrix with columns and rows indexed by the points and lines,
respectively.

In particular, it follows that the point graph of a partial geometry pg(s, t, α)
is an srg((s+ 1)(1 + st/α), s(t+ 1), s− 1 + t(α− 1), (t+ 1)α) with eigenvalues
s(t+ 1), s− α and −t− 1.

2.3.2 Codes in distance-regular graphs

A code in a distance-regular graph Γ with set of vertices Ω and of diameter d
is a non-empty subset of vertices. The minimum distance δ(C) of a code C is

min{d(x, y)|x, y ∈ C, x 6= y} if |C| > 1,

and is 2d+ 1 if |C| = 1.

The covering radius of the code is

t(C) = max{d(x,C)|x ∈ Ω}.

Hence the covering radius is the minimal radius e such that every vertex in Γ
is in at least one sphere of radius e around some vertex in C. It can easily be
seen that δ(C) ≤ 2t(C) + 1, and equality occurs if and only if these spheres
partition the vertex set of Γ. In that case, we say C is a perfect e-code.
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We say a code C is s-regular if every entry Bx,i of its outer distribution B
with d(x,C) = l ≤ s only depends on i and l. If C is t(C)-regular, we say it
is completely regular . We say a code C in Γ is completely transitive if there is
an automorphism group of Γ with the sets Ci = {x|d(x,C) = i} as orbits. All
completely transitive codes are completely regular.

Neumaier gave the following equivalent definition of completely regular codes.

Theorem 2.3.7. [110] Let C be a code in a distance-regular graph Γ with cov-
ering radius t(C), and with Ci = {x|d(x,C) = i} for every i ∈ {0, . . . , t(C)}.
Then C is a completely regular code if and only if {C0, . . . , Ct(C)} is an equi-
table partition.

The simplest example of a completely regular code in any distance-regular
graph is a singleton.

In particular, note that the completely regular codes with covering radius 1
are precisely the proper non-empty intriguing sets.

The following lemma will allow us to determine the quotient matrix, given
all possible rows of the outer distribution. For any completely regular code
C with covering radius t(C) and outer distribution B, we define the reduced
outer distribution as the (t(C) + 1) × (d + 1)-matrix B′, with the i-th row of
B′ equal to any row of B for a vertex at distance i from C.

Lemma 2.3.8. Consider a distance-regular graph Γ of diameter d on Ω, and
write L for its tridiagonal matrix from Theorem 2.3.3. Let C be a completely
regular code in Γ with reduced outer distribution B′. If Lt(C) and B′t(C) are the

submatrices of L and B′ consisting of columns 0 up to t(C), respectively, then
the quotient matrix LC of the equitable partition {C0, . . . , Ct(C)} with Ci =
{x|d(x,C) = i} is given by:

LC = B′Lt(C)(B
′
t(C))

−1.

Proof. Since L is the quotient matrix of the equitable partition with respect
to the completely regular code {x} for any vertex x, Theorem 2.1.2 yields:

A1(A0v| . . . |Adv) = (A0v| . . . |Adv)L,

for any v ∈ RΩ, and hence in particular:

A1(A0v| . . . |At(C)v) = (A0v| . . . |Adv)Lt(C).
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The outer distribution B of C is given by:

B = (A0χC | . . . |AdχC) = (χC0| . . . |χCt(C)
)B′.

and in particular:

(A0χC | . . . |At(C)χC) = (χC0 | . . . |χCt(C)
)B′t(C).

Note that B′t(C) is a square upper diagonal matrix with non-zero elements on
the diagonal, and hence invertible. We can now write:

A1(χC0| . . . |χCt(C)
) = A1(A0χC | . . . |At(C)χC)(B′t(C))

−1

= (A0χC | . . . |AdχC)Lt(C)(B
′
t(C))

−1

= (χC0 | . . . |χCt(C)
)B′Lt(C)(B

′
t(C))

−1,

and now it follows from Theorem 2.1.2 that B′Lt(C)(B
′
t(C))

−1 is the desired
quotient matrix.

The following theorem links the dual degree, covering radius and minimum
distance of a code to certain regularity properties.

Theorem 2.3.9. [65, pp. 60-68] Let C be a code in a distance-regular graph
with dual degree r(C).

(i) The rank of the outer distribution B of C is equal to r(C) + 1.

(ii) The bound t(C) ≤ r(C) holds, with equality if C is completely regular.

(iii) If s = δ(C)− r(C) ≥ 0, then C is s-regular.

(iv) If C is s-regular and s ≥ r(C)− 1, and in particular if δ(C) ∈ {2r(C)−
1, 2r(C), 2r(C) + 1}, then C is completely regular.

(v) C is a perfect code if and only if δ(C) = 2r(C) + 1. In that case C is

completely regular, and
∑r(C)

i=0 Pji = 0 holds precisely for those non-zero
indices j in the dual degree set of C.

Remark 2.3.10. Theorem 2.3.9(v) is known as Lloyd’s Theorem (proved in
[103] for a specific case in coding theory), and imposes strong conditions on
the parameters of a distance-regular graph for a perfect code to exist. In
particular, it says that perfect 1-codes cannot exist if −1 is not an eigenvalue
of the distance-regular graph.
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One of the main themes in this thesis is the link between the dual degree set of
a subset and its geometric properties, if the graph is related to some geometric
structure. We now give a useful result on intriguing sets in certain strongly
regular graphs. We already described the eigenspaces of such graphs in Lemma
2.3.6.

Theorem 2.3.11. [75, Corollary 2.3 and Theorem 3.4] Consider an SPBIBD
(P,B, I) with parameters (v, b, r, k, λ1, 0) of type (k− 1, α) with 1 ≤ α < k and
1 ≤ λ1 < r. Let C denote the incidence matrix as in Lemma 2.3.6. Suppose
S is a set of points.

(i) χS can be written as a linear combination of χP and an eigenvector of
k − α− 1 if and only if χS ∈ Im(CT ),

(ii) χS can be written as a linear combination of χP and an eigenvector of
−r/λ1 if and only if χS ∈ 〈χΩ〉 ⊥ ker(C), and if and only if every line
contains the same number of points in S.

Every intriguing set must be of one of these two types, and every two intriguing
sets S1 and S2 of different types intersect in exactly |S1| · |S2|/|P | points.

Note that the previous theorem in particular applies to partial geometries
pg(s, t, α), including the generalized quadrangles of order (s, t).

2.3.3 Distance-regular graphs with classical parameters

Brouwer, Cohen and Neumaier [23] observed that many well-known distance-
regular graphs have parameters that can be expressed in terms of only four
parameters. They introduced the terms classical graphs and classical param-
eters. We will give a construction of a certain type of such graphs in Section
6.7.

Definition 2.3.12. A distance-regular graph Γ with diameter d has classical
parameters (d, b, α, β) if:

bi =

([
d

1

]
b

−
[
i

1

]
b

)(
β − α

[
i

1

]
b

)
,

ci =

[
i

1

]
b

(
1 + α

[
i− 1

1

]
b

)
,
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with
[
i
1

]
b

= bi−1 + · · ·+ 1 if i ≥ 1, and
[

0
1

]
b

= 0.

Remark 2.3.13. One can prove that if Γ has classical parameters (d, b, α, β)
with d ≥ 3, then b is an integer 6= 0,−1 (see [23, Proposition 6.2.1]).

The reader should be warned that it is possible for a distance-regular graph
to have more than one set of classical parameters (see for instance Theorem
4.1.8).

We give two examples of well-known graphs with classical parameters (see [23,
Table 6.1] for many more examples).

(i) The Johnson graph J(n, k) with

(d, b, α, β) = (min(k, n− k), 1, 1,max(k, n− k)).

(ii) The Hamming graph H(n, q) with

(d, b, α, β) = (n, 1, 0, q − 1).

Theorem 2.3.14. [23, Corollary 8.4.2] Every distance-regular graph with clas-
sical parameters (d, b, α, β) is Q-polynomial, and the eigenvalues in the corre-
sponding ordering are given by:[

d− j
1

]
b

(
β − α

[
j

1

]
b

)
−
[
j

1

]
b

, j ∈ {0, . . . , d}.

2.4 Spherical designs and association schemes

We will refer to the set of vectors in Rm with Euclidean norm 1 as the unit
sphere Sm−1.

Spherical designs were introduced by Delsarte, Goethals and Seidel [69], and
are closely linked to association schemes.

Definition 2.4.1. A finite non-empty subset X of Sm−1 with A(X) = {〈x1, x2〉|x1 6=
x2 ∈ X} is an |A(X)|-distance set with angle set A(X).
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Definition 2.4.2. A finite non-empty subset X of Sm−1 is a spherical t-design
if ∫

Sm−1 f(u)du∫
Sm−1 1du

=
1

|X|
∑
x∈X

f(x)

holds for all polynomials f ∈ R[u1, . . . , um] of degree at most t.

See [12] for several equivalent definitions and much more information on spher-
ical t-designs.

Theorem 2.4.3. [69, Theorem 6.6] If X ⊂ Sm−1, m ≥ 2, is an s-distance set
and a spherical t-design, then t ≤ 2s and

|X| ≤
(
m+ s− 1

m− 1

)
+

(
m+ s− 2

m− 1

)
,

and X is a spherical 2s-design if and only if the last bound is attained.

We now explain the link between association schemes and spherical designs.
We first show how to construct an s-distance set with s ≤ d from a d-class
association scheme.

Lemma 2.4.4. Let (Ω, {R0, . . . , Rd}) be an association scheme, with valencies
ki for Ri and corresponding eigenvalue λi for some fixed minimal idempotent
E 6= E0 of rank m. The image X of the map

ω →
√
|Ω|
m
Eχ{ω}

is a set of unit vectors, with inner product λi/ki between the images of ω1 and
ω2 if (ω1, ω2) ∈ Ri.

Proof. Suppose (ω1, ω2) ∈ Ri. Note that (χ{ω1})
TAjχ{ω2} = δij. Lemma 2.2.2

yields:

E =
m

|Ω|

(
λ0

k0

A0 + · · ·+ λd
kd
Ad

)
.

Hence (Eχ{ω1})
T (Eχ{ω2}) = (χ{ω1})

TEχ{ω2} = m
|Ω|

λi
ki

.

We conclude that all column vectors of E have squared length m
|Ω| , and their

inner products are m
|Ω|(λi/ki) if (ω1, ω2) ∈ Ri.
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Remark 2.4.5. Because of Lemma 2.4.4, the ratios λi/ki are often referred
to as the cosines with respect to a minimal idempotent.

Note that if some of the ratios λi/ki are equal, two different relations might
correspond with the same angle between unit vectors. However, all ratios must
be different if E is the first non-trivial idempotent in a cometric ordering.

We say a minimal idempotent is non-degenerate if exactly one of the cosines is
equal to 1. It is precisely in this case that all its column vectors are different.

We already mentioned the Krein conditions qkij ≥ 0 in Subsection 2.2.2. The
following result treats a particular case of equality.

Theorem 2.4.6. [38, Proposition 4.1]Consider a d-class association scheme
(Ω, {R0, . . . , Rd}) with minimal idempotents E0, . . . , Ed, and let X be the set
of normalized column vectors of an idempotent Ej 6= E0 of rank mj, seen
as embedded in Smj−1. Then X is a spherical 2-design, and it is a spherical
3-design if and only if qjjj = 0.

2.5 Permutation groups and modules

Bannai and Ito described “Algebraic Combinatorics” as “group theory without
groups” in the Preface of [13]. Indeed, in most cases the assumption of a group
action with certain properties on the set of objects is unnecessary and would
make results less general. However, many nice association schemes allow such
group actions, and this often makes it easier to understand the relations, the
eigenspaces, and the interplay with other sets of objects. In this section, we
will give a brief introduction to the theory of permutation groups and modules.

2.5.1 Semisimple algebras and modules

We will first introduce some quite general results from algebra. We refer to
[98] and [125] for proofs and more information.

Definition 2.5.1. An algebra over a field F is a ring A with unit element,
such that A is also an F -vector space with

(λx)y = x(λy) = λ(xy),

for every λ ∈ F and x, y ∈ A.
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Definition 2.5.2. An A-module, with A an F -algebra with unit element 1, is a
finite-dimensional vector space V over F with a scalar multiplication A×V →
V : (a, v) → av, such that for every c ∈ F , for every a, a′ ∈ A and for every
v, v′ ∈ V :

(i) a(v + v′) = av + av′,

(ii) (a+ a′)v = av + a′v,

(iii) a′(av) = (a′a)v,

(iv) a(cv) = c(av) = (ca)v,

(v) 1v = v.

A submodule of an A-module V is an A-invariant subspace W of V . A module
is said to be irreducible or simple if it only has itself and its trivial subspace
as submodules.

Definition 2.5.3. An A-module V is semisimple if it can be written as the
direct sum of irreducible submodules.

Definition 2.5.4. An algebra A is semisimple if it is semisimple as a left
A-module over itself.

Theorem 2.5.5. An algebra A is semisimple if and only if every A-module is
semisimple.

If V and W are two A-modules, then the A-homomorphisms from V to W are
the linear maps φ : V → W such that φ(av) = aφ(v) for all a ∈ A, v ∈ V .
The set of all such homomorphisms has the structure of an F -vector space and
is denoted by HomA(V,W ). We say two A-modules V and W are isomorphic
or equivalent if there is a bijection in HomA(V,W ). The A-endomorphisms of
an A-module V are simply the A-homomorphisms from V to itself. This set
HomA(V, V ), denoted by EndA(V ), has the structure of an F -algebra, and is
also known as the centralizer ring of the A-module V .

Lemma 2.5.6. [Schur’s Lemma] If V is an irreducible A-module, then the
endomorphism ring EndA(V ) is a division ring.
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In case A is an F -algebra with F an algebraically closed field, we can say more
about EndA(V ).

Lemma 2.5.7. If V is an irreducible A-module with A an F -algebra and F
an algebraically closed field, then EndA(V ) is the ring of scalar multiplications
by the elements of F on V .

For any A-module V and any irreducible A-module M , the M-homogeneous
part of V is the sum of all irreducible submodules of V that are isomorphic to
M . The homogeneous parts of V are also known as the isotypic components .
For any isomorphism class α of irreducible A-modules, we write V α for the
sum of irreducible submodules in V in that class.

Theorem 2.5.8. Suppose V is a semisimple A-module.

(i) V can be written as the direct sum of its isotypic components.

(ii) Every M-homogeneous part can in turn be written as the direct sum of ir-
reducibles isomorphic to M , and in every such decomposition, the number
of irreducibles is the same.

Note that the decomposition into isotypic components is unique, while the
further decomposition into irreducible submodules need not be.

Theorem 2.5.9. Let V and V ′ denote two semisimple A-modules.

(i) Any f ∈ HomA(V, V ′) will map V α into (V ′)α and induce an element of
HomA(V α, (V ′)α).

(ii) If V decomposes into isotypic components as V α1 ⊕ · · · ⊕ V αn then for
every (f1, . . . , fn) with fi ∈ HomA(V αi , (V ′)αi) there is a unique f ∈
HomA(V, V ′) such that f|V αi = fi,∀i ∈ {1, . . . , n}.

Theorem 2.5.10. Let V be a semisimple A-module, decomposing into isotypic
components as: V α1 ⊕ · · · ⊕V αn. Suppose that for every irreducible in V αi the
endomorphism ring is isomorphic to the division ring Di.

(i) EndA(V ) is also semisimple, and V decomposes as an EndA(V )-module
into the same isotypic components.



36 | Chapter 2. Association schemes

(ii) EndA(V ) ∼= EndA(V α1) × · · · × EndA(V αn) and EndA(V αi) ∼= Mni(Di)
where ni denotes the multiplicity of irreducibles in decompositions of V αi

into irreducibles.

Lemma 2.5.7 in particular applies to the field of complex numbers C. We
are also interested in working over the real numbers, and hence the following
lemma is useful. For any A-module V with A an R-algebra, we mean by
complexification of V the module {v1 + v2i|v1, v2 ∈ V } over {a1 + a2i|a1, a2 ∈
A}, such that (a1 + a2i) · (a′1 + a′2i) = (a1a

′
1 − a2a

′
2) + (a1a

′
2 + a2a

′
1)i and

(a1 + a2i) · (v1 + v2i) = (a1v1 − a2v2) + (a1v2 + a2v1)i.

Lemma 2.5.11. Let A be an R-algebra, and consider an irreducible A-module
V . There are three possibilities.

(i) EndA(V ) ∼= R, and EndA(V ) simply consists of scalar multiplication with
the elements of R, and V remains irreducible after complexification.

(ii) EndA(V ) ∼= C, and V splits into two non-isomorphic irreducible modules
after complexification.

(iii) EndA(V ) ∼= H (i.e. the quaternion algebra), and V splits into two iso-
morphic irreducible modules after complexification.

We say that V has type 1, 0 or −1 in these cases, respectively.

2.5.2 Group representations

A representation of a finite group G is a group morphism ρ from G to GL(V ),
where V is a finite-dimensional vector space over a field F and GL(V ) denotes
the group of invertible linear transformations of V .

The group ring of a finite group G over a field F is a the ring FG of all finite
formal linear combinations

∑
i cigi with gi ∈ G and ci ∈ F , where multiplica-

tion is defined by linear extension of multiplication in G.

Every representation ρ : G → GL(V ) endows V with the structure of an
FG-module, with (∑

i

cigi

)
· v :=

∑
i

ci(ρ(gi)(v)).
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Conversely, every FG-module V yields a representation ρ : G → GL(V ) de-
fined as ρ(g)(v) := g·v. Hence representations of a group are in correspondence
with the modules over its group ring.

Theorem 2.5.12. [Maschke’s Theorem] The group ring FG of a finite group
G is a semisimple algebra if and only if the characteristic of F does not divide
|G|.

The regular module of a finite group G over a field F is the group algebra FG
as a left module over itself.

2.5.3 Permutation groups

We will now discuss the link between group actions and association schemes.
We refer to [36] for proofs.

Let G be a finite permutation group on a finite set Ω. We will denote the
image of ω ∈ Ω under g ∈ G by ωg, and (ωg)h = ω(hg).

The orbits are the classes of the equivalence relation {(ω1, ω2)|∃g ∈ G : ωg1 =
ω2}. We say G acts transitively on Ω if there is only one orbit, namely Ω itself.

The orbitals are the orbits of Ω × Ω under G. An orbital R is self-paired if
(ω1, ω2) ∈ R also implies (ω2, ω1) ∈ R. If all orbitals under a transitive group
action are self-paired, we say G acts generously transitively on Ω. Note that
this is equivalent to the condition that every (ω1, ω2) ∈ Ω × Ω is in the same
orbit under G as (ω2, ω1).

If G acts on Ω with distinct orbitals R0, . . . , Rd and R0 ⊆ {(ω, ω)|ω ∈ Ω},
then (Ω, {R0, . . . , Rd}) is an association scheme if and only if G acts generously
transitively on Ω. The association schemes obtained in this way are said to be
Schurian. We also say that this is the scheme afforded by (the group action
of) the group G.

The permutation module over FG of a permutation group G is the module FΩ,
with g · χ{ω} := χ{ωg},∀ω ∈ Ω. Note that the corresponding representation of
G can be represented by permutation matrices for every group element.

Now suppose G acts on Ω1 and Ω2 and consider the two permutation modules.
With any orbit Ri of G on Ω1×Ω2 we can associate the matrix Ci with columns
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and rows indexed by the elements of Ω1 and Ω2, respectively, such that:

(Ci)ω2,ω1 =

{
1 if (ω1, ω2) ∈ Ri

0 if (ω1, ω2) /∈ Ri
.

These Ci form a basis for HomFG(FΩ1 , FΩ2).

In particular, we can consider the endomorphism ring of a permutation module
FΩ over F . With any orbital Ri ⊆ (Ω × Ω) we can associate the adjacency
matrix Ai over F with rows and columns indexed by Ω, with:

(Ai)ω2,ω1 =

{
1 if (ω1, ω2) ∈ Ri

0 if (ω1, ω2) /∈ Ri
,

and now these Ai form a basis for the centralizer algebra EndFG(FΩ).

We say a permutation module is multiplicity-free as a module over CG if it
decomposes as a direct sum of non-isomorphic irreducible submodules.

Theorem 2.5.13. Let G be a permutation group acting on Ω.

(i) The number of self-paired orbitals is equal to the number of irreducible
submodules of type 1 minus twice the number of those of type −1, counting
both with multiplicity, in the decomposition of RΩ as an RG-module.

(ii) The endomorphism ring of the permutation module (over RG as well as
CG) is commutative if and only if CΩ is multiplicity-free.

(iii) The action is generously transitive if and only if the permutation module
RΩ over RG decomposes into irreducible submodules of type 1, all with
multiplicity one.

Theorem 2.5.14. Suppose G acts generously transitively on Ω with orbitals
R0, . . . , Rd, with R0 = {(ω, ω)|ω ∈ Ω}.

(i) The permutation module RΩ decomposes into d+ 1 irreducible orthogonal
submodules of type 1, and these are the strata of the association scheme
(Ω, {R0, . . . , Rd}).

(ii) The centralizer ring EndRG(RΩ) is the Bose-Mesner algebra of the asso-
ciation scheme, each element of which acts invariantly as scalar multi-
plication on every irreducible.



2.5. Permutation groups and modules | 39

Delsarte [66] developed a general theory of regular semilattices. In this way,
both the relations and idempotents of certain metric and cometric association
schemes can be described by use of other sets of objects. We refer to Stanton
[136] for a discussion of many well-known schemes, including the Johnson and
Hamming schemes. However, we will also use a somewhat different approach
by linking two sets of objects by considering a group acting on both. This
approach was suggested by Ito [99].

Theorem 2.5.15. Suppose G acts generously transitively on X and on X ′,
and consider the decompositions into isotypic components of the permutation
modules RX and RX′:

RX = (V1 ⊥ . . . ⊥ Vn) ⊥ (W1 ⊥ . . . ⊥ Ws)

RX′ = (V ′1 ⊥ . . . ⊥ V ′n) ⊥ (W ′
1 ⊥ . . . ⊥ W ′

t),

where Vi and V ′i are equivalent RG-modules.
For every i, there is an isomorphism (unique up to scalar) pi : Vi → V ′i , ex-
tending to a unique homomorphism HomRG(RX ,RX′) that vanishes on all other
isotypic components. These p1, . . . , pn form a basis for HomRG(RX ,RX′).

Proof. Theorem 2.5.13 and Lemma 2.5.11 yield that every irreducible has an
endomorphism ring consisting of scalar multiplication with elements of R and
appears at most once in each decomposition (up to isomorphism). The struc-
ture of the homomorphism space now follows from Theorem 2.5.9.

For any f ∈ HomRG(RX ,RX′), we write Supp(f) for the irreducible submod-
ules in RX not in the kernel of f (and hence trivially intersecting it).

If G acts generously transitively on both X and X ′, and R ⊆ X × X ′ is an
orbit, then we say S ⊆ X is an R-design if |{x ∈ S|(x, x′) ∈ R}| is constant
for all x′ ∈ X ′. Following Ito, we say S is a combinatorial design if it is an
R-design for every orbit R on X ×X ′. We now state characterizations by Ito.

Theorem 2.5.16. Suppose G acts generously transitively on both X and X ′.
Suppose R is an orbit in X ×X ′, and let fR be the corresponding element of
HomRG(RX ,RX′).

• A subset S ⊆ X is an R-design if and only if χS is orthogonal to every
irreducible submodule in Supp(fR) different from 〈χX〉.
In that case, the constant value for |(S × {x′}) ∩R| must be |R||S|

|X||X′| .
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• A subset S ⊆ X is a combinatorial design if and only if it is orthogonal
to every irreducible in RX with an isomorphic copy in RX′, different from
〈χX〉.

Proof. For any x′ ∈ X ′, we can write:

〈fR(χS), χ{x′}〉 = |(S × {x′}) ∩R|,

〈fR(χX), χ{x′}〉 = |(X × {x′}) ∩R| = |R|
|X ′|

.

Hence |(S × {x′}) ∩ R| assumes a constant value c for every x′ ∈ X ′ if and

only if fR(χS − c|X′|
|R| χX) is orthogonal to every χ{x′}, or thus zero. As fR only

vanishes on the trivial vector in every irreducible in Supp(fR), this is possible

if and only if χS − c|X′|
|R| χX is orthogonal to every irreducible in Supp(f). Since

the projection of χS onto the submodule 〈χX〉 is given by |S|/|X|χX , this also

implies c = |R||S|
|X||X′| .

Finally, S is a combinatorial design if and only if fR(χS) is a scalar multiple
of χX′ for every orbit R, and hence so is f(χS) for any f ∈ HomRG(RX ,RX′).
Theorem 2.5.15 now yields the desired result.

We now mention a useful theorem by Delsarte as a consequence of a more
general theorem.

Theorem 2.5.17. [67, Theorem 6.8]If a group G acts generously transitively
on Ω, then two subsets S and T are such that |S ∩T g| is independent of g ∈ G
if and only if S and T are design-orthogonal in the afforded association scheme
on Ω.

Proof. Since G acts transitively on ordered pairs (ω1, ω2) in the same relation
of the association scheme, this follows from Theorem 2.2.13 by taking Sg =
T g,∀g ∈ G.



Chapter 3

Grassmann schemes

The aim of this chapter is to apply techniques from algebraic combinatorics to
the finite projective geometries PG(n, q). Graph-theoretically, this means that
we will discuss the Grassmann schemes. We will first describe the relations in
these schemes and their eigenspaces. Next, we will discuss some interesting
substructures and obtain rather short proofs for certain properties.

Delsarte [66] applied his theory of semiregular lattices to Grassmann schemes
to characterize certain types of subsets of subspaces, known as designs, in a
way very similar to his results for the Johnson scheme from (classical) design
theory. Another example of a well-known type of subsets of subspaces that
can be considered in this algebraic framework are the line classes introduced
by Cameron and Liebler [40].

3.1 Grassmann schemes

In any vector space V (n, q), we will write Ωa for the set of a-dimensional
subspaces (or simply a-spaces). We refer to the 1- and 2-dimensional subspaces
as points and lines, respectively. We also define the Gaussian coefficient as
follows: [n

a

]
q

=
a∏
i=1

qn+1−i − 1

qi − 1
if 0 ≤ a ≤ n,

and
[
n
a

]
q

= 0 if a < 0 or n < a.

41
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Note that
[
n
a

]
q

=
[

n
n−a

]
q
.

The following results are well known (see for instance [23, Lemma 9.3.2]).

Lemma 3.1.1. Consider V (n, q).

(i) The number of a-spaces in Ωa is given by
[
n
a

]
q
.

(ii) For any πa ∈ Ωa, the number of b-spaces intersecting πa trivially is given
by qab

[
n−a
b

]
q
.

(iii) For any πa ∈ Ωa, the number of b-spaces intersecting πa in an i-space is
given by q(a−i)(b−i) [n−a

b−i

]
q

[
a
i

]
q
.

We will write GL(n, q) for the group of invertible linear transformations of
V (n, q). More generally, a map f : V ×V is semi-linear if f(v1 +v2) = f(v1)+
f(v2),∀v1, v2 ∈ V (n, q) and if there is an automorphism θ such that f(λv) =
λθv,∀λ ∈ GF(q) and ∀v ∈ V (n, q). The group of all such bijective semi-linear
maps is ΓL(n, q). Finally, we also denote GL(n, q)/Sc(n, q) by PGL(n, q) and
ΓL(n, q)/Sc(n, q) by PΓL(n, q), where Sc(n, q) denotes the subgroup of non-
zero scalar linear transformations of V (n, q). We will now consider the action
of GL(n, q) on the sets of subspaces.

Lemma 3.1.2. Two ordered pairs (πa, πb) and (π′a, π
′
b) in Ωa × Ωb are in the

same orbit of GL(n, q) if and only if dim(πa ∩ πb) = dim(π′a ∩ π′b).

Proof. Since dimensions of subspaces are preserved under GL(n, q), the for-
mer certainly implies the latter. On the other hand, if the dimensions are
equal, one easily finds an element g ∈ GL(n, q) mapping (πa, πb) to (π′a, π

′
b) by

constructing appropriate ordered bases and using transitivity of GL(n, q) on
ordered bases.

We define the relation Ri
ab with 0 ≤ i ≤ min(a, b, n− a, n− b) as:

Ri
ab = {(πa, πb) ∈ (Ωa × Ωb)|dim(πa ∩ πb) = min(a, b)− i}.

Note that for two subspaces πa and πb, (πa, πb) ∈ R0
ab if and only if one is

included in the other.

Lemma 3.1.2 in particular yields that GL(n, q) acts generously transitively on
every Ωa. The afforded d-class association scheme (Ωa, {R0

aa, . . . , R
d
aa}) with
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d = min(a, n − a) is called a Grassmann scheme or q-Johnson scheme. The
graph defined by the first non-trivial relation R1

aa is the Grassmann graph, and
is denoted by Jq(n, a). This notation and the second name is motivated by the
similarities with the Johnson graph J(n, a).

Theorem 3.1.3. [23, Lemma 9.4.1] The Grassmann graph Jq(n, k) has diam-
eter d = min(k, n− k) and is distance-transitive. Two vertices are at distance
i if and only they intersect in a subspace of codimension i.
The intersection numbers are given by:

bi = q2i+1

[
k − i

1

]
q

[
n− k − i

1

]
q

,∀i ∈ {0, . . . , d− 1},

ci =

[
i

1

]2

q

,∀i ∈ {1, . . . , d}.

The graph Jq(n, k) has classical parameters (d, q, q,
[
n−d

1

]
q
q).

The Grassmann graph Jq(n, 2), n ≥ 4, can be seen as the point graph of
an SPBIBD satisfying the conditions of Lemma 2.3.6. The “points” of this
SPBIBD are the 2-spaces, its “lines” are the 1-spaces, and incidence is just
symmetrized containment. This is in fact a pg(

[
n−1

1

]
q
− 1, q, q + 1).

3.2 Irreducible submodules and eigenvalues for Grass-
mann schemes

For each Ri
ab ⊆ Ωa × Ωb, we will write Ci

ab for the corresponding matrix, with
columns indexed by the elements of Ωa, and rows indexed by those of Ωb:

(Ci
ab)πb,πa =

{
1 if dim(πa ∩ πb) = min(a, b)− i
0 if dim(πa ∩ πb) 6= min(a, b)− i .

Note that Ci
ab and Ci

ba are mutually transposed matrices.

It follows from Subsection 2.5.3 and Lemma 3.1.2 that the Ci
ab with 0 ≤ i ≤

min(a, b, n− a, n− b) form a basis for HomRG(RΩa ,RΩb), with G = GL(n, q).

We now state a technical result by Kantor.
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Theorem 3.2.1. [101] If min(a, n − a) ≤ min(b, n − b), then the incidence
matrix C0

ab for V (n, q) is injective.

Theorem 3.2.2. Consider V (n, q) and G = GL(n, q). If a ∈ {0, . . . , n}, then
the permutation module RΩa over RG on a-spaces in V (n, q) decomposes into
irreducibles:

RΩa =
min(a,n−a)

©⊥
i=0

V a
i ,

with V a
i and V b

i equivalent RG-modules if 0 ≤ a, b ≤ n.

Proof. Theorem 2.5.14 immediately implies that each permutation module RΩa

decomposes into non-isomorphic irreducibles. We will now proceed by induc-
tion. For a = 0, the result is clear. Now we may assume the result holds up
to a− 1, with 1 ≤ a ≤ n/2. We know from Lemma 3.1.2 that

dim(HomRG(RΩa−1 ,RΩa−1)) = dim(HomRG(RΩa−1 ,RΩa)) = a

and dim(HomRG(RΩa ,RΩa)) = a + 1. If RΩa−1 decomposes into irreducibles

as ©⊥min(a−1)
i=0 V a−1

i , then Theorem 2.5.15 yields that there must be a unique
irreducible submodule in RΩa , not isomorphic to any of the a irreducibles in
RΩa−1 , while all a irreducibles in RΩa−1 have a unique isomorphic copy in RΩa .

Now suppose n/2 ≤ a ≤ n. Lemma 3.1.2 tells us that

dim(HomRG(RΩa ,RΩa)) = dim(HomRG(RΩn−a ,RΩa))

= dim(HomRG(RΩn−a ,RΩn−a))

= (n− a) + 1.

Theorem 2.5.15 here yields that every irreducible in one of the permutation
modules has a unique isomorphic copy in the second.

Corollary 3.2.3. Consider V (n, q). If i ∈ {0, . . . ,min(a, b, n − a, n − b)},
then:

Im(Ci
ab) ⊆

min(a,b,n−a,n−b)
©⊥
j=0

V b
j ,(

min(a,b,n−a,n−b)
©⊥
j=0

V a
j

)⊥
⊆ ker(Ci

ab).

Equality holds for i = 0.
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Proof. First note that Im(Ci
ab) = ker((Ci

ab)
T )⊥ = ker(Ci

ba)
⊥. The inclusions

now follow from Theorem 2.5.15 and Theorem 3.2.2.

Finally, if V a
i ⊆ ker(C0

ab) with 0 ≤ i ≤ min(a, b, n − a, n − b), then also
V b
i ⊆ ker(C0

ab(C
0
ab)

T ) = ker(C0
ba), because of Theorem 2.5.15. One of these

inclusions contradicts Theorem 3.2.1.

As an illustration, we visualize the decomposition for V (6, q) in Figure 3.1.
Each column corresponds with the permutation module on subspaces of V (6, q)
and its entries are the irreducibles in it, and we write isomorphic irreducibles
on the same row.

RΩ0 RΩ1 RΩ2 RΩ3 RΩ4 RΩ5 RΩ6

V 0
0 V 1

0 V 2
0 V 3

0 V 4
0 V 5

0 V 6
0

V 1
1 V 2

1 V 3
1 V 4

1 V 5
1

V 2
2 V 3

2 V 4
2

V 3
3

Figure 3.1: Theorem 3.2.2: The decomposition into irreducibles for V (6, q)

Delsarte [66] described the eigenspaces of the Grassmann schemes using the
theory of regular semilattices and computed the eigenvalues.

Theorem 3.2.4. Consider the Grassmann scheme defined by Jq(n, k) with
d = min(k, n−k). The eigenvalue Pji of the distance-i relation for V k

j is given
by:

i∑
s=0

(−1)i+s
[
d− s
i− s

]
q

[
d− j
s

]
q

[
n− d+ s− j

s

]
q

qsj+(i−s)(i−s−1)/2,

and in particular, the eigenvalue of the Grassmann graph itself for V k
j is:

qj+1

[
k − j

1

]
q

[
n− k − j

1

]
q

−
[
j

1

]
q

.

Remark 3.2.5. Eisfeld [77] computed an alternative expression for Pji:

min(j,k−i)∑
s=max(0,j−i)

(−1)j+s
[
j

s

]
q

[
n− k + s− j
n− k − i

]
q

[
k − s
i

]
q

qi(i+s−j)+(j−s)(j−s−1)/2.
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Remark 3.2.6. We know from Theorem 3.1.3 that the Grassmann graph
Jq(n, k) has classical parameters (d, q, q,

[
n−d

1

]
q
q) with d = min(k, n − k).

The corresponding cometric ordering of the eigenspaces (see Theorem 2.3.14)
corresponds with the ordering V k

0 , . . . , V
k
d from Theorem 3.2.2.

3.3 Codes in Grassmann graphs

We will now consider subsets of subspaces with interesting algebraic properties,
including t-designs and t-antidesigns with respect to the cometric ordering from
Remark 3.2.6.

We first remark that Chihara [44] proved that no non-trivial perfect codes (i.e.
different from a singleton or the full set of vertices) can be found in Jq(n, k)
(see also [107]). However, many completely regular codes are known, including
the Cameron-Liebler line classes (see Subsection 3.3.2).

3.3.1 Designs

Definition 3.3.1. A t − (n, k, λ; q)-design is a set S of k-spaces in V (n, q)
with 0 ≤ t ≤ k ≤ n, such that every t-space is in exactly λ elements of S.

Hence, a design in V (n, q) is a specific type of code in the Grassmann graph
Jq(n, k). The characterizations and applications in this subsection were ob-
tained by Delsarte [66].

Theorem 3.3.2. A set S of k-spaces in V (n, q) is a t− (n, k, λ; q)-design for
some λ if and only if χS ∈ (V k

j )⊥ for every j with 1 ≤ j ≤ min(t, n−t, k, n−k).
In this case,

|S| = λ

[
n
k

]
q[

n−t
k−t

]
q

.

In particular, if min(k, n − k) ≤ min(t, n − t), then the only t − (n, k, λ; q)-
designs are the empty set and the full set of k-spaces Ωk.

Proof. Corollary 3.2.3 yields that Supp(C0
kt) consists of the V k

j with 0 ≤ j ≤
min(k, t, n−k, n−t). Every t-space in V (n, q) is contained in exactly

[
n−t
k−t

]
q
k-

spaces because of Lemma 3.1.1 (iii), and thus |R0
tk|/|Ωt| =

[
n−t
k−t

]
q
. The desired

result now follows from Theorem 2.5.16.
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We can also obtain a very similar restriction to the one from Theorem 3.3.2.

Corollary 3.3.3. If S is a set of k-spaces in V (n, q) such that every t-space
contains exactly λ elements of S, with 0 ≤ k ≤ t ≤ n − k, then S is either
empty or the full set of k-spaces.

Proof. Dualization (i.e. for instance by mapping every U ∈ S onto U⊥ with
respect to a fixed non-degenerate symmetric form on V (n, q)) yields an (n −
t)− (n, n− k, λ; q)-design, which must be trivial because of Theorem 3.3.2.

We can now derive some more properties of designs in Jq(n, k), all of which
are q-analogs of properties of classical designs (see for instance [171]).

Theorem 3.3.4. Let S be a t − (n, k, λ; q)-design in V (n, q), with 0 ≤ t ≤
k ≤ n. If 0 ≤ t′ ≤ t, then S is also a t′ − (n, k, λ′; q)-design, with:

λ′ = λ

[
n−t′
k−t′

]
q[

n−t
k−t

]
q

.

Proof. The condition for t-designs from Theorem 3.3.2 implies the condition

for t′-designs. Since |R0
tk| = |Ωt|

[
n−t
k−t

]
q

and |R0
t′k| = |Ωt′ |

[
n−t′
k−t′

]
q

by Lemma

3.1.1(iii), the desired numbers follow from Theorem 2.5.16.

Theorem 3.3.5. A set of k-spaces S in V (n, q) is a t− (n, k, λ; q)-design with
t ≤ k ≤ n− t for some λ if and only if every (n− t)-space contains exactly λ′

elements of S for some constant λ′. In that case: λ′ = λ
[n−tk ]

q

[n−tk−t ]q
.

Proof. Corollary 3.2.3 yields that Supp(C0
kt) = Supp(C0

k,n−t). The desired

result now follows from Theorem 2.5.16 and by considering |R0
tk| = |Ωt|

[
n−t
k−t

]
q

and |R0
n−t,k| = |Ωn−t|

[
n−t
k

]
q

with |Ωt| = |Ωn−t|.

Lemma 3.3.6. Consider (πa, πb) ∈ Ωa × Ωb in V (n, q) with πa ⊆ πb. If T is
the set of vertices π in Jq(n, k) with πa ⊆ π ⊆ πb, 0 ≤ a ≤ k ≤ b ≤ n, then χT
is orthogonal to every V k

j ⊆ RΩk with j > a+ (n− b).

Proof. If we let Ta and Tb denote the set of k-spaces incident with πa and πb,
respectively, then we can write:

χTa = C0
akχ{πa} and χTb = C0

bkχ{πb}.



48 | Chapter 3. Grassmann schemes

Corollary 3.2.3 yields that χTa ∈ (V k
0 ⊥ . . . ⊥ V k

min(a,n−a,k,n−k)) and that χTb ∈
(V k

0 ⊥ . . . ⊥ V k
min(b,n−b,k,n−k)). Note that min(a, n − a) + min(b, n − b) ≤

a + (n − b). Since T = Ta ∩ Tb, the desired result follows from Corollary
2.2.15.

Theorem 3.3.7. Let S be a t − (n, k, λ; q)-design in Jq(n, k). If πa and πb
are incident a- and b-spaces, respectively, with 0 ≤ a ≤ k ≤ b ≤ n and
a+ (n− b) ≤ t ≤ k, then the number of elements of S through πa and in πb is
given by:

λ

[
b−a
k−a

]
q[

n−t
k−t

]
q

.

Proof. Let T denote the set of all k-spaces incident with both πa and πb.
Lemma 3.3.6 yields that χT ∈ (V k

j )⊥ if j > min(a+(n− b), k, n−k). Theorem

3.3.2 yields that χS ∈ (V k
1 ⊥ . . . ⊥ V k

min(t,n−k))
⊥, and gives us |S|. Lemma

2.2.10 now yields:

|S ∩ T | = |S||T |
|Ωk|

=
(λ
[
n
k

]
q
/
[
n−t
k−t

]
q
)
[
b−a
k−a

]
q[

n
k

]
q

= λ

[
b−a
k−a

]
q[

n−t
k−t

]
q

.

Theorem 3.3.8. If S is a t − (n, k, λ; q)-design in Jq(n, k), then for every
t-space πt, the number of elements of S intersecting πt in a (t− i)-space with
0 ≤ i ≤ t is given by:

λ′ = λ
qi(k−t+i)

[
n−t
k−t+i

]
q

[
t
i

]
q[

n−t
k−t

]
q

.

Proof. Theorem 3.3.2 yields that S is also a combinatorial design with respect
to Ωk. Lemma 3.1.1(iii) yields that:

|R0
tk| = |Ωt|

[
n− t
k − t

]
q

,

|Ri
tk| = |Ωt|qi(k−t+i)

[
n− t

k − t+ i

]
q

[
t

i

]
q

,

and hence the ratio between λ and the desired constant λ′ can be computed
using the formula from Theorem 2.5.16.
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Many constructions for 1-designs are known. In particular, a 1 − (n, k, 1; q)-
design is known as a spread of k-spaces : every point is in exactly one of its
elements. Hence they consist of (qn−1)/(qk−1) trivially intersecting k-spaces.
They exist if and only if k divides n (see for instance [128]).

Lemma 3.3.9. If S is a spread of k-spaces in V (n, q), 0 < k < n, then χS is
orthogonal to V k

j if and only if j = 1.

Proof. Since S is a 1 − (n, k, 1; q)-design, we know χS ∈ (V k
1 )⊥ because of

Theorem 3.3.2, and that n ≥ 2k. Note that S is a clique of the k-distance
relation in the Grassmann scheme. If λk and kk denote the eigenvalue for Vj
and the valency of the k-distance relation, respectively, then it follows from
Corollary 2.2.9 that χS ∈ (V k

j )⊥ if and only if 1 + λk/kk(|S| − 1) = 0. We
know from Remark 3.2.5 that the eigenvalue of the k-distance relation for the
subspace V k

j is given by:

(−1)j
[
n− k − j
n− 2k

]
q

qk(k−j)+j(j−1)/2.

Dividing the absolute value of this eigenvalue for j by the one for j + 1 yields:
qk−j(qn−k−j−1)/(qk−j−1) > 1 for every j ∈ {0, . . . , k−1}, and hence all these
eigenvalues are distinct. This implies that χS is only orthogonal to (V k

1 )⊥.

The following result already appeared in [76, Theorem 7], except for n = 2k ≥
8.

Corollary 3.3.10. Let S be any spread of k-spaces in V (n, q). A set of k-
spaces T is such that |S ∩ T g| is independent of g ∈ GL(n, q) if and only if
χT ∈ (V k

0 ⊥ V k
1 ).

Proof. Note that the group GL(n, q) affords the Grassmann scheme because of
Lemma 3.1.2. The result now follows immediately from Theorem 2.5.17 and
Lemma 3.3.9.

Known results

Non-trivial t-designs in Jq(n, k) (i.e. different from the empty or full set
of k-spaces) with t ≥ 2 are quite hard to find. Thomas [154] constructed
2 − (n, 3, 7; 2)-designs for all n ≥ 7 with n coprime to 6. Suzuki [137, 138]
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generalized this by constructing 2 − (n, 3, q2 + q + 1; q)-designs for all prime
powers q, with the same restrictions on n. Moreover, a 3− (8, 4, 11; 2)-design
was found in [18].

No t−(n, k, 1; q)-designs with 2 ≤ t < k < n are known to exist. The existence
of a 2 − (7, 3, 1; q)-design in Jq(7, 3), even for q = 2, is still an open problem
(see [79]).

3.3.2 Subsets in Jq(n, 2)

For n ≥ 4, the Grassmann graph Jq(n, 2) is a strongly regular graph that
can be seen as the point graph of a partial geometry pg(

[
n−1

1

]
q
− 1, q, q + 1),

as explained at the end of Section 3.1. As observed by Eisfeld (see Theorem
2.3.6), the structure of the eigenspaces already follows from this setting. It
follows from Theorem 2.3.11 that the intriguing sets S of lines in Jq(n, 2) are
precisely those with a characteristic vector orthogonal to (at least) one of the
non-trivial eigenspaces, and then at least one of the following must hold

(i) χS is in the image of the incidence matrix C1,2: V 2
0 ⊥ V 2

1 ,

(ii) χS minus a scalar multiple of the all-one vector, is in the kernel of the
incidence matrix C2,1: V 2

2 , and this holds if and only if every 1-space is
in the same number of elements in S, i.e. S is a 1− (n, 2, λ; q)-design.

The intriguing sets of the first type in Jq(4, 2) are known as Cameron-Liebler
line-classes . Cameron and Liebler [40] introduced this concept under the name
special line classes when studying the actions of permutation groups on sub-
spaces of V (n, q). Note that Corollary 3.3.10 implies that they are also pre-
cisely the sets of 2-spaces in V (4, q), intersecting every spread of 2-spaces in
the same number of elements.

In order to explain their motivation, we need the following lemma, which is
essentially part of Block’s Lemma [14] (see also [70, p.21]).

Lemma 3.3.11. Let G be a group acting on two finite sets X and X ′ with
orbits O1, . . . , Om in X and orbits O′1, . . . , O

′
m′ in X ′. Suppose R ⊆ X ×X ′ is

a G-invariant relation with corresponding (|X| × |X ′|)-matrix A.

(i) The images AχOi are linear combinations of the vectors χO′j .



3.3. Codes in Grassmann graphs | 51

(ii) If A has a trivial kernel, then m ≤ m′, and if m = m′, then all charac-
teristic vectors χO′j are linear combinations of the vectors AχOi.

Proof. If x′ ∈ Ω′ then (AχOi)x′ = |{x|x ∈ Oi, (x, x
′) ∈ R}|, and hence this

number only depends on the orbit O′j that x′ is in. This implies that AχOi is
a linear combination of the m′ linearly independent vectors χO′j .

Now suppose A has a trivial kernel. As the subsets O1, . . . , Om partition the
set X, the corresponding m characteristic vectors are linearly independent,
and hence in this case the images AχOi of these vectors must also be linearly
independent. This implies that m 6 m′. If m = m′, then the space spanned
by {AχO1 , . . . , AχOm} is the same as the space spanned by {χO′1 , . . . , χO′m′}.

An immediate consequence is the following.

Theorem 3.3.12. [40, Propositions 3.1 and 3.2] Any subgroup of PΓL(4, q)
has at least as many orbits on lines as on points, and in case of equality all
orbits on lines are Cameron-Liebler line classes in PG(3, q).

Corollary 3.2.3 yields that the incidence matrices C1,2 and Cn−1,2 have the same
image. One now easily verifies that the following are examples of Cameron-
Liebler line classes in V (4, q): the empty set of lines, the full set of lines, all lines
through a fixed point p, all lines in a fixed 3-space π, all lines through a point p
or in a 3-space π with p not in π, and the complements of such sets. Cameron
and Liebler conjectured that these are the only possibilities. However, Drudge
[74] gave a counterexample for q = 3, which was then generalized for all odd
q by Bruen and Drudge [29]. A counterexample for q = 4 was also found by
Govaerts and Penttila [85].

Finally, we remark that Bamberg and Penttila [11] proved that if a subgroup of
PΓL(n, q), n ≥ 4, is irreducible (i.e. not stabilizing any k-space with 0 < k <
n) and has equally many orbits on points as on lines, then it acts transitively
on both.

We will use similar ideas to construct interesting subsets in the following sub-
section.
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3.3.3 Embeddings of other geometries

We will first consider the embedding of the symplectic space W (2n − 1, q) in
PG(2n − 1, q) (see Subsection 1.3.2). Consider a non-degenerate alternating
form f on a vector space V (2n, q). The set Sk of totally isotropic k-spaces

in V (2n, q) with respect to f has size:
[
n
k

]
q

∏k
i=1(qn−i+1 + 1) if 1 ≤ k ≤ n

(see for instance [23, Lemma 9.4.1] or Theorem 4.1.1). We will consider the
corresponding group of isometries:

Sp(2n, q) = {g ∈ GL(2n, q)|f(ug, vg) = f(u, v),∀u, v ∈ V (2n, q)}.

If 0 ≤ k ≤ n, then the possible ranks of the restriction of f to k-spaces are the
even numbers 2i with 0 ≤ 2i ≤ k.

Theorem 3.3.13. Let f be a non-degenerate alternating form on a vector
space V (2n, q). The set S of totally isotropic k-spaces with 1 ≤ k ≤ n is a
completely transitive code in Jq(2n, k) and its dual degree consists of the even
indices in {1, . . . , k}.

Proof. All totally isotropic k-spaces are contained in the same number of to-
tally isotropic n-spaces, while the other k-spaces are contained in no element
of Sn. Hence we can write χSk as C0

n,kχSn up to a non-zero scalar, for every

k ∈ {0, . . . , n}. Corollary 3.2.3 now yields that χSk ∈ (V k
i )⊥ if and only if

χSn ∈ (V n
i )⊥, for every i ∈ {0, . . . , k}.

Let Ski be the set of k-spaces with 0 ≤ k ≤ n, such that the restriction of f to
it has rank 2i. A k-space π is at distance i from Sk in the Grassmann graph
Jq(2n, k) if and only if the Witt index of the restriction of f to π is k − i,
and hence if and only if this restriction has rank 2i. Hence, it follows from
Theorem 1.3.1 that Sp(2n, q) has the sets Ski with 0 ≤ 2i ≤ k as orbits, and
so Sk is a completely transitive code with covering radius bk/2c.

Now consider any odd i with 1 ≤ i ≤ n. We know from the above that Sp(2n, q)
has (i+1)/2 orbits on (i−1)-spaces and on i-spaces. Lemma 3.3.11 now yields
that χSi0 , . . . , χSi(i−1)/2

are linear combinations of the images C0
i−1,i(χSi−1

0
), . . . ,

C0
i−1,i(χSi−1

(i−1)/2
). Hence χSi ∈ Im(C0

i−1,i) = (V i
i )⊥ by Corollary 3.2.3. Hence

we can conclude that χSk ∈ (V k
i )⊥ for any odd i if 1 ≤ k ≤ n. On the other

hand, all even indices must be in the dual degree set, as the dual degree is the
covering radius bk/2c by Theorem 2.3.9(iii).
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Corollary 3.3.14. For any non-degenerate alternating form on V (2n, q), the
number of totally isotropic subspaces in any t − (2n, t + 1, λ; q)-design with
0 ≤ t ≤ n− 1 and t even, is given by:

λ[
2n−t

1

]
q

t∏
i=0

(
q2(n−i) − 1

qi+1 − 1

)
.

Proof. Let T denote the design, which has size λ
[

2n
t+1

]
q
/
[

2n−t
1

]
q

by Theorem

3.3.2. On the other hand, the set of totally isotropic (t+ 1)-spaces S has size:[
n
t+1

]
q

∏t+1
i=1(qn−i+1 + 1). It follows from Theorems 3.3.2 and 3.3.13 that S and

T are design-orthogonal subsets in Jq(2n, t+ 1), and hence we can use Lemma
2.2.10 to compute |S ∩ T |:

|S||T |
|Ωt+1|

=

([
n
t+1

]
q

∏t+1
i=1(qn−i+1 + 1)

)(
λ
[

2n
t+1

]
q
/
[

2n−t
1

]
q

)
[

2n
t+1

]
q

=
λ[

2n−t
1

]
q

t∏
i=0

(
q2(n−i) − 1

qi+1 − 1

)
.

Applying the last corollary to one of the 2 − (6, 3, 3; 2)-designs from [18], we
see that exactly 27 of its 279 planes are totally isotropic with respect to any
non-degenerate alternating form.

Now consider V (4n + 2, q), n ≥ 1, equipped with a non-degenerate quadratic
form Q of elliptic type (hence with Witt index 2n). We will consider the action
of the group GO−(4n+ 2, q), defined as:

{g ∈ GL(4n+ 2, q)|∃λ ∈ Fq : (Q(vg) = λQ(v),∀v ∈ V (4n+ 2, q))}.

Two m-dimensional subspaces are in the same orbit of GO−(4n + 2, q) if and
only if the restriction of Q onto them are of the same type (see for instance
[94, Theorem 22.6.6]).

Theorem 3.3.15. All orbits of GO−(4n+ 2, q) on Ω2n+1 in V (4n+ 2, q) have
characteristic vectors orthogonal to V 2n+1

2n+1 .

Proof. Computation of the number of possible types of restriction of Q to both
(2n)- and (2n + 1)-spaces can be done immediately by simply applying [94,
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Theorem 22.8.3 (Corollary 1)]. One finds that the group GO−(4n + 2, q) has
3n + 1 orbits on (2n)-spaces, as well as on (2n + 1)-spaces. Lemma 3.3.11
now implies that the characteristic vectors of the orbits of GO−(4n+ 2, q) on
(2n+1)-spaces are all in the image of C0

2n,2n+1, and hence orthogonal to V 2n+1
2n+1 ,

because of Corollary 3.2.3.

Corollary 3.3.16. Let S be a 2n−(4n+2, 2n+1, λ; q)-design in V (4n+2, q),
and let Q be a non-degenerate quadratic form with Witt index 2n. Let Oα ⊆
Ω2n+1 denote the set of (2n+ 1)-spaces on which Q has a restriction of type α.
Then:

|S ∩Oα| =
λ[

2n+2
1

]
q

|Oα|.

Proof. We know from Theorems 3.3.2 and 3.3.15 that S is design-orthogonal
to any Oα, and that its size is given by λ|Ω2n+1|/

[
2n+2

1

]
q
. Lemma 2.2.10 now

yields the desired result.

The numbers |Oi| can be computed using for instance [94, Theorem 22.8.2].
We can now apply Corollary 3.3.16 to any 2 − (6, 3, 3; 2)-design S, such as
those constructed in [18]. Table 3.1 gives the four possible types of restrictions
of the quadratic form to 3-spaces (or planes), together with the full number of
such planes in J2(6, 3), as well as their number in S.

dim. singular subspace type J2(6, 3) S

0 parabolic 720 144

1 hyperbolic 270 54

1 elliptic 270 54

2 parabolic 135 27

Table 3.1: Corollary 3.3.16: Elliptic quadrics and 2− (6, 3, 3; 2)-designs



Chapter 4

Classical finite polar spaces

We will now consider the association schemes on the totally isotropic subspaces
of a fixed dimension in a classical finite polar space. These schemes and the
decompositions of the Bose-Mesner algebra were studied by Stanton [135].

Eisfeld [77] described a general method for an inductive computation of all
eigenvalues in these association schemes. We will use similar techniques to
compute explicit expressions for some specific eigenvalues instead.

We will then consider subsets in these association schemes with low dual de-
gree. This will allow us to obtain bounds and information on the interac-
tion between different substructures. In many cases, these results are already
known but our techniques often shed a new light on the situation. Previous
work on substructures in polar spaces by use of algebraic techniques was done
by Stanton [135, 136], Eisfeld [75, 77], Drudge [73] and Bamberg, Kelly, Law
and Penttila [9, 10].

One of the main new results in this chapter is a tight upper bound for partial
spreads in the polar space H(2d − 1, q2) with d odd, which was published in
Electronic Journal of Combinatorics [165].

55
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4.1 The association schemes from classical finite polar
spaces

We already introduced the different types of classical finite polar spaces in
Subsection 1.3.2. Here, the points and lines are the totally isotropic 1- and
2-spaces, respectively. We will say a classical finite polar space of rank d has
parameters (q, qe) if each line is incident with q + 1 points, and each (d − 1)-
space is incident with qe+1 generators or d-spaces. Theorem 1.3.1 implies that
each classical finite polar space must have such parameters. Table 4.1 gives
these parameters for all possible types of classical finite polar spaces with rank
d. The notation in the first column is based on the embedding in a projective
space, the notation in the second column is the one related to Chevalley groups
(see for instance [43]). In the context of polar spaces, we will always denote
the set of totally isotropic n-spaces by Ωn for any n ∈ {0, . . . , d}.

(s, t) e

Q+(2d− 1, q) Dd(q) (q, 1) 0

H(2d− 1, q2) 2A2d−1(q) (q2, q) 1/2

Q(2d, q) Bd(q) (q, q) 1

W (2d− 1, q) Cd(q) (q, q) 1

H(2d, q2) 2A2d(q) (q2, q3) 3/2

Q−(2d+ 1, q) 2Dd+1(q) (q, q2) 2

Table 4.1: The classical finite polar spaces with parameters (s, t) = (s, se)

Theorem 4.1.1. [23, Lemma 9.4.1] In a classical finite polar space of rank d
with parameters (q, qe), the number of n-spaces is given by:[

d

n

]
q

n∏
i=1

(qd+e−i + 1).

Remark 4.1.2. The previous theorem allows computation of the number of
b-spaces through a fixed a-space with a < b ≤ d. This is the number of (b−a)-
spaces in the residual polar space, which is isomorphic to a polar space of the
same type and with the same two parameters but of rank d− a.

We will write G for the full automorphism group of the classical finite polar
space in this chapter.
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A fundamental difference with the projective geometries PG(n, q) is that the
orbit under G of an ordered pair in Ωa × Ωb depends on dim(πa ∩ πb), as well
as on the Witt index of 〈πa, πb〉. In that span, the unique subspace of that
dimension through πa is given by 〈πa, πb∩π⊥a 〉. Obviously every automorphism
of the polar space needs to preserve these two dimensions. The following
theorem yields that these two dimensions indeed determine the orbit on ordered
pairs.

Theorem 4.1.3. [135, Proposition 4.9] In a classical finite polar space, the
orbits of the full automorphism group on Ωa × Ωb are given by:

Rs,k
a,b := {(πa, πb)|dim(πa ∩ πb) = s, dim(〈πa, πb ∩ π⊥a 〉) = k},

with 0 ≤ s ≤ min(a, b) and max(a, b) ≤ k ≤ min(d, a+ b− s).

Theorem 4.1.4. [23, Lemma 9.4.2] For any a-space πa in a classical finite po-
lar space of rank d with parameters (q, qe), the number of b-spaces πb intersect-

ing πa in an s-space and with Witt index k for 〈πa, πb〉, i.e. with (πa, πb) ∈ Rs,k
a,b,

is given by:
q(a−s)(k−a)+(a+b−s−k)(a−b−s−3k+4d+2e−1)/2×[a
s

]
q

[
a− s
k − b

]
q

[
d− a
k − a

]
q

k−a−1∏
i=0

(qd−a−i+e−1 + 1).

Figures 4.1 and 4.2 visualize the possible orbits of G on Ωa×Ωb, by giving all
possible parameters (s, k) for the relations Rs,k

a,b .

(0, a+ b)

IIIIIIIIII

...
. . .

FFFFFFFFF

(0, b) · · · · · · (a, b)

Figure 4.1: Theorem 4.1.3: (s, k) with Rs,ka,b ⊆ Ωa × Ωb if a ≤ b and a + b ≤ d
(triangular case)
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(0, d) · · · (a+ b− d, d)

KKKKKKKKKKK

...
...

...
. . .

CC
CC

CC
CC

(0, b) · · · · · · · · · (a, b)

Figure 4.2: Theorem 4.1.3: (s, k) with Rs,ka,b ⊆ Ωa × Ωb if a ≤ b and a + b ≥ d
(trapezoidal case)

Theorem 4.1.3 in particular yields that the full automorphism group G of the
polar space acts generously transitively on Ωa and hence affords an association
scheme. The number of relations in this scheme is given by (a + 1)(a + 2)/2
if 2a ≤ d (the triangular case) and (d − a + 1)(3a − d + 2)/2 if 2a ≥ d (the
trapezoidal case).

If (πa, πb) ∈ Rmin(a,b),max(a,b)
a,b then πa and πb are incident (if a 6= b) or equal (if

a = b). We simply write Ra,b for this relation.

When (πa, πb) is in the orbit R
0,max(a,b)
a,b , represented in the lower left corner in

Figures 4.1 and 4.2, we say that πa and πb are far away . Note that this is the
case if and only if πa and πb do no contain any common point, and no point
on the subspace of the smallest dimension is collinear with all points in the
other.

The relation R
a−1,min(a+1,d)
a,a yields the graph of Lie type on the a-spaces. In

this graph on Ωa, two elements are adjacent if they intersect a subspace of
codimension one and have a totally isotropic span unless they are generators.
For a = 1 and a = d, these graphs are also known under specific names.

Definition 4.1.5. Consider a classical finite polar space P of rank d.

(i) The polar graph on P is the graph of Lie type on isotropic 1-spaces (with
two vertices adjacent if they span a totally isotropic 2-space).

(ii) The dual polar graph on P is the graph of Lie type on totally isotropic
d-spaces (with two vertices adjacent if they intersect in a (d− 1)-space).
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The following theorem illustrates the importance of these two graphs.

Theorem 4.1.6. [23, pp. 334-336] In a classical finite polar space of rank d,
the graph of Lie type on a-spaces, a ∈ {1, . . . , d}, is distance-regular if and
only if a = 1 or a = d. It is also distance-transitive in these cases.

The polar graph of a classical finite polar space of rank d ≥ 2 with parameters
(q, qe) can be seen as the point graph of an SPBIBD satisfying the conditions
of Lemma 2.3.6. The “points” of this SPBIBD are the isotropic 1-spaces of
the polar space, while its “lines” are the maximal totally isotropic subspaces,
and incidence is just symmetrized strict inclusion. This is an SPBIBD with
parameters (v, b, r, k, λ1, 0) of type (k − 1, α), with k = (qd − 1)/(q − 1), r =∏d−1

i=1 (qi+e−1 + 1), λ1 =
∏d−2

i=1 (qi+e−1 + 1) and α = (qd−1 − 1)/(q − 1).

Theorem 4.1.7. [23, Theorem 9.4.3] The dual polar graph Γ on a classical
finite polar space of rank d with parameters (q, qe) is distance-regular with
classical parameters (d, q, 0, qe). The intersection numbers are given by:

bi = qi+e
[
d− i

1

]
q

,∀i ∈ {0, . . . , d− 1}; ci =

[
i

1

]
q

,∀i ∈ {1, . . . , d}.

Two vertices are at distance i if they intersect in a subspace of codimension i,
and the valency of the distance-i relation is given by

[
d
i

]
q
qi(i−1)/2qie.

Note that the above implies that the dual polar graph on a classical finite polar
space of rank d defines the d-class association scheme on generators.

The dual polar graph on H(2d − 1, q2) is very special, and this will be a
recurring theme in this thesis. We give one of its exceptional properties.

Theorem 4.1.8. [23, Section 6.2]The dual polar graph on H(2d − 1, q2) has
classical parameters (d, b, α, β) = (d, q2, 0, q), as well as:

(d, b, α, β) =

(
d,−q,−q(q + 1)

q − 1
,−q((−q)

d + 1)

q − 1

)
.

When two subspaces in Ωa are far away, we also say they are opposite. Note
that for generators, the oppositeness relation R0,d

d,d corresponds with the maxi-
mum distance relation with respect to the dual polar graph of diameter d.

The following notation is based on the one used in [77]. The numbers are
well-defined because of Theorem 4.1.3.
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Definition 4.1.9. Consider a classical finite polar space of rank d.

(i) For any a-space πa, we let αd,a,c,l denote the number of c-spaces πc with
(πa, πc) ∈ R0,l

a,c.

(ii) If (πa, πb) ∈ Rs,k
a,b, we let αd,(a,b),(s,k),c,(t,l) denote the number of c-spaces πc

through πb with (πa, πc) ∈ Rt,l
a,c.

(iii) If (πa, πb) ∈ Rs,k
a,b, we let γ(a,b),(s,k),c,(t,l) denote the number of c-spaces πc

in πb with (πa, πc) ∈ Rt,l
a,c.

For proofs of the following technical results, we refer to Theorem 4.1.4, [77,
Theorem 3.6(d)] and [135, Proposition 6.5], respectively.

Lemma 4.1.10. Consider a classical finite polar space of rank d with param-
eters (q, qe).

(i) αd,a,c,l =

qa(l−a)+(a+c−l)(a−c−3l+4d+2e−1)/2

[
a

l − c

]
q

[
d− a
l − a

]
q

l−a−1∏
i=0

(qd−a−i+e−1 + 1),

(ii) αd,(a,b),(s,k),c,(t,l) =[
k − b
t− s

]
q

αd−b+s−t,k−b+s−t,c−b+s−t,l−b+s−t,

(iii) γ(a,b),(s,k),c,(t,l) =[s
t

]
q

[
k − a
l − a

]
q

[
a+ b− s− k
a+ c− t− l

]
q

q(s−t)(l−a)+(s+k−l−t)(a+c−l−t).

4.2 Irreducible submodules for polar spaces

For each relation Rs,k
a,b , we will denote the corresponding (0, 1)-matrix, with

columns and rows indexed by Ωa and Ωb, respectively, by Cs,k
a,b . Theorem 4.1.3
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yields that the relations Rs,k
a,b are the orbits of G on Ωa × Ωb. We know from

Subsection 2.5.3 that these Cs,k
a,b form a basis for HomRG(RΩa ,RΩb). Note that

if 0 ≤ a ≤ b ≤ d, then dim(HomRG(RΩa ,RΩb)) is given by (a + 1)(a + 2)/2 if
a+ b ≤ d (the triangular case), and by (2a+ b−d+ 2)(d− b+ 1)/2 if a+ b ≥ d
(the trapezoidal case). For the incidence relation, we will also write Ca,b for

the corresponding matrix C
min(a,b),max(a,b)
a,b . If there is no non-empty relation

Rs,k
a,b in (Ωa × Ωb), then we will agree that Cs,k

a,b = 0.

Stanton described the decomposition of RΩn into irreducible G-modules.

Theorem 4.2.1. [135, Theorem 6.23]Consider a classical finite polar space of
rank d. Under the action of G, every module RΩn, 0 ≤ n ≤ d, has a unique
decomposition into irreducibles, which is multiplicity-free and orthogonal, and
given by:

RΩn = ©⊥
0≤r≤n

0≤i≤min(r,d−n)

V n
r,i,

where submodules V a
r,i ⊆ RΩa and V b

r,i ⊆ RΩb are isomorphic.

We now consider the vector space V = RΩ0 ⊥ . . . ⊥ RΩd for any classical finite
polar space of rank d. Each Cs,k

a,b induces an endomorphism on V , vanishing on

every component different from RΩa and mapping into RΩb , that we will denote
by C̃s,k

a,b . The algebra of endomorphisms on V generated by all incidence maps

C̃a,b is the incidence algebra, which was discussed by Terwilliger [142] in the
much more general context of uniform posets.

Lemma 4.2.2. The incidence algebra of a classical finite polar space of rank
d has the C̃t,bC̃s,tC̃a,s, 0 ≤ s ≤ a ≤ b ≤ t ≤ d ≤ s + t, together with

their transposes, as a basis, and is spanned by the elements C̃s,k
a,b with Cs,k

a,b ∈
HomRG(RΩa ,RΩb).

Proof. It follows from [142, Corollary 2.6 and Theorem 3.3] that the C̃t,bC̃s,tC̃a,s
with 0 ≤ s ≤ a ≤ b ≤ t ≤ d ≤ s + t, together with their transposes, form a
basis for the incidence algebra.

Now suppose a ≤ b. The endomorphisms in the incidence algebra, induced by
a map from RΩa to RΩb , form a space of dimension

a∑
s=0

d∑
t=max(b,d−s)

1 =
a∑

s′=0

d∑
t=max(b,d+s′−a)

1 =
a∑

s′=0

min(a+b−s′,d)∑
k=b

1
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(use the substitutions s = a − s′ and t = b + d − k, respectively), which is
precisely dim(HomRG(RΩa ,RΩb)), and hence that space is precisely the space of
maps induced by elements of HomRG(RΩa ,RΩb), of which it must be a subspace.

If a ≥ b, then again by considering transposes, one sees that every C̃s,k
a,b with

Cs,k
a,b ∈ HomRG(RΩa ,RΩb) is in the incidence algebra.

Lemma 4.2.3. Consider a classical finite polar space. The restriction of Ca,b
to V a

r,i has a trivial kernel if there is an isomorphic copy V b
r,i.

Proof. Suppose first that a ≤ b. Since V a
r,i is irreducible, the restriction of Ca,b

is either trivial or has a trivial kernel. Suppose we are in the last case. We
know from Lemma 4.2.2 that we can write every element in HomRG(RΩa ,RΩb)
as a linear combination of maps of the form Ct,bCs,tCa,s with 0 ≤ s ≤ a ≤ b ≤
t ≤ d ≤ t+ s. For each such composition, the component Cs,t can be written,
up to a positive scalar, as Cb,tCa,bCs,a. Hence this would imply that every
element of HomRG(RΩa ,RΩb) vanishes on V a

r,i, which is impossible by Theorem
2.5.15.

If a > b, then we can use the above argument since (Ca,b)
T = Cb,a.

We now state the main theorem of this subsection. We agree that Cd+1,n = 0
and C−1,n = 0 for polar spaces of rank d.

Theorem 4.2.4. Consider a classical finite polar space of rank d.

(i) Under the action of G, every module RΩn has a unique decomposition
into irreducibles, which is multiplicity-free and orthogonal, and given by:

RΩn = ©⊥
0≤r≤n

0≤i≤min(r,d−n)

V n
r,i,

with

V n
r,i = Im(Cr,n) ∩ Im(Cr−1,n)⊥ ∩ Im(Cd−i,n) ∩ Im(Cd−i+1,n)⊥.

The submodules V a
r,i ⊆ RΩa and V b

r,i ⊆ RΩb are isomorphic.

(ii) The restriction of the incidence map Ca,b : RΩa → RΩb to a submodule
V a
r,i ⊆ RΩa is trivial when there is no non-trivial V b

r,i in RΩb, and is a
bijection between the two isomorphic submodules in the other case.
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(iii) The restriction of every map Cs,k
a,b to V a

r,i ⊆ RΩa is a scalar multiple of the
restriction of Ca,b.

Proof. This follows from Theorem 2.5.15, Theorem 4.2.1 and Lemma 4.2.3.

The structure of the decomposition, described in Theorem 4.2.4 is of crucial
importance, and therefore we draw the schemes for classical finite polar spaces
of small rank in Figures 4.3, 4.4 and 4.5. Each column corresponds with
the permutation module on the set of totally isotropic subspaces of a certain
dimension, and isomorphic irreducible G-modules are written in the same row.

RΩ0 RΩ1 RΩ2

V 0
0,0 V 1

0,0 V 2
0,0

V 1
1,0 V 2

1,0

V 1
1,1

V 2
2,0

Figure 4.3: The decomposition for polar spaces of rank two

RΩ0 RΩ1 RΩ2 RΩ3

V 0
0,0 V 1

0,0 V 2
0,0 V 3

0,0

V 1
1,0 V 2

1,0 V 3
1,0

V 1
1,1 V 2

1,1

V 2
2,0 V 3

2,0

V 2
2,1

V 3
3,0

Figure 4.4: The decomposition for polar spaces of rank three
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RΩ0 RΩ1 RΩ2 RΩ3 RΩ4

V 0
0,0 V 1

0,0 V 2
0,0 V 3

0,0 V 4
0,0

V 1
1,0 V 2

1,0 V 3
1,0 V 4

1,0

V 1
1,1 V 2

1,1 V 3
1,1

V 2
2,0 V 3

2,0 V 4
2,0

V 2
2,1 V 3

2,1

V 2
2,2

V 3
3,0 V 4

3,0

V 3
3,1

V 4
4,0

Figure 4.5: The decomposition for polar spaces of rank four

4.3 Specific eigenvalues for polar spaces

We will now use the decomposition into irreducibles to compute several specific
eigenvalues.

Theorem 4.2.4 allows us to define the following.

Definition 4.3.1. In a classical finite polar space, we define θ(r,i),a,b,(s,k) as the
unique scalar such that

Cs,k
a,b v = θ(r,i),a,b,(s,k)Ca,bv, ∀v ∈ V a

r,i.

Note that since (Cs,k
a,b )

T = Cs,k
b,a , we have θ(r,i),a,b,(s,k) = θ(r,i),b,a,(s,k). If there is

no irreducible submodule V a
r,i in RΩa or no V b

r,i in RΩb , we write θ(r,i),a,b,(s,k) = 0.

In order to simplify our notation, we will also use the following notation based
on that in [77].

Definition 4.3.2. Consider a classical finite polar space of rank d.

(i) ψd,r,i,s,k = θ(r,i),r,d−i,(s,k),

(ii) χd,i,r,n,t,l = θ(r,i),r,n,(t,l).
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The scalars ψd,r,i,s,k are thus related to homomorphisms between the irreducible
submodules V r

r,i ⊆ RΩr and V d−i
r,i ⊆ RΩd−i , which are respectively the left- and

right-most elements of an isomorphism class in Figures 4.3, 4.4 and 4.5.

Note that ψd,r,i,r,d−i = 1 if 0 ≤ i ≤ r ≤ d− i.

Lemma 4.3.3. In a classical finite polar space of rank d with parameters
(q, qe), the following relations hold between homomorphisms if a ≤ b:

(i)

Cb+1,bC
s,k
a,b+1 =

[
k − b

1

]
q

Cs−1,k
a,b + q2d−k−b−1+e

[
k − b

1

]
q

Cs,k
a,b

+qk−b−1

[
d− k + 1

1

]
q

(qd−k+e + 1)Cs,k−1
a,b ,

(ii)

Cs,k
a−1,bCa,a−1 = qa−s−1

[
s+ 1

1

]
q

Cs+1,k
a,b +

[
a+ b− s− k

1

]
q

Cs,k
a,b

+qa+b−s−k−1

[
k − b+ 1

1

]
q

Cs,k+1
a,b .

Proof.

(i) We can write this composition of homomorphisms as a linear combina-

tion of Cs′,k′

a,b . If (πa, πb) ∈ (Ωa × Ωb) is in Rs′,k′

a,b , then the corresponding
coefficient is given by the number of (b + 1)-spaces π′b+1 through πb and

with (πa, π
′
b+1) ∈ Rs,k

a,b+1. This is only possible if (s′, k′) is (s − 1, k),
(s, k) or (s, k − 1). The desired coefficients are αd,(a,b),(s−1,k),b+1,(s,k),
αd,(a,b),(s,k),b+1,(s,k) and αd,(a,b),(s,k−1),b+1,(s,k), respectively, and follow from
Lemma 4.1.10.

(ii) Similarly, we can write the left-hand side as a linear combination of

Cs′,k′

a,b , and if (πa, πb) ∈ (Ωa × Ωb) is in Rs′,k′

a,b , then the corresponding
coefficient is given by the number of (a − 1)-spaces π′a−1 in πa and with

(π′a−1, πb) ∈ R
s,k
a−1,b. This is only possible if (s′, k′) is (s + 1, k), (s, k) or

(s, k+1), and the desired coefficients γ(b,a),(s+1,k),a−1,(s,k), γ(b,a),(s,k),a−1,(s,k)

and γ(b,a),(s,k+1),a−1,(s,k) follow from Lemma 4.1.10(iii).
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Lemma 4.3.4. In a classical finite polar space of rank d with parameters
(q, qe), the following relations hold:

(i) [
k − d+ i

1

]
q

ψd,r,i,s−1,k + qd−k+i+e−1

[
k − d+ i

1

]
q

ψd,r,i,s,k

+qk−d+i−1

[
d− k + 1

1

]
q

(qd−k+e + 1)ψd,r,i,s,k−1 = 0,

(ii)

qr−s−1

[
s+ 1

1

]
q

ψd,r,i,s+1,k +

[
d− i+ r − s− k

1

]
q

ψd,r,i,s,k

+qd−i+r−s−k−1

[
k + 1− d+ i

1

]
q

ψd,r,i,s,k+1 = 0,

Proof.

(i) Consider any non-zero vector v ∈ V r
r,i. It follows from Theorem 4.2.4 that

there is no isomorphic irreducible submodule V
(d−i)+1
r,i in RΩ(d−i)+1 , and

hence that Cs,k
r,(d−i)+1v = 0. The desired result follows from the expansion

of C(d−i)+1,d−iC
s,k
r,(d−i)+1 using Lemma 4.3.3(i).

(ii) Consider any non-zero vector v ∈ V r
r,i. We know from Theorem 4.2.4

that Cr,r−1v = 0. The desired result now follows from the expansion of

Cs,k
r−1,d−iCr,r−1v using Lemma 4.3.3(ii).

If 0 ≤ i ≤ r ≤ d − i, then the diagram of orbits of G on Ωr × Ωd−i is
trapezoidal (as in Figure 4.2). We now explicitly compute those values ψd,r,i,s,k
corresponding to the upper right, upper and left edge of the diagram (see
Figure 4.6).
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ψd,r,i,0,d ψd,r,i,w,d ψd,r,i,r−i,d

PPPPPPPPPPPP

ψd,r,i,0,t ...
... ψd,r,i,w,d−i+r−w

OOOOOOOOOOOOO

ψd,r,i,0,d−i · · · · · · · · · ψd,r,i,r,d−i

Figure 4.6: The values of ψ for fixed r and i

Lemma 4.3.5. Consider a classical finite polar space of rank d with parame-
ters (q, qe). Suppose 0 ≤ i ≤ r ≤ d− i.

(i) If (r − i) ≤ w ≤ r:

ψd,r,i,w,d−i+r−w = (−1)w+rq(r−w−1)(r−w)/2

[
i

r − w

]
q

∏
1≤m≤r−w

(qi−m+e + 1),

(ii) if 0 ≤ w ≤ (r − i):

ψd,r,i,w,d = (−1)w+r

[
r − i
w

]
q

q(r−w)(r−w−1)/2
∏

1≤m≤i

(qi−m+e + 1),

(iii) if d− i ≤ t ≤ d:

ψd,r,i,0,t = (−1)d+r+tqr(r−1)/2+(d−t)2+(d−t)(e−1)

[
i

t− d+ i

]
q

×∏
1≤m≤t−d+i

(qi−m+e + 1).

Proof.

(i) The result is clear for w = r as ψd,r,i,r,d−i = 1. For any w with r − i ≤
w ≤ r−1, Lemma 4.3.4(i) with (s, k) = (w+ 1, d− i+ r−w) yields that:[

r − w
1

]
q

ψd,r,i,w,d−i+r−w+
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qr−w−1

[
i− r + w + 1

1

]
q

(qi−r+w+e + 1)ψd,r,i,w+1,d−i+r−(w+1) = 0,

and since
[

i
r−w

]
q

[
r−w

1

]
q

=
[
i−r+w+1

1

]
q

[
i

r−w−1

]
q
, induction yields for every

w ∈ {r − i, . . . , r}:

ψd,r,i,w,d−i+r−w = (−1)w+rq(r−w−1)(r−w)/2

[
i

r − w

]
q

∏
1≤m≤r−w

(qi−m+e + 1).

(ii) For w = r − i the result follows from the above as

ψd,r,i,r−i,d = (−1)iqi(i−1)/2
∏

1≤m≤i

(qi−m+e + 1).

For any w with 0 ≤ w ≤ (r− i)− 1, Lemma 4.3.4(ii) yields with (s, k) =
(w, d) that:[

w + 1

1

]
q

qr−w−1ψd,r,i,w+1,d +

[
r − i− w

1

]
q

ψd,r,i,w,d = 0.

By using
[
r−i
w+1

]
q

[
w+1

1

]
q

=
[
r−i
w

]
q

[
r−i−w

1

]
q
, we obtain by induction that

for every w ∈ {0, . . . , r − i}:

ψd,r,i,w,d = (−1)w+r

[
r − i
w

]
q

q(r−w)(r−w−1)/2
∏

1≤m≤i

(qi−m+e + 1).

(iii) For t = d the result again already follows from the above as

ψd,r,i,0,d = (−1)rqr(r−1)/2
∏

1≤m≤i

(qi−m+e + 1).

If d − i ≤ t ≤ d − 1, then Lemma 4.3.4(i) yields with (s, k) = (0, t + 1)
that:

qd+i−t−2+e

[
t+ 1− d+ i

1

]
q

ψd,r,i,0,t+1

+qt+i−d
[
d− t

1

]
q

(qd−t−1+e + 1)ψd,r,i,0,t = 0
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or:

ψd,r,i,0,t = −q2(d−t−1)+e

[
t+1−d+i

1

]
q[

d−t
1

]
q

(qd−t−1+e + 1)
ψd,r,i,0,t+1.

Using the identity
[

i
t+1−d+i

]
q

[
t+1−d+i

1

]
q

=
[

i
t−d+i

]
q

[
d−t

1

]
q
, we obtain by

induction that for every t ∈ {d− i, . . . , d}, ψd,r,i,0,t is given by:

(−1)d+r+tqr(r−1)/2+(d−t)2+(d−t)(e−1)

[
i

t− d+ i

]
q

∏
1≤m≤t−d+i

(qi−m+e + 1).

4.3.1 Eigenvalues for generators

We will write Ri for the relation Rd−i,d
d,d between the d-spaces or generators,

and Ai for the corresponding symmetric adjacency matrix. The relation R1

corresponds with the distance-regular dual polar graph of diameter d (see
Theorem 4.1.6), and (πd, π

′
d) ∈ Ri if and only if πd ∩ π′d has dimension d− i.

Theorem 4.3.6. Consider a classical finite polar space of rank d with pa-
rameters (q, qe). The eigenvalue of the relation Ri between generators for the
subspace V d

j,0, 0 ≤ j ≤ d, is given by:

∑
0,j−i≤u≤d−i,j

(−1)j+u
[

d− j
d− i− u

]
q

[
j

u

]
q

q(u+i−j)(u+i−j+2e−1)/2+(j−u)(j−u−1)/2.

Proof. Consider any non-zero vector v ∈ V d
j,0 ⊆ RΩd . Theorem 4.2.4 implies

that there is a (unique) vector w ∈ V j
j,0, such that v = Cj,dw. As we are

interested in Aiv, we have to consider the composition AiCj,d.

RΩj RΩd

Cj,d

Cu,d
j,d

Ai
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If a j-space πj is in a generator πd, and π′d is a generator intersecting πd in a
(d− i)-space, then πj and π′d must meet in a u-space with max(0, j− i) ≤ u ≤
min(d− i, j). Hence we can write:

AiCj,d =
∑

max(0,j−i)≤u≤min(d−i,j)

αd,(d,j),(u,d),d,(d−i,d)C
u,d
j,d .

It follows immediately from Definition 4.3.2 that Cu,d
j,d w = ψd,j,0,u,dCj,dw. We

can now determine Aiv:

Aiv = AiCj,dw

=
∑

max(0,j−i)≤u≤min(d−i,j)

αd,(d,j),(u,d),d,(d−i,d)C
u,d
j,d w

=
∑

max(0,j−i)≤u≤min(d−i,j)

αd,(d,j),(u,d),d,(d−i,d)ψd,j,0,u,dCj,dw

=

( ∑
max(0,j−i)≤u≤min(d−i,j)

αd,(d,j),(u,d),d,(d−i,d)ψd,j,0,u,d

)
v.

Lemma 4.1.10 gives us that αd,(d,j),(u,d),d,(d−i,d) =
[

d−j
d−i−u

]
q
q(u+i−j)(u+i−j+2e−1)/2.

We also know from Lemma 4.3.5(ii) that ψd,j,0,u,d = (−1)j+u
[
j
u

]
q
q(j−u)(j−u−1)/2.

This proves the theorem.

Remark 4.3.7. Stanton [135, Theorem 5.4] expressed these eigenvalues in
terms of q-Krawtchouk polynomials.

As an example, we use Theorem 4.3.6 to compute the matrix of eigenvalues P
for classical finite polar spaces of rank three with parameters (q, qe). We use
the ordering R0, R1, R2, R3 for the columns and V 3

0,0, V
3

1,0, V
3

2,0, V
3

3,0 for the rows
in Table 4.2.

P =


1 qe(q2 + q + 1) q1+2e(q2 + q + 1) q3+3e

1 q1+e + qe − 1 q1+2e − q1+e − qe −q1+2e

1 qe − q − 1 q − q1+e − qe q1+e

1 −q2 − q − 1 q(q2 + q + 1) −q3



Table 4.2: Theorem 4.3.6: Eigenvalues for generators in polar spaces of rank 3
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4.3.2 Eigenvalues of the graph of Lie type

In this subsection, we will apply Theorem 4.2.4 to compute the eigenvalues

of a graph of Lie type on n-spaces, defined by the relation R
n−1,min(n+1,d)
n,n (see

Subsection 4.1). We first point out that the eigenvalues of many similar graphs,
including polar and dual polar graphs, can be found in [26].

Lemma 4.3.8. In a classical finite polar space of rank d with parameters
(q, qe), we have for every r ≥ 1:

ψd,r,i,r−1,d−i = −
[r

1

]
q

+

[
i

1

]
q

(qi−1+e + 1),

if 0 ≤ i ≤ r ≤ d− i.

Proof. From Lemma 4.3.4(ii) with (s, k) = (r − 1, d− i), we obtain:[r
1

]
q
ψd,r,i,r,d−i + ψd,r,i,r−1,d−i + ψd,r,i,r−1,d−i+1 = 0.

From Lemma 4.3.5(i) we know that ψd,r,i,r,d−i = 1 and ψd,r,i,r−1,d−i+1 =
−
[
i
1

]
q

(qi−1+e + 1), which yields the desired result.

Lemma 4.3.9. In a classical finite polar space of rank d with parameters
(q, qe), we have the following identities if r ≥ 1 and 0 ≤ i ≤ r ≤ d− i.

(i) χd,i,r,r,r−1,r = −qd−i−r
([

r
1

]
q
−
[
i
1

]
q

(qi−1+e + 1)
)

,

(ii) χd,i,r,n,r−1,n = −qd−i−n
([

r
1

]
q
−
[
i
1

]
q

(qi−1+e + 1)
)

if r ≤ n ≤ d− i,

(iii) χd,i,r,n,r−1,n+1 =
[
r
1

]
q

(qd−i−n−1)−qd−i−n(qi−1+e+1)
[
i
1

]
q

if r ≤ n ≤ d−i.

Proof.

(i) We consider the composition Cr−1,r
r,r Cd−i,r.
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RΩr RΩd−i

Cd−i,r

Cr−1,d−i
d−i,r

Cr−1,r
r,r

For any πr ∈ Ωr and πd−i ∈ Ωd−i, it is only possible that (πr, π
′
r) ∈ Rr−1,r

r,r

and π′r ⊆ πd−i if (πd−i, πr) ∈ Rr−1,d−i
d−i,r . Hence we can write

Cr−1,r
r,r Cd−i,r = γ(r,d−i),(r−1,d−i),r,(r−1,r)C

r−1,d−i
d−i,r = qd−i−rCr−1,d−i

d−i,r

where we applied Lemma 4.1.10(iii) for the last step. Now choosing any
non-zero v ∈ V r

r,i, we know from Theorem 4.2.4 that v = Cd−i,rw with

w ∈ V d−i
r,i . This yields:

χd,i,r,r,r−1,rv = Cr−1,r
r,r v

= (Cr−1,r
r,r Cd−i,r)w

= (qd−i−rCr−1,d−i
d−i,r )w

= qd−i−rψd,r,i,r−1,d−iCd−i,rw

= qd−i−rψd,r,i,r−1,d−iv,

and hence the result follows from Lemma 4.3.8.

(ii) Next, we consider the composition Cr,nC
r−1,r
r,r .

RΩr RΩn

Cr,n

Cr−1,n
r,n

Cr−1,r
r,r
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For any πr ∈ Ωr and πn ∈ Ωn, it is only possible that (πr, π
′
r) ∈ Rr−1,r

r,r

and π′r ⊆ πn if (πr, πn) ∈ Rr−1,n
r,n . Hence

Cr,nC
r−1,r
r,r = γ(r,n),(r−1,n),r,(r−1,r)C

r−1,n
r,n = qn−rCr−1,n

r,n ,

where we used Lemma 4.1.10(iii) for the last step. Choosing any non-zero
v ∈ V r

r,i, we can write:

Cr,n(χd,i,r,r,r−1,rv) = Cr,nC
r−1
r,r v

= qn−rCr−1,n
r,n v

= qn−rχd,i,r,n,r−1,nCr,nv.

We can now use (i) to obtain χd,i,r,n,r−1,n.

(iii) Applying Lemma 4.3.3(ii) with (a, b) = (r, n) and (s, k) = (r − 1, n), we
can write:

Cr−1,nCr,r−1v =
[r

1

]
q
Cr,n + Cr−1,n

r,n + Cr−1,n+1
r,n .

RΩr−1 RΩr RΩn

Cr,r−1 Cr,n

Cr−1,n
r,n

Cr−1,n+1
r,n

Cr−1,n

If v is any non-zero vector in V r
r,i, then Cr,r−1v = 0 by Theorem 4.2.4,

and hence:

0 =

([r
1

]
q

+ χd,i,r,n,r−1,n + χd,i,r,n,r−1,n+1

)
(Cr,nv).

Since Cr,nv 6= 0, we can now compute χd,i,r,n,r−1,n+1 using (i) and (ii).

We can now finally compute the eigenvalue of a graph of Lie type in a classical
finite polar space. Note that we have to treat the dual polar graph separately.

Theorem 4.3.10. Consider a classical finite polar space of rank d with pa-
rameters (q, qe), and the graph of Lie type Γ on n-spaces.
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(i) If 1 ≤ n ≤ d− 1, then the eigenvalue of Γ for V n
r,i is given by:

q

[
n− r

1

]
q

[
d− n

1

]
q

(qd−n−1+e + 1)+

[
n+ 1− r

1

]
q

([r
1

]
q

(qd−i−n − 1)− qd−i−n(qi−1+e + 1)

[
i

1

]
q

)
.

(ii) If n = d, then the eigenvalue of Γ for V d
r,0 is given by:

qe
[
d− r

1

]
q

−
[r

1

]
q
.

Proof.

(i) Suppose first that 1 ≤ n ≤ d−1. Consider the composition Cn−1,n+1
n,n Cr,n.

RΩr RΩn

Cr,n

Cr−1,n+1
r,n

Cn−1,n+1
n,n

If (πr, πn) ∈ (Ωr×Ωn), then there can only be an n-space π′n with πr ⊆ π′n
and (πn, π

′
n) ∈ Rn−1,n+1

n,n if either πr ⊆ πn or (πr, πn) ∈ Rr−1,n+1
r,n . Hence:

Cn−1,n+1
n,n Cr,n

= αd,(n,r),(r,n),n,(n−1,n+1)Cr,n + αd,(n,r),(r−1,n+1),n,(n−1,n+1)C
r−1,n+1
r,n

= q

[
n− r

1

]
q

[
d− n

1

]
q

(qd−n−1+e + 1)Cr,n +

[
n+ 1− r

1

]
q

Cr−1,n+1
r,n ,

where we used Lemma 4.1.10 for the last step. Now consider any non-
zero v ∈ V n

r,i. In order to compute the corresponding eigenvalue, we must
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find Cn−1,n+1
n,n v. We know that v = Cr,nw with w ∈ V r

r,i, and hence:

Cn−1,n+1
n,n v = Cn−1,n+1

n,n (Cr,nw)

= q

[
n− r

1

]
q

[
d− n

1

]
q

(qd−n−1+e + 1)Cr,nw +[
n+ 1− r

1

]
q

Cr−1,n+1
r,n w

=

(
q

[
n− r

1

]
q

[
d− n

1

]
q

(qd−n−1+e + 1) +[
n+ 1− r

1

]
q

χd,i,r,n,r−1,n+1

)
(Cr,nw).

The desired result now follows from Lemma 4.3.9(iii).

(ii) For n = d, the result already follows from Theorem 4.3.6 with i = 1.

Remark 4.3.11. The eigenvalues of the graph of Lie type can also be ex-
tracted from the value xi(r, p) which was computed in [142, Theorems 2.5 and
3.3(6)].

Remark 4.3.12. We know from Theorem 4.1.7 that the dual polar graph on
a classical finite polar space of rank d with parameters (q, qe) has classical pa-
rameters (d, q, 0, qe). Applying Theorem 2.3.14 and comparing the eigenvalues,
one easily sees that the ordering in the following decomposition for maximals:

RΩd = V d
0,0 ⊥ V d

1,0 ⊥ . . . ⊥ V d
d,0,

is precisely the cometric ordering associated with this set of classical parame-
ters.

4.3.3 Eigenvalues of oppositeness

The oppositeness relation between the subspaces of dimension n in a classical
finite polar space, which we denote by R0,n

n,n, is another particular relation, the
eigenvalues of which can still be given explicitly in a more or less compact
form. In order to compute these eigenvalues, we will also consider the far away
relation between subspaces of different dimension.
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Lemma 4.3.13. Consider a classical finite polar space of rank d with param-
eters (q, qe). Suppose 0 ≤ i ≤ r ≤ n ≤ d− i.

(i) χd,i,r,r,0,r = (−1)r+iqi(i−1)+ie+r(d−i−r/2−1/2),

(ii) χd,i,r,n,0,n = (−1)r+iqi(i−1)+ie+r(d−n−i+r/2−1/2).

Proof.

(i) We first consider the composition C0,r
r,rCd−i,r.

RΩr RΩd−i

Cd−i,r

C0,d−i
d−i,r

C0,r
r,r

If πd−i ∈ Ωd−i contains an r-space π′r that is far away from the r-space
πr, then πr and πd−i must also be far away, and hence:

C0,r
r,rCd−i,r = γ(r,d−i),(0,d−i),r,(0,r)C

0,d−i
d−i,r = qr(d−i−r)C0,d−i

d−i,r ,

where we used Lemma 4.1.10(iii) for the last step. Now we consider any
non-zero v ∈ V r

r,i. We can write v = Cd−i,rw with w ∈ V d−i
r,i , and hence:

χd,i,r,r,0,rv = C0,r
r,r v

= C0,r
r,r (Cd−i,rw)

= qr(d−i−r)C0,d−i
d−i,rw

= qr(d−i−r)ψd,r,i,0,d−i(Cd−i,rw)

= qr(d−i−r)ψd,r,i,0,d−iv.

It follows from Lemma 4.3.5(iii) that ψd,r,i,0,d−i = (−1)r+iqr(r−1)/2+i2+ie−i,
which allows us to compute χd,i,r,r,0,r.

(ii) Next, we consider the composition Cr,nC
0,r
r,r .
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RΩr RΩn

Cr,n

C0,n
r,n

C0,r
r,r

Since any n-space πn can only contain an r-space π′r opposite to the
r-space πr, if πr and πn are far away, we can write:

Cr,nC
0,r
r,r = γ(r,n),(0,n),r,(0,r)C

0,n
r,n = qr(n−r)C0,n

r,n ,

again using Lemma 4.1.10(iii) for the last step. For any non-zero v ∈ V r
r,i,

we can write:

Cr,n(χd,i,r,r,0,rv) = Cr,n(C0,r
r,r v)

= qr(n−r)(C0,n
r,n v)

= (qr(n−r)χd,i,r,n,0,n)(Cr,nv).

We can now obtain χd,i,r,n,0,n using (i).

We can now write the homomorphism associated with the far away relation
as a scalar multiple of the incidence relation, when restricted to an irreducible
submodule. The eigenvalues of oppositeness will then immediately follow as
well.

Theorem 4.3.14. Consider a classical finite polar space of rank d with pa-
rameters (q, qe). If 0 ≤ i ≤ r ≤ a ≤ b ≤ d− i, then:

θ(r,i),a,b,(0,b) = (−1)r+iqi(i−1)+ie+r(d−b−i+r/2−1/2)+(a−r)(2d−b+e−r/2−a/2−1/2).

Proof. We start by considering the composition C0,b
a,bCr,a.
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RΩr RΩa RΩb

Cr,a Ca,b

Cr,b

C0,b
r,b

C0,b
a,b

For any r-space πr and any b-space πb, it is only possible that there is an a-
space through πr and far away from πb, if πr and πb are far away. Hence we
can write:

C0,b
a,bCr,a = αd,(b,r),(0,b),a,(0,b)C

0,b
r,b .

Any non-zero v ∈ V a
r,i can be written as v = Cr,aw with w ∈ V r

r,i, and then:

θ(r,i),a,b,(0,b)Ca,bv = C0,b
a,bv

= (C0,b
a,bCr,a)w

= αd,(b,r),(0,b),a,(0,b)C
0,b
r,bw

= αd,(b,r),(0,b),a,(0,b)χd,i,r,b,0,b)(Cr,bw).

On the other hand, we can also write Ca,bCr,a =
[
b−r
a−r

]
q
Cr,b, and hence:

θ(r,i),a,b,(0,b)(Ca,bv) =

(
θ(r,i),a,b,(0,b)

[
b− r
a− r

]
q

)
(Cr,bw).

This yields:

θ(r,i),a,b,(0,b) =
αd,(b,r),(0,b),a,(0,b)χd,i,r,b,0,b[

b−r
a−r

]
q

.

Lemma 4.1.10 yields that αd,(b,r),(0,b),a,(0,b) = q(a−r)(2d−b+e−r/2−a/2−1/2)
[
b−r
a−r

]
q
,

and now we can use Lemma 4.3.13(ii) to compute θ(r,i),a,b,(0,b).

For generators (i.e. n = d), the following theorem can also be found in [134].

Theorem 4.3.15. The eigenvalue of the oppositeness relation R0,n
n,n between

n-spaces in a classical finite polar space of rank d with parameters (q, qe) for
the eigenspace V n

r,i, 0 ≤ i ≤ r ≤ n ≤ d− i, is given by:

(−1)r+iqn(4d−3n−1)/2−r(d−r)−i(r+1−i)+(n+i−r)e.
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Proof. This follows from Theorem 4.3.14 with a and b equal to n.

Remark 4.3.16. In spite of our lengthy calculations, all eigenvalues of oppo-
siteness turn out to be powers of q up to sign. This phenomenon appears in
fact in the much more general context of oppositeness between flags in finite
buildings, as was recently proved by Brouwer [22].

Corollary 4.3.17. Consider a classical finite polar space of rank d ≥ 2 with
parameters (q, qe). The eigenvalue of the oppositeness relation between n-
spaces, n ∈ {1, . . . , d}, for the subspace V n

1,0 is:

−qn(4d−3n−1)/2−(d−1)+(n−1)e,

and this is the minimal eigenvalue, appearing for exactly one subspace V n
r,i,

except in the following cases:

(i) for Q+(2d− 1, q) with d odd, n = d; the minimal eigenvalue appears for
V d
d,0: −qd(d−1)/2,

(ii) for Q+(2d− 1, q) with d even, n = d; the minimal eigenvalue appears for
both V d

1,0 and V d
d−1,0: −q(d−1)(d−2)/2,

(iii) for Q+(2d− 1, q) with d even, n = d− 1; the minimal eigenvalue appears
for both V d−1

1,0 and V d−1
d−1,0: −qd(d−1)/2,

(iv) for H(2d− 1, q2), with d odd, n = d; the minimal eigenvalue appears for
V d
d,0:−qd(d−1),

(v) for W (2d− 1, q) and Q(2d, q) with d odd, n = d; the minimal eigenvalue
appears for both V d

1,0 and V d
d,0: −qd(d−1)/2.

Proof. If λr,i denotes the eigenvalue of oppositeness for V n
r,i, then Theorem

4.3.15 yields:

λr,i/λ1,0 = (−1)r+i+1q(d−r−1)(1−r)−i(r+1−i)+e(1−r+i).

Considering the restrictions 0 ≤ i ≤ r ≤ n ≤ d − i and e ∈ {0, 1/2, 1, 3/2, 2}
one can now determine when the minimal value is attained.

Some of the exceptions for generators in Corollary 4.3.17 will play an important
role in Chapter 5 (see Theorem 5.3.1).
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4.4 Interesting subsets in polar spaces

4.4.1 Sets of points

We already mentioned in Section 4.1 how the polar graph on the points of a
classical finite polar space can be seen as the point graph of an SPBIBD, with
the generators playing the role of the “lines” of the SPBIBD. It follows from
Theorem 4.2.4 that there are only three eigenspaces in the decomposition:

RΩ1 = V 1
0,0 ⊥ V 1

1,0 ⊥ V 1
1,1.

Hence for points, as soon as a proper non-empty subset is orthogonal to an
eigenspace, it is intriguing because of Lemma 2.1.3. There are two possibilities
for an intriguing set of points (see Lemma 2.3.11):

(i) χS ∈ V 1
0,0 ⊥ V 1

1,0: this is the case if and only if χS can be written as a
linear combination of the characteristic vectors of point sets of generators
(we say S is a tight set),

(ii) χS ∈ V 1
0,0 ⊥ V 1

1,1: this is the case if and only if every generator intersects
S in a fixed number of elements m (we say S is an m-ovoid).

Payne [121] defined tight sets for generalized quadrangles, and Drudge [73]
generalized the concept for polar spaces of higher rank. Thas [150] introduced
m-ovoids for generalized quadrangles, and this was generalized for polar spaces
of higher rank by Shult and Thas [132].

More properties and equivalent definitions of these types of sets of points can
be found in [75]. A detailed discussion of these concepts in polar spaces in a
unifying context can be found in [9] and [10]. See also [102] for an extensive
list of constructions.

We will introduce another generalization of tight sets and m-ovoids in Subsec-
tion 6.4.

4.4.2 Designs with respect to subspaces of fixed dimension

The following theorem links algebraic and geometric properties of subsets of
subspaces in a polar space, and can be found (in a somewhat implicit form) in



4.4. Interesting subsets in polar spaces | 81

[77]. For maximal totally isotropic subspaces, it also follows from Delsarte’s
theory of regular semilattices [66] (see also Stanton [135, 136] for a more explicit
treatment).

Theorem 4.4.1. In a classical finite polar space of rank d with parameters
(q, qe), a set S ⊆ Ωa is such that every b-space is incident with (or equal to)
a fixed number of elements of S, if and only if χS is orthogonal to every V a

r,i,

(r, i) 6= (0, 0), with an isomorphic copy V b
r,i in RΩb.

In that case, for a ≥ b this number is given by:

|S|
|Ωa|

[
d− b
a− b

]
q

a−b∏
i=1

(qd−b+e−i + 1),

and for a ≤ b it is given by:
|S|
|Ωa|

[
b

a

]
q

,

and S is in fact a combinatorial design with respect to Ωb.

Proof. In order to apply Theorem 2.5.16 we need to consider Supp(Ca,b). The
characterization now follows from Theorem 4.2.4. The ratio |Ra,b|/|Ωb| can
be computed using Theorems 4.1.1 and 4.1.4, and hence the desired constant

follows from the formula
|Ra,b||S|
|Ωa||Ωb|

from Theorem 2.5.16.

Corollary 4.4.2. Consider a set of a-spaces S in a classical finite polar space
of rank d, such that every b-space contains a fixed number of elements of S,
with a ≤ b and a+ b ≤ d. Now S must either be empty or the full set Ωa.

Proof. In this case, it follows from Theorem 4.2.4 that every irreducible sub-
module V a

r,i has an isomorphic copy in V b
r,i, and hence Theorem 4.4.1 implies

that χS ∈ V a
0,0 = 〈χΩa〉.

We will revisit combinatorial designs of maximals in classical finite polar spaces
of rank d with respect to the (d − 1)-spaces in Chapter 6, in the context of
m-ovoids in dual polar spaces.

4.4.3 Embeddings

In classical finite polar spaces, several interesting geometric structures can be
embedded, including other polar spaces. This yields special subsets in the
bigger polar space.
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Suppose the polar space consists of the totally isotropic subspaces with respect
to a form on a vector space. By choosing a non-singular hyperplane (i.e. a
hyperplane of the vector space onto which the restriction of the form is also
non-degenerate), one can obtain the following embeddings:

(1) the hyperbolic quadric Q+(2d− 1, q) in the parabolic quadric Q(2d, q),

(2) the Hermitian variety H(2d− 1, q2) in the Hermitian variety H(2d, q2),

(3) the parabolic quadric Q(2d, q) in the elliptic quadric Q−(2d+ 1, q),

(4) the parabolic quadric Q(2d−2, q) in the hyperbolic quadric Q+(2d−1, q),

(5) the Hermitian variety H(2d−2, q2) in the Hermitian variety H(2d−1, q2),

(6) the elliptic quadric Q−(2d− 1, q) in the parabolic quadric Q(2d, q).

In the cases (1)-(2)-(3), the maximal totally isotropic subspaces in both polar
spaces are of the same dimension, while in the cases (4)-(5)-(6), they are of
dimension one less in the smaller polar space. Theorem 1.3.1 yields that G
acts transitively on the embeddings of one type.

Theorem 4.4.3. Consider a classical finite polar space of rank d ≥ 2 and one
of the embeddings given above. Denote the set of n-spaces with 1 ≤ n ≤ d of
the smaller polar space by Ω′n. Now:

(i) χΩ′n ∈ V n
0,0 ⊥ V n

1,0 in the cases (1)-(2)-(3),

(ii) χΩ′n ∈ V n
0,0 ⊥ V n

1,1 if 1 ≤ n ≤ d− 1 and χΩ′d
= 0 in the cases (4)-(5)-(6).

Proof. Suppose the bigger polar space has parameters (q, qe). Each element of
Ωn either contains

[
n
1

]
q

elements of Ω′1, if it is in χΩ′n , or
[
n−1

1

]
q

elements of

Ω′1, if it is not. Every element of Ωn also contains
[
n
1

]
q

elements of Ω1. Hence:

C1,nχΩ′1
=

[n
1

]
q
χΩ′n +

[
n− 1

1

]
q

(χΩn − χΩ′n),

C1,nχΩ1 =
[n

1

]
q
χΩn .

Hence χΩ′n ∈ Im(C1,n), which is V n
0,0 ⊥ V n

1,0 ⊥ V n
1,1 by Theorem 4.2.4.
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(i) In the cases (1)-(2)-(3), an element of Ωn can only be in any element of
Ω′d if it is in Ω′n, and in that case the number of such elements of Ω′d is a
constant c. Hence:

Cd,nχΩ′d
= cχΩ′n ,

yielding that χΩ′n ∈ Im(Cd,n) = V n
0,0 ⊥ V n

1,0 ⊥ . . . ⊥ V n
n,0 by Theorem

4.2.4. Hence χΩ′n ∈ V n
0,0 ⊥ V n

1,0 in these cases.

(ii) In the cases (4)-(5)-(6), there are no totally isotropic d-spaces in the
smaller polar space, and hence χΩ′d

= 0. Each maximal πd ∈ Ωd intersects
the non-singular hyperplane in a maximal πd−1 of the smaller polar space,
which contains exactly

[
d−1
n

]
q

elements of Ω′n. Theorem 4.4.1 now implies

that for any n ∈ {1, . . . , d}, we must have χΩ′n ∈ (V n
1,0)⊥. Together with

the above, this yields that χΩ′n ∈ V n
0,0 ⊥ V n

1,1.

We visualize Theorem 4.4.3 for polar spaces of rank four in Figures 4.7 and 4.8
by crossing out those subspaces the characteristic vector of Ω′n is orthogonal
to.

For points, Theorem 4.4.3 gives us an intriguing set of points, which is tight in
the cases (1)-(2)-(3) and an m-ovoid in the cases (4)-(5)-(6). This result was
given in [9, Lemma 7].
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�V 3
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Figure 4.7: Theorem 4.4.3 in the cases (1)-(2)-(3)
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Figure 4.8: Theorem 4.4.3 in the cases (4)-(5)-(6)

We will now consider the embedding of the split Cayley hexagon H(q) in the
parabolic quadric Q(6, q). This is a point-line geometry, the points of which
are simply the points of Q(6, q), the lines of which are certain lines of Q(6, q),
known as the hexagon lines , and incidence is inherited from the polar space.
This incidence structure satisfies the axioms of a generalized hexagon of order
(q, q), consisting of equally many points and lines. We will introduce and
discuss generalized polygons in detail in Chapter 6. The remaining lines of
Q(6, q) are called the ideal lines. We refer to [161] for the following basic
properties.

(i) The hexagon lines through a point p of Q(6, q) are precisely the q + 1
lines in a fixed plane through p, that we denote by pα. Such planes are
the hexagon planes, and the other planes of Q(6, q) are the ideal planes.
No two distinct points yield the same hexagon plane.

(ii) A hexagon line is on q + 1 hexagon planes and on no ideal planes. An
ideal line is on exactly one hexagon plane, and on q ideal planes.

(iii) In a hexagon plane pα, the hexagon lines are the q + 1 lines through p,
and the q2 remaining lines are ideal lines. An ideal plane only contains
ideal lines.

We will now show that the sets of hexagon lines and hexagon planes both have
dual degree 1.
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Theorem 4.4.4. Consider the embedding of H(q) in Q(6, q) given above. Let
HL, IL, HP and IP be the sets of hexagon lines, ideal lines, hexagon planes
and ideal planes, respectively. Then χHL, χIL ∈ V 2

0,0 ⊥ V 2
2,0 and χHP , χIP ∈

V 3
0,0 ⊥ V 3

2,0.

Proof. As every point is on q + 1 hexagon lines and on q2(q + 1) ideal lines,
Theorem 4.4.1 already implies that χHL and χIL are in V 2

0,0 ⊥ V 2
2,0 ⊥ V 2

2,1. It
also follows from property (ii) of H(q) in Q(6, q) that

C3,2(χHP ) = χIL + (q + 1)χHL

C3,2(χIP ) = qχIL.

Hence χHL and χIL are both in Im(C3,2) = V 2
0,0 ⊥ V 2

1,0 ⊥ V 2
2,0 as well (see

Theorem 4.2.4). Hence we can conclude that χHL, χIL are in V 2
0,0 ⊥ V 2

2,0.

Finally, it follows from property (iii) that

C2,3(χHL) = (q + 1)χHP

C2,3(χIL) = q2χHP + (q2 + q + 1)χIP .

Hence χHP and χIP are linear combinations of C2,3(χHL) and C2,3(χIL), and
so they are both in the image of V 2

0,0 ⊥ V 2
2,0 under C2,3, i.e. in V 3

0,0 ⊥ V 3
2,0 (see

Theorem 4.2.4).

In Figure 4.9, we illustrate Theorem 4.4.4 by crossing out the eigenspaces of
the association schemes on lines and planes in Q(6, q) that are orthogonal to
the characteristic vectors of those sets.

RΩ0 RΩ1 RΩ2 RΩ3
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�V 2
1,1

V 2
2,0 V 3

2,0

�
�V 2

2,1

�
�V 3

3,0

Figure 4.9: Theorem 4.4.4: the dual degree sets of the sets of hexagon lines and
planes
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We now demonstrate how some well-known properties of the embedding of
H(q) can be seen using design-orthogonality.

Corollary 4.4.5. Consider the embedding of H(q) in Q(6, q) and a non-sin-
gular hyperplane H with respect to the quadratic form.

(i) If H intersects Q(6, q) in a hyperbolic quadric, then it contains (q+1)(q2+
q + 1) hexagon lines and 2(q2 + q + 1) hexagon planes.

(ii) If H intersects Q(6, q) in an elliptic quadric, then it contains exactly
q3 + 1 hexagon lines, and they are pairwise opposite.

Proof. The dual degree sets of the sets of lines and planes in H follows from
Theorem 4.4.3. Their sizes follow from Theorem 4.1.1: (q+1)(q2+q+1)(q2+1)
lines and 2(q + 1)(q2 + 1) planes in the hyperbolic case, and (q2 + 1)(q3 + 1)
lines and no planes in the elliptic case, while Q(6, q) itself has (q2 + 1)(q2 + q+
1)(q3 + 1) lines and (q + 1)(q2 + 1)(q3 + 1) planes. The sets of hexagon lines
and planes are both of size (q6 − 1)/(q − 1), and their dual degree sets follow
from Theorem 4.4.4. The intersection sizes now follow from Lemma 2.2.10.
Finally, since no two lines of H(q) can intersect in a line without spanning a
totally isotropic plane (property (i)), and since Q−(5, q) contains no planes,
the relations R1,2

2,2, R
1,3
2,2 and R0,3

2,2 cannot appear between lines of H(q) in H if
the intersection is an elliptic quadric. Hence in the second case, we obtain
q3 + 1 pairwise opposite lines.

Remark 4.4.6. Thas [147] used the property in Corollary 4.4.5(ii) to prove
the existence of perfect 1-codes in the dual of H(q), which is also a generalized
hexagon (see Subsection 6.4.2).

4.4.4 Partial m-systems

We will now focus on the cliques of one specific relation in the association
scheme on Ωn, namely oppositeness. We will give alternative proofs of several
known results, and obtain a new and tight bound in one specific case.

Definition 4.4.7. A partial ovoid in a finite polar space is a set of points,
such that any two elements are non-collinear.

Equivalently, one can define partial ovoids as sets of points, no two of which
are on a common generator of the polar space.
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Definition 4.4.8. An ovoid in a finite polar space is a set of points, such that
each generator is incident with exactly one of its elements.

In a classical finite polar space of rank d with parameters (q, qe), there are
(qe + 1) · · · (qd−1+e + 1) generators, and (qe + 1) · · · (qd−2+e + 1) generators
through each point, by Theorem 4.1.1. Hence the size of a partial ovoid is
at most qd−1+e + 1, with equality if and only if it is an ovoid. The number
qd−1+e + 1 is known as the ovoid number of the polar space.

We now introduce similar concepts for generators in a polar space.

Definition 4.4.9. A partial spread in a finite polar space is a set of maximals,
no two of which incident with a common point.

Definition 4.4.10. A spread in a finite polar space is a set of maximals, par-
titioning the set of points of the polar space.

In a classical finite polar space of rank d with parameters (q, qe), each generator
is incident with (qd−1)/(q−1) points, and the full number of points is given by
(qd−1+e + 1)(qd− 1)/(q− 1), again by Theorem 4.1.1. This yields that the size
of a partial spread is also at most the ovoid number qd−1+e + 1, with equality
if and only if it is a spread.

In order to explain the phenomenon of the equal bounds for points and genera-
tors, Shult and Thas [132] examined the unifying concept of partial m-systems.

Definition 4.4.11. A partial (m − 1)-system in a polar space is a set of m-
spaces, such that any two elements are opposite.

Remark 4.4.12. Note that here we use the notation of Shult and Thas, who
use projective dimensions.

One can also define partial (m − 1)-systems as sets of m-spaces S, such that
every generator through an element of S has a trivial intersection with any
other element of S.

In a classical finite polar space of rank d, the partial ovoids and partial spreads
are precisely the partial 0- and (d− 1)-systems, respectively. Shult and Thas
proved the following unifying bound.
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Theorem 4.4.13. [132, Theorem 4] The size of a partial (m − 1)-system in
a classical finite polar space of rank d with parameters (q, qe) is at most the
ovoid number qd−1+e + 1.

Shult and Thas [132] defined the m-systems as those partial m-systems with
size equal to the ovoid number qd−1+e+1. In particular, the ovoids and spreads
are precisely the 0- and (d− 1)-systems, respectively. Many interesting prop-
erties of m-systems were also obtained. We will now give alternative proofs of
some of these results.

Theorem 4.4.14. Let S be a non-empty partial (m− 1)-system in a classical
finite polar space of rank d with parameters (q, qe), 1 ≤ m ≤ d, and let S̃ and S̄
denote the sets of points and generators incident with or equal to a (necessarily
unique) element of S, respectively. Then |S| ≤ qd−1+e + 1, and the following
are equivalent:

(i) |S| = qd−1+e + 1, i.e. S is an (m− 1)-system,

(ii) χS ∈ (V m
1,0)⊥,

(iii) S̃ is a k-ovoid for some k,

(iv) every point is on exactly r elements of S̄ for some r.

If any (and thus all) of the above statements hold, then k =
[
m
1

]
q

and r =∏d−m
i=1 (qi−1+e + 1).

Proof. We know from Theorem 4.3.15 and Corollary 4.3.17 that the valency k
and the eigenvalue λ of oppositeness for V m

1,0 are given by:

k = qm(4d−3m−1)/2+me

λ = −qm(4d−3m−1)/2−(d−1)+(m−1)e.

Corollary 2.2.9 now yields that |S| ≤ 1 − k/λ = 1 + qd−1+e, with equality if
and only if χS ∈ (V m

1,0)⊥. Hence (i) and (ii) are equivalent.

We can write the characteristic vectors of S̃ and S̄ as Cm,1χS and Cm,dχS,

respectively. We know from Theorem 4.4.1 that S̃ is a k-ovoid if and only if
the characteristic vector of S̃ is orthogonal to V 1

1,0. Similarly, every point will

be on equally many elements of S̄ if and only if the characteristic vector of
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S̄ is orthogonal to V d
1,0. Theorem 4.2.4 yields that both are equivalent to χS

itself being orthogonal to V m
1,0. This yields equivalence between (ii), (iii) and

(iv). Every generator through some element πm of S intersects S̃ in exactly

the
[
m
1

]
q

points of πm, and every point on πm is on exactly
∏d−m

i=1 (qi−1+e + 1)

generators of S̄, namely those that are through πm itself. This quickly yields
the constants in case of equality.

It was also shown in [132] that in some particular cases, the m-systems also
behave in a very nice way with respect to embedded polar spaces. We will now
use design-orthogonality to give an alternative proof.

Theorem 4.4.15. Let S be a non-empty partial (m− 1)-system in a classical
finite polar space of rank d with parameters (q, qe+1), and consider one of the
embeddings (1)-(2)-(3) by use of a non-singular hyperplane intersection from
Subsection 4.4.3. The number of elements S in such a hyperplane is a constant
if and only if S is an (m−1)-system. In that case, this constant is qd−m+e+1.

Proof. Let Ω′m denote the set of m-spaces in the hyperplane. Note that the
smaller polar space has parameters (q, qe). We know from Theorem 4.4.3 that
χΩ′m ∈ V m

0,0 ⊥ V m
1,0. Theorem 2.5.17 yields that a constant number of elements

of S is contained in every element of the orbit of Ω′m under G, if and only if
χS is orthogonal to V m

1,0. It follows from Theorem 4.4.14 that this is the case
if and only if S is an (m − 1)-system, and Theorem 2.5.17 then implies that
|S ∩ Ω′m| = |S||Ω′m|/|Ωm|. In this case |S| = q(d−1)+(e+1) + 1 and it follows
from Theorem 4.1.1 that |Ω′m|/|Ωm| = (qd+e−m + 1)/(qd+e + 1), which yields
the desired size of intersection.

The bound for partial (m − 1)-systems from the subspace V m
1,0 is exactly the

same as the ovoid number. However, using Corollary 2.2.9 we can obtain an
upper bound for the size from any subspace V m

r,i , provided that the correspond-
ing eigenvalue of the oppositeness relation is negative. Surprisingly, in one very
specific case this leads to a sharper bound.

Theorem 4.4.16. A non-empty partial spread S in H(2d− 1, q2), d odd, has
size at most qd + 1. Equality holds if and only if its characteristic vector χS is
orthogonal to V d

d,0.

Proof. We know from Theorem 4.3.15 and Corollary 4.3.17 that here the va-
lency and the minimal eigenvalue of the oppositeness relation between gener-
ators are given by k = qd

2
and λ = (−1)dqd(d−1). Corollary 2.2.9 now yields

that |S| ≤ 1− k/λ = 1 + qd, with equality if and only if χS ∈ (V d
d,0)⊥.
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Thas [152, Theorems 20 and 21] already proved that in H(2d− 1, q2) spreads,
or hence partial spreads of size q2d−1 +1, cannot exist, and gave a better upper
bound for partial spreads if d is even. On the other hand, partial spreads
of size qd + 1 in H(2d − 1, q2) were constructed for all d ≥ 2 in [1], by use
of a symplectic polarity of the projective space PG(2d − 1, q2), commuting
with the associated Hermitian polarity. In the Baer subgeometry of points on
which these two polarities coincide, a spread of the induced symplectic polar
space W (2d − 1, q) can always be found, and these qd + 1 generators extend
to pairwise disjoint generators of H(2d− 1, q2). Maximality of partial spreads
of H(2d− 1, q2) constructed in this way was also shown for d = 2, 3 in [1] and
for all odd d in [105]. De Beule and Metsch [52] already obtained the bound
of q3 + 1 for H(5, q2).

We will further examine these partial spreads of maximum size in Chapter
6, and we will also give different proofs of the bound in other contexts in
Subsection 6.4.3 and Appendix A. We also refer the reader to [104, Appendix
A] for a good survey on existence results for m-systems in polar spaces in
general.



Chapter 5

Erdős-Ko-Rado theorems for
dual polar graphs

In this chapter, we will focus on one specific problem in polar spaces, which
can be seen as the converse of studying partial spreads. It will be interpreted
as one of the many Erdős-Ko-Rado problems appearing in the literature.

Erdős, Ko and Rado [78] considered sets of subsets of equal size in a finite set,
such that every two elements have an intersection of at least a given size. Many
variants of their theorem have been proved later, including one for subspaces
in a vector space by Hsieh [96].

We will be concerned with those sets of maximal totally isotropic subspaces in
classical finite polar spaces, such that every two elements are incident with at
least one common point. It is our aim to determine the maximum size and to
classify all sets attaining that bound. When translating our problem into the
language of graph theory, these subsets will correspond with the cocliques of
one relation of the association scheme defined by the dual polar graph. Stan-
ton [135] already used algebraic techniques to obtain upper bounds for these
cocliques, which turn out to be tight in most but not all cases. Brouwer, God-
sil, Koolen and Martin [24] developed a general theory to obtain information
on similar extremal sets in many association schemes. Tanaka [139] worked
further on this and already classified extremal subsets satisfying certain con-
ditions in many association schemes, providing new proofs of known results,
as well as obtaining new results for graphs such as the dual polar graphs.
We will use similar techniques, as well as geometric arguments, to obtain a

91
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classification in all polar spaces, except H(2d− 1, q2) with d odd and d ≥ 5.

An overview can be found at the end of this chapter in Section 5.10.

The results in this chapter are joint work with Valentina Pepe and Leo Storme,
and will be published in Journal of Combinatorial Theory Series A [124].

5.1 Erdős-Ko-Rado theorems

We start by giving the original Erdős-Ko-Rado theorem. We will refer to
subsets of size k as simply k-sets , and we will say a set S of subsets is t-
intersecting if any two elements of S have an intersection of size at least t.

Theorem 5.1.1. [78] Suppose S is a t-intersecting set of k-sets in a set of
size n, with 1 ≤ t ≤ k ≤ n.

(i) If n ≥ t+ (k − t)
(
k
t

)3
, then |S| ≤

(
n−t
k−t

)
.

(ii) If n ≥ 2k and t = 1, then |S| ≤
(
n−1
k−1

)
.

Note that the set of k-sets in an n-set through a fixed t-set is a t-intersecting
set of size

(
n−t
k−t

)
.

Wilson obtained the following sharper result.

Theorem 5.1.2. [170] Suppose S is a t-intersecting set of k-sets in a set of
size n, with 1 ≤ t ≤ k and n ≥ (t + 1)(k − t + 1). Then |S| ≤

(
n−t
k−t

)
, and if

n > (t+ 1)(k− t+ 1), then equality holds if and only if S consists of all k-sets
through a fixed t-set.

We will say a set of k-spaces in a vector space is t-intersecting if the dimension
of the intersection of every two elements is at least t. Hsieh proved the following
analogue of the original Erdős-Ko-Rado theorem for vector spaces.

Theorem 5.1.3. [96] If S is a t-intersecting set of k-spaces in V (n, q) with
1 ≤ t ≤ k and n ≥ 2k+1, and also with (n, q) 6= (2k+1, 2) in case t ≥ 2, then
|S| ≤

[
n−t
k−t

]
q
. Equality holds if and only if S consists of all k-spaces through a

fixed t-space.
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This result was improved in [81]. For t = 1, elegant proofs for both the tight
upper bound and the classification in V (n, q) can be found in [84] for n ≥ 2k+1
and in [111] for n ≥ 2k. We refer to Tanaka [139] for a proof of the following
very general result.

Theorem 5.1.4. If S is a set of t-intersecting k-spaces in V (n, q) with 1 ≤
t ≤ k and n ≥ 2k, then |S| ≤

[
n−t
k−t

]
q
, and equality holds if and only if S either

consists of all k-spaces through a fixed t-space, or n = 2k and S consists of all
k-spaces in a fixed (2k − t)-space.

It is our goal to study sets of generators in a classical finite polar space, no
two elements of which have a trivial intersection. We will refer to such sets as
EKR sets of generators . We will say that such a set is a maximal EKR set
of generators if it is not a proper subset of another EKR set of generators. A
simple example of an EKR set of generators is the point-pencil construction,
consisting of all generators through a fixed point. This is in fact always a
maximal EKR set of generators, as for every generator π not through a fixed
point p, a generator through p disjoint from π can be found. We will see that in
many polar spaces, these are the unique EKR sets of generators of maximum
size.

Note that for polar spaces of rank two, i.e. generalized quadrangles, it is easy
to see that the maximal EKR sets of generators are precisely the sets of lines
through a fixed point. Therefore, we will only consider classical finite polar
spaces of rank at least three.

5.2 Algebraic techniques

Theorems 5.1.1 and 5.1.2 can be seen as results on codes in the Johnson graphs
J(n, k), and similarly, Theorems 5.1.3 and 5.1.4 deal with codes in the Grass-
mann graphs Jq(n, k). We have seen in Sections 2.3 and 3.1 that the distance
between vertices in these graphs corresponds with the size or dimension of
their intersection.

Recall the definitions of width and dual width from Subsection 2.2.4.

We know from Theorem 4.1.7 that two vertices are at distance i in the dual
polar graph, associated with a classical finite polar space of rank d, if and only
if their intersection has dimension d− i. Therefore, the EKR sets of generators
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are the codes in the dual polar graph with width at most d− 1. We can also
describe them as the cocliques in the graph corresponding to the (maximum)
distance-d relation in the d-class association scheme, which is the oppositeness
relation between generators.

The bound in the following fundamental theorem on cocliques in general is
known as Hoffman’s bound.

Theorem 5.2.1. [95] Let Γ be a k-regular graph, k ≥ 1, on a set of vertices
Ω, with minimal eigenvalue λ. If S is a coclique in Γ, then:

|S| ≤ |Ω|
1− k/λ

,

and in case of equality:

(i) the characteristic vector χS can be written as |S||Ω|χΩ + v with v an eigen-

vector of the adjacency matrix A for λ,

(ii) every vertex in Ω\S is adjacent to exactly −λ elements of S.

Proof. Since λ is the minimal eigenvalue, we know that A−λI has non-negative
eigenvalues and thus is positive semidefinite. Note that λ < 0 since Tr(A) = 0
and A 6= 0. Hence:(

χS −
|S|
|Ω|

χΩ

)T(
A− λI

)(
χS −

|S|
|Ω|

χΩ

)
≥ 0,

Since S is a coclique, we can write (χS)TAχS = 0. Using this and AχΩ = kχΩ,
we can rewrite the above inequality to obtain the desired upper bound on |S|.
If equality holds, then χS− |S||Ω|χΩ is an eigenvector of A with eigenvalue λ, and

thus intriguing with parameters (h1, h2) with h1 − h2 = λ, because of Lemma
2.1.3. As h1 = 0, we find that every vertex not in S is adjacent to exactly −λ
elements of S.

We now state two general results by Brouwer, Godsil, Koolen and Martin on
subsets in metric/cometric schemes with a certain width/dual width.

Theorem 5.2.2. [24, Theorem 1] If S is a non-empty subset in a metric d-
class association scheme with dual degree s∗ and width w, then s∗ +w ≥ d. If
equality holds, then S is a completely regular code.
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Theorem 5.2.3. [24, Theorem 2] If S is a non-empty subset in a cometric
d-class association scheme with dual width w∗ and degree s, then s + w∗ ≥ d.
If equality holds, then S, together with the non-empty restrictions to S of the
relations of the scheme, is a cometric s-class association scheme.

If the scheme is both metric and cometric, then the width w of S is at least the
degree s, and hence the previous theorem in particular implies that w+w∗ ≥ d,
and if equality holds, a subscheme is induced by S.

Tanaka observed that the following result is in fact implicit in [24].

Theorem 5.2.4. [139, Proposition 2] If S is a non-empty subset in a metric
and cometric d-class association scheme with width w and dual width w∗, then
w+w∗ ≥ d. If equality holds, then S, together with the non-empty restrictions
to S of the scheme is a cometric w-class association scheme, the intersection
numbers of which only depend on w.

Theorem 4.2.4 implies that in a classical finite polar space of rank d, the set
S of generators through a fixed i-space with 0 ≤ i ≤ d has dual degree set
{1, . . . , i} and hence dual width i with respect to the cometric ordering from
Remark 4.3.12. The width is given by d − i. Here, the induced scheme that
follows from Theorem 5.2.4 is isomorphic to the one defined by the dual polar
graph with the same parameters and of the same type but with diameter d− i.

Finally, we conclude this section by stating a general theorem, that we will use
in Section 5.8, where the most difficult case in this chapter will be considered.

Definition 5.2.5. Let G act generously transitively on both X and X ′, and
let R1, . . . , Rn be its orbits on X × X ′. The generalized outer distribution of
S ⊆ X with respect to X ′ is the matrix B = (Bx′,i)x′∈X′;i=1,...,n, with:

Bx′,i = |{x ∈ X|(x, x′) ∈ Ri}|, ∀x′ ∈ X ′,∀i ∈ {1, . . . , n}.

Note that for every x′ ∈ X ′, the sum of the entries Bx′,i in the corresponding
row must be equal to |S|.

Under some assumptions, we will now prove a generalization of Lemma 2.2.8,
which implies that the rank of the outer distribution of a non-empty subset in
an association scheme is equal to the dual degree plus 1.
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Theorem 5.2.6. Suppose G acts generously transitively on both X and X ′,
and consider the decompositions into isotypic components:

RX = (V1 ⊥ . . . ⊥ Vn) ⊥ (A1 ⊥ . . . ⊥ As),

RX′ = (V ′1 ⊥ . . . ⊥ V ′n) ⊥ (B1 ⊥ . . . ⊥ Bt),

where Vi and V ′i are isomorphic RG-modules.
There is a set of row vectors (λ1

j , . . . , λ
n
j ) with j ∈ {1, . . . , n} such that for

every S ⊆ X, the row span of the generalized outer distribution B with respect
to X ′ is precisely spanned by those row vectors (λ1

j , . . . , λ
n
j ) with j ∈ J , where

J is the set of indices j such that χS /∈ V ⊥j .

Proof. We know from Theorem 2.5.15 that we can find a basis of homomor-
phisms pj with j ∈ {1, . . . , n} of the space HomRG(RX ,RX′), such that every
pj maps Vj into V ′j bijectively, while vanishing on all other irreducibles. For
every orbit Ri, write Ci for the corresponding (0, 1)-matrix with columns and
rows indexed by X and X ′, respectively. We now define the scalars λij as
follows:

Ci =
n∑
j=1

λijpj, ∀i ∈ {1, . . . , n}.

We denote by Ej the minimal idempotent of the association scheme on X,
afforded by G, which projects onto Vj. We can now write for every x′ ∈ X ′:

Bx′,i = (CiχS)x′

= (CiE1χS)x′ + · · ·+ (CiEnχS)x′

=
∑
j∈J

(CiEjχS)x′

=
∑
j∈J

λij(pj(EjχS))x′ .

Hence every row of the generalized outer distribution B of S is a linear com-
bination of the row vectors (λ1

j , . . . , λ
n
j ) with j ∈ J . On the other hand, the

column space is precisely the space spanned by all CiχS, and hence certainly
contains all pjχS = pj(EjχS) with j ∈ J . As these |J | column vectors are
linearly independent, this concludes the proof.

Calderbank and Delsarte [31] considered this concept for the specific case of the
Johnson schemes, and called the generalized outer distribution with respect to
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t-sets the t-distribution matrix. A very similar theory was developed for the
Hamming schemes by Delsarte [68]. In these papers, the scalars from Theorem
5.2.6 are explicitly computed in terms of Hahn and Krawtchouk polynomials,
respectively, but for our study of the dual polar graph, such computations will
not be required.

5.3 Bounds for EKR sets of generators

We will now use Theorem 5.2.1 to obtain upper bounds on the size of EKR
sets of generators in classical finite polar spaces. This computation was already
done by Stanton [134]. It turns out that in almost all cases, the upper bound is
exactly the number of generators through a fixed point, and hence also tight.

Theorem 5.3.1. Let S be an EKR set of generators in a classical finite po-
lar space P of rank d with parameters (q, qe), and consider the decomposition
RΩd = V d

0,0 ⊥ . . . ⊥ V d
d,0.

• If P = Q+(2d− 1, q), d odd, then |S| is at most half of the total number
of generators in P, and if this bound is attained, then χS ∈ V d

0,0 ⊥ V d
d,0.

• If P = Q+(2d−1, q), d even, then |S| is at most the number of generators
through a fixed point, and if this bound is attained, then χS ∈ V d

0,0 ⊥
V d

1,0 ⊥ V d
d−1,0.

• If P = H(2d − 1, q2), d odd, then |S| is at most the total number of
generators in P divided by qd + 1, and if this bound is attained, then
χS ∈ V d

0,0 ⊥ V d
d,0.

• If P = Q(2d, q) or P = W (2d−1, q), with d odd in both cases, then |S| is
at most the number of generators through a fixed point, and if this bound
is attained, then χS ∈ V d

0,0 ⊥ V d
1,0 ⊥ V d

d,0.

For all other polar spaces, the size of S is at most the number of generators
through a fixed point, and if this bound is attained, then χS ∈ V d

0,0 ⊥ V d
1,0.

Proof. We know the eigenvalue of the oppositeness relation between generators
for V d

j,0 from Theorem 4.3.15:

(−1)jqd(d−1)/2+(d−j)(e−j).
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For j = 0, one obtains the valency k of oppositeness. The minimal eigenvalue
λ of oppositeness was considered in Theorem 4.3.17. Theorem 5.2.1 now yields

that |S| is at most |Ωd|/(1− k/λ), and that in case of equality, χS − |S|
|Ωd|

χΩd is

in the eigenspace for λ.

5.4 General observations on maximal EKR sets of gen-
erators

We will first obtain some results by use of purely geometric arguments, which
already hold when only assuming maximality of the EKR set of generators.

For the remainder of this chapter, we will also refer to the (d− 1)-spaces in a
classical finite polar space of rank d as the dual lines .

Lemma 5.4.1. Let πa, πb and πc be pairwise non-trivially intersecting gener-
ators in a classical finite polar space. The intersections πa ∩ πb and πa ∩ πc
cannot be complementary subspaces of πa.

Proof. Suppose πa ∩ πb and πa ∩ πc are complementary subspaces of πa. As
πb and πc are assumed to intersect non-trivially, they must have a point p in
common, not in πa. This point would be collinear with all points in πa∩πb and
with all points in πa ∩ πc, and hence with all points in 〈πa ∩ πb, πa ∩ πc〉 = πa,
which would contradict the assumption that πa is a maximal totally isotropic
subspace.

Lemma 5.4.2. Let S be a maximal EKR set of generators. If a dual line is
incident with at least two elements of S, then all generators through it are in
S.

Proof. Let µ be a dual line, incident with two distinct elements πa and πb of
S. Suppose a third generator π′ through µ is not in S. As S is assumed to
be maximal, there must be a generator πc ∈ S disjoint from π′ and hence also
from µ. As S is an EKR set, πc must intersect both πa and πb non-trivially.
Hence πc intersects πa in a point p not on µ. Hence the intersections πa∩πb = µ
and πa ∩ πc = p are complementary in πa, contradicting Lemma 5.4.1.

The previous lemma motivates us to introduce the following terminology. We
say that a dual line in a classical finite polar space is secant , tangent or external
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with respect to a maximal EKR set of generators S if all, one or none of the
generators through it are in S, respectively.

Let S be a maximal EKR set of generators in a classical finite polar space with
π ∈ S. Consider all secant dual lines with respect to S in π. We will refer
to their intersection as the nucleus of π (with respect to S). If there are no
secant dual lines in π ∈ S, the nucleus is simply π itself. The nuclei of the
elements of S will play a crucial role in our classification of the EKR sets of
generators of maximum size. In the following lemma, we prove fundamental
properties of the nuclei.

Lemma 5.4.3. Let S be a maximal EKR set of generators in a classical fi-
nite polar space of rank d and with parameters (q, qe). Suppose πs is the s-
dimensional nucleus of π ∈ S.

(i) The secant dual lines in π are those through πs, and the tangent dual
lines in π are those not through πs.

(ii) The number of elements of S that intersect π in any dual line is given by
qe
[
d−s

1

]
q
.

(iii) If a generator π′ ∈ S intersects π in just a point, then this point must be
in πs.

Proof. If π′ ∈ S intersects π in a point p, then p must belong to every secant
dual line µ in π by Lemma 5.4.1, hence p ∈ πs.

Let µ be a dual line through πs. By Lemma 5.4.2, µ is either secant or tangent.
Suppose that µ is tangent. This means that there is a π1 through µ such that
π1 /∈ S. Since S is maximal, there must be a π2 ∈ S disjoint from π1. Now π2

must intersect π, so this intersection is a point, not in µ and hence not in πs
either. This contradicts the above, and hence µ is not tangent.

The number of dual lines in π through πs is given by
[
d−s

1

]
q
, and through each

such dual line there are qe other elements of S, and hence there are exactly
qe
[
d−s

1

]
q

elements of S intersecting π in a dual line.

As we will often count with respect to generators, the following corollary will
be particularly useful in this chapter.
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Corollary 5.4.4. Let P be a classical finite polar space of rank d with param-
eters (q, qe). The number of generators intersecting a fixed totally isotropic
m-space πm in a subspace of codimension i in πm is given by:

qi(2d−2m+2e+i−1)/2
[m
i

]
q

d−m−1∏
j=0

(qd−m−j−1+e + 1).

For any generator, there are qi(i−1)/2+ie generators intersecting it in a fixed
subspace of codimension i.

Proof. The first part follows from Theorem 4.1.4 with a = m, b = d, s = m− i
and k = d. The last number is the valency of oppositeness between generators
in the residual polar space of the chosen subspace of dimension d − i, which
has rank i.

Note that in a classical finite polar space of rank d with parameters (q, qe),
the number of generators through a fixed point is |Ωd|/(qd−1+e + 1), where
qd−1+e + 1 is the ovoid number of the polar space.

5.5 Classification of maximum EKR sets of generators
in most polar spaces

We know from Theorem 5.3.1 that in most classical finite polar spaces, the
maximum size of an EKR set of generators is attained by the set of all gen-
erators through a fixed point, and that in those cases the dual degree set is
{1} with respect to the cometric ordering from Remark 4.3.12. Tanaka [139]
classified all non-empty subsets of generators in the classical finite polar spaces
of rank d with width w and dual degree w∗ satisfying w + w∗ = d, by proving
that they are precisely the sets of generators through a fixed w∗-space. For
the sake of completeness, we will use his technique for the specific case w = 1.
We will then slightly change the argument in Section 5.6.

Lemma 5.5.1. Consider a classical finite polar space of rank d, and a subset
of generators S with width d − 1 and dual width 1. Suppose π1 and π2 are in
S and d(π1, π2) = i in the dual polar graph Γ with 1 ≤ i ≤ d. Any neighbour
π of π1 with d(π, π2) = i− 1 is also in S.
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Proof. Suppose the polar space has parameters (q, qe). We know from Theorem
4.1.7 that there are exactly ci =

[
i
1

]
q

neighbours of π1 in Γ at distance i−1 from

π2. Theorem 5.2.4 yields that the distance-j relations with j ∈ {0, . . . , d− 1}
have non-empty restrictions to S and yield a (d− 1)-class association scheme,
with parameters only depending on w. Hence the induced scheme on S is
isomorphic to the one defined by the dual polar graph of the same type, with
the same parameters (q, qe) and with diameter d− 1. Two vertices in S are at
the same distance with respect to the corresponding graph Γ′ in the induced
scheme, as in Γ itself. Hence, with respect to Γ, the number of neighbours of
π1 in S at distance i − 1 from π2 is also given by ci =

[
i
1

]
q
, which yields the

desired result.

Theorem 5.5.2. Let P be a polar space of rank d ≥ 3, either H(2d, q2),
H(2d − 1, q2) with d even, Q(2d, q) with d even, W (2d − 1, q) with d even or
Q−(2d + 1, q). If S is an EKR set of generators of P with |S| equal to the
number of generators through a fixed point, then S consists of all generators
through a fixed point.

Proof. We know from Theorem 5.3.1 that in these polar spaces, sets of gen-
erators with width w ≤ d − 1 of this size have dual width w∗ = 1. It follows
from Theorem 5.2.3 that w is exactly d− 1. Let π0 and π1 be any two vertices
in S at distance d− 1, hence intersecting in just a point p. Now suppose there
is a π2 ∈ S not through p, with d(π1, π2) = i in the dual polar graph. In that
case, there is certainly a point p2 ∈ π2 not in p⊥. Now consider the generator
π = 〈p2, p

⊥
2 ∩ π1〉. This generator intersects π1 in a hyperplane not through p,

and d(π, π2) = i−1. It follows from Lemma 5.5.1 that π is also in S. However,
this implies that π0 and π cannot intersect trivially, while they intersect π1

in the complementary subspaces p and p⊥2 ∩ π1, respectively. This contradicts
Lemma 5.4.1. We can hence conclude that all generators in S must go through
p. The size |S| now implies that S is exactly the set of generators through p.

The forthcoming sections in this chapter will be devoted to the remaining polar
spaces.

5.6 Hyperbolic quadrics

In the hyperbolic quadric Q+(2d − 1, q), there are two systems of generators
of the same size. We will refer to them as the Latin and Greek generators,
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and use the symbols Ωd,1 and Ωd,2 for these sets. They have the property that
two generators are in the same system if and only if the dimension of their
intersection has the same parity as d. Moreover, a totally isotropic subspace
of dimension d− 1 is contained in exactly two generators: one in Ωd,1 and one
in Ωd,2, since the polar space has parameters (q, 1).

The automorphism group of Q+(2d− 1, q) acts transitively on the generators,
but the dual polar graph is bipartite with diameter d, with the sets of Latins
and Greeks as the two bipartite classes. Hence every automorphism either
stabilizes both systems, or switches them. We refer to [140, Chapter 11] for
proofs and more information.

For this particular dual polar graph, the eigenvalue for the subspace V d
j,0 from

Theorem 4.1.7, with 0 ≤ j ≤ d, is given by
[
d−j

1

]
q
−
[
j
1

]
q
. Note that the

eigenvalues for V d
j,0 and V d

d−j,0 are opposite values. The following relation holds
between eigenspaces:

V d
j,0 = {ι1(v1)− ι2(v2)|v1 ∈ RΩd,1 , v2 ∈ RΩd,2 , ι1(v1) + ι2(v2) ∈ V d

d−j,0},

where ιi : RΩd,i → RΩd is the injection with (ιi(v))ω = vω if ω ∈ Ωd,i, and
(ιi(v))ω = 0 if not.

In particular, V d
0,0 and V d

d,0 are one-dimensional eigenspaces of this dual polar

graph, with V d
0,0 = 〈χΩd,1 + χΩd,2〉 and V d

d,0 = 〈χΩd,1 − χΩd,2〉.

We will first consider the case where the diameter d is odd. Here, two gen-
erators of the same system cannot intersect trivially, so the set of all Latins
and the set of all Greeks are both EKR sets, and their sizes meet the eigen-
value bound from Theorem 5.3.1. The following algebraic argument quickly
establishes that this is the only possibility.

Theorem 5.6.1. If S is an EKR set of generators in Q+(2d− 1, q), d odd, of
size |Ωd|/2, then S is one of the two systems of the hyperbolic quadric.

Proof. Theorem 5.3.1 yields that χS ∈ V d
0,0 ⊥ V d

d,0. The eigenspace V d
0,0 is

spanned by χΩd,1 + χΩd,2 , while V d
d,0 is spanned by χΩd,1 − χΩd,2 . Hence χS can

only be χΩd,1 or χΩd,2 .

Next, we consider the case where the diameter d is even. Here, two generators
of two different systems cannot intersect trivially, so if S1 is an EKR set con-
tained in Ωd,1 and S2 is an EKR set contained in Ωd,2, then the union S1 ∪ S2
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is still an EKR set for the polar space. The upper bound from Theorem 5.3.1
for an EKR set of generators S in Q+(2d − 1, q) is 2(q + 1) · · · (qd−2 + 1) if d
is even. This bound can be attained by taking all generators through a single
point, but one could for instance also take all Latins through one point p1, and
all Greeks through another point p2 (either collinear with p1 or not) to obtain
an EKR set of generators of maximum size. We now introduce the half dual
polar graph Γ′, the vertices of which are the generators of one system, with
two of them adjacent when intersecting in a subspace of codimension 2. We
refer to [23, Section 9.4.C] for a discussion of this graph.

Theorem 5.6.2. [23, Corollary 8.4.2 and Theorem 9.4.8] Let Γ′ be the half
dual polar graph on one system of generators Ωd,1 in the hyperbolic quadric
Q+(2d− 1, q).

(i) Γ′ is distance-regular with diameter d′ := bd
2
c, and two vertices are at

distance i if and only if they intersect in a subspace of codimension 2i.

(ii) The valency of the distance-i relation for Γ′ is given by
[
d
2i

]
q
qi(2i−1), and

the intersection numbers are given by:

bi = q4i+1

[
d− 2i

2

]
q

,∀i ∈ {0, . . . , d′ − 1}; ci =

[
2i

2

]
q

,∀i ∈ {1, . . . , d′}.

(iii) If d is even, then Γ′ has classical parameters:(
d′, q2, q(q + 1), q

[
d− 1

1

]
q

)
,

and if d is odd, then Γ′ has classical parameters:(
d′, q2, q(q + 1), q

[
d

1

]
q

)
.

(iv) The vector space RΩd,1 decomposes as W0 ⊥ W1 ⊥ . . . ⊥ Wd′, where Wj

is an eigenspace of Γ′ for the eigenvalue:

q2j+1

[
d− 2j

2

]
q

− q2j − 1

q2 − 1
,

and all d′ + 1 eigenvalues are distinct. The ordering of the spaces Wj is
Q-polynomial.
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Remark 5.6.3. If v ∈ RΩd,1 is an eigenvector for the eigenvalue λ of the half
dual polar graph Γ′, then ι1(v) is an eigenvector for λ of the distance-2 relation
of Γ. One can now use Theorems 4.3.6 and 5.6.2 to verify that ι1(Wj) is in the
span of V d

j,0 and V d
d−j,0, with 0 ≤ 2j ≤ d.

As an illustration of Theorem 5.6.2 and Remark 5.6.3, we give the matrix of
eigenvalues for the P -polynomial association schemes defined by both the dual
polar graph and the half dual polar graph for the hyperbolic quadric Q+(7, q)
(i.e. d = 4) in Tables 5.1 and 5.2. The ordering of the rows corresponds with
the cometric orderings from Remarks 4.3.12 and 5.6.3.



1 q3 + q2 + q + 1
(
q2 + 1

)
q
(
q2 + q + 1

)
q3
(
q3 + q2 + q + 1

)
q6

1 (q + 1) q q3 − 1 − (q + 1) q −q3

1 0 −q2 − 1 0 q2

1 − (q + 1) q q3 − 1 (q + 1) q −q3

1 −q3 − q2 − q − 1
(
q2 + 1

)
q
(
q2 + q + 1

)
−q3

(
q3 + q2 + q + 1

)
q6



Table 5.1: Eigenvalues for all generators in Q+(7, q)


1
(
q2 + 1

)
q
(
q2 + q + 1

)
q6

1 q3 − 1 −q3

1 −q2 − 1 q2



Table 5.2: Eigenvalues for one system of generators in Q+(7, q)

We will now consider the eigenvalues of the disjointness relation on the vertices
of the half dual polar graph in order to obtain bounds.

Lemma 5.6.4. An EKR set of generators S in one system of Q+(2d − 1, q)
with d even has size at most (q + 1) · · · (qd−2 + 1). In case of equality, χS ∈
W0 ⊥ W1, using the same notation as in Theorem 5.6.2.
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Proof. If Γ′ is the half dual polar graph on Q+(2d−1, q), then the eigenvalue of
the distance-i relation for Γ′ for the subspace Wj is the same as the eigenvalue
of the distance-2i relation for the original dual polar graph Γ for both the
subspace V d

j,0 and V d
d−j,0. Hence, the ratio 1−k/λ from Theorem 5.2.1 remains

the same, and we find that an EKR set of generators of the same system has
size at most (q + 1) · · · (qd−2 + 1), and this bound can only be attained if the
characteristic vector χS is in W0 ⊥ W1.

It follows from Lemma 5.6.4 that an EKR set of maximum size in Q+(2d−1, q),
d even, must contain exactly (q+1) · · · (qd−2 +1) elements of each system. The
two systems of generators are equivalent with respect to the automorphism
group, so it suffices to classify the EKR sets of size (q+ 1) · · · (qd−2 + 1) of one
system in Q+(2d− 1, q).

It is our aim to show that an EKR set of generators of one system in the
hyperbolic quadric Q+(2d − 1, q), for even d ≥ 6, consists of all generators of
that system through one point, and that for d = 4, there is only one extra
construction.

Lemma 5.6.5. Let S be an EKR set of (q+1) · · · (qd−2 +1) generators of one
system in Q+(2d− 1, q), d even. The distance-i relations of the half dual polar
graph Γ′ with 0 ≤ i ≤ d/2 − 1 induce an association scheme on S with the
same intersection numbers as the scheme defined by the half dual polar graph
on Q+(2(d− 1)− 1, q).

Proof. We know from Lemma 5.6.4 that the assumptions imply that χS ∈
W0 ⊥ W1, using the same notation as in Theorem 5.6.2. Hence, with respect
to Γ′ and its Q-polynomial ordering from Theorem 5.6.2(iv), the width w of
S is at most d− 1 and the dual width w∗ is 1. Theorem 5.2.3 yields that the
distance-i relations define a (d/2− 1)-class association scheme on S.

Now let S0 be the set of all generators of the same system through a fixed
point. This set satisfies the same assumptions. We know that the association
schemes induced by S and by S0 have the same intersection numbers, and
the latter is isomorphic to that on generators of one system in the hyperbolic
quadric Q+(2(d− 1)− 1, q).

We can now prove a result very similar to Lemma 5.5.1.

Lemma 5.6.6. Let S be an EKR set of (q + 1) · · · (qd−2 + 1) generators of
one system in Q+(2d− 1, q) with d even, and suppose that π1 and π2 are two



106 | Chapter 5. Erdős-Ko-Rado theorems for dual polar graphs

elements of S at distance i in the associated half dual polar graph Γ′. If π is
a neighbour of π1 in Γ′ and at distance i− 1 from π2, then π must be in S as
well.

Proof. If two generators π1 and π2 in S are at distance i in Γ′, then the number
of generators in S at distance i− 1 from π1 and at distance 1 from π2 is given
by ci =

[
2i
2

]
q
, because of Lemma 5.6.5 and Theorem 5.6.2.

Moreover,
[

2i
2

]
q

is also the number of generators in the full graph Γ′, at distance

i−1 from π1 and at distance 1 from π2. Hence every such generator in Γ′ must
belong to S.

The proof of the following lemma was inspired by the proof of [139, Theorem
1] (see the proof of Theorem 5.5.2).

Lemma 5.6.7. Let S be an EKR set of (q+1) · · · (qd−2 +1) generators of one
system of Q+(2d − 1, q), d even and d ≥ 4. If π0 and π1 are elements of S
intersecting in just a line `, then no element of S can intersect ` trivially.

Proof. Suppose π0 and π1 are elements of S intersecting in just the line `.
Suppose π2 ∈ S intersects π1 in a subspace µ of codimension 2i in π1, skew
to `. Let m be any line in π2, skew to `⊥ ∩ π2. Consider the generator
π = 〈m,m⊥∩π1〉. This generator intersects π1 in a subspace of codimension 2,
skew to `, and is at distance i−1 with respect to the half dual polar graph from
π2. Hence π is in S as well, because of Lemma 5.6.6. Now π and π0 must also
intersect non-trivially, but then the triple {π0, π1, π} would contradict Lemma
5.4.1 as π0∩π1 and π∩π1 are complementary subspaces in π1. Hence π2 cannot
intersect ` trivially.

We now come to our main result concerning hyperbolic quadrics. The proof
of the following theorem uses the Erdős-Ko-Rado theorem for 1-intersecting
sets of k-spaces in V (n, q). We know from Theorem 5.1.4 that the case n = 2k
is special. This will have its consequences in the proof and will force us to
assume that the rank d of the polar space is at least 6.

Theorem 5.6.8. If S is an EKR set of Latins of size (q + 1) · · · (qd−2 + 1) in
Q+(2d − 1, q), d even and d ≥ 6, then S is the set of Latins through a fixed
point.

Proof. Let π be in S. We know from Lemma 5.6.5 that the number of elements
of S intersecting π in exactly a line is the same as the number of generators
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in Q+(2(d − 1) − 1, q) that intersect a fixed generator in exactly a point.
This is the valency of the distance-(d/2 − 1) relation in the half dual polar
graph on Q+(2(d − 1) − 1, q), and thus given by

[
d−1

1

]
q
q(d−2)(d−3)/2 because

of Theorem 5.6.2. On the other hand, Corollary 5.4.4 yields that there are
exactly q(d−2)(d−3)/2 generators of Q+(2d − 1, q), intersecting π in just a fixed
line. Hence the set A of lines that are intersections of π with some element
of S has size at least

[
d−1

1

]
q
, and we know from Lemma 5.6.7 that no two of

them can be disjoint. As π is d-dimensional with d ≥ 6, we can now apply
Theorem 5.1.4 to see that A is precisely the set of

[
d−1

1

]
q

lines through some

fixed point p in π.

Now suppose π′ is an element of S not through p. This means that µ = π ∩ π′
is a subspace of codimension at least 2 in π and not through p. Let ` be a line
in π, through p and skew to µ. Now ` ∈ A is the intersection of two elements
of S, while π′ ∈ S is disjoint from `, contradicting Lemma 5.6.7.

Remark 5.6.9. One can actually avoid using Theorem 5.1.4 in the proof of
Theorem 5.6.8, as it is in fact very easy to see that every maximal 1-intersecting
set of 2-spaces in V (n, q) with n ≥ 3 consists of either all

[
n−1

1

]
q

2-spaces

through a fixed point, or all
[

3
2

]
q

2-spaces in a fixed 3-space.

The hyperbolic quadric Q+(7, q) of rank 4 must be treated separately. Let
P0 be the set of (q + 1)(q2 + 1)(q3 + 1) points in Q+(7, q), P1 the set of
(q+ 1)(q2 + 1)(q3 + 1) Latins, P2 the set of (q+ 1)(q2 + 1)(q3 + 1) Greeks, and
L the set of lines of Q+(7, q). We can define an incidence relation between two
elements belonging to any couple of sets: a Latin and a Greek are incident
if they intersect in a plane, and in all the other cases it is just symmetrized
strict inclusion. It is well known that there exists a triality, i.e. an incidence
preserving map of order three that maps P0 to P1, P1 to P2, P2 to P0, and L
to L (see for instance [161, Section 2.4]).

Theorem 5.6.10. Let S be a set of (q+1)(q2 +1) Latins in Q+(7, q), pairwise
intersecting non-trivially. Then either S consists of all Latins through one
point, or S is the set of all Latins intersecting a fixed Greek in a plane.

Proof. Let S be a set of pairwise intersecting Latins, and let τ be any triality.
Then Sτ

−1
is a set of mutually collinear points. It is well known that in every

polar space the largest set of pairwise collinear points is the set of points in
a generator (see for instance [73, Lemma 9.2]). Hence, there is a generator π

containing all (q + 1)(q2 + 1) points of Sτ
−1

.
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If π is a Latin, then S itself consists of all Latins incident with the Greek πτ ,
or hence of all Latins intersecting πτ in a plane. If π is a Greek, then S itself
consists of all Latins through the point πτ .

5.7 Q(2d, q) with d odd

We will now treat the problem in the parabolic quadrics of odd rank. The
bound from Theorem 5.3.1 is still attained by the point-pencil construction,
but the properties of the characteristic vector are a bit weaker. We will make
use of the embedding in the hyperbolic quadric. We have seen in Section 5.6
that Q+(7, q) is a special case, and therefore Q(6, q), which has rank three,
will also be exceptional.

Theorem 5.7.1. Let S be an EKR set of generators in Q(2d, q), d odd and
d ≥ 3, with |S| = (q + 1) · · · (qd−1 + 1). One of the following must hold:

(i) S is the set of all generators through a fixed point,

(ii) S is the set of all generators of one system of an embedded Q+(2d−1, q),

(iii) d = 3 and S consists of one fixed generator and all generators intersecting
it in a line (i.e. S is a sphere of radius 1 in the dual polar graph).

Proof. Consider the embedding of Q(2d, q) in Q+(2d+ 1, q) as a non-singular
hyperplane section, i.e. Q(2d, q) = Q+(2d+ 1, q) ∩H with H a hyperplane of
the projective geometry PG(2d+1, q). Every generator of Q(2d, q) is contained
in a unique generator of a fixed system of Q+(2d+ 1, q), so let S̄ be the set of
Latin generators in Q+(2d+ 1, q) through an element of S. The elements of S̄
cannot be disjoint either and |S̄| = |S| = (q+ 1) · · · (qd−1 + 1). Theorems 5.6.8
and 5.6.10 then yield that S̄ is either the set of all Latins through a point p
in Q+(2d + 1, q), or d = 3 and S̄ is the set of all Latins intersecting a fixed
Greek γ in a plane. Suppose that we are in the first case. If p is in H, then S
is simply the set of all generators through p in Q(2d, q). If p is not in H, then
p⊥ ∩H intersects the parabolic quadric Q(2d, q) in a non-singular hyperbolic
quadric Q+(2d− 1, q). Then S is one system of generators of that hyperbolic
quadric. In the second case, we see that S consists of the plane γ ∩H and the
(q2 + q + 1)q planes of Q(6, q) intersecting that plane in a line.
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5.8 W (2d− 1, q) with d odd

If q is even, parabolic and symplectic polar spaces with the same rank and
the same parameters are isomorphic (see for instance [140, Chapter 11]), and
hence we will also easily obtain the classification in those spaces. The case q
odd will be considerably harder.

We first consider Q(2d, q) and W (2d − 1, q) with d odd and q even. Recall
the definition and the properties of the nucleus p of Q(2d, q) from Subsection
1.3.2, which yields an isomorphism from Q(2d, q) to W (2d − 1, q) by use of a
hyperplane H0 in PG(2d, q) not through p. If H is a non-singular hyperplane
intersecting the parabolic quadric Q(2d, q) in a hyperbolic quadric Q+(2d −
1, q), then the generators of Q(2d, q) in H will correspond with those of an
embedded Q+(2d − 1, q) in W (2d − 1, q) when projecting from the nucleus
onto H0.

Theorem 5.8.1. Let S be an EKR set of generators in W (2d − 1, q), d odd,
d ≥ 3 and q even, with |S| = (q + 1) · · · (qd−1 + 1). One of the following must
hold:

(i) S is the set of all generators through a fixed point,

(ii) S is the set of all generators of one system of an embedded Q+(2d−1, q),

(iii) d = 3 and S consists of one fixed generator and all generators intersecting
it in a line (i.e. S is a sphere of radius 1 in the dual polar graph).

Proof. Suppose Q(2d, q) has nucleus p in PG(2d, q), allowing an embedding
of W (2d − 1, q) in the latter. An EKR set of generators S of maximum size
yields an EKR set in Q(2d, q), and now the result follows from the preceding
paragraph and Theorem 5.7.1.

The rest of this section is devoted to the case q odd.

In W (2d − 1, q), d odd, Theorem 5.3.1 does not yield that the characteristic
vector χS of an EKR set of generators S of maximum size is in the span of
the subspaces V d

0,0 and V d
1,0. This significantly weakens our control over this

set. We also don’t have an isomorphism Q(2d, q) and W (2d− 1, q) if q is odd,
but the intersection numbers and the eigenvalues of the association schemes
on generators are still the same (see for instance [23, Section 9.4]).
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With respect to the disjointness relation, we will still be able to use the fol-
lowing strong property.

Lemma 5.8.2. Let S be an EKR set of generators in Q(2d, q) or W (2d−1, q)
of size (q + 1) · · · (qd−1 + 1). Every generator π /∈ S is disjoint from exactly
qd(d−1)/2 elements of S.

Proof. Theorem 4.3.15 and Corollary 4.3.17 yield that the valency and the
minimal eigenvalue of oppositeness are given by qd(d+1)/2 and −qd(d−1)/2, re-
spectively. The result now follows from Theorem 5.2.1.

Recall our definition of the outer distribution B of a subset in an association
scheme from Subsection 2.2.4, and our notation Bx for the row corresponding
to x. We will now discuss the outer distributionB of an EKR set S of maximum
size in W (2d−1, q) with d odd. We first consider the two known constructions
of EKR sets of generators of maximum size S in Q(2d, q) with d odd, together
with some element π ∈ S:

(i) Point-pencil construction: Bπ = v1 with (v1)i :=
[
d−1
i

]
q
qi(i+1)/2 (see

Theorem 4.1.7).
For instance, in Q(10, q):

v1 =

(
1,

[
4

1

]
q

q,

[
4

2

]
q

q3,

[
4

3

]
q

q6,

[
4

4

]
q

q10, 0

)
.

(ii) All Latins of an embedded Q+(2d− 1, q): Bπ = v2 with (v2)i :=[
d
i

]
q
qi(i−1)/2 if i is even, and (v2)i := 0 if i is odd (see Theorem 4.1.7).

For instance, the Latins of an embedded Q+(9, q) in Q(10, q) yield:

v2 =

(
1, 0,

[
5

2

]
q

q, 0,

[
5

4

]
q

q6, 0

)
.

Lemma 5.8.3. Consider an EKR set of generators S with outer distribution
B in Q(2d, q) or W (2d− 1, q), with d odd and |S| = (q+ 1) · · · (qd−1 + 1). For
every π ∈ S, there is a parameter τ ∈ R such that Bπ = (1− τ)v1 + τv2.

Proof. We know from Theorem 5.3.1 that if |S| attains the upper bound
(q + 1) · · · (qd−1 + 1), then χS ∈ V d

0,0 ⊥ V d
1,0 ⊥ V d

d,0. Let P be the matrix
of eigenvalues of the association scheme on generators, and let Ej denote the
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idempotent projecting onto eigenspace V d
j,0. Lemma 2.2.8 implies that every

row of the outer distribution B of S is a linear combination of the rows of P ,
with

Bπ,i =
d∑
j=0

(EjχS)πPji,

for every π ∈ S. As E0 is just the orthogonal projection onto the all-one
vector, the coefficient of row 0 of P is simply |S|/|Ωd|. On the other hand, the
entry Bπ,0 must be 1 for every π ∈ S, and Pj0 = 1 for every j ∈ {0, . . . , d}.
We can conclude that for every π ∈ S there is an α ∈ R such that:

Bπ,i =
|S|
|Ωd|

P0i + αP1i +

(
1− |S|
|Ωd|
− α

)
Pdi

=
|S|
|Ωd|

P0i +

(
1− |S|
|Ωd|

)
Pdi + α(P1i − Pdi).

Instead of explicitly calculating these eigenvalues, we use two relatively simple
vectors that must be of this form. As the parameters and the eigenvalues for
generators in W (2d− 1, q) and Q(2d, q) are the same, the row vectors v1 and
v2 that were given are both of this form. Hence both v2− v1 and Bπ − v1 with
π ∈ S are scalar multiples of the difference between row 1 and row d of P .
As v1 6= v2, this implies that Bπ − v1 can be written as τ(v2 − v1) for some
τ ∈ R.

Theorem 5.8.4. Suppose S is an EKR set of generators in W (2d − 1, q) of
size (q + 1) · · · (qd−1 + 1), d odd and d ≥ 3. Let π be any element of S with
s-dimensional nucleus πs.

(i) The number of elements of S intersecting π in a subspace of codimension
i, is given by

qd−s − 1

qd−1 − 1

[
d− 1

i

]
q

qi(i+1)/2 for odd i,

and[
d− 1

i

]
q

qi(i+1)/2 +
qd−s(qs−1 − 1)

qd−1 − 1

[
d− 1

i− 1

]
q

qi(i−1)/2 for even i.

(ii) For every point of πs, there are exactly qd(d−1)/2−s+1 elements of S inter-
secting π in just that point.
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Proof. Let B denote the outer distribution of S, and consider any π ∈ S.
We already know from Lemma 5.4.3 that if an element of S intersects π in
exactly one point p, then p ∈ πs, and that Bπ,1, the number of elements of S

intersecting π in a dual line, is exactly q
[
d−s

1

]
q
.

Lemma 5.8.3 also yields that the row vector Bπ can be written as (1−τ)v1+τv2

for some parameter τ ∈ R. In particular, Bπ,1 gives us the following equation:

(1− τ)

[
d− 1

1

]
q

q + τ.0 =

[
d− s

1

]
q

q.

Hence: τ = qd−s(qs−1 − 1)/(qd−1 − 1).

If i is odd, then the corresponding entry of v2 is zero, and hence:

Bπ,i =
qd−s − 1

qd−1 − 1

[
d− 1

i

]
q

qi(i+1)/2.

If i is even, then:

Bπ,i = (1− τ)

[
d− 1

i

]
q

qi(i+1)/2 + τ

[
d

i

]
q

qi(i−1)/2

=

[
d− 1

i

]
q

qi(i+1)/2 + τ

([
d

i

]
q

−
[
d− 1

i

]
q

qi
)
qi(i−1)/2.

Using the identity
[
d
i

]
q

=
[
d−1
i

]
q
qi +

[
d−1
i−1

]
q
, the latter can also be written as:

Bπ,i =

[
d− 1

i

]
q

qi(i+1)/2 +
qd−s(qs−1 − 1)

qd−1 − 1

[
d− 1

i− 1

]
q

qi(i−1)/2.

In particular, we find that Bπ,d−1, the number of elements of S intersecting π
in just a point, is exactly

[
s
1

]
q
qd(d−1)/2−s+1.

For any point p in πs, let f(p) denote the number of elements of S intersecting
π in just p. Consider any hyperplane πs−1 of πs. We want to find

∑
p∈πs−1

f(p).

Consider any generator π′ intersecting π in a dual line but intersecting πs in just
πs−1. It follows from Lemma 5.4.3 that π′ is not in S, and thus Lemma 5.8.2 im-
plies that π′ is disjoint from exactly qd(d−1)/2 elements of S, all necessarily inter-
secting π in just a point in πs\πs−1. Conversely, any generator of S intersecting
π in just a point of πs\πs−1 must be disjoint from π′ because of Lemma 5.4.1.
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Hence
∑

p∈πs−1
f(p), the number of elements of S that intersect π in just a point

of πs−1, is given by
[
s
1

]
q
qd(d−1)/2−s+1− qd(d−1)/2 =

[
s−1

1

]
q
qd(d−1)/2−s+1. Now let

H denote the set of all hyperplanes in πs, and consider any point p0 in πs. Note
that each point p ∈ πs different from p0 is in exactly

[
s−1

1

]
q
−
[
s−2

1

]
q

= qs−2

hyperplanes of πs not containing p0. We obtain:∑
h∈H,p0 /∈h

(∑
p∈h

f(p)

)
= qs−2

( ∑
p∈πs\{p0}

f(p)

)
⇓

qs−1

([
s− 1

1

]
q

qd(d−1)/2−s+1

)
= qs−2

( ∑
p∈πs\{p0}

f(p)

)
.

Hence

f(p0) =
∑
p∈πs

f(p)−
∑

p∈πs\{p0}

f(p)

=
[s

1

]
q
qd(d−1)/2−s+1 −

[
s− 1

1

]
q

qd(d−1)/2−s+2

= qd(d−1)/2−s+1.

Theorem 5.8.4 allow us to compute each row of the outer distribution of an
EKR set of maximum size in W (2d − 1, q) with d odd, but only if we know
the dimension s of the nucleus πs. We will now consider the generalized outer
distribution of S with respect to dual lines instead, as introduced in Subsection
5.2. It will turn out that these numbers are in fact easier to control.

Theorem 5.8.5. Let S be an EKR set of generators of size (q+ 1) · · · (qd−1 +
1) in W (2d − 1, q), d odd. For each secant dual line πd−1, the number of
elements of S intersecting πd−1 in a subspace of dimension (d− 1)− i is given
by
[
d−2
i

]
q

(q + 1)qi(i+3)/2.

Proof. We know from Theorem 4.1.3 that the full automorphism group G has

d orbits R
(d−1)−i,d
d−1,d on Ωd−1 × Ωd, 0 ≤ i ≤ d− 1, determined by the dimension

(d− 1)− i of the intersection of the dual line and the generator. Let B denote
the generalized outer distribution of S with respect to the set of dual lines Ωd−1.
We know from Theorem 5.3.1 that χS ∈ V d

0,0 ⊥ V d
1,0 ⊥ V d

d,0. It follows from

Theorem 4.2.4 that the last subspace V d
d,0 is not isomorphic to any submodule
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in RΩd−1 . Theorem 5.2.6 now implies that there are two row vectors of scalars
(λ0

0, . . . , λ
d−1
0 ) and (λ0

1, . . . , λ
d−1
1 ), independent of S, such that for any dual line

πd−1 the row Bπd−1
can be written as a linear combination of them. Instead of

explicitly calculating these scalars, we consider two particular vectors spanned
by these two vectors. Let S ′ be the set of all generators through a fixed point
p′, and denote by B′ its generalized outer distribution with respect to the set
of dual lines. This is certainly an EKR set of generators of the maximum size.
Let u1 denote the row of B′ for some dual line through p′, and let u2 denote
the row of B′ for some dual line not through p′ and not spanning a generator
with p′ either. In the first case, the dual line is secant, and in the second case
it is external, so (u1)0 = q+ 1 and (u2)0 = 0. Hence the row vectors u1 and u2

are certainly different. So for any EKR set of generators S of the maximum
size, and for any dual line πd−1 we can write: Bπd−1

= αu1 + βu2 for some
parameters α, β ∈ R. We know that the entries of Bπd−1

, u1 and u2 must all
add up to |S|, and hence α + β = 1. If the dual line πd−1 is assumed to be
secant, then Bπd−1,0 = q + 1, and hence α = 1 and β = 0. Hence we conclude
that Bπd−1

= u1.

Now we explicitly calculate (u1)i. Considering the residual geometry of p′,
which is isomorphic to W (2(d − 1) − 1, q), and applying Corollary 5.4.4, we
obtain (u1)i =

[
d−2
i

]
q

(q + 1)qi(i+3)/2.

The following result is a first step towards our classification of EKR sets of
maximum size of generators in W (2d − 1, q) with d and q odd. We will now
prove that if S is an EKR set of maximum size and π ∈ S, then not all the
neighbours of π are in S, except possibly in the smallest case W (5, q). In other
words, if πs is the s-dimensional nucleus of π ∈ S, then s 6= 0, unless d = 3.

Lemma 5.8.6. Let S be an EKR set of generators of size (q+1) · · · (qd−1 +1)
in W (2d − 1, q), d odd and d ≥ 5. There is no element π ∈ S with a trivial
nucleus.

Proof. Suppose π ∈ S has a trivial nucleus. Lemma 5.4.3 yields that no
element of S intersects π in just a point, and Theorem 5.8.4 implies that exactly
q(d−1)(d−2)/2

[
d
1

]
q

elements of S intersect π in a line, and exactly q3
[
d−1

2

]
q
− qd

intersect π in a subspace of codimension 2. We know from Corollary 5.4.4 that
there are q(d−1)(d−2)/2 generators in the polar space intersecting π in a fixed line,
and hence the set A of lines in π appearing as such an intersection has size at
least

[
d
1

]
q
. Now consider any subspace ρ with codimension 2 in π. There are
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exactly q3 generators intersecting π in just ρ, again by Corollary 5.4.4. This
implies that B, the set of all subspaces with codimension 2 in π arising from
the intersection with an element of S, has cardinality at least

[
d−1

2

]
q
− qd−3.

Lemma 5.4.1 also yields that every element of A intersects every element of B
non-trivially. The main idea will be that A and B are too large to have this
property.

As there are only
[
d−1

1

]
q

lines through a point in the projective geometry

PG(d − 1, q), no point in π can be on all lines in A. If a point p ∈ π is not
on a line ` ∈ A, then it follows from Lemma 3.1.1 that there are precisely[
d−1

2

]
q
− q2d−6 subspaces with codimension 2 in π through p and intersecting `

non-trivially, which is less than |B| as d ≥ 5. Hence we can conclude that no
point on π is on all elements of B. Since all elements of A must intersect every
element of B non-trivially, there can be at most

[
d−2

1

]
q

elements of A through

each point of π.

Now let µ be any hyperplane of π. Let X denote the subset of elements of
B contained in µ. Since µ is a secant dual line, we know from Theorem 5.8.5
that exactly

[
d−2

1

]
q

(q + 1)q2 elements of S intersect µ in a hyperplane of µ.

These elements of S either intersect π in some element of X, or intersect π in
some hyperplane, different from µ. Hence[

d− 2

1

]
q

(q + 1)q2 ≤ |X|q3 +

([
d

1

]
q

− 1

)
q,

yielding |X| ≥
[
d−3

1

]
q
.

Next, consider two distinct lines `1 and `2 in A. Let µ be a hyperplane of π,
intersecting these lines in distinct points p1 and p2, respectively (this always
exists). We know from the above that µ contains at least

[
d−3

1

]
q

elements

of B. These elements must contain the points p1 and p2, and hence they
are precisely the

[
d−3

1

]
q

hyperplanes of µ through the line 〈p1, p2〉. Let ρ be

a fixed hyperplane of µ not through the line 〈p1, p2〉. As ρ /∈ B, there is
certainly a generator π′ with ρ = π ∩ π′ and π′ /∈ S. Lemma 5.8.2 implies
that there are exactly qd(d−1)/2 elements of S that are disjoint from π′. These
elements must intersect π in a line, disjoint from ρ. Hence we obtain at least
qd(d−1)/2/q(d−1)(d−2)/2 = qd−1 of these lines of A in π, and they all intersect µ
in just a point. As these lines must intersect all elements of B non-trivially,
and hence certainly all hyperplanes of µ through 〈p1, p2〉, they must intersect
µ in a point of that line, not on ρ. But we have seen that through each of
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those q points on 〈p1, p2〉, there are at most
[
d−2

1

]
q

elements of A. This yields

qd−1 ≤ q
[
d−2

1

]
q
, which is clearly a contradiction.

We will now focus on the other extremal situation, where no two elements of
the EKR set in W (2d − 1, q), d odd, are neighbours in the dual polar graph.
Even though W (2d − 1, q) and Q(2d, q) are isomorphic if and only if q is
even, the parameters of the corresponding association scheme are the same,
regardless of the parity of q. However, we want to prove that the construction
using an embedded Q+(2d − 1, q) in Q(2d, q) for odd d, which appeared in
Theorem 5.7.1, has no analog in W (2d − 1, q) if q and d are odd. We will
need the following fundamental results on the associated classical generalized
quadrangles W (3, q) and the dual Q(4, q) (see for instance [122, 1.3.6, 3.2.1
and 3.3.1]). This will allow us to distinguish the symplectic spaces from the
parabolic quadrics for odd q.

Theorem 5.8.7.

(i) If three lines are pairwise skew in W (3, q), then the number of lines of
W (3, q) meeting all three is 0 or 2 for odd q, and 1 or q + 1 for even q.

(ii) If three lines are pairwise skew in Q(4, q), then the number of lines of
Q(4, q) meeting all three is 1 or q + 1.

We will also need the following technical result.

Lemma 5.8.8. For all integers n and q with n ≥ 0 and q ≥ 3, the following
inequality holds:

n∏
i=1

(qi + 1) < 2qn(n+1)/2.

Proof. The inequality clearly holds if n = 0. We will prove that the left-hand
side is at most 2qn(n+1)/2(1− 1/qn) if n ≥ 1 and q ≥ 3. This is clearly true for
every integer q ≥ 3 if n = 1, and if the claim holds for n, then for every q ≥ 3:

n+1∏
i=1

(qi + 1) ≤ 2qn(n+1)/2
(
1− 1

qn
)
(qn+1 + 1)

= 2q(n+1)(n+2)/2
(
1− 1

qn
+

1

qn+1
− 1

q2n+1

)
≤ 2q(n+1)(n+2)/2

(
1− 1

qn+1

)
,
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and thus it also holds for n+ 1.

We can now prove that if d and q are odd, there is no EKR set of generators in
W (2d−1, q) of maximum size with minimum distance greater than or equal to
two. This is in fact the only instance where the parity of q is of any importance
in the proof.

Lemma 5.8.9. Suppose S is an EKR set of generators in W (2d−1, q) of size
|S| = (q + 1) · · · (qd−1 + 1), d odd, d ≥ 3 and q odd. Then there exist two
elements of S intersecting in a subspace of codimension 1.

Proof. Suppose that no two elements of S intersect in a subspace of codimen-
sion 1. Lemma 5.4.3 yields that in this case each element of S is its own
nucleus. Theorem 5.8.4 now implies that for each π ∈ S, the corresponding
row of the outer distribution B of S is v2. In particular, the elements of S
cannot intersect in a subspace with odd codimension. Let π be any element in
S. We know that exactly (v2)2 =

[
d
2

]
q
q elements of S intersect π in exactly a

subspace of codimension 2. As there are only
[
d
2

]
q

subspaces with codimension

2 in π, there must certainly be a subspace µ of codimension 2 in π, such that
at least q elements (q ≥ 3) of S intersect π in just µ. Let π1 and π2 be two such
elements. Note that π1 and π2 cannot intersect in more than just µ, because
their intersection cannot be a dual line as they are both in S. Hence the three
generators π, π1 and π2 correspond with three pairwise skew lines `, `1 and `2,
respectively, in the residual geometry W (3, q) of µ.

Now let S0 denote the subset of generators in S, intersecting π in just a point,
not in µ. Such a generator must intersect both π1 and π2 in a subspace of even
codimension and skew to µ, thus in just a point not in µ. For every π0 ∈ S0,
the generator 〈µ, µ⊥ ∩ π0〉 through µ corresponds with a line meeting `, `1 and
`2 in W (3, q). As q is odd, there are at most two such lines by Theorem 5.8.7(i).
Hence, there are at most two possibilities for the generator 〈µ, µ⊥ ∩ π0〉. As
π0 is skew to µ, it must intersect 〈µ, µ⊥ ∩ π0〉 in a line. There are precisely
q2(d−2) lines in a projective geometry PG(d − 1, q), skew to a given subspace
with codimension 2 (see Lemma 3.1.1). Finally, we consider the generators
of S0 that can contain that line. Since the elements of S pairwise intersect
in a subspace with even codimension, all these generators must intersect in
at least a plane, and hence in the residue of that line, which is isomorphic to
W (2(d − 2) − 1, q), we obtain a set of generators, pairwise intersecting in at
least a point. This implies that we can apply the upper bound from Theorem
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5.3.1 for EKR sets of generators in W (2(d− 2)− 1, q), and see that there are

at most
d−3∏
i=1

(qi + 1) elements of S0 through each such line (this can be seen

directly if d = 3). Hence, we obtain that |S0| ≤ 2q2d−4

d−3∏
i=1

(qi + 1).

Let us now explicitly calculate |S0|. Theorem 5.8.4 yields that through each
point of π, not in µ, there are precisely qd(d−1)/2−d+1 elements of S that intersect
π in just that point. Hence:

|S0| =
([

d

1

]
q

−
[
d− 2

1

]
q

)
q(d−1)(d−2)/2 = (qd−1 + qd−2)q(d−1)(d−2)/2,

and thus we obtain the inequality:

(qd−1 + qd−2)q(d−1)(d−2)/2 ≤ 2q2d−4

d−3∏
i=1

(qi + 1),

which is equivalent to q+1
2
q(d−2)(d−3)/2 ≤

d−3∏
i=1

(qi+1). As 2 ≤ q+1
2

, this contradicts

Lemma 5.8.8.

We now prove a result on the nuclei of two neighbours of an EKR set of
generators of maximum size in the dual polar graph on W (2d − 1, q) with d
odd.

Lemma 5.8.10. Let S be an EKR set of generators in W (2d − 1, q) of size
(q + 1) · · · (qd−1 + 1), d odd and d ≥ 3. If π1 and π2 are neighbours and both
elements of S with a non-trivial nucleus, then they have the same nucleus.

Proof. Let π1 and π2 have nuclei πs and πt with dimensions s ≥ 1 and t ≥ 1,
respectively. It follows from the definition of nuclei that πs and πt are both
in π1 ∩ π2. If πs is not contained in πt, then |πs\πt| ≥ qs−1. We know from
Theorem 5.8.4 that for every p ∈ πs\πt there are qd(d−1)/2−s+1 elements of S
intersecting π1 in just p, and by Lemma 5.4.3 these elements cannot intersect
π2 in just p. As π1 ∩ π2 is a hyperplane in π2, we see that these elements
intersect π2 in exactly a line. We also know from Theorem 5.8.4 that there are
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exactly qd−t−1
q−1

q(d−1)(d−2)/2 elements of S intersecting π2 in a line, and hence:

qs−1qd(d−1)/2−s+1 ≤ qd−t − 1

q − 1
q(d−1)(d−2)/2,

which yields: qd−1 ≤ qd−t−1
q−1

. This is impossible as t ≥ 1. Hence πs ⊆ πt, and

one shows in a completely analogous way that πt ⊆ πs.

Lemma 5.8.11. Let S be an EKR set of generators of size (q+1) · · · (qd−1+1)
in W (2d− 1, q) with d odd, q odd and d ≥ 3. Suppose π ∈ S has a point p as
nucleus. Then S is the set of generators through p.

Proof. By Theorem 5.8.4, there are qd(d−1)/2 elements of S intersecting π in just
p. Suppose that there exists a generator π′ through p not in S, then by Lemma
5.8.2, there are qd(d−1)/2 elements of S disjoint from π′ that hence cannot pass
through p. So there are at least qd(d−1)/2 elements in S not through p, and
at least qd(d−1)/2 through p. Hence |S| ≥ 2qd(d−1)/2 > (q + 1) · · · (qd−1 + 1)
for q ≥ 3 by Lemma 5.8.8, which is a contradiction. Hence every generator
through p is in S, and now the result follows from the size |S|.

Lemma 5.8.12. Let S be an EKR set of generators of size (q+1) · · · (qd−1+1)
in W (2d − 1, q) with d odd, d ≥ 3 and q odd. Suppose π ∈ S has an s-
dimensional nucleus πs. Then s ∈ {0, 1, 2, d}. If s = 2, then for every dual
line µ with πs ⊆ µ ⊂ π, an element of S intersects π in just a point if and
only if it intersects µ in just a point.

Proof. Suppose s < d. Then πs 6= π, and now consider any dual line µ with
πs ⊆ µ ⊂ π. Lemma 5.4.3 implies that µ is secant. We know from Theorem
5.8.4 that exactly

[
s
1

]
q
qd(d−1)/2−s+1 elements of S intersect π in just a point of

πs, and hence must intersect µ in exactly a point as well. Theorem 5.8.5 also
yields that exactly (q+ 1)q(d+1)(d−2)/2 elements of S intersect µ in just a point.
Hence we obtain:

qs − 1

q − 1
qd(d−1)/2−s+1 ≤ (q + 1)q(d+1)(d−2)/2,

which is equivalent to s ≤ 2. If s = 2, then the two sizes are equal, and
hence the generators in S intersecting µ in just a point must be precisely those
intersecting π in just a point.
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We can now finally complete the classification of EKR sets of generators of
maximum size in W (2d− 1, q) with q and d odd.

Theorem 5.8.13. Let S be an EKR set of generators in W (2d− 1, q) of size
(q + 1) · · · (qd−1 + 1), with q odd, d odd and d ≥ 5. Then S is the set of all
generators through some point.

Proof. It follows from Lemmas 5.8.6 and 5.8.12 that every element in S has
a nucleus with a dimension s in {1, 2, d}. If s = 1 for some π ∈ S, then by
Lemma 5.8.11, the set S consists of all the generators through a point. Hence,
from now on we can assume that every π ∈ S has a nucleus of dimension 2 or
d, and we will prove that this leads to a contradiction.

First suppose some π ∈ S has nucleus πs of dimension s = 2. Consider any
dual line µ with πs ⊆ µ ⊂ π. Theorem 5.8.4 yields that there is certainly an
element π′ ∈ S intersecting π in just a point of πs. Consider the generator
π′′ = 〈µ, µ⊥ ∩ π′〉, which intersects π′ in a line. As π′′ passes through the
secant dual line µ, it is also in S. Since, by Lemma 5.8.6, π′′ has a non-
trivial nucleus, Lemma 5.8.10 yields that π′′ also has πs as nucleus. But this
contradicts Lemma 5.8.12, as we now have the generator π′ ∈ S intersecting µ
in just a point, while it intersects π′′ ∈ S in a line.

Hence the dimension s of the nucleus is d for every element of S, which con-
tradicts Lemma 5.8.9 as q is odd.

Just as for Q(6, q), there is an extra construction for EKR sets of generators
of the maximum size for W (5, q), and hence this polar space must be treated
separately.

Theorem 5.8.14. Suppose S is an EKR set of (q+1)(q2+1) planes in W (5, q),
q odd. Then the elements of S are either all generators through a fixed point,
or S consists of a plane π and all the planes intersecting π in a line (i.e. S is
a sphere of radius 1 in the dual polar graph).

Proof. By Lemma 5.8.9, there are at least two generators π and π1 in S that
intersect in a subspace of codimension 1. Hence the s-dimensional nucleus πs
of π is at most a line. Lemma 5.4.3 yields that if an element of S intersects π
in a point p, then p ∈ πs, and that the elements of S intersecting π in a line,
are precisely those intersecting π in a line through πs. Obviously, s ∈ {0, 1, 2}.
If s = 0, then all q(q2 +q+1) = |S|−1 planes intersecting π in a line, are in S,
and hence S consists of these planes and π itself. If s = 1, then πs is a point
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contained in all elements of S, and hence we are done again. Finally, suppose
s = 2. Let a and b be distinct points on the line πs. Theorem 5.8.4 yields
that through both points, there are precisely q2 elements of S, intersecting π
in just that point. Suppose πa, πb ∈ S with πa ∩ π = {a} and πb ∩ π = {b}. As
πa and πb cannot be disjoint, they must intersect by Lemma 5.4.1 in precisely
one point c, necessarily outside of π. The points a, b and c span a plane π′ in
S by Lemma 5.4.3, as πs = 〈a, b〉 ⊆ π′. Since π′ ∩ π = 〈a, b〉, π′ ∩ πa = 〈a, c〉
and π′ ∩ πb = 〈b, c〉, π′ has a trivial nucleus and then S consists of π′ and all
the planes intersecting π′ in a line.

5.9 H(2d− 1, q2) with d odd

The size of the set of generators Ωd in H(2d−1, q2) is given by (q+1)(q3+1) · · ·
(q2d−1 + 1). The number of generators through one point is |Ωd|/(q2d−1 + 1),
but the eigenvalue bound from Theorem 5.3.1 is |Ωd|/(qd + 1) for odd d, which
is much larger.

In H(5, q2), where the diameter is three, there are (q + 1)(q3 + 1)(q5 + 1)
generators, and (q+1)(q3 +1) generators through one point. The upper bound
arising from eigenvalue techniques in this case is (q+ 1)(q5 + 1). The following
example shows that the point-pencil construction is in this case indeed not of
maximum size. Let π be a plane in H(5, q2). Let S consist of π and all planes
intersecting π in a line. In other words: S is the sphere of radius 1 around
π in the dual polar graph. Now |S| = q(q4 + q2 + 1) + 1, and in particular:
(q + 1)(q3 + 1) < |S| < (q + 1)(q5 + 1).

It is possible that there is no simple answer forH(2d−1, q2) for odd d in general.
However, we can already exclude the possibility of attaining the upper bound
from Theorem 5.3.1.

Theorem 5.9.1. Suppose S is an EKR set of generators in H(2d−1, q2) with
d odd and d ≥ 3. Then |S| < |Ωd|/(qd + 1).

Proof. We already know from Theorem 5.3.1 that |S| ≤ |Ωd|/(qd + 1), with
equality if and only if χS ∈ V d

0,0 ⊥ V d
d,0. Suppose equality holds. In that case,

every dual line or (d− 1)-space would be incident with exactly (q+ 1)/(qd + 1)
elements of S, because of Theorem 4.4.1. As d ≥ 3, this yields a contradiction
as this number is not an integer.
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Nevertheless, we can determine the maximum size of an EKR set of planes in
H(5, q2). We first state a general theorem1 on generalized quadrangles (see for
instance [122, 1.2.4]).

Theorem 5.9.2. Let a, b and c be three mutually non-collinear points in a
generalized quadrangle of order (s, s2). The number of points collinear with
a, b and c is exactly s+ 1.

Dualizing, this yields the following result for the classical generalized quadran-
gle H(3, q2) of order (q2, q).

Corollary 5.9.3. If `1, `2 and `3 are three mutually skew lines in H(3, q2),
then there are precisely q + 1 lines of H(3, q2) meeting all of them.

Theorem 5.9.4. Let S be an EKR set of planes in H(5, q2). Then |S| ≤
q5 + q3 + q + 1, and this bound can only be attained if S consists of a plane π
and all planes intersecting π in a line.

Proof. Assume that S is a maximal EKR set of generators.

Suppose that π ∈ S intersects some element of S in a line. Lemma 5.4.3 yields
that the nucleus πs of π has dimension s ≤ 2.

If s = 0, then Lemma 5.4.3 yields that S contains all 1 + q(q4 + q2 + 1) planes
that are equal to π or intersecting π in a line, while there are no planes in S
intersecting π in just a point.

If s = 1, then all elements of S must pass through the point πs, and hence
|S| ≤ (q + 1)(q3 + 1), which is less than q5 + q3 + q + 1.

Now suppose s = 2. If no element of S intersects π in a point, then all other
elements of S intersect π in the line πs and hence |S| ≤ q + 1. Similarly, if
all elements of S either contain πs or intersect π in the same point p, then
again |S| ≤ (q + 1)(q3 + 1). Finally, suppose that π′ and π′′ are elements of
S, intersecting π in different points p′ and p′′ of the nucleus of π, respectively.
Lemma 5.4.1 yields that π′ and π′′ intersect in just a point, say p. Consider
the plane 〈p′, p′′, p〉, which is in S since it passes through the nucleus of π.
Its nucleus is trivial since π, π′ and π′′ intersect it in three non-concurrent
lines. Lemma 5.4.3 again yields that S consists of 〈p′, p′′, p〉 and all the planes
intersecting it in a line.

1We will give a generalization of Theorem 5.9.2 in Corollary 6.6.7.
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In the remainder of this proof, we can suppose that all elements of S intersect
in just a point. We will also assume that |S| is at least the desired bound
q5 +q3 +q+1, and prove that this leads to a contradiction. Suppose π ∈ S and
let p be a point on π. In the residual geometry of p, isomorphic to H(3, q2),
the elements of S through p correspond with different mutually skew lines
`1, . . . , `t. Lemma 4.1.1 yields that there are (q2 + 1)(q3 + 1) points in H(3, q2)
and hence t ≤ q3 +1. Hence there are at least q5 +q elements of S not through
p. The elements of S not through p are projected onto lines in the residual
geometry H(3, q2). In each plane of H(5, q2) through p, there are q4 lines skew
to p. Since two elements of S cannot intersect in a line, at most q4 elements
of S can be projected onto the same line of H(3, q2), so we have constructed
in this way at least q + 1 lines in H(3, q2), namely mj, j = 1, . . . , q + 1. Since
the elements of S pairwise intersect in just a point, an element of S through p
cannot be projected onto any of the mj, so `i 6= mj, ∀i, j. As the elements of
S cannot be pairwise disjoint, the lines li and mj must intersect in the residual
geometry H(3, q2). If mj ∩mk is a point, then a line `i in H(3, q2) intersecting
both of them must pass through their intersection point. As the lines `i are
pairwise skew, t = 1 in this case and so through p there can be at most one
element of S. If all these lines mj are pairwise skew, then there are at most q+1
lines meeting all of them because of Corollary 5.9.3, so there are in this case
at most q + 1 elements of S through p. Hence through every point of π there
are at most q+ 1 elements of S, but |S| ≥ q5 + q3 + q+ 1 implies that through
every point of π there are exactly q+ 1 elements of S and |S| = q5 + q3 + q+ 1.
So now we can consider a point p ∈ π ∈ S and two other elements π1, π2 ∈ S
through p, such that π, π1 and π2 correspond with three skew lines `, `1 and
`2, respectively, in the residual geometry of p. In this geometry, only q + 1
points of `, corresponding to the plane π, are on a line meeting `, `1 and `2,
and hence in H(5, q2) only the points on the corresponding q+ 1 lines through
p in π can be on a plane intersecting the planes π, π1 and π2 non-trivially. This
contradicts the fact that there are q + 1 elements of S through each point in
the plane π.

Remark 5.9.5. Newman [111, Section 3.2] raised the question of whether or
not maximal cocliques S can be found in a k-regular graph on Ω, such that
|S| = |Ω|/(1 − k/λ), where λ is a negative eigenvalue but not the minimal
eigenvalue. In all classical finite polar spaces of rank d and with parameters
(q, qe), the point-pencil construction has size |Ωd|/(qd−1+e + 1). We know from
Theorem 4.3.15 that this is precisely |Ωd|/(1− k/λ), with λ the eigenvalue of
oppositeness between generators for the subspace V d

1,0 and k its valency. This
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is always a maximal EKR set of generators, but Corollary 4.3.17 yields that
for H(2d − 1, q2) with d odd, this eigenvalue is not the minimal eigenvalue.
Here, the point-pencil construction is maximal, but it is not of maximum size
for d = 3, and it is an open problem if it is of maximum size for higher odd d.
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5.10 Summary

We now summarize the results in this chapter for classical finite polar spaces
of rank at least three. We write p.-p. to denote the point-pencil construction
of an EKR set of generators consisting of all generators through one point.
For the hyperbolic space of even rank we will focus only on one system of
generators, namely the Latins. Finally, 1-sphere will refer to the construction
in a polar space of rank three, consisting of one plane and all those intersecting
it in a line.

Polar space Maximum size Classification

Q−(2d+ 1, q) (q2 + 1) · · · (qd + 1) p.-p., Th.5.5.2
Q(2d, q), d even (q + 1) · · · (qd−1 + 1) p.-p., Th.5.5.2
Q(2d, q), d odd and d ≥ 5 (q + 1) · · · (qd−1 + 1) p.-p., Latins Q+(2d− 1, q),

Th.5.7.1
Q(6, q) (q + 1)(q2 + 1) p.-p., Latins Q+(5, q),

1-sphere, Th.5.7.1
Q+(2d− 1, q), d odd (q + 1) · · · (qd−1 + 1) one system, Th.5.6.1
Latins Q+(2d− 1, q), d even (q + 1) · · · (qd−2 + 1) p.-p., Th.5.6.8
and d ≥ 6
Latins Q+(7, q) (q + 1)(q2 + 1) p.-p.,

intersecting Greek in plane,
Th.5.6.10

W (2d− 1, q), d odd (q + 1) · · · (qd−1 + 1) p.-p., Th.5.8.13
and d ≥ 5, q odd
W (2d− 1, q), d odd (q + 1) · · · (qd−1 + 1) p.-p., Latins Q+(2d− 1, q),
and d ≥ 5, q even Th.5.8.1
W (5, q), q odd (q + 1)(q2 + 1) p.-p., 1-sphere,

Th.5.8.14
W (5, q), q even (q + 1)(q2 + 1) p.-p., 1-sphere,

Latins Q+(5, q),Th.5.8.1
W (2d− 1, q), d even (q + 1) · · · (qd−1 + 1) p.-p., Th.5.5.2
H(2d, q2) (q3 + 1)(q5 + 1) p.-p., Th.5.5.2

· · · (q2d−1 + 1)
H(2d− 1, q2), d even (q + 1)(q3 + 1) p.-p., Th.5.5.2

· · · (q2d−3 + 1)
H(2d− 1, q2), d odd < |Ωd|/(qd + 1) ?,Th.5.9.1
and d ≥ 5
H(5, q2) q(q4 + q2 + 1) + 1 1-sphere, Th.5.9.4
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Chapter 6

Near polygons

Near polygons were introduced by Shult and Yanushka [133]. Our study of
regular near polygons is motivated by the search for a better understanding of
the algebraic proof of the bound for partial spreads from Theorem 4.4.16. The
techniques to study that problem in (dual) polar spaces turn out to be available
for near polygons in general, including the generalized polygons, which is why
we treat all these structures in the same chapter.

We will discuss subsets of points in generalized polygons in Subsection 6.4.2.
These results are inspired by the work of Martin [106], De Wispelaere and Van
Maldeghem [63], and Bamberg, Law and Penttila [10]. We will very often give
alternative proofs or generalizations.

In Subsection 6.4.3, we use the same techniques to study sets of maximal totally
isotropic subspaces in classical finite polar spaces, seen as sets of points in dual
polar spaces. Our results include a more elegant proof for the bound on partial
spreads in H(2d − 1, q2) for odd d, and more information on those attaining
the bound, as well as some results on spreads in Q(2d, q) and W (2d− 1, q) for
odd d. These results on dual polar spaces have been accepted for publication
in Journal of Combinatorial Designs [162].

We then focus on the parameters of a regular near 2d-gon itself. Higman
[87] proved that the point graph of a regular near 4-gon of order (s, t) with
s > 1 satisfies t ≤ s2. We generalize this for regular near 2d-gons in Section
6.6., and we consider the case of equality. In Section 6.7, we use this to
prove that a specific type of subset of maximal totally isotropic subspaces in
H(2d−1, q2), q odd, induces a distance-regular graph with classical parameters

127
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(d,−q,−(q + 1)/2,−((−q)d + 1)/2). This generalizes a result by Thas [148]
on strongly regular graphs induced by hemisystems in the dual polar space
on H(3, q2). The results referred to in this paragraph have been accepted for
publication in Journal of Algebraic Combinatorics [164].

We conclude by discussing near pentagons in Section 6.8.

6.1 Definitions and basic properties

Definition 6.1.1. A near polygon is a partial linear space P satisfying the
following axioms.

(i) The point graph is connected with diameter d ≥ 1.

(ii) With respect to the point graph, for each point p and line ` with d(p, `) <
d, there is a unique point p′ on ` at minimal distance from p.

We say P is a near (2d+ 1)-gon if there is a point p at distance d from some
line ` with respect to the point graph, and a near 2d-gon otherwise.

The definition of near 2d-gons is due to Shult and Yanushka [133]. We will
be mostly concerned with this type of near polygons. Near polygons with an
infinite number of points or lines are also studied, but from now on, the sets
of points and lines will always be assumed to be finite.

A near 2-gon consists of simply one line with all (and at least two) points on
it. A near 3-gon is the same as a linear space with more than one line. The
near 4-gons with every point on at least two lines are precisely the generalized
quadrangles as defined in Section 1.3.

The simplest example of a near n-gon, n ≥ 3, is the ordinary n-gon, the
incidence graph of which is just a circuit on 2n vertices.

We will also refer to near 4-gons, 5-gons, 6-gons and 8-gons as near quadrangles,
near pentagons, near hexagons and near octagons, respectively.

We will consider both the point graph and the (bipartite) incidence graph of
near polygons. Unless stated otherwise, distance between points or between a
point and a line will refer to the distance in the point graph.
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We say a near polygon is of order (s, t) if every line contains exactly s + 1
points, and every point is on exactly t+ 1 lines.

Definition 6.1.2. A near polygon is regular if its point graph is distance-
regular.

Theorem 6.1.3. [23, Section 6.4] A partial linear space P with distance-
regular point graph Γ with valency k and diameter d ≥ 2 is a regular near
polygon if for some integer s ≥ 1, the intersection numbers satisfy:

bi = k − sci, ∀i ∈ {1, . . . , d− 1}.

In that case k ≥ scd holds, and P is a near 2d-gon in case of equality, and a
near (2d+ 1)-gon otherwise.

In any near n-gon, n ≥ 4, the common neighbours in the point graph of any two
adjacent vertices are precisely the remaining points on the unique line through
them. Hence the maximal cliques in the point graph are precisely the sets of
points on one line, and so a near n-gon, n ≥ 4, is completely determined1 by
its point graph. It follows from Theorem 6.1.3 that in a regular near n-gon
with n ≥ 4, the number of common neighbours of two adjacent vertices is
a1 = k − b1 − c1 = s − 1 for some integer s. As the neighbours of a point p
in the point graph are all other points on the lines through p, this yields that
in a regular near n-gon with n ≥ 4, the number of lines through each point is
also a constant, namely k/s. Hence every regular near n-gon, n ≥ 4, has an
order (s, t), with the valency of the point graph given by k = s(t+ 1). For any
i ∈ {1, . . . , d}, we will also use the standard notation ti for ci − 1. Note that
the point graph of a regular near 2d-gon of order (s, t) also satisfies cd = t+ 1.

The regular near 2d-gons of order (1, t) have bipartite point graphs. Conversely,
every bipartite distance-regular graph of diameter d and valency k ≥ 2 gives
rise to a regular near 2d-gon of order (1, k−1), with the vertices as points, the
edges as lines, and symmetrized containment as incidence relation (see also
[53, Theorem 1.24]).

Definition 6.1.4. A sub near n-gon of a near n-gon P = (P,L, I) is a near
n-gon P ′ = (P ′, L′, I′) with P ′ ⊆ P,L′ ⊆ L and I′ = ((P ′×L′)∪ (L′×P ′))∩ I.

1Some authors introduce regular near polygons as a type of distance-regular graphs, and refer
to the maximal cliques as the singular lines.
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A sub near polygon P ′ = (P ′, L′, I′) of P = (P,L, I) is proper when P ′ 6= P or
L′ 6= L. We say a sub near polygon P ′ of P is isometrically embedded if the
distance between any two points of P ′ is the same with respect to both point
graphs.

6.2 Types of near polygons

6.2.1 Generalized polygons

The definition of generalized polygons is due to Tits [156] and predates that
of near polygons.

Definition 6.2.1. A generalized n-gon, n ≥ 2, is a point-line geometry with
an incidence graph of diameter n and girth 2n.

Remark 6.2.2. One can easily prove that the conditions imply that each
point is incident with at least two lines, and every line with at least two points
(see for instance [161, Lemmas 1.3.6 and 1.5.10]).

Note that the above definition of generalized polygons is self-dual. All gener-
alized n-gons with n ≥ 3 are partial linear spaces. The simplest example of a
generalized n-gon is again an ordinary n-gon.

The generalized 3-gons with at least three points on each line and at least
three lines through each point are the projective planes (see [161, p. 11]).

For n = 4, the above definition coincides with the one given for generalized
quadrangles in Section 1.3 (see [161, Lemma 1.4.1]).

Note that the axioms of a generalized n-gon imply that for any two vertices
x and y at distance i < n in the incidence graph, there is a unique path of
shortest length from x to y.

Lemma 6.2.3. [161, Lemmas 1.3.6 and 1.5.10] For any n ≥ 2, a point-line
geometry is a generalized n-gon if and only if the following axioms hold.

(i) There exist no ordinary k-gon as a subgeometry with 2 ≤ k < n.

(ii) Any two varieties are contained in some ordinary n-gon.
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Theorem 6.2.4. Every generalized n-gon is a near n-gon for n ≥ 3.

Proof. We know from the definition that a generalized n-gon is a partial linear
space. Suppose n = 2d if n is even, and n = 2d+ 1 if n is odd. The incidence
graph has diameter n, so two points are at distance at most 2d in this graph.
As the girth of the incidence graph is 2n, we can indeed find points at distance
2d in any circuit of length 2n in the incidence graph. Hence the diameter of
the point graph is d. If n = 2d, then the maximum distance between a point
and a line is 2d− 1 in the incidence graph, and hence d− 1 in the point graph,
but if n = 2d+ 1, then there exist a point and a line at distance 2d+ 1 in the
incidence graph, hence at distance d in the point graph.

Since the girth of the incidence graph is 2n, there is a unique path of shortest
length between any two vertices in the incidence graph at distance at most
n − 1, which is 2d − 1 or 2d. Hence if a point p is at distance at most d − 1
from a line ` in the point graph, or hence if d(p, `) ≤ 2d − 1 in the incidence
graph, then there is a unique point on ` at minimal distance from p in the
point graph.

Theorem 6.2.5. [23, Section 6.5][161, Lemma 1.5.4] For d ≥ 2, the general-
ized 2d-gons of order (s, t) are precisely the regular near 2d-gons order (s, t)
with point graph Γ with parameters c1 = . . . = cd−1 = 1. They satisfy:

cd = t+ 1 and b0 = s(t+ 1), b1 = · · · = bd−1 = st.

The number of points is given by:

(s+ 1)((st)d−1 + · · ·+ 1),

and the valency ki of the distance-i relation of the point graph Γ by:

ki = siti−1(t+ 1) if 1 ≤ i ≤ d− 1, kd = sdtd−1.

The double of a generalized n-gon is the point-line geometry, the points of
which are the points and lines of the generalized n-gon, and the lines of which
are the pairs of incident points and lines of the generalized n-gon. Incidence is
just symmetrized inclusion. For a generalized n-gon of order (s, s), the double
is a generalized 2n-gon of order (1, s), and all generalized 2n-gons of order
(1, s) with n ≥ 2 can be obtained in this way ([159], see also [161, Theorem
1.6.2]).
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A sub-n-gon of a generalized n-gon P is a sub near polygon P ′ that is also
a generalized n-gon. Note that in this case, the embedding of P ′ is always
isometric: the distance between any two points of P ′ is the same in both point
graphs (see [161, Remark 1.3.4]).

The following famous theorem by Feit and G. Higman says that generalized
2n-gons of order (s, t) can only exist for very few values of n if s, t > 1, and
imposes additional restrictions on s and t.

Theorem 6.2.6. [80] Suppose P is a generalized n-gon of order (s, t) with
n ≥ 3. One of the following must hold.

(i) s = t = 1 and P is an ordinary n-gon,

(ii) n = 3,

(iii) n = 4, with st(st+ 1)/(s+ t) an integer,

(iv) n = 6, with
√
st an integer if s, t > 1,

(v) n = 8, with
√

2st an integer if s, t > 1,

(vi) n = 12, and s = 1 or t = 1.

Theorem 6.2.7. Let P be a generalized n-gon of order (s, t) with s, t > 1.
The following holds:

(i) ([87]) if n = 4, then s ≤ t2 and t ≤ s2 (D. Higman’s bound),

(ii) ([86]) if n = 6, then s ≤ t3 and t ≤ s3 (Inequality of Haemers and Roos),

(iii) ([88]) if n = 8, then s ≤ t2 and t ≤ s2 (D. Higman’s bound).

We already discussed the known possible orders for generalized quadrangles in
Subsection 1.3.3.

All known generalized hexagons and octagons of order (s, t) with s, t > 1 are
classical, in the sense that they are related to Chevalley groups in a natural
way (see [43] for more information on the latter).

Up to duality, the only known generalized hexagons of order (s, t) with s, t > 1
are those constructed by Tits [156]: the split Cayley hexagons H(q) of order
(q, q) (related to G2(q)) and the twisted triality hexagons T(q3, q) (related to
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3D4(q)), where q denotes a prime power. We also denote the dual of T(q3, q)
by T(q, q3). See [161] for a coordinatization of H(q) and T(q3, q). We have
already discussed the embedding of H(q) in the parabolic quadric Q(6, q) in
Subsection 4.4.3. The split Cayley hexagon H(q) is self-dual if and only if
q = 3h, and admits a polarity if and only if q = 32e+1 with h and e integers
(see for instance [161, Corollary 3.5.7 and Subsection 7.3.8]).

Finally, up to duality, only one class of generalized octagons of order (s, t)
with s, t > 1 is known, namely the Ree-Tits octagons of order (q, q2) (related
to 2F4(q)) with q = 22e+1 for some integer e, which were constructed by Tits
[157].

6.2.2 Dual polar spaces

Definition 6.2.8. The dual polar space on a polar space is the point-line geom-
etry, with the maximals as points, the next-to-maximals as lines, and incidence
the restriction of incidence in the polar space.

Theorem 6.2.9. [33, Theorem 1]The dual polar space on a polar space of rank
d ≥ 2 is a near 2d-gon.

For a classical finite polar space of rank d ≥ 2 with parameters (q, qe), the

associated dual polar space is a regular near 2d-gon of order

(
qe,
[
d
1

]
q
− 1

)
.

The point graph is simply the dual polar graph, with two points of the dual
polar space adjacent if and only if they intersect in a subspace of codimension
one, and more generally, with two points of the dual polar space at distance i
if they intersect in a subspace of codimension i (see Theorem 4.1.7). If π and
` are points and lines in the dual polar space, respectively, then the unique
point in the dual polar space on ` at minimal distance from π is given by
〈`, `⊥ ∩ π〉. Cameron [33] in fact characterized the dual polar spaces as a class
of near 2d-gons.

6.2.3 Sporadic regular near 2d-gons

We will now describe some of the sporadic regular near 2d-gons.
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• By [172], there is (up to isomorphism) a unique Steiner system S(5, 8, 24).
There are 24 points in this system, each block contains 8 points and every
5 different points are in a unique block. Two distinct blocks can intersect
in 0, 2 or 4 points. When two blocks are disjoint, the complement of
their union is also a block. The points of the related near hexagon are
the 759 blocks, and its lines are the triples of pairwise disjoint blocks.
Incidence is symmetrized containment. Shult and Yanuskha [133] proved
that this is a regular near hexagon with parameters (s, t2, t) = (2, 2, 14),
and Brouwer [21] proved its characterization by its parameters. The point
graph is known as the large Witt graph and has classical parameters
(3,−2,−4, 10). Two vertices are at distance 1, 2, 3 in the point graph
whenever they intersect in 0, 4, 2 elements, respectively.

• The extended ternary Golay code is a subspace C of GF(3)12 (see for
instance [41]). Consider the following point-line geometry. The points are
the 729 cosets of C. The lines are the triples of cosets {C1, C2, C3}, such
that every two elements Ci and Cj have representatives which differ in
only one position. Incidence is just symmetrized containment. Shult and
Yanushka [133] proved that this is a regular near hexagon with parameters
(s, t2, t) = (2, 1, 11) and Brouwer [20] proved its characterization by its
parameters. The point graph has classical parameters (3,−2,−3, 8).

• The Hall-Janko group is a sporadic simple group of order 604800 (see for
instance [46]). It has a unique conjugacy class of 315 involutions whose
centralizers contain Sylow-2-subgroups. Consider the following point-
line geometry. The points are these 315 involutions, the lines are the
triples of pairwise commuting involutions, and incidence is symmetrized
containment. This is the unique regular near octagon with parameters
(s, t2, t3, t) = (2, 0, 3, 4) (see [45]).

6.3 Eigenvalues of near 2d-gons

We will now give a result on the Bose-Mesner algebra of the association scheme
defined by the point graph of a regular near 2d-gon of order (s, t). It turns
out that, even without knowing all parameters of the near 2d-gon, one specific
idempotent with an elegant expression always exists, and we will use this to
obtain a wide variety of results. The following theorem is due to Brouwer and
Wilbrink [28]. We give a proof for the sake of completeness.



6.3. Eigenvalues of near 2d-gons | 135

Theorem 6.3.1. Let Γ be the point graph of a regular near 2d-gon of order
(s, t) with d ≥ 2. If Ai denotes the adjacency matrix of the distance-i relation

in the point graph, then M =
∑d

i=0(−1/s)iAi is a minimal idempotent up to a
positive scalar and is positive semidefinite, with

rank(M) =

∑d
i=0 ki∑d

i=0 ki/s
2i
,

where ki denotes the valency of the distance-i relation, which has eigenvalue
λi = ki/(−s)i for this idempotent.

The column span of M is the eigenspace for −(t + 1), which is the minimal
eigenvalue of the point graph, and is also the kernel of the incidence matrix C
(with columns and rows indexed by the points and lines, respectively).

Proof. Let bi and ci be the intersection numbers of Γ and set b−1 = bd =
c0 = cd+1 = 0, and let k denote the valency of Γ. We also define A−1 and
Ad+1 as zero matrices. This allows us to algebraically express the properties
of intersection numbers:

A1Ai = bi−1Ai−1 + (k − bi − ci)Ai + ci+1Ai+1,∀i ∈ {0, . . . , d}.
We can now write:

A1M = A1

( d∑
i=0

(−1)i

si
Ai

)

=
d∑
i=0

(−1)i

si
(A1Ai)

=
d∑
i=0

(−1)i

si
(bi−1Ai−1 + (k − bi − ci)Ai + ci+1Ai+1)

=
d∑
i=0

(−1)i+1

si+1
(biAi) +

d∑
i=0

(−1)i

si
((k − bi − ci)Ai) +

d∑
i=0

(−1)i−1

si−1
(ciAi)

=
d∑
i=0

(−1)i

si

(
−bi
s

+ (k − bi − ci) + (−sci)
)
Ai

=
d∑
i=0

(−1)i

si

(
−k
s

)
Ai

= −(t+ 1)M.
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where we used the identities bi = k − sci, ∀i ∈ {0, . . . , d}, and k = s(t + 1)
from Theorem 6.1.3 in the last two steps. Now −(t+ 1) must be an eigenvalue
of A1 and the column span of M is in the corresponding eigenspace. Note
that M is clearly a non-zero element of the Bose-Mesner algebra, which can
be written as a linear combination of the minimal idempotents. As A1 has a
different eigenvalue for each of the d + 1 minimal idempotents (see Theorem
2.3.3), M must be a scalar multiple of the corresponding minimal idempotent
E and the eigenspace for −(t + 1) must be precisely the column span of M .
As both Tr(M) = Tr(A0) and Tr(E) are positive, this scalar must be positive,
and thus M is also positive semidefinite. The eigenvalues λi and rank(M) now
follow from Lemma 2.2.2.

Finally, two points can only be on a common line if they are equal, when they
are on t+ 1 common lines, or at distance 1 in the point graph, when they are
on a unique common line. Using the incidence matrix C, we can write this
algebraically as:

CTC = (t+ 1)A0 + A1.

This yields that A1 + (t + 1)I is positive semidefinite and hence has positive
eigenvalues, so every eigenvalue of A1 is bigger than or equal to −(t+1). It also
follows that Cv = 0 ⇐⇒ CTCv = 0 ⇐⇒ A1v = −(t + 1)v, which completes
the proof.

Remark 6.3.2. The above is not true in general for regular near (2d + 1)-
gons of order (s, t), as the point graph need not have the eigenvalue −(t+ 1).
For instance, the ordinary (2d + 1)-gons of order (1, 1) with d ≥ 2 have non-
bipartite 2-regular point graphs, which cannot have the eigenvalue −2 because
of Theorem 2.1.1.

In the remainder of this chapter, M will denote the element
∑d

i=0(−1/s)iAi
of the Bose-Mesner algebra for regular near 2d-gons of order (s, t). Note that
rank(M) = 1 if and only if s = 1.

A formula for the full matrix of eigenvalues corresponding to the dual polar
space of order (s, t) =

(
qe,
[
d
1

]
q
− 1
)

on a classical finite polar space of rank d

with parameters (q, qe) was given in Theorem 4.3.6. Note that the eigenspace
for −t−1 = −

[
d
1

]
q

is precisely the subspace V d
d,0 from Theorem 4.2.4, which is

the last eigenspace with respect to the cometric ordering from Remark 4.3.12.

We now also give the full matrix of eigenvalues for generalized n-gons of order
(s, t) with n ∈ {4, 6, 8}. Note that Theorem 6.2.6 implies that if s, t > 1, then
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all eigenvalues are integers.

Theorem 6.3.3. [23, Section 6.5] Let P denote the matrix of eigenvalues of
the scheme defined by the point graph of a generalized n-gon of order (s, t), with
the i-th column corresponding to the distance-i relation in the point graph, and
the last row with the column span of M .

(i) If n = 4:

P =

 1 s(t+ 1) s2t
1 s− 1 −s
1 −t− 1 t


and rank(M) = s2(st+ 1)/(s+ t).

(ii) If n = 6:

P =


1 s(t+ 1) s2t(t+ 1) s3t2

1 s− 1 +
√
st −s+ (s− 1)

√
st −s

√
st

1 s− 1−
√
st −s− (s− 1)

√
st s

√
st

1 −t− 1 t(t+ 1) −t2


and rank(M) = s3(s2t2 + st+ 1)/(s2 + st+ t2).

(iii) If n = 8:

P =


1 s(t+ 1) s2t(t+ 1) s3t2(t+ 1) s4t3

1 s− 1 +
√

2st st− s+ (s− 1)
√

2st s2t− st− s
√

2st −s2t
1 s− 1 −st− s −s2t+ st s2t

1 s− 1−
√

2st st− s− (s− 1)
√

2st s2t− st+ s
√

2st −s2t
1 −t− 1 t(t+ 1) −t2(t+ 1) t3


and rank(M) = s4(st+ 1)(s2t2 + 1)/((s+ t)(s2 + t2)).

Remark 6.3.4. In each case, when dividing the entry in the last row and i-th
column by the entry P0i in the same column, one obtains (−1/s)i, which is to
be expected from Lemma 2.2.2 and Theorem 6.3.1.

6.4 Point sets in regular near 2d-gons

6.4.1 Point sets in regular near 2d-gons in general

We start by defining a special type of subsets of points in regular near 2d-gons,
which will play a fundamental role in this chapter.
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Definition 6.4.1. In a regular near 2d-gon of order (s, t), a point set S is
tight if χS is orthogonal to the eigenspace for −(t+ 1) of the point graph.

The following theorem motivates our definition.

Theorem 6.4.2. Consider a regular near 2d-gon, d ≥ 2, of order (s, t) with
incidence matrix C (with columns and rows indexed by the points and lines,
respectively). Let S be a non-empty point set with inner distribution a with
respect to the scheme defined by the point graph.

(i)

d∑
i=0

(
−1

s

)i
ai ≥ 0,

and the following are equivalent:

(a) equality holds in the above,

(b) S is tight,

(c) χS is in the column span of CT .

(ii) In that case, the outer distribution B of S satisfies:

d∑
i=0

(
−1

s

)i
Bp,i = 0

for every point p, and |S| is divisible by s+ 1.

Proof. We know from Theorem 6.3.1 that M =
∑d

i=0(−1/s)iAi is a minimal
idempotent up to a positive scalar. Applying Theorem 2.2.7, we see that the
desired inequality must hold, with equality if and only if MχS = 0, and that
the outer distribution must satisfy the stated equation in that case. Up to
a positive scalar, MχS is orthogonal projection of χS onto the eigenspace for
−(t + 1), and thus zero if and only if S is tight, yielding equivalence between
(i)(a) and (i)(b). This eigenspace is ker(C) because of Theorem 6.3.1, and since
ker(C) and Im(CT ) are orthogonal complements, we also obtain equivalence
between (i)(b) and (i)(c).
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Finally, for every point p the following holds:

d∑
i=0

(−s)d−iBp,i = 0,

and hence:

|S| =
d∑
i=0

Bp,i ≡ 0 mod s+ 1.

If S is a tight set of size i(s + 1), we will also say S is an i-tight set. For
generalized quadrangles, the concept of tight sets was introduced by Payne
[119]. We first show how Theorem 6.4.2 yields a result of his.

Theorem 6.4.3. Let S be a non-empty point set in a generalized quadrangle
of order (s, t), and let a be the average number of points in S collinear with a
fixed point of S. Then:

a ≤ s− 1 +
|S|
s+ 1

,

with equality if and only if every point in S is collinear with exactly s − 1 +
|S|/(s + 1) elements of S, and if and only if S is tight. In that case, every
point not in S is collinear with exactly |S|/(s+ 1) points in S.

Proof. The inner distribution a of S is given by (1, a, |S| − a − 1). Theorem
6.4.2 now yields that

1− a

s
+
|S| − a− 1

s2
≥ 0

with equality if and only if S is tight. The above inequality can be rewritten
as a ≤ s − 1 + |S|/(s + 1). If equality holds, then Theorem 6.4.2 also yields
that the outer distribution B of S satisfies:

Bp,0 −
1

s
Bp,1 +

1

s2
Bp,2 = 0

for every point p. If b denotes the number of points in S collinear with p,
then the corresponding row (Bp,0, Bp,1, Bp,2) of the outer distribution is given
by (1, b, |S| − b− 1) if p ∈ S and by (0, b, |S| − b) if p /∈ S. Substitution in the
above equation and solving for b yields the solution s− 1 + |S|/(s+ 1) in the
first case, and |S|/(s+ 1) in the second case.

Finally, if every point in S is collinear with exactly s−1+ |S|/(s+1) elements
of S, then the average number of points in S collinear with a fixed point of S
is also s− 1 + |S|/(s+ 1) and hence the bound is certainly attained.



140 | Chapter 6. Near polygons

We will now generalize some basic properties of tight sets in generalized quad-
rangles for regular near 2d-gons.

Lemma 6.4.4. Consider a regular near 2d-gon, d ≥ 2, of order (s, t).

(i) If an i1-tight S1 and an i2-tight set S2 are disjoint, then their union is an
(i1 + i2)-tight set.

(ii) The complement of a tight set is also tight.

(iii) The points on a set of m pairwise disjoint lines form an m-tight set.

(iv) A 1-tight point set consists of the points on one fixed line.

Proof.

(i) The characteristic vectors χS1 and χS2 are orthogonal to the eigenspace
for −(t+ 1), and hence so is χS1∪S2 = χS1 + χS2 .

(ii) The complement of S has characteristic vector χΩ−χS, where Ω denotes
the full set of points. Since χΩ is also orthogonal to the eigenspace of
−(t+ 1), the result now follows.

(iii) The inner distribution of the set of points S on one fixed line is given
by (1, s, 0, . . . , 0), and hence S is 1-tight because of Theorem 6.4.2(i). It
now follows from (i) that the set of points on m pairwise disjoint lines is
m-tight.

(iv) Consider a 1-tight set S with outer distribution B. Let p be any point in
S. Let w ∈ {0, . . . , d} be the maximum index i with Bp,i 6= 0. Note that
w 6= 0. Theorem 6.4.2(ii) now yields:

w∑
i=0

(−1)isw−iBp,i = 0.

This implies that Bp,w must be divisible by s, but we also know that
0 < Bp,w ≤ |S| − Bp,0 = s, and thus Bp,w = s. This implies that all
entries Bp,i with i /∈ {0, w} are zero, and thus that w = 1. As p was an
arbitrary point in S, we now see that S is a clique in the point graph of
size s+ 1, and hence the set of points on a fixed line.

We can also generalize a very simple construction due to Payne [119, III.3].
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Lemma 6.4.5. In a regular near 2d-gon P = (P,L, I) of order (s, t) with
d ≥ 2, let ` be a line and let `∗ = {p0, . . . , ps} be the set of points on `. Let
m be an integer with 1 ≤ m ≤ t. For every k ∈ {0, . . . , s}, let `k,1, . . . , `k,m be
m distinct lines through pk, different from `. The set S of points that are on
some `k,j but not on ` is an ms-tight set.

Proof. Every point in S is on exactly one line `k,j, and every point on ` is on
exactlym such lines. If T is the set of all lines `k,j and C is the incidence matrix,
with columns and rows indexed by the points and lines of P , respectively, then
we can write:

CTχT = χS +mχ`∗

CTχ{`} = χ`∗ .

Hence χS ∈ Im(CT ), and as |S| = (s + 1)ms, it follows from Theorem 6.4.2
that S is an ms-tight set.

Lemma 6.4.6. Consider a regular near 2d-gon P of order (s, t), d ≥ 2, with
an isometrically embedded sub near 2d-gon P ′ of order (s, t′). A set of points
S in P ′ is tight if and only if S is tight in P.

Proof. As the embedding is isometric, the inner distribution of S with respect
to both point graphs is the same, say a. The criterion from Theorem 6.4.2 for
S to be tight is the same for both near polygons:

∑d
i=0 ai/(−s)i = 0. This

completes the proof.

We now introduce another type of point sets, which will turn out to be design-
orthogonal to the tight sets.

Definition 6.4.7. An m-ovoid in a regular near 2d-gon is a set of points, such
that each line is incident with exactly m of its elements.

Thas [150] introduced m-ovoids for generalized quadrangles.

Theorem 6.4.8. Consider a regular near 2d-gon P = (P,L, I), d ≥ 2, of
order (s, t). A subset of points S is an m-ovoid for some m if and only if
χS is a linear combination of χP and an eigenvector v of the point graph for
−(t+ 1). In that case:

|S| = m

s+ 1
|P |, χS =

m

s+ 1
χP + v,
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and for any point p, the number of points in S at distance i from p is

ki

(
m

s+ 1
+
(

1− m

s+ 1

)(
−1

s

)i)
if p ∈ S,

ki
m

s+ 1

(
1−

(
−1

s

)i)
if p /∈ S,

where ki denotes the valency of the distance-i relation of the point graph.

Proof. If C denotes the incidence matrix, with columns and rows indexed by
points and lines, respectively, then CχP = (s + 1)χL, as every line contains
exactly s + 1 points. Similarly, S is an m-ovoid if and only if CχS = mχL.
Hence S is an m-ovoid if and only if

C

(
χS −

m

s+ 1
χP

)
= 0.

We know from Theorem 6.3.1 that the kernel of C is precisely the eigenspace of
−(t+ 1) with respect to the point graph, and thus S is an m-ovoid if and only
if χS = m/(s+1)χP +v with v in the eigenspace of −(t+1). As the projection
of S onto 〈χP 〉 is given by |S|/|P |χP , this then implies that |S| = m/(s+1)|P |.
In that case, Lemma 2.1.3 yields that S is in fact intriguing with respect to
the distance-i relation for every i ∈ {0, . . . , d}, and with parameters (h1, h2):

h1 =
|S|
|P |

(ki − λi) + λi, h2 =
|S|
|P |

(ki − λi),

with λi/ki = (−1/s)i because of Theorem 6.3.1.

Note that Lemma 2.1.3 and the above imply that a point set is an m-ovoid for
some m in a regular near 2d-gon of order (s, t), if and only if it is intriguing
with parameters (h1, h2) satisfying h1 − h2 = −(t+ 1).

Corollary 6.4.9. In a regular near 2d-gon P = (P,L, I) of order (s, t), d ≥ 2,
an i-tight set S1 and an m-ovoid S2 intersect in exactly mi points.

Proof. It follows from Theorems 6.4.2 and 6.4.8 that S1 and S2 are design-
orthogonal. Hence Lemma 2.2.10 yields that |S1 ∩ S2| = |S1||S2|/|P |. As
|S1| = i(s+ 1) and |S2| = m/(s+ 1)|P |, this yields the desired result.
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If d = 2, then the tight sets and m-ovoids are precisely the sets with dual
degree less than d. See [10] for many examples.

Theorem 6.4.10. If S is a non-empty set of points in a regular near 2d-gon
of order (s, t), d ≥ 2, pairwise at distance i with i odd, then |S| ≤ 1 + si, and
equality holds if and only if S is a tight set.

Proof. The inner distribution a of S satisfies a0 = 1 and ai = |S| − 1, while
all other entries of a are zero. Theorem 6.4.2 now yields that

1− |S| − 1

si
≥ 0,

with equality if and only if S is a tight set.

Corollary 6.4.11. If S is a set of sd + 1 points, pairwise at distance d, in a
regular near 2d-gon of order (s, t) for odd d ≥ 3, then S is a 1-regular code in
the point graph, and:

(i) if a point p is at distance 1 from an element of S, then p is at distance
d− 1 from exactly sd−1 points in S, and at distance d from the sd − sd−1

remaining elements of S,

(ii) if a point p is at distance d − 1 from S, then p is at distance d − 1
from exactly (sd + 1)/(s + 1) elements of S, and at distance d from the
s(sd + 1)/(s+ 1) remaining elements of S.

Proof. We know from Theorem 6.4.10 that in case of equality, the outer dis-
tribution B of S satisfies:

d∑
i=0

(
−1

s

)i
Bp,i = 0

for every point p. The corresponding row of the outer distribution is clear if
p ∈ S. If p is at distance 1 from S, then Bp,0 = 0 and Bp,1 = 1 and Bp,i = 0 if
2 ≤ i ≤ d− 2. If p is at distance d− 1 from S, then Bp,i = 0 if 0 ≤ i ≤ d− 2.
The sum of the entries in each row of B must be |S|, and thus we can use
the above equation to compute the row Bp in each case. In particular, this
establishes 1-regularity of S.

We can say a bit more if d = 3. Recall from Subsection 2.3.2 the defini-
tion of the covering radius t(C), complete regularity and the reduced outer
distribution of a code C.
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Corollary 6.4.12. If S is a non-empty set of points in a regular near hexagon
of order (s, t), pairwise at distance three, then |S| ≤ 1 + s3, with equality if
and only if S is tight. In that case, S is completely regular with reduced outer
distribution B′ with respect to the point graph:

B′ =

 1 0 0 s3

0 1 s2 s3 − s2

0 0 s2 − s+ 1 s(s2 − s+ 1)

 if t(S) = 2,

or

B′ =

(
1 0 0 s3

0 1 s2 s3 − s2

)
if t(S) = 1.

Proof. The bound and the equivalence between equality and tightness imme-
diately follow from Theorem 6.4.10. The reduced outer distribution B′ follows
immediately from Corollary 6.4.11.

Before we move on to discuss point sets in specific types of regular near 2d-gons,
we slightly generalize a property of tight point sets. The outer distribution of
a point set S tells us how S intersects the cells of the partition with respect to
distance from any fixed point. More generally, we will now consider partitions
with similar properties. We first need another definition, very similar to that
of valuations as introduced by De Bruyn and Vandecasteele [58], but with
weaker assumptions.

Definition 6.4.13. Let P = (P,L, I) be a near 2d-gon. A function f from P
to N is a weak valuation2 if it satisfies the following conditions.

(i) There exists at least one point p with value f(p) = 0.

(ii) Every line ` contains a unique point x` with smallest value for f , and
f(x) = f(x`) + 1 for every point x 6= x` on `.

Lemma 6.4.14. If f is a weak valuation of a near 2d-gon, then for every two
points x and y, |f(x) − f(y)| ≤ d(x, y) holds with respect to the point graph,
and in particular 0 ≤ f(x) ≤ d for every point x.

Proof. The value for f of two collinear points differs by at most 1. If d(x, y) = i
and (x = x0, . . . , xi = y) is a path in the point graph, then

|f(x)− f(y)| ≤
i∑

j=1

|f(xj−1)− f(xj)| ≤ i.

2This should not be confused with the concept of valuations in generalized polygons from [160].



6.4. Point sets in regular near 2d-gons | 145

The last claim follows from the assumption that there is a point p with f(p) =
0.

We now give two important examples of weak valuations, which were discussed
in [58].

Theorem 6.4.15. Consider a regular near 2d-gon P = (P,L, I).

(i) For any point p, the function fp : P → N : x → d(x, p) (with respect to
the point graph) is a weak valuation of P.

(ii) For any 1-ovoid S, the function fS : P → N with fS(x) := 0 if x ∈ S and
fS(x) := 1 if x /∈ S is a weak valuation of P.

Proof. In both cases, there is clearly a point with value 0. In the first case,
condition (ii) from Definition 6.4.13 is satisfied because of the definition of near
2d-gons. In the second case, it is satisfied since by the definition of 1-ovoids,
every line will contain exactly one point of S.

Lemma 6.4.16. Let f be a weak valuation of a regular near 2d-gon of order
(s, t), d ≥ 2, with Fi = {p|f(p) = i}, ∀i ∈ {0, . . . , d}. Then

v =
d∑
i=0

(
−1

s

)i
χFi

is an eigenvector for −(t+ 1) with respect to the point graph.

Proof. Take F−1 = Fd+1 = ∅. Consider any point p ∈ Fi. Now p can only be
collinear with points in Fi−1, Fi and Fi+1. Let cf,i denote the number of lines
through p with a (necessarily unique) point in Fi−1. All s other points on such
a line are in Fi. All s points, distinct from p and on the remaining (t+1)− cf,i
lines through p must be in Fi+1. Hence:

(A1χFi−1
)p = cf,i, (A1χFi)p = (s− 1)cf,i, (A1χFi+1

)p = s((t+ 1)− cf,i),

(A1χFj)p = 0 if |i− j| > 1.
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We can now write:

(A1v)p =
(
A1

( d∑
j=0

(
−1

s

)j
χFj

))
p

=
(
−1

s

)i−1

cf,i +
(
−1

s

)i
(s− 1)cf,i +

(
−1

s

)i+1

s((t+ 1)− cf,i)

=
(
−1

s

)i(
(−s)cf,i + (s− 1)cf,i +

(
−1

s

)
(s(t+ 1− cf,i))

)
=

(
−1

s

)i
(−(t+ 1)) = −(t+ 1)vp.

As p was an arbitrarily chosen point, we can conclude that A1v = −(t+ 1)v.

Theorem 6.4.17. Let f be a weak valuation of a regular near 2d-gon, d ≥ 2,
of order (s, t), with Fi = {p|f(p) = i}, ∀i ∈ {0, . . . , d}. If S is a tight set of
points, then

d∑
i=0

(
−1

s

)i
|S ∩ Fi| = 0.

In particular:
d∑
i=0

(
−1

s

)i
|Fi| = 0.

Proof. We know from Lemma 6.4.16 that v =
∑d

i=0(−1/s)iχFi is an eigenvec-
tor for −(t + 1) with respect to the point graph. On the other hand, χS is
orthogonal to the eigenspace for −(t + 1) by Theorem 6.4.2. Lemma 2.2.10
now yields:

0 = (χS)Tv =
d∑
i=0

(
−1

s

)i
(χS)TχFi =

d∑
i=0

(
−1

s

)i
|S ∩ Fi|.

The last part of the theorem follows from the observation that the full set of
points is a tight set.

6.4.2 Point sets in generalized 2d-gons

Martin [106] considered the eigenspaces of the bipartite incidence graph of
symmetric designs, and in particular of the finite projective planes. The results
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for subsets in finite projective planes can be seen in the context of generalized
hexagons of order (1, q). De Wispelaere and Van Maldeghem [63] applied
algebraic techniques, including design-orthogonality, to obtain a wide variety of
results on subsets of points in generalized 2d-gons. Similar work for generalized
quadrangles was done by Bamberg, Law and Penttila [10]. This will serve as
our inspiration, and we will give several similar results in this subsection. We
will start with generalized quadrangles, then move on to the hexagons and
conclude with the octagons.

A partial distance-j-ovoid in a generalized 2d-gon, 2 ≤ j ≤ d, of order (s, t) is
a set S of points such that the distance in the point graph between any two
distinct elements is at least j. We say S is a maximal partial distance-j-ovoid
if it is not a proper subset of another partial distance-j-ovoid. We call S a
distance-j-ovoid if for every point or line there is at least one element of S
at distance j or less in the incidence graph from it. In particular, a partial
distance-2-ovoid is a set of pairwise non-collinear points, and it is a distance-
2-ovoid if and only if every line contains a (necessarily unique) element of this
set. Hence the distance-2-ovoids are precisely the 1-ovoids. Two points in a
generalized 2d-gon are called opposite if they are at distance d. The partial
distance-d-ovoids in a generalized 2d-gon are thus precisely the sets of pairwise
opposite points. These sets are distance-d-ovoids if and only if their size is st+1
for d = 2, (s + 1)(1 + st + s2t2)/(1 + s + st) for d = 3 (but see below), and
s2t2 + 1 for d = 4 (see for instance [63]).

We start by recovering results by Payne and Thas (see for instance [122, 2.2.1]
and [120]) as an example.

Theorem 6.4.18. If S is the set of points of a subquadrangle P ′ of order
(s′, t′) in a generalized quadrangle P of order (s, t), then s = s′ or s ≥ s′t′

and one of the two equalities holds if and only if S is tight in P. Moreover,
if s = s′, then a subset in the subquadrangle is tight in P ′ if and only if it is
tight in P.

Proof. The average number of points in S, collinear with a fixed point in
S, is given by s′(t′ + 1) (in both point graphs). Theorem 6.2.5 yields that
|S| = (s′ + 1)(s′t′ + 1). The inequality and the equivalence between equality
as stated and tightness of S now follow from Theorem 6.4.3. The last part
follows from Lemma 6.4.6 as P ′ must be isometrically embedded.

In a generalized hexagon of order (s, t), a set of mutually opposite points is
a distance-3-ovoid if and only if every point is either in it or collinear with
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a (necessarily unique) point in it. Hence they are the perfect 1-codes in the
point graph. Offer [112] proved that these perfect 1-codes can only exist if
s = t, when they are precisely the partial distance-3-ovoids of size s3 + 1. It is
precisely in this case that −1 is an eigenvalue of the point graph (see Theorem
6.3.3 (ii)) and hence this condition also follows from Lloyd’s theorem (Theorem
2.3.9(v)).

The split Cayley hexagon H(q) has distance-3-ovoids if q is a power of 3 (see
for instance [152]) but never if q is even (see [148]) or a prime p > 3 (see [114]
and [3]). The dual of H(q) always has a distance-3-ovoid (see [147] as well as
Remark 4.4.6).

Coolsaet and Van Maldeghem [47] proved that in a generalized hexagon of
order (s, s3), s > 1, a partial distance-3-ovoid has size at most s5 − s3 + s− 1.
We will now prove a general result, very similar to [63, Theorems 4.3 and 4.13].

Theorem 6.4.19. Suppose S is a maximal partial distance-3-ovoid in a gen-
eralized hexagon of order (s, t). Then |S| ≤ min((

√
st)3 + 1, s3 + 1), and

• if s < t, then S is completely regular if and only if S is tight, and if and
only if |S| = 1 + s3, with

B′ =

 1 0 0 s3

0 1 s2 s3 − s2

0 0 s2 − s+ 1 s(s2 − s+ 1)

 ,

LS =

 0 s(t+ 1) 0
1 s2 + s− 1 (t− s)s
0 s2 − s+ 1 st− (s− 1)2

 ,

and in this case every m-ovoid intersects S in exactly m(s2−s+1) points,
and in particular, every distance-2-ovoid intersects S in exactly s2−s+1
points.

• if s = t, then S is completely regular if and only if S is tight, and if and
only if |S| = 1+s3 (and thus a distance-3-ovoid), and then every m-ovoid
intersects S in exactly m(s2 − s+ 1) points.

• if s > t, then S is completely regular if and only if |S| = 1 + (
√
st)3, with

B′ =

 1 0 0 (
√
st)3

0 1 t
√
st

√
st(s− 1)t

0 0 (t+ 1)(
√
st+ 1)

√
st(st− t− 1)− t

 ,
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LS =

 0 s(t+ 1) 0
1 s− 1 + t

√
st t(s−

√
st)

0 (t+ 1)(
√
st+ 1) (t+ 1)(s− 1−

√
st)

 ,

(B′ and LS denote the reduced outer distribution of S and the quotient matrix
of the corresponding equitable partition of the point graph, respectively.)

Proof. The matrix of eigenvalues for the scheme on the points was given in
Theorem 6.3.3(ii). Let V0, V1, V2 and V3 denote the eigenspaces corresponding
to the eigenvalues s(t+ 1), s− 1 +

√
st, s− 1−

√
st and −(t+ 1), respectively.

Maximality of S as a partial distance-3-ovoid means that the covering radius
t(S) is 1 or 2. If C is completely regular, then Theorem 2.3.9 yields that its
dual degree r(S) is precisely t(S), and hence r(S) ∈ {1, 2}. Hence χS must
be orthogonal to at least one of the eigenspaces. Corollary 2.2.9 now yields
that |S| ≤ 1 − k3/λ3 for any eigenspace, with k3 the valency of the distance-
3-relation between points, and with λ3 its eigenvalue for the corresponding
eigenspace . Hence |S| ≤ 1 + (

√
st)3 with equality if and only if χS ∈ V ⊥1 , and

|S| ≤ 1 + s3 with equality if and only if χS ∈ V ⊥3 .

If s < t, then 1 + s3 < 1 + (
√
st)3. If |S| = 1 + s3, then complete regularity

of S and its reduced outer distribution B′ follow from Corollary 6.4.12. In
that case, S is (s2 − s+ 1)-tight, and thus the result with respect to m-ovoids
follows from Corollary 6.4.9.

If s = t, then the two bounds are equal. Hence S is completely regular if and
only if |S| = 1 + s3, and in that case the dual degree and the covering radius
are both 1, i.e. S is a perfect 1-code and thus a distance-3-ovoid. The result
with respect to m-ovoids again follows from Corollary 6.4.9.

If s > t then 1 + s3 > 1 + (
√
st)3, and hence S is completely regular if and

only if S = 1 + (
√
st)3. In that case, for every point p /∈ S the corresponding

row Bp of the outer distribution B of S is of the form (0, 1, x, (
√
st)3 − x) or

(0, 0, x, (
√
st)3 + 1− x), depending on whether p is at distance 1 or 2 from S.

Theorem 2.2.9 and Theorem 6.3.3(ii) then also yield:

1

1
Bp,0 +

s− 1 +
√
st

s(t+ 1)
Bp,1 +

−s+ (s− 1)
√
st

s2t(t+ 1)
Bp,2 +

−s
√
st

s3t2
Bp,3 = 0.

Solving for x now allows explicit computation of the reduced outer distribution
B′ of S.
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Finally, if s < t or s > t, we can use the formula LS = B′Lt(S)(B
′
t(S))

−1 from
Lemma 2.3.8 to compute the quotient matrix. Because of Theorem 6.2.5, the
required matrix L is given by:

L =


0 s(t+ 1) 0 0
1 (s− 1) st 0
0 1 (s− 1) st
0 0 t+ 1 (s− 1)(t+ 1)

 .

De Wispelaere and Van Maldeghem [63, Example 4.15] constructed a partial
distance-3-ovoid of size q3 + 1 in T(q, q3). It follows from Theorem 6.4.19 that
this is a completely regular code, and they in fact proved that it is completely
transitive.

The split Cayley hexagon H(2) has a unique distance-2-ovoid while its dual
has none, and the self-dual H(3) has a unique distance-2-ovoid (see [61]). Two
distance-2-ovoids have been found in H(4) (see [62, 64]), and they are the only
ones (see [123]). The dual twisted triality hexagons T(2, 8) and T(3, 27) have
no distance-2-ovoids, and none are known in any T(q, q3) (see [61]). Although
we don’t have any examples of the latter, we can still give a little bit of infor-
mation on the intersection of two distance-2-ovoids in generalized hexagons of
order (s, s3). Our proof is inspired by the techniques applied by Martin [106].

Theorem 6.4.20. If S and S ′ are distance-2-ovoids in a generalized hexagon
of order (s, s3), s > 1, then |S ∩ S ′| is 0 or h(s2 + s + 1) for some integer
h ≥ s3 − s+ 1.

Proof. The scheme defined by the point graph has a cometric ordering V0, V1, V2

and V3 of eigenspaces, corresponding to the eigenvalues s(s3 + 1),−s3 − 1, s−
1 + s2 and s− 1− s2, respectively (see for instance [23, Section 6.5] or Remark
6.5.3). Theorem 6.4.8 also yields that χS and χS′ are both in V0 ⊥ V1, and thus
S and S ′ are both 1-antidesigns with respect to this cometric ordering. Hence
S ∩ S ′ is a 2-antidesign because of Theorem 2.2.15, i.e. χS∩S′ is orthogonal to
V3.

Now suppose S ∩ S ′ contains a point p. Consider the row of the outer dis-
tribution B of S ∩ S ′, corresponding to p. As both S and S ′ are cocliques
in the point graph, we know that (Bp,0, Bp,1, Bp,2, Bp,3) = (1, 0, x2, x3), with
1 + x2 + x3 = |S ∩ S ′|. Finally, as χS∩S′ ∈ V ⊥3 , Theorem 2.2.7 yields that B
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satisfies:

1

1
Bp,0 +

s− 1− s2

s(s3 + 1)
Bp,1 +

−s− s3 + s2

s5(s3 + 1)
Bp,2 +

s3

s9
Bp,3 = 0,

where we used Theorem 6.3.3(ii) to obtain the desired eigenvalues. Solving for
x2 and x3 yields:

x2 =
|S ∩ S ′|(s+ 1)

s2 + s+ 1
+ (s2 − 1)(s3 + 1),

x3 = s2

(
|S ∩ S ′|
s2 + s+ 1

− (s3 − s+ 1)

)
.

As x2 and x3 must be non-negative integers, and as s + 1 and s2 + s + 1 are
coprime, we now find that |S∩S ′| = h(s2+s+1) for some integer h ≥ s3−s+1.

Yanushka [173] proved that if a generalized octagon of order (s, t) with t > s
has a proper suboctagon of order (s′, t′), then st ≥ (s′)2t′. More restrictions
on the parameters of suboctagons were obtained by Thas [146]. They imply
in particular that if s = s′ or t = t′, then s′ or t′ must be 1 (see [161, Theorem
1.8.8]). We now generalize a result by De Bruyn [55].

Theorem 6.4.21. Suppose P is a generalized octagon of order (s, t).

(i) If S is the point set of a suboctagon of order (s′, t′), then s = s′ or
s ≥ s′t′, and S is tight if and only if s = s′ or s = s′t′. Every m-ovoid
of P intersects S in m(st′ + 1)((st′)2 + 1) points in the first case, and in
m(s′ + 1)(s2 + 1) points in the second case.

(ii) Suppose (Tλ)λ∈Λ, Λ a finite non-empty set of indices, is a set of m-ovoids
of P with 0 < m < s+ 1, such that the number of λ ∈ Λ with p1, p2 ∈ Tλ
only depends on the distance d(p1, p2) in the point graph of P. A proper
suboctagon of order (s′, t′) of P will intersect every Tλ in the same number
of points if and only if s = s′ or s = s′t′.

(iii) Suppose (Sλ)λ∈Λ, Λ a finite non-empty set of indices, is a set of proper
suboctagons of the same order (s′, t′), such that the number of λ ∈ Λ with
p1, p2 ∈ Sλ only depends on the distance d(p1, p2) in the point graph. An
m-ovoid with 0 < m < s + 1 will intersect every Sλ in the same number
of points if and only if s = s′ or s = s′t′.
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Proof. The inner distribution a of the point set S of the (isometrically em-
bedded) suboctagon of order (s′, t′) consists of simply the valencies of the
distance-relations corresponding to its point graph, and hence Theorem 6.2.5
yields:

a = (1, s′(t′ + 1), (s′)2t′(t′ + 1), (s′)3(t′)2(t′ + 1), (s′)4(t′)3).

Theorem 6.4.2 now yields:

1− s′(t′ + 1)

s
+

(s′)2t′(t′ + 1)

s2
− (s′)3(t′)2(t′ + 1)

s3
+

(s′)4(t′)3

s4
≥ 0

with equality if and only if S is tight. We can rewrite the inequality as:

(s− s′)(s− s′t′)(s2 + (s′t′)2)

s4
≥ 0.

If s = s′, then S is (st′ + 1)(s2(t′)2 + 1)-tight, and if s = s′t′, then S is
(s′ + 1)(s2 + 1)-tight. In both cases, the intersection property with respect to
m-ovoids follows immediately from Corollary 6.4.9.

Finally, we know from Theorem 6.4.8 that the characteristic vector of an m-
ovoid with 0 < m < s + 1 has a non-zero component in an eigenspace if and
only if the corresponding eigenvalue is the valency s(t+ 1) of the point graph
or its minimal eigenvalue −(t + 1). Hence a suboctagon is design-orthogonal
to it if and only if it is tight. Now (ii) and (iii) follow from Theorem 2.2.13.

Distance-3-ovoids in generalized octagons of order (s, t) are precisely the per-
fect 1-codes in the point graph. Lloyd’s Theorem (see Theorem 2.3.9(v)) im-
plies that these can only exist if −1 is an eigenvalue of the point graph, which
is the case if and only if s = 2t (see Theorem 6.3.3 (iii)). This restriction was
obtained by Offer and Van Maldeghem [113], who constructed a distance-3-
ovoid in the unique generalized octagon of order (2, 1). The only other known
generalized octagon of order (2t, t) is the dual of the Ree-Tits octagon of or-
der (2, 4), and here the question of existence of distance-3-ovoids is still an
open problem. The only result on existence of distance-4-ovoids in generalized
octagons of order (s, t) with s, t > 1 is the sharper bound of 27 for partial
distance-4-ovoids in the Ree-Tits generalized octagon of order (2, 4) by Cool-
saet and Van Maldeghem [47].
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6.4.3 Point sets in dual polar spaces

An extensive list of equitable partitions of point graphs of dual polar spaces
can be found in [42]. We will now discuss several examples of point sets in dual
polar spaces, many of which are extremal in some sense, and some of which are
completely regular and hence also yield equitable partitions of the dual polar
graph.

We first state a very handy q-analog of the Binomial Theorem (see for instance
[35, Theorem 9.2.5] for a proof).

Theorem 6.4.22. [ q-Binomial Theorem] For any integer q ≥ 2 and z ∈ R:

d∑
i=0

qi(i−1)/2zi
[
d

i

]
q

=
d∏
j=1

(1 + qj−1z).

Dual polar spaces can often be isometrically embedded in another, such as the
embedding of the dual polar space on W (2d − 1, q) in that on H(2d − 1, q2)
(see [54]).

Theorem 6.4.23. Let P and P ′ be dual polar spaces on classical finite polar
spaces of the same rank d, with the latter isometrically embedded in the first.
If the smaller polar space has parameters (q, qe1) and the bigger polar space has
parameters (qa, (qa)e2), then the points of P ′ form a tight set in P if and only
if ae2 − e1 is an integer with 0 ≤ ae2 − e1 ≤ d− 1.

Proof. The inner distribution a of the point set of P ′ as a subset in P consists
of the valencies of the relations between maximals in the smaller polar space:
ai = qi(i−1)/2qie1

[
d
i

]
q
, for any i ∈ {0, . . . , d}, by Theorem 4.1.7. Theorem 6.4.2

now implies that the set of points of P ′ is tight in P if and only if:

d∑
i=0

(−1/qae2)iqi(i−1)/2qie1
[
d

i

]
q

= 0.

Using Theorem 6.4.22 with z = −qe1−ae2 , we can rewrite the left-hand side:

d∏
j=1

(1− qj−1qe1−ae2).

Hence the set of points of P ′ is tight in P if and only if
∏d

j=1(1−qj−1+e1−ae2) =
0, which is the case if and only if ae2−e1 is an integer with 0 ≤ ae2−e1 ≤ d−1.
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Remark 6.4.24. If the rank is 2, then the smaller and bigger dual polar spaces
are generalized quadrangles of orders (s′, t′) = (qe1 , q) and (s, t) = (qae2 , qa),
respectively. Theorem 6.4.23 now yields that the point set of the subquadrangle
is tight if and only if s/s′ = 1 or s/s′ = t′, which also follows from Theorem
6.4.18.

Remark 6.4.25. It is in fact possible that the dual degree of the point set of
the embedded dual polar space is much less than d − 1. A particularly nice
example is the isometric embedding of the dual polar space on W (2d− 1, q) in
that on H(2d− 1, q2). Cardinali and De Bruyn [42, Class 6] showed that this
point set is in fact a completely regular code with covering radius and dual
degree bd/2c.

Recall the definition of (partial) spreads in polar spaces from Subsection 4.4.4.
We know from Theorem 4.4.16 that in H(2d − 1, q2) with d odd, which has
parameters (q2, q), a partial spread S has size at most qd + 1, and hence S
certainly cannot be a spread. However, the next theorem shows that partial
spreads attaining this bound still possess interesting properties. We have cho-
sen to formulate the result in the most straightforward language, rather than
in terms of near polygons and algebraic graph theory, although our proof relies
on this context. We also write explicit (vectorial) dimensions in order to avoid
confusion between points of the polar space and points of the dual polar space.

Theorem 6.4.26. A non-empty partial spread S in H(2d− 1, q2) has size at
most qd + 1 for odd d ≥ 3, and equality holds if and only if S is tight. In that
case, if for any totally isotropic d-space π we denote by Bπ,i the number of
elements of S intersecting π in a (d− i)-space, then:

d∑
i=0

(
−1

q

)i
Bπ,i = 0.

In particular, S is a 1-regular code in the dual polar graph in that case, and
for any totally isotropic d-space π:

(i) if π intersects an element of S in a (d−1)-space, then it intersects exactly
qd−1 elements of S in a 1-space and all other elements of S trivially,

(ii) if π intersects no element of S in a subspace of dimension more than 1,
then it intersects exactly (qd + 1)/(q + 1) elements of S in a 1-space.
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Proof. The dual polar space is a regular near 2d-gon of order (q,
[
d
1

]
q2
− 1) in

this case, and its point graph is a dual polar graph with set of vertices Ωd. We
know from Theorem 4.1.7 that two totally isotropic d-spaces are at distance
i in the dual polar graph if and only if they intersect in a (d − i)-space, and
thus the matrix B = (B)π∈Ωd,i=0,...,d is precisely the outer distribution of S.
Since S is a clique of the distance-d relation, the bound for |S| and equivalence
between equality and tightness follow immediately from Theorem 6.4.10. The
rest follows from Theorem 6.4.2(ii) and Corollary 6.4.11.

We obtain stronger properties for small rank. The following result can be seen
as an analog of Theorem 6.4.19 for dual polar graphs of diameter 3.

Theorem 6.4.27. A maximal partial spread S in H(5, q2) has size at most
q3 + 1, and equality holds if and only if S is tight, and if and only if S is
completely regular. In that case, for any totally isotropic 3-space π:

(i) if π intersects an element of S in a 2-space, then it intersects exactly q2

elements of S in a 1-space and all other elements of S trivially,

(ii) if π intersects no element of S in a subspace of dimension more than 1,
then it intersects exactly q2 − q + 1 elements of S in a 1-space,

and the corresponding equitable partition of the dual polar graph has quotient
matrix:

LS =

 0 q(q4 + q2 + 1) 0
1 q4 + q2 + q − 1 q2(q − 1)(q2 + 1)
0 (q2 − q + 1)(q2 + 1) (q2 − q + 1)(q3 + q − 1)

 .

Proof. Theorem 6.4.12 immediately yields the bound and the equivalence be-
tween equality and tightness, and complete regularity in case of equality. On
the other hand, maximality of S as a partial spread means that the covering
radius t(S) is 1 or 2. If S is completely regular, then Theorem 2.3.9 yields that
its dual degree r(S) is precisely t(S). Hence χS must be orthogonal to at least
one of the eigenspaces of the point graph of the dual polar space. Theorem
2.2.9 now yields that for any eigenspace, χS is orthogonal to it if and only if
|S| = 1−k3/λ3, with k3 the valency of the oppositeness relation between totally
isotropic 3-spaces, and with λ3 its eigenvalue for the corresponding eigenspace.
We know from Theorem 4.3.15 and Corollary 4.3.17 that the minimal eigen-
value of oppositeness is −q6 (only appearing for one eigenspace, namely V 3

3,0)
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and the valency is q9, and thus S can only be completely regular if |S| = 1+q3,
when the covering radius t(S) and dual degree is exactly 2.

In that case, the reduced outer distribution B′ also follows from Theorem
6.4.12, and we can use the formula LS = B′Lt(S)(B

′
t(S))

−1 from Lemma 2.3.8 to
compute the quotient matrix LS. The required matrix L follows from Theorem
4.1.7:

L =


0 q(q4 + q2 + 1) 0 0
1 q − 1 q3(q2 + 1) 0
0 q2 + 1 (q − 1)(q2 + 1) q5

0 0 q4 + q2 + 1 (q6 − 1)/(q + 1)

 .

Remark 6.4.28. De Beule and Metsch [52] obtained the bound of q3 + 1 for
a partial spread in H(5, q2), and their combinatorial argument involved the
vertices at distance 2 from S (the so-called free planes). This way, they also
obtained the number (q3 + 1)/(q + 1) in case of equality.

We now move on to spreads of parabolic quadrics and symplectic spaces. In
Q(2d, q) and W (2d− 1, q), a partial spread is a spread when it has size qd + 1.
The symplectic space W (2d − 1, q) has a spread for all d ≥ 2. If q is even,
then the parabolic quadric Q(2d, q) is isomorphic to W (2d − 1, q) and hence
has a spread for all d ≥ 2 as well. If q is odd, then Q(2d, q) has no spreads
for all even d ≥ 2. The existence of an ovoid of 1-spaces in Q(6, q) implies
the existence of such a spread, and therefore Q(6, q) is known to have spreads
for many odd values of q, including all powers of 3. However, no spreads of
Q(2d, q), q odd, d odd and d ≥ 5, are known. We refer to [152] for proofs of
these results.

In any classical finite polar space of rank d with parameters (q, qe), a spread
S is always a 1-regular code in the dual polar graph. Indeed, if a maximal
π is adjacent to some element π0 of S, it is at distance d − 1 or d from any
other element of the set, and hence it can intersect the other elements of S in
at most a 1-space. As all

[
d
1

]
q
−
[
d−1

1

]
q

= qd−1 of the 1-spaces in π but not

in π0 must be contained in some element of S, the maximal π is at distance
d − 1 from exactly qd−1 elements of S, and at distance d from the remaining
|S| − qd−1 − 1 = qd−1+e − qd−1 elements of S. However, the next result will
improve this regularity in Q(2d, q) and W (2d− 1, q) in case the rank d is odd.
We know from Theorem 4.3.17 that for odd rank d, the minimal eigenvalue for
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oppositeness between generators appears twice in the matrix of eigenvalues.
For the Erdős-Ko-Rado problem, this weakened our control over the EKR
sets (see Theorem 5.3.1), but here this phenomenon will actually work in our
favour.

Theorem 6.4.29. For any odd d ≥ 3, a non-empty partial spread S of the
parabolic quadric Q(2d, q) or of the symplectic space W (2d − 1, q) is tight if
and only if it is a spread. In that case, for any totally isotropic d-space π:

d∑
i=0

(
−1

q

)i
Bπ,i = 0,

where Bπ,i denotes the number of elements of S intersecting π in a (d−i)-space:

In particular, S is 2-regular, and if π is a totally isotropic d-space, then:

(i) if π intersects an element of S in a (d−1)-space, it intersects exactly qd−1

elements of S in a 1-space and intersects qd − qd−1 elements trivially,

(ii) if π intersects an element of S in a (d − 2)-space (with d ≥ 5), then π
intersects exactly qd−3 elements of S in a 2-space, qd−1−qd−3 elements in
a 1-space, and intersects the remaining qd − qd−1 elements of S trivially,

(iii) if π intersects every element of S in a subspace of dimension at most
2, then π intersects (qd−1 − 1)/(q2 − 1) elements of S in a 2-space, qd−1

elements in a 1-space and intersects the remaining qd−q2(qd−1−1)/(q2−1)
elements of S trivially.

In particular, for odd d, every totally isotropic d-space must intersect at least
one element of the spread in Q(2d, q) or W (2d−1, q) in a subspace of dimension
at least3 2.

Proof. The dual polar space is a regular near 2d-gon of order (q,
[
d
1

]
q
− 1) in

this case, and its point graph is a dual polar graph with set of vertices Ωd. We
know from Theorem 4.1.7 that two totally isotropic d-spaces are at distance
i in the dual polar graph if and only if they intersect in a (d − i)-space, and
thus the matrix B = (B)π∈Ωd,i=0,...,d is precisely the outer distribution of S.
Since S is a clique of the distance-d relation, the bound for |S| and equivalence

3In the terminology of [15]: every maximal is non-scattered with respect to the spread (although
only spreads in projective spaces were considered there).
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between equality and tightness follow immediately from Theorem 6.4.10. The
equation for B follows from Theorem 6.4.2(ii).

Suppose from now on that S is a spread. Consider any maximal π. We know
that

Bπ,0 + · · ·+Bπ,d = |S|.
We also know that the outer distribution B of S satisfies:

d∑
i=0

(−1/q)iBπ,i = 0.

Finally, as each of the
[
d
1

]
q

points in π must be on a unique element of S:

d∑
i=0

Bπ,i

[
d− i

1

]
q

=

[
d

1

]
q

.

If π is at distance 1 from S, thenBπ,0 = 0, Bπ,1 = 1 andBπ,i = 0 if 2 ≤ i ≤ d−2.
If π is at distance 2 from S and d ≥ 5, then Bπ,0 = 0, Bπ,1 = 0, Bπ,2 = 1 and
Bπ,i = 0 if 2 ≤ i ≤ d− 3. Finally, if π is at distance at least d− 2 from S, then
Bπ,i = 0 if 0 ≤ i ≤ d − 3. In all cases, the three equations given above allow
explicit computation of the remaining entries Bπ,d−2, Bπ,d−1 and Bπ,d of the
outer distribution. In particular, we see that for no maximal π it is possible
that Bπ,0 = . . . = Bπ,d−2 = 0, and hence the covering radius of S is at most
d− 2.

This establishes 2-regularity of S (if d = 3, then every maximal is in S or at
distance d− 2 = 1 from S).

Just as for H(2d− 1, q2) with d odd, we can say more for small d. For Q(6, q)
and W (5, q), we will recover a result by Thas [145].

Theorem 6.4.30. The spreads in Q(6, q) or W (5, q) are precisely the perfect
1-codes. A spread in Q(10, q) or W (9, q) is completely regular with covering
radius 3, and the reduced outer distribution B′ and quotient matrix LS of the
corresponding equitable partition of the dual polar graph are given by:

B′ =


1 0 0 0 0 q5

0 1 0 0 q4 q5 − q4

0 0 1 q2 q4 − q2 q5 − q4

0 0 0 q2 + 1 q4 q5 − q4 − q2

 ,
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LS =


0 q(q4 + q3 + q2 + q + 1) 0 0
1 q − 1 q2(q + 1)(q2 + 1) 0
0 q + 1 q4 + q3 + 2q2 − 1 q2(q3 − 1)
0 0 (q2 + 1)(q2 + q + 1) q5 − q2 − 1

 .

Proof. Let S be a spread. If the diameter d is 3 or 5, we can use Theorem
6.4.29 to determine every row of the outer distribution B of S, since then every
maximal is at distance 0, 1, 2 or d− 2 from S. This yields B′.

If d = 3, then every maximal is either in S or at distance 1 from a unique
element of S, and thus S is a perfect 1-code. Conversely, every perfect 1-code
consists of (q + 1)(q2 + 1)(q3 + 1)/(1 + q(q2 + q + 1)) = q3 + 1 maximals that
are pairwise at distance 3 (i.e. intersect trivially), and hence is a spread.

If d = 5, then we know from Theorem 6.4.29 that the covering radius t(S) is at
most d − 2 = 3. Since S is completely regular, Theorem 2.3.9 yields that the
covering radius t(S) is the dual degree r(S). Corollaries 2.2.9 and 4.3.17 yield
that χS is orthogonal to exactly 2 eigenspaces, and hence r(S) = t(S) = d− 2
(alternatively, one can see that S is not a perfect 2-code by counting). We
can use the formula LS = B′Lt(S)(B

′
t(S))

−1 from Lemma 2.3.8 to compute the
quotient matrix LS. The required matrix Lt(S) follows from Theorem 4.1.7:

Lt(S) =


0 q(q4 + q3 + q2 + q + 1) 0 0
1 q − 1 q2(q + 1)(q2 + 1) 0
0 q + 1 q2 − 1 q3(q2 + q + 1)
0 0 q2 + q + 1 q3 − 1
0 0 0 (q + 1)(q2 + 1)
0 0 0 0

 .

Corollary 6.4.31. If S is a spread in Q(2d, q) or W (2d−1, q) with d odd, and
T is an m-ovoid of the dual polar space (i.e. every totally isotropic (d−1)-space
is in exactly m elements of T ), then |S ∩ T | = m(qd + 1)/(q + 1).

Proof. We know Theorem 6.4.29 that S is a (qd + 1)/(q + 1)-tight set. The
result now follows immediately from Corollary 6.4.9.

In classical finite polar spaces of rank d, no combinatorial design in the dual
polar graph with respect to t-spaces with t ≥ 2 (different from the empty or full
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set) seems to be known, except for the halves in the bipartite dual polar graph
on Q+(2d−1, q). As m-ovoids in the dual polar space on a classical finite polar
space of rank d are the combinatorial designs with respect to (d − 1)-spaces,
this suggests that non-trivial m-ovoids might be very hard to find if d ≥ 3. If
S is an m-ovoid, the elements of S through a fixed isotropic 1-space induce an
m-ovoid in the residual polar space, the associated dual polar graph of which
has diameter d− 1. Hence one should start by considering the polar spaces of
rank three.

A 1-ovoid S in a dual polar space on a classical finite polar space of rank 3
with parameters (q, qe) gives rise to a partial geometry pg(qe+1, q(q+1), q+1),
with the elements of S as points, the isotropic 1-spaces as lines, and incidence
inherited from the polar space (see for instance [131, Subsection 2.4]). The
point graph of the dual of this partial geometry is simply the (strongly regular)
polar graph on the isotropic 1-spaces. This graph is the point graph of a partial
geometry if and only if the dual polar space has a 1-ovoid (see for instance
[116]). For these to exist, the polar space with the same parameters (q, qe)
but of rank two, certainly must have spreads of 2-spaces. Non-existence of
1-ovoids in the dual polar spaces on W (5, q) was shown by Thomas [155] (see
also [118],[48] and [56]). Non-existence for Q−(7, 2) was conjectured in [60]
and proved by Panigrahi [116]. For 1-ovoids in dual polar spaces of rank three,
this leaves the question of existence open for Q−(7, q) and for H(6, q2), with
q ≥ 3 in both cases.

Non-existence of non-trivial perfect codes (i.e. different from a singleton or
the full set) in dual polar graphs on classical finite polar spaces was shown
by Chihara [44], except for perfect 1-codes for Q(2d, q) and W (2d− 1, q) with
d = 2m − 1. Thas [145] proved that they exist for W (5, q), but for Q(6, q) it
is not completely settled yet for odd q, and nothing seems to be known for
d = 2m − 1 with m ≥ 3.

6.5 Krein conditions and spherical designs

In this subsection, we will briefly consider the spherical representation of dual
polar spaces using the normalized columns of M . For the sake of completeness,
we will mention known results on near polygons and generalized polygons as
well.
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The following inequality is due to Brouwer and Wilbrink [28].

Theorem 6.5.1. Consider a regular near 2d-gon of order (s, t), d ≥ 2 and
s > 1, with valency ki for the distance-i relation with respect to the point
graph. Then

d∑
i=0

(
−1

s

)3i

ki ≥ 0.

The normalized columns of M =
∑d

i=0(−1/s)iAi are a d-distance set with
angle set {−1/s, . . . , (−1/s)d}, and they form a spherical 3-design if and only
if equality holds in the above inequality.

Proof. We know from Theorem 6.3.1 thatM is up to a positive scalar a minimal
idempotent, with λi/ki = (−1/s)i. Hence AiM = λiM = ki/(−s)iM . Using
Ai ◦ Aj = δijAi, we can now write:

(M ◦M)M =

( d∑
i=0

Ai
s2i

)
M =

( d∑
i=0

ki
(−s)3i

)
M.

The coefficient on the right-most side is, up to a positive scalar, one of the
Krein parameters qjjj and thus is at least zero. Lemma 2.4.4 now yields that

X is up to normalization a d-distance set with angle set {−1/s, . . . , (−1/s)d},
and Theorem 2.4.6 provides the desired equivalence.

A matrix-free proof of the above inequality was given by Neumaier [109], when
looking for an alternative proof of D. Higman’s restriction for generalized oc-
tagons (see Theorem 6.2.7). The well-known inequalities of D. Higman for
generalized polygons are an immediate consequence of this.

Corollary 6.5.2. For a generalized 2d-gon of order (s, t), d ≥ 2 and s > 1,

let X be the set of normalized column vectors of M =
∑d

i=0(−1/s)iAi.

(i) If d = 2 or d = 4, then t ≤ s2 with equality if and only if X is a spherical
3-design. If d = 3, then X is never a spherical 3-design.

(ii) For d = 2, X is a spherical 4-design if and only if (s, t) = (2, 4).

Proof.
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(i) The valencies ki follow from Theorem 6.2.5. Calculating
∑d

i=0 ki/(−s)3i

yields:

for d = 2: (s2 − 1)(s2 − t)/s4,

for d = 3: (s2 − 1)(s4 − s2t+ t2)/s6,

for d = 4: (s2 − 1)(s2 − t)(s4 + t2)/s8.

The bound and the criterion for spherical 3-designs now follow from The-
orem 6.5.1.

(ii) If X is a spherical 4-design, then it is also a 3-design so (i) implies that
d = 2 and t = s2 must hold. In that case, the number of points is
v = (s+ 1)(s3 + 1) because of Theorem 6.2.5, and the rank of M is given
by m = s(s2 − s + 1) > 1 because of Theorem 6.3.3(i). Theorem 2.4.3
then yields that X is a spherical 4-design if and only if

m(m+ 3)

2
− v =

(s− 2)(s2 + 1)(s3 + 1)

2
= 0,

or hence if and only if s = 2.

Remark 6.5.3. The inequality t ≤ s3 for generalized hexagons of order (s, t)
with s > 1 (see Theorem 6.2.7), also follows from a Krein condition, but not
of the form qjjj ≥ 0. The point graph of a generalized hexagon of order (s, s3)

with s > 1 has classical parameters (3,−s,−s/(s− 1), s2 + s) (see [23, Section
8.5]). The corresponding cometric ordering of the eigenvalues from Theorem
2.3.14 is given by: s(s3 + 1),−s3 − 1, s− 1 + s2, s− 1− s2.

There is a unique generalized quadrangle of order (2, 4), namely Q−(5, 2) (see
for instance [122, 6.1.3]). Hence here we obtain a set of 27 vectors in S5 with
angle set {−1/2, 1/4}. The complement of the point graph is known as the
Schläfli graph.

We now move on to dual polar spaces.

Theorem 6.5.4. Consider a classical finite polar space of rank d ≥ 2 with
parameters (q, qe) and e ∈ {1/2, 1, 3/2, 2}, and let X be the set of normalized

column vectors of M =
∑d

i=0(−1/qe)iAi with respect to its dual polar graph.
Then X is a d-distance set with angle set {−1/qe, . . . , (−1/qe)d}, and a spher-
ical 3-design if and only if d ≥ 2e+ 1.
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Proof. The dual polar space is a regular near 2d-gon of order (qe,
[
d
1

]
q
− 1).

The valencies ki follow from Theorem 4.1.7. We can now compute:

d∑
i=0

ki
(−s)3i

=
d∑
i=0

qi(i−1)/2(−q−2e)i
[
d

i

]
q

,

=
d∏
j=1

(1 + qj−1(−q−2e))

where we used Theorem 6.4.22 with z = −q−2e for the last step. The result
now follows from Theorem 6.5.1.

Note that the dual polar space on H(2d−1, q2) with d = 2 is isomorphic to the
classical generalized quadrangle Q−(5, q) of order (q, q2) (see Theorem 1.3.3).
We know from Theorem 6.5.2 that the case q = 2 plays a special role here.
We conclude this section by mentioning a similar, much more recent result by
Munemasa for higher rank d.

Theorem 6.5.5. [108] Consider the dual polar graph on H(2d− 1, 22), d ≥ 3,

and let X be the set of normalized column vectors of M =
∑d

i=0(−1/2)iAi.
Then X is a spherical 5-design (and not a spherical 6-design).

6.6 Higman inequalities for regular near 2d -gons

Several restrictions on the parameters of regular near polygons have already
been given in literature. We already mentioned the results for generalized
polygons by D. Higman [87, 88] and by Haemers and Roos [86] (see Theo-
rem 6.2.7). Inequalities for regular near 2d-gons were given by Brouwer and
Wilbrink [28] and by Neumaier [109], and for regular near hexagons by Mathon
(unpublished, see [28]). Hiraki and Koolen [91, 92, 93] also obtained several
bounds. In particular, it is proved in [91] that if Γ is a regular near 2d-gon of
order (s, t) with s > 1, then t < s4d/r−1 for a certain integer r ≥ 1. We will
give another bound for t in terms of s in Corollary 6.6.7. We also note that
Terwilliger and Weng [144] gave a bound, which is attained only by Hamming
and dual polar graphs.

We now give one of the main results in this chapter.
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Theorem 6.6.1. Consider a regular near 2d-gon of order (s, t), d ≥ 2 and
s > 1, with point graph Γ. Then:

ci ≤
s2i − 1

s2 − 1
, ∀i ∈ {1, . . . , d}.

Consider two points a and b at distance i with 1 ≤ i ≤ d. Suppose v =
αχ{a} + βχ{b} + γχT with (α, β, γ) ∈ R3\{(0, 0, 0)} and T = Γ1(a) ∩ Γi−1(b).
Now Mv = 0 if and only if both ci = (s2i − 1)/(s2 − 1) holds and (α, β, γ) is a
scalar multiple of (

s
s2i−2 − 1

s2 − 1
, (−1)isi−1, 1

)
.

Proof. Given a and b at distance i with 1 ≤ i ≤ d, there are exactly ci points
on a common line with a and at distance i − 1 from b. Hence T has size ci,
and no two points in T are on the same such line.

We will now consider vTAjv for every j ∈ {0, . . . , d} (i.e. we will consider the
inner distribution of v). Note that for any two subsets of points S1 and S2, the
value of (χS1)

TAjχS2 = (χS2)
TAjχS1 is given by the number of ordered pairs

(ω1, ω2) ∈ (S1 × S2) with d(ω1, ω2) = j. Our assumptions immediately yield:

(χ{a})
TA0χ{a} = (χ{b})

TA0χ{b} = 1,

(χ{a})
TAjχ{a} = (χ{b})

TAjχ{b} = 0 if 1 ≤ j ≤ d,

(χ{a})
TAiχ{b} = 1, (χ{a})

TAjχ{b} = 0 if j 6= i,

(χ{a})
TA1χT = |T | = ci, (χ{a})

TAjχT = 0 if j 6= 1,

(χ{b})
TAi−1χT = |T | = ci, (χ{b})

TAjχT = 0 if j 6= i− 1.

Finally, as every two distinct points in T are on distinct lines through a, they
cannot be collinear, and hence they are at distance 2. This yields:

(χT )TA0χT = |T | = ci, (χT )TA2χT = |T |(|T | − 1) = ci(ci − 1),

(χT )TAjχT = 0 if j /∈ {0, 2}.

We will now work out the following:

si(vTMv) =
d∑
j=0

(−1)jsi−j(vTAjv)

=
d∑
j=0

(−1)jsi−j(αχ{a} + βχ{b} + γχT )TAj(αχ{a} + βχ{b} + γχT ).
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We obtain

si(α2+β2+γ2ci)−si−1(2αγ)ci+s
i−2γ2ci(ci−1)+(−1)i−1s(2βγ)ci+(−1)i(2αβ),

and hence si(vTMv) can be rewritten as (α, β, γ)F (α, β, γ)T with:

F =

 si (−1)i −si−1ci
(−1)i si (−1)i−1sci
−si−1ci (−1)i−1sci cis

i−2(s2 + ci − 1)

 .

We compute the determinant of F :

Det(F ) = (−1)iciDet

 si (−1)i −si−1ci
1 (−1)isi −sci
−si−1 (−1)i−1s si−2(s2 + ci − 1)


= (−1)iciDet

 0 −(−1)i(s2i − 1) cis
i−1(s2 − 1)

1 (−1)isi −sci
0 (−1)is(s2i−2 − 1) −(ci − 1)si−2(s2 − 1)


= −cisi−2(s2 − 1)Det

(
−(s2i − 1) cis
s(s2i−2 − 1) −(ci − 1)

)
= cis

i−2(s2 − 1)((s2i − 1)− ci(s2 − 1)).

We know from Lemma 6.3.1 that M is a minimal idempotent up to a positive
scalar and thus positive semidefinite. Hence vTMv ≥ 0 for all (α, β, γ) ∈
R3\{(0, 0, 0)}. Thus F is positive semidefinite, and hence its determinant
must be non-negative, and F is positive definite if and only if this determinant
is positive. We find that ci ≤ (s2i− 1)/(s2− 1) since s > 1. We can also write:

Mv = 0⇐⇒ vTMv = 0⇐⇒ (α, β, γ)F (α, β, γ)T = 0.

As F is positive semidefinite, the latter will hold if and only if both F is not
positive definite and F (α, β, γ)T = 0. This is possible if and only if both
ci = (s2i − 1)/(s2 − 1) holds and (α, β, γ) is a scalar multiple of the vector
(s(s2i−2 − 1)/(s2 − 1), (−1)isi−1, 1).

We will now focus on the case of equality. First, we introduce another property
of association schemes.

Definition 6.6.2. Suppose (Ω, {R0, . . . , Rd}) is an association scheme with
cometric ordering E0, E1, . . . , Ed.
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(i) The scheme is dual bipartite with respect to E1 if qj1j = 0, ∀j ∈ {0, . . . , d}.

(ii) The scheme is almost dual bipartite with respect to E1 if qj1j = 0, ∀j ∈
{0, . . . , d− 1}, and qd1d 6= 0.

We now mention a result by Terwilliger on (almost) dual bipartite association
schemes that are also P -polynomial.

Theorem 6.6.3. [141] Suppose Γ is a distance-regular graph on Ω with diam-
eter d ≥ 2 and with a non-degenerate minimal idempotent E1. The following
are equivalent.

(i) The association scheme defined by Γ is dual bipartite or almost dual bi-
partite with respect to E1.

(ii) For all ω1, ω2 ∈ Ω and i1, i2 ∈ {0, . . . , d}, the vector E1χT is a linear
combination of E1χ{ω1} and E1χ{ω2}, with T = Γi1(ω1) ∩ Γi2(ω2).

(iii) For all ω1, ω2 ∈ Ω, the vector E1χT is a linear combination of E1χ{ω1}
and E1χ{ω2}, with T = Γ1(ω1) ∩ Γ1(ω2).

See [71, 72] for more on (almost) dual bipartite P -polynomial schemes.

Theorem 6.6.4. Consider a regular near 2d-gon P, d ≥ 2, of order (s, t) with
s > 1. The following are equivalent.

(i) c2 = s2 + 1.

(ii) The point graph Γ defines an (almost) dual bipartite association scheme
with respect to the eigenspace for −(t+ 1).

(iii) For all ω1, ω2 ∈ Ω and i1, i2 ∈ {0, . . . , d}, the vectors Mχ{ω1}, Mχ{ω2},
MχT are linearly dependent, with T = Γi1(ω1) ∩ Γi2(ω2).

(iv) ci = (s2i − 1)/(s2 − 1),∀i ∈ {1, . . . , d}.

(v) If d = 2, then P is a generalized quadrangle of order (s, s2), and if d ≥ 3,
then s is a prime power q and P is the dual polar space on H(2d− 1, q2).

Proof. Recall from Theorem 6.3.1 that M =
∑d

j=0(−1/s)jAj is, up to a pos-
itive scalar, the non-degenerate idempotent corresponding to the eigenvalue
−(t+ 1) of Γ.
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(i)→(ii): We will verify that (iii) from Theorem 6.6.3 is satisfied, i.e. that for
every two points ω1 and ω2, the vector MχT with T = Γ1(ω1)∩Γ1(ω2) is a linear
combination of Mχ{ω1} and Mχ{ω2}. If d(ω1, ω2) ≥ 3, then Γ1(ω1)∩Γ1(ω2) = ∅,
so there is nothing to check. If d(ω1, ω2) = 0, then MχT = M(A1χ{ω1}) =
−(t+1)Mχ{ω1}. If d(ω1, ω2) = 1, then {ω1}∪{ω2}∪T is precisely the set `∗ of
s+1 points on the line ω1ω2, and hence Mχ{ω1}+Mχ{ω2}+MχT = Mχ`∗ = 0
because of Lemma 6.4.2. Finally, if d(ω1, ω2) = 2, then the desired linear
combination follows from Theorem 6.6.1 and our assumption (i).

(ii)→(iii): This follows immediately from Theorem 6.6.3.

(iii)→(iv): If (iii) holds, then in particular it holds for i1 = 1 and i2 = i − 1
and for two points ω1, ω2 with d(ω1, ω2) = i, 1 ≤ i ≤ d. Hence it follows from
Theorem 6.6.1 that ci = (s2i − 1)/(s2 − 1).

(iv)→(i): Obvious.

(iv)↔(v): For d = 2, this follows immediately (recall from Theorem 6.1.3 that
cd = t+ 1). Next assume d ≥ 3. Assume (iv). Theorem 6.1.3 now also yields:
bi = s(s2d − s2i)/(s2 − 1). Hence Γ has classical parameters (d, q2, 0, q). A
regular near 2d-gon of order (s, t) with classical parameters (d, b, 0, β), s > 1
and d ≥ 3 must be a dual polar space on a classical finite polar space with
parameters (q, qe) with b = q and β = qe, or a Hamming graph with b = 1
(see [23, Theorem 9.4.4]). This establishes (iv)→(v) for d ≥ 3, while (v)→(iv)
follows from Theorem 4.1.7.

Remark 6.6.5. Equivalence between (i) and (iv) in Theorem 6.6.4 can be
seen in another way. In any regular near 2d-gon of order (s, t), s > 1, the
parameters satisfy ti+1 ≥ t2(ti + 1), ∀i ∈ {1, . . . , d − 1} (see [28, Lemma 26
(Corollary)]). Hence if s > 1 and t2 = s2, then Theorem 6.6.1 yields by
induction that ci = ti + 1 = (s2i − 1)/(s2 − 1),∀i ∈ {1, . . . , d}.

We now prove the existence of certain parameters, often referred to as triple in-
tersection numbers, for those regular near 2d-gons attaining one of the bounds
from Theorem 6.6.1.

Theorem 6.6.6. Consider a regular near 2d-gon of order (s, t), s > 1 and d ≥
2, with point graph Γ. Suppose ci = (s2i − 1)/(s2 − 1) for some i ∈ {1, . . . , d},
and consider three points a, b, c with d(a, b) = i, d(a, c) = d, d(b, c) = k. The
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set Γ1(a) ∩ Γi−1(b) ∩ Γd−1(c) has size:

s2i−1 + (−1)i+k+dsd−k+i − (−1)i+k+dsd−k+i−1 − 1

s2 − 1
.

Proof. Let T be Γ1(a) ∩ Γi−1(b). We know from Theorem 6.6.1 that v =
s(s2i−2 − 1)/(s2 − 1)χ{a} + (−1)isi−1χ{b} + χT satisfies Mv = 0, where M

denotes, up to a positive scalar, the minimal idempotent
∑d

j=0(−1/s)jAj. If
B is the outer distribution of v, then:

Bc,j = (χ{c})
TAj

(
s
s2i−2 − 1

s2 − 1
χ{a} + (−1)isi−1χ{b} + χT

)
.

Working out (χ{c})
TMv = 0 (or applying Theorem 2.2.7) we find that B must

satisfy:
d∑
j=0

(
−1

s

)j
Bc,j = 0.

As d(a, c) = d, all elements of T are at distance at least d− 1 from c. Hence if
x denotes |T ∩ Γd−1(c)|, then |T ∩ Γd(c)| = |T | − x = ci − x. The assumptions
now imply:

(χ{c})
TAdχ{a} = (χ{c})

TAkχ{b} = 1,

(χ{c})
TAjχ{a} = 0 if j 6= d, (χ{c})

TAjχ{b} = 0 if j 6= k,

(χ{c})
TAd−1χT = x, (χ{c})

TAdχT = ci − x, (χ{c})TAjχT = 0 if j /∈ {d− 1, d}.

Hence we obtain:((
−1

s

)d
s
s2i−2 − 1

s2 − 1

)
+

((
−1

s

)k
(−1)isi−1

)
+

((
−1

s

)d−1

x+
(
−1

s

)d
(ci − x)

)
= 0.

Using ci = (s2i − 1)/(s2 − 1) and multiplying by (−s)d, we obtain:

s
s2i−2 − 1

s2 − 1
+ (−1)d+k+isd−k+i−1 +

s2i − 1

s2 − 1
= (s+ 1)x.

This yields |(Γ1(a) ∩ Γi−1(b)) ∩ Γd−1(c)| = |T ∩ Γd−1(c)| = x =

s2i−1 + (−1)i+k+dsd−k+i − (−1)i+k+dsd−k+i−1 − 1

s2 − 1
.
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The following corollary generalizes the Higman inequality between the param-
eters (s, t) of generalized quadrangles (see Theorem 6.2.7), and also gives a
property in case of equality.

Corollary 6.6.7. Consider a regular near 2d-gon of order (s, t), s > 1 and
d ≥ 2, with point graph Γ. Then:

t+ 1 ≤ s2d − 1

s2 − 1
,

If equality holds, then for any three points a, b and c, pairwise at distance d:

|Γ1(a) ∩ Γd−1(b) ∩ Γd−1(c)| = (sd − (−1)d)(sd−1 + (−1)d)

s2 − 1
.

Proof. As t + 1 = cd, this follows immediately from Theorems 6.6.1 and 6.6.6
with i = d and k = d.

For d = 2, the property in case of equality is due to Bose and Shrikhande [17].
Cameron [32] gave a combinatorial proof of the inequality, which also shows
that in a generalized quadrangle of order (s, t) with s > 1, the property holds
if and only if t = s2.

We will come back to these triple intersection numbers for the dual polar space
on H(2d− 1, q2) in Appendix A.

6.7 Subgraphs in extremal near 2d-gons

In this section, we will consider substructures in those regular near 2d-gons
attaining bounds from Theorem 6.6.1. We will first demonstrate how to use
Theorem 6.6.6 to prove distance-regularity of a last subconstituent, just by use
of the parameters.

Theorem 6.7.1. Suppose the point graph of Γ of a regular near 2d-gon of
order (s, t), d ≥ 2 and s > 1, has parameters ci = (s2i − 1)/(s2 − 1), ∀i ∈
{1, . . . , d}. For any point p, the last subconstituent Γ′ = Γd(p) is distance-
regular with parameters b′i and c′i given by:

b′i =
s2d − s2i

s+ 1
,∀i ∈ {0, . . . , d− 1},

c′i = si−1

(
si − (−1)i

s+ 1

)
,∀i ∈ {1, . . . , d},
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and with classical parameters (d,−s,−s− 1,−(−s)d − 1).
The distance between any two vertices in Γ′ is the same as in Γ.

Proof. Note that t+ 1 = cd = (s2d − 1)/(s2 − 1). Consider two vertices a and
b in Γd(p) at distance i with 0 ≤ i ≤ d. There are ci lines through a with a
unique point at distance i − 1 from b, and with all other s points at distance
i from b (we write c0 = 0). All points on the remaining (t + 1) − ci lines
through a, different from a, are at distance i+ 1 from b in Γ. We can compute
|Γ1(a) ∩ Γi−1(b) ∩ Γd−1(p)| using Theorem 6.6.6, and hence if 1 ≤ i ≤ d:

|Γ1(a) ∩ Γi−1(b) ∩ Γd(p)| = |Γ1(a) ∩ Γi−1(b)| − |Γ1(a) ∩ Γi−1(b) ∩ Γd−1(p)|

= ci −
s2i−1 + (−1)isi − (−1)isi−1 − 1

s2 − 1

=
si−1(si − (−1)i)

s+ 1
.

In particular, the above number is non-zero, and so it follows by induction that
vertices of Γ′ are at the same distance in Γ and Γ′. Hence we have obtained
the parameter c′i of Γ′. On each of the (t+ 1)− ci = cd − ci lines through the
point a at distance i from b, there is a unique point at distance d− 1 from p,
while all s− 1 remaining points different from a are at distance d from p in Γ.
Hence if 0 ≤ i ≤ d− 1:

|Γ1(a) ∩ Γi+1(b) ∩ Γd(p)| = (s− 1)

(
s2d − 1

s2 − 1
− s2i − 1

s2 − 1

)
=

s2d − s2i

s+ 1
,

yielding the parameter b′i of Γ′. This is non-zero if 0 ≤ i ≤ d− 1 and hence it
follows by induction that the diameter of Γ′ is indeed d. The last part follows
immediately from Definition 2.3.12.

We know from Theorem 6.6.4 that regular near 2d-gons satisfying the con-
ditions in Theorem 6.7.1 have specific vanishing Krein parameters. The link
between vanishing Krein parameters and distance-regularity of subconstituents
was studied in detail for strongly regular graphs in general by Cameron,
Goethals and Seidel [39], who gave several examples. For diameter d ≥ 3,
we also know from Theorem 6.6.4 that we are in fact very much restricted. We
first need to introduce another graph.
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Definition 6.7.2. The Hermitian forms graph Her(d, q) on V (d, q2) is the
graph with as vertices the Hermitian forms on V (d, q2), and with two vertices
h1 and h2 adjacent if the rank of h1 − h2 is 1.

Theorem 6.7.3. [23, pp. 285-287]

(i) Her(d, q) has classical parameters (d,−q,−q − 1,−(−q)d − 1) and is
distance-transitive. For any two vertices h1 and h2, d(h1, h2) is the rank
of h1 − h2.

(ii) If Γ is the dual polar graph on H(2d− 1, q2), then for any vertex p of Γ,
the last subconstituent Γd(p) is isomorphic to Her(d, q).

Ivanov and Shpectorov [100] proved that any distance-regular graph Γ with
classical parameters (d,−s,−s − 1,−(−s)d − 1), s > 1, is constructed as in
Theorem 6.7.1, under the assumption that all maximal cliques have size s.
Terwilliger [143] proved that this assumption may be dropped if d ≥ 3. It thus
follows from Theorems 6.6.4 and 6.7.3 that if d ≥ 3, then s must be a prime
power q and Γ ∼= Her(d, q).

Hence we cannot find new distance-regular graphs as a last subconstituent us-
ing Theorem 6.7.1. However, we will now prove that another induced subgraph
is also distance-regular. We will first severely restrict the size of m-ovoids in
a regular near 2d-gon if at least one of the non-trivial bounds from Theorem
6.6.1 is attained.

Lemma 6.7.4. Suppose S is an m-ovoid in a regular near 2d-gon P = (P,L, I)
of order (s, t), d ≥ 2 and s > 1. Suppose ci = (s2i − 1)/(s2 − 1) for some
i ∈ {1, . . . , d}, and a and b are two elements of S at distance i in Γ, then

|S ∩ Γ1(a) ∩ Γi−1(b)| = m
(si − (−1)i)(si−1 + (−1)i)

s2 − 1
−

s
(si − (−1)i)(si−2 + (−1)i)

s2 − 1
.

Proof. Let T denote the subset Γ1(a)∩Γi−1(b) and take α = s(s2i−2−1)/(s2−1)
and β = (−1)isi−1. We know from Theorem 6.6.1 that v = αχ{a}+βχ{b}+χT
satisfies Mv = 0. We now consider (χS)Tv:

(χS)Tv = (χS)T (αχ{a} + βχ{b} + χT ) = α + β + |S ∩ T |.



172 | Chapter 6. Near polygons

On the other hand, Theorem 6.4.8 implies that for some w ∈ RP , χS can be
written as (m/(s+ 1))χP +Mw. Hence:

(χS)Tv =

(
m

s+ 1
χP +Mw

)T
v

=
m

s+ 1
(χP )Tv + wt(Mv)

=
m

s+ 1
(χP )T (αχ{a} + βχ{b} + χT )

=
m

s+ 1
(α + β + |T |) =

m

s+ 1
(α + β + ci).

Hence we obtain:

|S ∩ (Γ1(a) ∩ Γi−1(b))| = |S ∩ T | = m

s+ 1
(α + β + ci)− (α + β),

which yields the desired result after substituting for α, β and ci.

Theorem 6.7.5. If Γ is a regular near 2d-gon of order (s, t), d ≥ 2 and
s > 1, with ci = (s2i − 1)/(s2 − 1) for some i ∈ {2, . . . , d}, then m-ovoids with
0 < m < s+ 1 can only exist for m = (s+ 1)/2.

Proof. Suppose S is an m-ovoid with 0 < m < s + 1. Consider any point b
in S. We will count the number N of ordered pairs (p, a) of adjacent points
in (Γi−1(b) ∩ S)× (Γi(b) ∩ S) in two ways. The size of Γi−1(b) ∩ S is given by
Theorem 6.4.8. For each point p in Γi−1(b)∩S, there are bi−1/s lines through p
such that the distance from b to this line is d(p, b) = i− 1. The s other points
on those lines are precisely the neighbours of p at distance i from b. Each such
line contains exactly m− 1 points in S\{p}, all at distance i from b. Hence if
ki−1 denotes |Γi−1(b)|:

N = ki−1

(
m

s+ 1
+

(
1− m

s+ 1

)(
−1

s

)i−1)
bi−1

s
(m− 1).

We also know the size of Γi(b) ∩ S from Theorem 6.4.8, and for each point a
in that subset, the number of its neighbours in S at distance i − 1 from b is
given by Lemma 6.7.4. Hence if ki denotes |Γi(b)|:

N = ki

(
m

s+ 1
+

(
1− m

s+ 1

)(
−1

s

)i)
×(

m
(si − (−1)i)(si−1 + (−1)i)

s2 − 1
− s(si − (−1)i)(si−2 + (−1)i)

s2 − 1

)
.
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When putting m = x(s + 1) and using the identity ki−1bi−1 = kici and the
assumption ci = (s2i−1)/(s2−1), we see that x must be a root of the following
polynomial in x: (

x+ (1− x)

(
−1

s

)i−1)
s2i − 1

s(s2 − 1)
(x(s+ 1)− 1)−

(
x+ (1− x)

(
−1

s

)i)(
x

(si − (−1)i)(si−1 + (−1)i)

s− 1
− s (si − (−1)i)(si−2 + (−1)i)

s2 − 1

)
,

which can be rewritten as:

(−1)i(si − (−1)i)(si−1 + (−1)i)

si(s− 1)
(x− 1)(2x− 1).

Since i ≥ 2 and 0 < m < s+ 1, we see that m/(s+ 1) = x = 1/2.

Definition 6.7.6. A hemisystem in a generalized quadrangle of order (s, s2),
s > 1, is an (s+ 1)/2-ovoid.

For the dual polar space on H(3, q2), which is a classical generalized quadrangle
of order (q, q2), Theorem 6.7.5 was first obtained for odd q by Segre [129] and
for even q by Bruen and Hirschfeld [30]. Segre also proved that there is a unique
hemisystem (up to equivalence) if q = 3. The restriction on m was obtained
for all generalized quadrangles of order (s, s2) in [150]. A major breakthrough
was the construction of hemisystems in the dual polar space on H(3, q2) for
every odd prime power q by Cossidente and Penttila [49]. A hemisystem in
a non-classical generalized quadrangle of order (5, 52) was constructed in [5].
Very recently, it was proved in [8] that hemisystems in fact exist in all flock
generalized quadrangles (see [149] for more information on the latter), and new
hemisystems were found in the dual polar spaces on H(3, q2) for small q in [7],
suggesting the existence of other infinite families of hemisystems.

Cameron [37] proved that a hemisystem in any generalized quadrangle of order
(s, s2), s > 1, induces a strongly regular graph with parameters

srg((s+ 1)(s3 + 1)/2, (s− 1)(s2 + 1)/2, (s− 3)/2, (s− 1)2/2).

For the dual polar space on H(3, q2), this result was already obtained by Thas
[148], and for q = 3 the induced graph on the unique hemisystem is isomorphic
to the triangle-free Gewirtz graph. The following lemma generalizes these facts
to regular near 2d-gons attaining the bounds from Theorem 6.6.1. Our proof
only requires assumptions on the parameters.
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Lemma 6.7.7. Let Γ be the point graph of a regular near 2d-gon of order
(s, t), d ≥ 2 and s > 1, with ci = (s2i − 1)/(s2 − 1) for every i ∈ {1, . . . , d}.
Suppose S is an (s+ 1)/2-ovoid. The induced subgraph of Γ on S, denoted by
Γ′, is distance-regular with diameter d and intersection numbers:

b′i =
s2d − s2i

2(s+ 1)
,∀i ∈ {0, . . . , d− 1},

c′i =
(si − (−1)i)(si−1 − (−1)i)

2(s+ 1)
,∀i ∈ {1, . . . , d}.

The distance between any two vertices in Γ′ is the same as in Γ.

Proof. Consider any elements a, b ∈ S at distance i in Γ with i ∈ {1, . . . , d}.
Lemma 6.7.4 yields, after substituting (s+ 1)/2 for m, that:

|S ∩ (Γ1(a) ∩ Γi−1(b))| = (si − (−1)i)(si−1 − (−1)i)

2(s+ 1)
,

which is in particular at least 1. Induction on i now yields that the distance
between a and b in the induced subgraph is also i.

Now consider any two elements a and b of S at distance i in Γ with 0 ≤ i ≤ d−1.
There are precisely bi/s lines through a at distance i from b. Only on these
lines through a, points at distance i+ 1 from b and adjacent to a (in Γ) can be
found, and each such line contains exactly (s− 1)/2 points of S\{a}. Hence:

|S ∩ (Γ1(a)∩ Γi+1(b))| = bi
s

s− 1

2
=
k − sci
s

s− 1

2
= (cd− ci)

s− 1

2
=
s2d − s2i

2(s+ 1)
,

where k = sci + bi followed from Theorem 6.1.3 (we let c0 be zero). Note also
that the last value is non-zero if 0 ≤ i ≤ d−1, so the diameter of Γ′ is precisely
d.

Because of Theorem 6.6.4 the result from Lemma 6.7.7 comes down to the
following if the diameter is at least three, which is one of the main results in
this chapter.

Theorem 6.7.8. Suppose S is a (q + 1)/2-ovoid in the dual polar space on
H(2d− 1, q2) with q odd and d ≥ 2. The induced subgraph Γ′ on S of the point
graph Γ is distance-regular with classical parameters:

(d, b, α, β) =

(
d,−q,−

(
q + 1

2

)
,−
(

(−q)d + 1

2

))
.
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The distance between any two vertices in Γ′ is the same as in Γ.

Proof. Theorems 4.1.7 and 6.2.9 imply that the corresponding dual polar space
is a regular near 2d-gon of order (q,

[
d
1

]
q2
− 1) with ci = (q2i − 1)/(q2 − 1),

∀i ∈ {1, . . . , d}. The result now follows immediately from Lemma 6.7.7 and
Definition 2.3.12.

Theorems 6.7.3 and 6.7.8 both yield induced subgraphs of the dual polar graph
on H(2d− 1, q2), each with classical parameters (d, b, α, β) with b < −1. This
particular dual polar graph itself also has such classical parameters (see The-
orem 4.1.8). We now mention a related result by Weng.

Theorem 6.7.9. [169]Let Γ denote a distance-regular graph with classical pa-
rameters (d, b, α, β) and d ≥ 4. Suppose b < −1, and suppose the intersection
numbers satisfy c2 > 1 and a1 6= 0 (i.e. Γ has triangles). Then b = −q with q
a prime power, and precisely one of the following must hold.

(i) Γ is the dual polar graph on H(2d− 1, q2) and

(d, b, α, β) =

(
d,−q,−q(q + 1)

q − 1
,−q((−q)

d + 1)

q − 1

)
.

(ii) Γ is the Hermitian forms graph Her(d, q) and

(d, b, α, β) = (d,−q,−q − 1,−(−q)d − 1).

(iii) q is odd and

(d, b, α, β) =

(
d,−q,−

(
q + 1

2

)
,−
(

(−q)d + 1

2

))
.

Remark 6.7.10. The assumption that d ≥ 4 in the above theorem is in-
deed necessary, as the two sporadic regular near hexagons from Subsection
6.2.3 provide counterexamples. The large Witt graph has classical parame-
ters (3,−2,−4, 10) with a1 = 1 and c2 = 3. The point graph of the near
hexagon related to the extended ternary Golay code has classical parameters
(3,−2,−3, 8) with a1 = 1 and c2 = 2.

Graphs with classical parameters (d,−q,−(q+1)/2,−((−q)d+1)/2) are known
to exist for every odd prime power q if d = 2, as we have seen that we can
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construct an srg((q+1)(q3 +1)/2, (q−1)(q2 +1)/2, (q−3)/2, (q−1)2/2) from a
hemisystem. No such graphs with d ≥ 3 are known. It follows from Definition
2.3.12 that a graph of type (iii) from Theorem 6.7.9 has intersection number
a1 = (q − 3)/2. Hence particularly interesting is the case q = 3, where the
graph is triangle-free. Recall that for d = 2 and q = 3 one obtains the Gewirtz
graph. We now mention the following conjecture by Pan, Lu and Weng, which
says that “the Gewirtz graph does not grow”.

Conjecture 6.7.11. [115, Conjecture 4.11]There is no distance-regular graph
for d ≥ 3 with classical parameters

(d,−3,−2,−((−3)d + 1)/2).

The information in [168] and [169] strongly suggests that graphs with classical
parameters (d, b, α, β) = (d,−q,−(q+1)/2,−((−q)d+1)/2), if they exist, must
be constructed as in Theorem 6.7.8.

We have already discussed the problem of finding m-ovoids in dual polar spaces
at the end of Subsection 6.4.3. An intersection property was given in Corollary
6.4.31 for m-ovoids with respect to spreads in W (2d− 1, q) and Q(2d, q) with
d odd. We will now give a similar result for partial spreads of the maximum
size qd + 1 in H(2d − 1, q2) with d odd. We postponed this result in order
to mention the restriction on m from Theorem 6.7.5 first, and also because
this might be useful when trying to find or prove non-existence of the desired
(q+ 1)/2-ovoids in the dual polar space (we already mentioned a construction
of such partial spreads in Subsection 4.4.4).

Corollary 6.7.12. If S is a partial spread of size qd + 1 in H(2d− 1, q2) for
odd d ≥ 3, and T is a (q + 1)/2-ovoid of the dual polar space (i.e. for every
totally isotropic (d− 1)-space, exactly half of the q+ 1 maximals through it are
in T ), then |S ∩ T | = (qd + 1)/2.

Proof. We know from Theorem 6.4.26 that S is a (qd + 1)/(q + 1)-tight set.
The result now follows immediately from Theorem 6.4.9.

6.8 Regular near pentagons

Until now, we have only discussed near 2d-gons. Near (2d+ 1)-gons are quite
different, and were in fact not even included in the original definition of near
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polygons from [133]. However, near pentagons were studied by Cameron [32]
under the name partial quadrangles (see below for our precise definition).

6.8.1 Definitions and examples

Definition 6.8.1. A partial quadrangle PQ(s, t, µ) with s, t, µ ≥ 1 is a partial
linear space satisfying the following axioms.

(i) Every line contains exactly s+1 points and every point is on exactly t+1
lines.

(ii) For every point p not on a line `, there is at most one point on ` collinear
with p.

(iii) If two points are not collinear, then exactly µ points are collinear with
both.

The partial quadrangles PQ(s, t, µ) with µ = t+1 are precisely the generalized
quadrangles of order (s, t). A PQ(s, t, µ) with µ < t + 1 is a regular near
pentagon of order (s, t) with c2 = t2 + 1 = µ. Conversely, every regular near
pentagon is a partial quadrangle.

The point graph of a partial quadrangle PQ(s, t, µ) is a strongly regular graph
(see [32]):

srg
(

1 + s(t+ 1)
(
1 +

st

µ

)
, s(t+ 1), s− 1, µ

)
.

Note that the maximal cliques in the point graph are precisely the sets of
points on a line, and hence the partial quadrangle is determined by its point
graph.

For a PQ(s, t, µ) with s = 1, the point graph is a triangle-free strongly regular
graph, the edges of which correspond to the lines of the partial quadrangle.
Conversely, every triangle-free strongly regular graph srg(v, k, 0, µ) with k ≥ 2
and µ ≥ 1 yields a PQ(1, k − 1, µ) when taking the vertices as points and the
edges as lines, with incidence just symmetrized containment. An srg(v, k, 0, µ)
with µ = k is just the complement of a union of two disjoint cliques of size
k. Apart from such graphs, the only known triangle-free strongly regular
graphs are those given in Table 6.1. These graphs are all characterized by
their parameters (see also [27]).
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Name (v, k, λ, µ)

Pentagon (5, 2, 0, 1)

Petersen graph (10, 3, 0, 1)

Clebsch graph (16, 5, 0, 2)

Hoffman-Singleton graph (50, 7, 0, 1)

Gewirtz graph (56, 10, 0, 2)

M22 graph (77, 16, 0, 4)

Higman-Sims graph (100, 22, 0, 6)

Table 6.1: The known triangle-free strongly regular graphs with 1 ≤ µ < k

For more information on the Hoffman-Singleton graph, the M22 graph and
the Higman-Sims graph, see for instance [23, Chapter 13]. We have already
introduced the Petersen graph in Subsection 2.3.1 as the complement of the
triangular graph T (5), and the Gewirtz graph in Section 6.7. The Clebsch
graph is isomorphic to the folded 5-cube. The vertices of the folded 5-cube are
the sixteen 5-tuples in {0, 1}5 with an even number of ones (i.e. with “even
weight”), and with two vertices adjacent when differing in all but one position.
Its complement is known as the halved 5-cube.

In this context, the smallest open case (in terms of the number of vertices)
appears to be the existence of an srg(162, 21, 0, 3). See also [83] for a discussion
of this problem.

We now derive the most important construction for partial quadrangles, due to
Cameron [32]. Note that in order to avoid confusion with s, we use a parameter
q, which need not be a prime power.

Theorem 6.8.2. Consider a generalized quadrangle P of order (q, q2), q >
1. For any point p, let P\p⊥ denote the incidence structure, the points of
which are those in P not collinear with p, the lines of which are those of
P, not through p, and with incidence inherited from P. Then P\p⊥ is a
PQ(q − 1, q2, q2 − q).

Proof. Every line in P not through p has exactly one point collinear with p,
and hence is incident with exactly q points of P\p⊥. If p1 is not collinear with
p in P , then all q2 + 1 lines through it are in P\p⊥. It is clear that P\p⊥ is
also a partial linear space. If (p1, `1) is a non-incident point-line pair in P\p⊥,
then there is a unique point p′ in P on `1 collinear with p1. Hence in P\p⊥, p1

is collinear with one or no point on `1, depending on whether p′ is in P\p⊥ or
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not. Finally, if p1 and p2 are two non-collinear points in P\p⊥, then there are
q2 + 1 points collinear with both, and it follows from Theorem 6.6.7 that in P ,
precisely q + 1 of them are collinear with p as well, and hence not in P\p⊥.

This construction can be carried out for any prime power q, as there is always
the dual polar space on H(3, q2) of order (q, q2). In that specific case, it
follows from Theorem 6.7.3 that the point graph of the partial quadrangle is
isomorphic to Her(2, q), the vertices of which are the (2×2)-Hermitian matrices
over GF(q2), with two vertices adjacent if the rank of their difference is 1. We
already mentioned the work by Ivanov and Shpectorov [100], which implies
that, conversely, any PQ(q − 1, q2, q2 − q) with q ≥ 2 (q not necessarily a
prime power) can be constructed from some generalized quadrangle of order
(q, q2). Note that Her(2, 2) is isomorphic to the Clebsch graph. Finally, we
remark that Brouwer and Haemers [25] gave another short proof of Ivanov and
Shpectorov’s result for d = 2, and obtain that there is only one PQ(2, 9, 6),
and that Her(2, 3) is the unique srg(81, 20, 1, 6).

In its most general form, the following construction is due to Cameron [33].
We prove it as a consequence of Theorem 6.7.7.

Theorem 6.8.3. Consider a generalized quadrangle P = (P,L, I) of order
(q, q2), q > 1, and suppose S is a hemisystem of P. The incidence structure
(S, L, ((S × L) ∪ (L× S)) ∩ I) is a PQ((q − 1)/2, q2, (q − 1)2/2).

Proof. This is clearly a partial linear space with (q + 1)/2 points on each line
and q2 + 1 lines through each point. If p ∈ S is not on a line `, then it is
collinear in P with exactly one point on `, which can be in S or not. Finally,
the desired constant µ is the constant c′2 given by Theorem 6.7.7.

As mentioned earlier, if P is the dual polar space on H(3, 32), then the point
graph of the constructed partial quadrangle PQ(1, 9, 2) is isomorphic to the
Gewirtz graph.

We conclude this subsection by giving a list of the known partial quadrangles
that are not generalized quadrangles:

• the triangle-free strongly regular graphs from Table 6.1,

• the partial quadrangles PQ(q− 1, q2, q2− q) constructed as P\p⊥ with P
a generalized quadrangle of order (q, q2), q > 1 (see Theorem 6.8.2)
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• the partial quadrangles PQ((q−1)/2, q2, (q−1)2/2) induced by a hemisys-
tem of a generalized quadrangle of order (q, q2), q odd and q > 1 (see
Theorem 6.8.3)

• the three exceptional quadrangles related to the Coxeter 11-cap [50]
(PQ(2, 10, 2)), the Hill 56-cap [89] (PQ(2, 55, 20)) or the Hill 78-cap [90]
(PQ(3, 77, 14)), all arising via linear representations (see for instance [153]
for more information).

6.8.2 Parallelism in near pentagons

We say two lines of a partial quadrangle are parallel4 if they are either equal,
or skew with no lines intersecting both. Note that the latter is impossible in
generalized quadrangles.

Lemma 6.8.4. Consider a PQ(s, t, µ).

(i) If two distinct lines are parallel, then µ ≤ st/(s+ 1).

(ii) If µ = st/(s+ 1), and ` and `′ are distinct parallel lines with p a point on
`, then all points collinear with p and not on ` are collinear with a point
on `′.

Proof. Consider two distinct parallel lines ` and `′ with p on `. We count the
number N of ordered pairs (a, p′) with p′ on `′ and a collinear with both p and
p′, in two ways. There are s+ 1 points on `′, and for each such point p′, there
are µ common neighbours to p and p′ in the point graph. Hence N = (s+ 1)µ.
On the other hand, on each of the t lines through p, different from `, there are
s neighbours of p, each collinear with at most one point on `′. Hence N ≤ st,
and equality holds if and only if every neighbour of p, not on `, is collinear
with a point on `′.

Note that the bound on µ from Lemma 6.8.4 is quite weak. The only known
partial quadrangle that is not a generalized quadrangle and for which this
bound is not satisfied, is the ordinary pentagon, which is a PQ(1, 1, 1) and
(consequently) has no parallel lines. We will now consider the case of equality.

Theorem 6.8.5. Consider a PQ(s, t, µ) with µ = st/(s+ 1).

4This should not be confused with the concept of parallelism in near 2d-gons from [28].
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(i) Parallelism is an equivalence relation.

(ii) The parallel class M of any line ` has size at most µ + s + 1. Equality
holds if and only if through every point p, not collinear with any point on
`, there is a unique line in M.

(iii) The matrix of eigenvalues P of the association scheme defined by the
point graph Γ is:

P =

 1 µ(s+ 1) + s (s+ 1)(µs+ µ+ s)
1 s −s− 1
1 −µ− 1 µ

 .

(iv) If `1 and `2 are two distinct parallel lines with sets of points S1 and S2,
respectively, then χS1−χS2 is an eigenvector of s with respect to the point
graph Γ. Every point p, not on any of these lines, is either collinear with
one point of S1 and one of S2, or with none of S1 and none of S2.

Proof.

(i) Suppose `, `′ and `′′ are pairwise distinct lines, with {`, `′} and {`′, `′′}
pairs of parallel lines. Suppose ` is not parallel to `′′. In that case, there
must be a point p on ` collinear with some point p′′ on `′′. As ` and `′ are
parallel, it follows from Lemma 6.8.4(ii) that p′′ must be collinear with a
point on `′. This contradicts the assumption that `′ and `′′ are parallel.

(ii) Let ` be a line in the parallel class M. The number of points in the
partial quadrangle is 1 + s(s + 2)(t + 1). The number of points on ` is
s+1, and the number of those points not on ` but collinear with a unique
point on ` is (s + 1)st. Hence the number of points not collinear with
any point on ` is s(s + t + 1) = (s + 1)(µ + s). These points are either
on a unique or on no line parallel to `. Hence the size of M is at most
(µ+ s) + 1, with equality if and only if all points of the last type are on
a unique line in M.

(iii) This follows immediately from Theorem 2.3.5.

(iv) Every point on one of the two lines is collinear with the s remaining
points on that line, and at distance 2 from the s+ 1 points on the other
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line. Hence the inner distribution a of the vector χ`1−χ`2 is (1, s,−s−1).
We now use Theorem 2.2.7 with respect to the last row of P :

a0 −
µ+ 1

µs+ µ+ s
a1 +

µ

(s+ 1)(µs+ µ+ s)
a2 = 0,

and thus χ`1 − χ`2 is orthogonal to the last eigenspace. As |S1| = |S2| =
s+ 1, this vector is also orthogonal to the all-one vector, and hence it is
an eigenvector of s. The last part follows from Lemma 6.8.4(ii).

For the partial quadrangles P\p⊥ constructed from generalized quadrangles P
of order (q, q2), the construction of an eigenvector as in Theorem 6.8.5(iv) was
already observed in [4, Corollary 6.1].

Almost all known examples of partial quadrangles PQ(s, t, µ) satisfying µ =
st/(s+ 1) are those of the form P\p⊥ as in Theorem 6.8.2, with s = q− 1, t =
q2, µ = q2−q. The partial quadrangles PQ(s, q, µ) with µ = sq/(s+1), the dual
of which can be embedded in the projective space PG(3, q), are isomorphic to
P\p⊥ with P the dual polar space on H(3, q), or correspond to the Petersen
graph if q = 2 (see [59]).

We now consider those PQ(s, t, µ) with s = 1, i.e. corresponding to the
triangle-free strongly regular graphs.

Lemma 6.8.6. If Γ is an srg(v, t+ 1, 0, µ) with µ = t/2 ≥ 1, then Γ is either
the Petersen graph (with µ = 1) or the Clebsch graph (with µ = 2).

Proof. It follows from Theorem 2.3.5 that the multiplicity of the eigenvalue
−µ−1 of the point graph is given by 8−12/(µ+2), and thus µ ∈ {1, 2, 4, 10}.
We know from the above that the Petersen graph and the Clebsch graph are
the only possibilities for µ = 1 and µ = 2, respectively, while the existence
of an srg(28, 9, 0, 4) or an srg(64, 21, 0, 10) is ruled out by the absolute bound
(see Theorem 2.3.5) with f = 6 and f = 7, respectively.

Constructing the Petersen graph as the complement of the triangular graph
T (5) for the set {1, 2, 3, 4, 5}, one easily sees that parallel lines (i.e. edges)
indeed exist: take for instance the edges {{1, 2}, {3, 4}} and {{1, 3}, {2, 4}}.
Using the construction of the Clebsch graph from the above, we also easily find
parallel edges here: take for instance the edges {(0, 0, 0, 0, 0), (1, 1, 1, 1, 0)} and
{(1, 1, 0, 0, 0), (0, 0, 1, 1, 0)}. In both cases, one can verify that indeed every
vertex, not on any of the two edges, is adjacent to either one vertex of each
edge, or none of each edge, as implied by Theorem 6.8.5(iv).
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6.8.3 Subsets in near pentagons

Intriguing sets in the point graphs of partial quadrangles were studied in depth
by Bamberg, De Clerck and Durante [6]. We will now consider similar concepts.

Theorem 6.8.7. Consider a PQ(s, t, µ) with µ = st/(s + 1). If for a set of
points S, χS is orthogonal to the eigenspace for s of the point graph, then every
two parallel lines intersect S in the same number of points.

Proof. If two lines `1 and `2 with sets of points S1 and S2, respectively, are
parallel, then we know from Theorem 6.8.5(iv) that χS1−χS2 is an eigenvector
of s. Lemma 2.2.10 now yields:

(χS)T (χS1 − χS2) = 0,

and hence |S ∩ S1| = |S ∩ S2|.

If the parallel classes are “sufficiently large”, we can also prove a converse.

Theorem 6.8.8. Consider a PQ(s, t, µ) with µ = st/(s + 1) and with each
parallel class of size µ+s+1. Every two parallel lines intersect a point set S in
the same number of points, if and only if χS is orthogonal to the eigenspace for s
of the point graph. In that case, every point p is collinear with |S|/(s+1)−µ−1
points in S if p ∈ S, and to |S|/(s+1) if p /∈ S, and |S|(t+1) must be divisible
by µ+ s+ 1.

Proof. If χS is orthogonal to the eigenspace for s of the point graph, then it
follows from Theorem 6.8.7 that every two parallel lines intersect S in the same
number of points.

Now suppose for the remainder of this proof that every two parallel lines
intersect S in the same number of points. Let p be any point, and let x
denote the number of points in S collinear with it. Let N1 denote the number
of ordered triples (p1, `1, `2) with p1 ∈ S, with p and p1 on `1, and with `1

distinct from and parallel to `2. There are x + t + 1 or x possibilities for
such (p1, `1), if p is in S or not, respectively. As each parallel class has size
µ + s + 1, then there are µ + s possibilities for `2. Now let N2 denote the
number of ordered triples (p2, `1, `2) with p2 ∈ S, p on `1, p2 on `2, and with
`1 parallel to and distinct from `2. Here p cannot be collinear with p2, and
hence we have |S| − x − 1 or |S| − x possibilities for p2, if p is in S or not,
respectively. Through such a point p2 there are precisely (t+ 1)−µ lines such
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that p is collinear with no point on them, and then it follows from Theorem
6.8.5(ii) that there is a unique line through p parallel to it. However, if for any
pair of distinct, parallel lines (`1, `2) with `1 through p, we let f1(`1, `2) and
f2(`1, `2) denote the number of points in S on `1 and on `2 respectively, then
f1(`1, `2) = f2(`1, `2) because of the assumption, and hence:

N1 =
∑

(`1,`2)

f1(`1, `2) =
∑

(`1,`2)

f2(`1, `2) = N2,

and thus:

(x+ t+ 1)(µ+ s) = (|S| − x− 1)(t+ 1− µ) if p ∈ S,

x(µ+ s) = (|S| − x)(t+ 1− µ) if p /∈ S.

This yields x = |S|/(s+ 1)−µ−1 if p ∈ S and x = |S|/(s+ 1) if p /∈ S. Hence
S is intriguing with parameters (h1, h2) with h1 − h2 = −µ − 1, and so now
the desired orthogonality follows from Lemma 2.1.3 and from the eigenvalues
from Theorem 6.8.5(iii).

Now count ordered pairs (p, `) with p ∈ S and ` through p. Through each of
the |S| points in S, there are t + 1 lines. On the other hand, the assumption
implies that for every parallel classM, the number of such ordered pairs (p, `)
with ` ∈M must be divisible by µ+ s+ 1, the size of the parallel class. Hence
|S|(t+ 1) is a sum of multiples of µ+ s+ 1.

We now discuss the intriguing sets from Theorem 6.8.8 in those PQ(s, t, µ)
determined in Lemma 6.8.6. Much more information on intriguing sets in the
known triangle-free strongly regular graphs in general can be found in [6].

As our first example, we consider the Petersen graph on 10 vertices (with s = 1
and µ = 1) once more. For any edge {{a, b}, {c, d}}, one easily verifies that the
remaining edges in its parallel class are {{a, c}, {b, d}} and {{a, d}, {b, c}}, and
hence the size of each class is µ+ s+ 1 = 3. We now consider the non-empty
intriguing sets S with a characteristic vector orthogonal to the eigenspace
for s = 1. We may assume 2|S| ≤ 10, as the complement is also such a
set. It follows from Theorem 6.8.8 that S must be intriguing with parameters
(|S|/2 − 2, |S|/2), and thus S must be a coclique in the point graph of size
4. Hence S consists of four pairs in {1, 2, 3, 4, 5} with no two pairs disjoint,
and one now easily verifies that S must consist of all 4 pairs containing a fixed
singleton (use for instance the Erdős-Ko-Rado Theorem 5.1.2.)
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Now consider the Clebsch graph on 16 vertices (with s = 1 and µ = 2). One
easily verifies that each parallel class consists of the µ + s + 1 = 4 edges,
consisting of vertices with a fixed entry in a fixed position. For instance, the
following 4 edges form one parallel class:

{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0)}, {(1, 1, 0, 0, 0), (0, 0, 1, 1, 0)},

{(1, 0, 1, 0, 0), (0, 1, 0, 1, 0)}, {(1, 0, 0, 1, 0), (0, 1, 1, 0, 0)}.
We again consider the non-empty intriguing sets S with a characteristic vector
orthogonal to the eigenspace for s = 1, and now with 2|S| ≤ 16. It follows
from Theorem 6.8.8 that S must have parameters (|S|/2− 3, |S|/2), and that
5|S| is divisible by µ + s + 1 = 4. Hence |S| = 8, and each element p1 of S
differs from exactly one other element of S in all but one position. In that
case Theorem 6.8.8 yields that all 4 edges in the parallel class defined by the
equal entry in that specific position must contain 2 elements of S. One now
easily sees that these intriguing sets are precisely the 10 sets of size 8 with a
fixed entry in some fixed position.

For partial quadrangles constructed from generalized quadrangles of order
(q, q2), we obtain a simpler divisibility condition.

Corollary 6.8.9. Let P be a generalized quadrangle of order (q, q2), q > 1,
and consider the partial quadrangle P\p⊥ for some point p. If S is a set of
points in P\p⊥, then the following are equivalent:

• every two lines `1 and `2 of P, not through p but intersecting in a point
collinear with p, contain the same number of elements of S,

• χS is orthogonal to the eigenspace for q − 1 of the point graph of P\p⊥.

and in that case, |S| must be divisible by q2.

Proof. The partial quadrangle P\p⊥ is a PQ(s, t, µ), with s = q − 1, t =
q2, µ = q2 − q, and with two distinct lines parallel if and only if they intersect
in P in a point collinear with p. Through each point of P collinear with
p, there are q2 lines of P\p⊥, and hence the size of every parallel class is
q2 = µ + s + 1. Theorem 6.8.8 now immediately yields the equivalence, and
implies that |S|(q2 + 1) is divisible by q2.

For a partial quadrangle P\p⊥ with P a generalized quadrangle of order (q, q2),
q > 1, the simplest example of a set of points with a characteristic vector
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orthogonal to the eigenspace of q − 1 is a cone: the set of q3 points in P\p⊥
collinear with a fixed point p0 of P , with p0 collinear with p in P (see [6,
Lemma 5.7]).

Corollary 6.8.10. A non-empty set S of mutually non-collinear points in a
PQ(s, t, µ) with µ = st/(s+ 1) has size at most (µ+ 1)(s+ 1), and this bound
is attained if and only if S is intriguing in the point graph.

Proof. The eigenvalues of the point graph were given in Theorem 6.8.5(iii).
The bound, and orthogonality of χS to the eigenspace for s in case of equality,
now follow immediately from Lemma 2.2.9, and the intriguing property from
Lemma 2.1.3 and Theorem 6.8.8.

Remark 6.8.11. Thas [151] proved that a partial spread of H(3, q2) (i.e. a
partial distance-2-ovoid of the corresponding dual polar space) has size at most
q3−q2+q+1, and remarked that the proof works for partial distance-2-ovoids in
any generalized quadrangle of order (q, q2) with q > 1. If S is a partial distance-
2-ovoid in a generalized quadrangle P of order (q, q2), q > 1, with p ∈ S,
then we obtain a coclique S\{p} in the point graph of the partial quadrangle
P\p⊥. Applying Corollaries 6.8.9 and 6.8.10, we see that |S| − 1 is at most
(µ+1)(s+1) = q3−q2 +q, and is divisible by q2 in case of equality. Hence the
bound q3−q2+q+1 for |S| cannot be attained. Other combinatorial arguments,
such as counting the points collinear with p and at least one other element
of S, also yield a contradiction. However, more recently the sharper bound
(q3 + q + 2)/2 for the dual polar space on H(3, q2) was proved in [51]. That
proof actually works for partial distance-2-ovoids in all generalized quadrangles
of order (q, q2), q > 1 (De Beule, personal communication).



Appendix A

A geometric proof for partial
spreads in H(2d− 1, q2) for odd d

One of the main results in this thesis is the tight upper bound for partial
spreads in H(2d− 1, q2) for odd d from Theorem 4.4.16. Here we will give an
alternative proof, together with a characterization. The proof is completely
geometric, although heavily inspired by concepts from algebraic graph theory,
especially 1-regularity of codes (see Theorem 6.4.26).

This alternative proof was accepted for publication in Advances in Mathematics
of Communications [163].

A.1 Triples of disjoint generators in H(2d− 1, q2)

We will only use vectorial dimensions. We also refer to 1-spaces and 2-spaces
as points and lines, respectively.

The following beautiful lemma is due to Thas.

Lemma A.1.1. [152, pp. 538-539]Let π1, π2 and π be three mutually disjoint
generators in H(2d−1, q2). The set of points on π1, that are on a (necessarily
unique) line of H(2d − 1, q2) intersecting both π and π2 in a point, form a
non-singular Hermitian variety H(d− 1, q2) in π1.

Corollary A.1.2. Let π1, π2 and π be three mutually disjoint generators in
H(2d− 1, q2). The number of generators intersecting π in a (d− 1)-space, and
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intersecting both π1 and π2 in a point is

|H(d− 1, q2)| = (qd − (−1)d)(qd−1 + (−1)d)

q2 − 1
.

Proof. For any point p ∈ PG(2d − 1, q2), we write p⊥ for the subspace of
V (2d, q2) orthogonal to p with respect to the associated Hermitian form.

It is obvious that every generator intersecting π in a (d−1)-space, can intersect
π1 and π2 in at most one point. On the other hand, through any point p1 ∈ π1,
there is a unique generator 〈p1, p

⊥
1 ∩π〉 intersecting π in a (d−1)-space. Hence

we have to determine the number of points p1 ∈ π1 such that the generator
〈p1, p

⊥
1 ∩ π〉 also intersects π2 in a point.

First suppose that a point p1 ∈ π1 is such that the generator 〈p1, p
⊥
1 ∩ π〉

intersects π2 in a point p2. In that case, the line p1p2 is a line of H(2d− 1, q2),
intersecting π as well, as p⊥1 ∩ π is a hyperplane of 〈p1, p

⊥
1 ∩ π〉. Conversely,

suppose a point p1 ∈ π1 is on a line of H(2d− 1, q2), intersecting π in p and π2

in p2. In that case, both p1 and p are in the generator 〈p1, p
⊥
1 ∩ π〉, and hence

the entire line p1p, including the point p2, is in the generator. The desired
result now follows from Lemma A.1.1.

A.2 The proof

Theorem A.2.1. Suppose S is a partial spread in H(2d − 1, q2), d odd and
d ≥ 3. Then |S| is at most qd + 1. If |S| > 1 and π ∈ S, then every generator
intersecting π in a (d− 1)-space intersects the same number of other elements
of S in just a point, if and only if |S| = qd + 1. In that case, that number must
be qd−1.

Proof. Let S be a partial spread of size at least 2 in H(2d − 1, q2). Consider
a fixed element π ∈ S. Let {Ni|i ∈ I} be the set of generators intersecting
π in a (d − 1)-space. As the number of (d − 1)-spaces in a generator equals
(q2d − 1)/(q2 − 1), and the number of generators through any (d− 1)-space in
H(2d− 1, q2) is given by q + 1, the cardinality of I is q(q2d − 1)/(q2 − 1).

Note that any generator Ni and any generator in S\{π}, are either disjoint or
intersect in a point. For every Ni, i ∈ I, let ti denote the number of generators
in S\{π}, intersecting Ni in a point. We now count in two ways the number



A.3. Remarks | 189

of pairs (Ni, π
′), with π′ an element of S\{π} intersecting Ni in a point. As

through every point p′ on an element π′ of S\{π}, there is a unique generator
intersecting π in a (d− 1)-space, we obtain:∑

i∈I

ti = (|S| − 1)
q2d − 1

q2 − 1
.

Now we count the number of ordered triples (Ni, π1, π2), with π1 and π2 two
distinct elements of S\{π}, both intersecting Ni in a point. We know from
Corollary A.1.2 that for every two distinct elements of S\{π}, there will be
exactly |H(d−1, q2)| generators Ni, intersecting both of them in a point. Hence
we obtain: ∑

i∈I

ti(ti − 1) = (|S| − 1)(|S| − 2)
(qd + 1)(qd−1 − 1)

q2 − 1
.

Combining the above, we find:∑
i∈I

t2i = (|S| − 1)
qd + 1

q2 − 1

(
(qd − 1) + (|S| − 2)(qd−1 − 1)

)
.

As (
∑

i∈I ti)
2 ≤ (

∑
i∈I t

2
i )|I|, with equality if and only if all ti are equal, this

implies:

(|S|−1)2

(
q2d − 1

q2 − 1

)2

≤ (|S|−1)
qd + 1

q2 − 1

(
(qd−1)+(|S|−2)(qd−1−1)

)
q
q2d − 1

q2 − 1
,

with equality if and only if all ti are equal. Since we assumed that |S| > 1, we
can cancel factors on both sides to obtain:

(|S| − 1)(qd − 1) ≤
(

(qd − 1) + (|S| − 2)(qd−1 − 1)

)
q,

implying that |S| ≤ qd + 1, with equality if and only if all ti are equal. In that
case, their constant value must equal (

∑
i∈I ti)/|I| = (|S| − 1)/q = qd−1.

A.3 Remarks

Remark A.3.1. This technique fails for partial spreads in H(2d− 1, q2) with
d even, where it yields a negative lower bound on the size instead.
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Remark A.3.2. Corollary A.1.2 in fact already follows from the parameters
of the dual polar graph on H(2d−1, q2). The dual polar space on H(2d−1, q2)
is a regular near 2d-gon of order (q, (q2d−1)/(q2−1)−1) (see Subsection 6.2.2)
and hence the desired constant is the so-called triple intersection number from
Corollary 6.6.7.
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Open problems

The following problems have caught my attention during my research. They
are either old problems related to the topics in this thesis, problems that might
be solved by use of similar techniques, or possible improvements of this work.

We refer to spaces with vectorial dimension k as k-spaces. A classical finite
polar space has rank d if the maximal totally isotropic subspaces or maximals
are d-spaces.

Note that two notations are often used for the different types of polar spaces
(see Sections 1.3 and 4.1):

Q+(2d− 1, q) = Dd(q), H(2d− 1, q2) =2A2d−1(q), Q(2d, q) = Bd(q),

W (2d− 1, q) = Cd(q), H(2d, q2) =2A2d(q), Q
−(2d+ 1, q) =2Dd+1(q).

Problem 1. Are there any t− (n, k, 1; q)-designs with 2 ≤ t < k < n?

A t− (n, k, λ; q)-design is a set of k-spaces in V (n, q), such that each t-space is
in exactly λ of its elements. See Subsection 3.3.1 for a discussion. For t ≥ 2,
non-trivial designs are quite hard to construct. The t− (n, k, 1; q)-designs are
also known as the Steiner structures Sq[t, k, n]. For t = 1, they are known as
the spreads, which exist if and only if k divides n. No examples of Steiner
structures Sq[t, k, n] with 2 ≤ t < k < n are known. A recent discussion of
this problem can be found in [79]. Even the case n = 7, k = 3, t = 2, q = 2
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(hence the existence of a set of 381 planes in PG(6, 2) such that each line is in
exactly one of its elements) is still open. An important partial non-existence
result on Steiner structures Sq[t, k, n] was obtained by Thomas [155].

Problem 2. What is the maximum size of a partial spread in the polar space
H(2d− 1, q2) for even d?

A partial spread in a classical finite polar space is a set of pairwise trivially
intersecting maximals. In other words, a partial spread is a code in the dual
polar graph with minimum distance equal to the rank d. Thas [152] proved
that in H(2d−1, q2), their size is less than q2d−1 +1, i.e. they cannot partition
the set of isotropic 1-spaces. One of the main new results in this thesis is the
upper bound of qd + 1 for odd d (see Theorems 4.4.16 and 6.4.26). This bound
is tight as a construction for partial spreads of size qd + 1 in H(2d − 1, q2) is
known for every d. Recently, results for even d were obtained in [51]: an upper
bound of (q3 +q+2)/2 for d = 2, and of q2d−1−q(3d+1)/2 +q3d/2 for even d ≥ 4.

Problem 3. Can the polar space Q(2d, q) have spreads for odd d ≥ 5 if q is
odd?

A spread in a classical finite polar space is a set of maximals, such that each
isotropic 1-space is in exactly one of its elements. In the polar space Q(2d, q),
these are the sets of size qd + 1, consisting of pairwise trivially intersecting
maximals. Theorems 6.4.29 and 6.4.30 provide information on such spreads
for odd d, and the problem of their existence is also discussed in the preceding
paragraphs. Thas [152] proved that Q(2d, q) has spreads for all d ≥ 2 if q is
even, and has no spreads for even d ≥ 2 if q is odd. Nothing is known for odd
d ≥ 5 if q is odd. The polar space W (2d − 1, q) has spreads for every prime
power q and has the same rank and parameters (q, q) as Q(2d, q), but is only
isomorphic to it for even q.

Problem 4. What is the maximum size of a set of pairwise non-trivially in-
tersecting maximals in the polar space H(2d− 1, q2) for odd d ≥ 5?



| 193

Sets of pairwise non-trivially intersecting sets of maximals, or Erdős-Ko-Rado
(EKR) sets of maximals, were studied in Chapter 5. In most cases, the set
of maximals through a fixed isotropic 1-space is the unique construction of
maximum size, known as the point-pencil construction. However, the upper
bound from Theorem 5.3.1 for H(2d− 1, q2), d odd, is much larger. The EKR
sets of maximals of maximum size for d = 3 were classified in Theorem 5.9.4,
but we do not know if the point-pencil construction is of maximum size for
odd d ≥ 5. The EKR sets of maximals of maximum size in all other classical
finite polar spaces of rank d ≥ 3 were characterized (see Section 5.10 for a
summary).

Problem 5. Can the polar space Q(2d, q) or W (2d − 1, q), d = 2m − 1 and
m ≥ 3, have a perfect 1-code of maximals?

In this context, a perfect e-code is a set S of maximals, such that for each
maximal in the polar space, there is a unique element of S intersecting it in a
subspace of dimension at least d − e. In most cases, its existence is excluded
by the parameters of the polar space itself, by use of Lloyd’s Theorem (see
Theorem 2.3.9(v)). Chihara [44] proved that no non-trivial perfect e-codes
can be found (i.e. different from a singleton or the full set of maximals),
except in the polar spaces Q(2d, q) or W (2d − 1, q) with d = 2m − 1 and
e = 1 in both cases. For d = 3, this comes down to a set of q3 + 1 pairwise
trivially intersecting maximals, i.e. a spread. Thas [145] proved that spreads
always exist for W (5, q). The case Q(6, q), q odd, is not completely settled
yet. Nothing seems to be known for d = 2m − 1 if m ≥ 3. Note that a
perfect 1-code of maximals in Q(2d, q) or W (2d − 1, q) is the same as a set
of (q + 1) · · · (qd + 1)(q − 1)/(qd+1 − 1) maximals, no two distinct elements of
which intersect in a subspace of dimension d− 1 or d− 2.

Problem 6. In a classical finite polar space of rank at least three, are there
any non-trivial combinatorial designs of maximals with respect to t-spaces if
t ≥ 2?

Here, a combinatorial design of maximals with respect to t-spaces is a set S of
maximals, such that every totally isotropic t-space is in exactly m elements of
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S for some m. Note that if this holds for t, then it also holds for t′ ≤ t. See
Subsection 4.4.2 and in particular Theorem 4.4.1. Trivial examples for t = d−1
are the empty set, the full set, and one of the two types of maximals in the
bipartite dual polar graph on Q+(2d− 1, q). In a classical finite polar space of
rank d, such designs with t = d−1 are precisely the m-ovoids of the dual polar
space. The case d = 3, t = 2 and m = 1 is especially interesting, as one obtains
partial geometries in this case, as explained at the end of Subsection 6.4.3.
Here, the unsettled cases are Q−(7, q) and H(6, q2) with q ≥ 3 in both cases,
where one would obtain a pg(q3, q(q+ 1), q+ 1) and a pg(q5, q2(q2 + 1), q2 + 1),
respectively. The problem of finding 1-ovoids in dual polar spaces for rank
three is equivalent to that of finding a partial geometry, the point graph of
which is isomorphic to the polar graph on the isotropic 1-spaces.

Problem 7. Do any (q+1)/2-ovoids in the dual polar space on H(2d−1, q2),
q odd, exist if d ≥ 3?

This problem is a specific case of Problem 6. A (q + 1)/2-ovoid is a set of
maximals in H(2d − 1, q2) such that each totally isotropic (d − 1)-space is in
exactly (q+ 1)/2 of its elements. For d = 2, such a (q+ 1)/2-ovoid is known as
a hemisystem, and Thas [152] proved that they induce strongly regular graphs.
This was generalized in Theorem 6.7.8, where it is proved that (q+1)/2-ovoids
in the dual polar space on H(2d− 1, q2) induce a distance-regular graph with
classical parameters (d, b, α, β) = (d,−q,−(q+ 1)/2,−((−q)d+ 1)/2). No such
graphs are known with diameter d ≥ 3. Cossidente and Penttila [49] recently
proved that hemisystems for H(3, q2) exist for all odd q. If such a (q + 1)/2-
ovoid exists for H(2d − 1, q2) with d ≥ 3, then a (q + 1)/2-ovoid also exists
in H(2d′ − 1, q2) with 2 ≤ d′ ≤ d. For q = 3, the induced graph is triangle-
free, and it was conjectured in [115] that graphs with classical parameters
(d,−3,−2,−((−3)d + 1)/2) do not exist if d ≥ 3.

Problem 8. Are all distance-regular graphs with classical parameters

(d, b, α, β) = (d,−q,−(q + 1)/2,−((−q)d + 1)/2), q odd,

subgraphs of the dual polar graph on H(2d− 1, q2) (for sufficiently large diam-
eter)?
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This problem is related to Problem 7, and asks when Theorem 6.7.8 provides
the only construction for such graphs. Weng [169] proved that, under certain
assumptions, classical parameters (d, b, α, β) with b < −1 fall into three classes
(see Theorem 6.7.9). A lot of structural information on such graphs with
classical parameters (d, b, α, β) = (d,−q,−(q + 1)/2,−((−q)d + 1)/2) comes
with the proof, including the appearance of projective geometries PG(n, q2) as
posets of subgraphs (see the proofs of [168, Theorem 4.2] and [169, Theorem
10.3]).
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Appendix C

Nederlandstalige samenvatting

In deze Nederlandstalige samenvatting zullen we kort de resultaten in deze the-
sis bespreken. Hiertoe zullen ook de belangrijkste definities herhaald worden.
We zullen de structuur volgen van de Engelstalige tekst. Bij de resultaten zal
ook steeds de nummering van de stelling in die tekst tussen haakjes vermeld
worden, waar het bewijs kan gevonden worden. In sommige gevallen is de
stelling uit de Engelstalige versie niet volledig overgenomen met het oog op
bondigheid.

C.1 Incidentiemeetkundes

In dit hoofdstuk geven we een overzicht van de belangrijkste incidentiemeet-
kundes. Het is ons doel om combinatorische eigenschappen van deze structuren
en hun deelstructuren te vinden.

Een incidentiemeetkunde van rang n is een geordende verzameling (S, I,∆, σ),
waarbij S een niet-ledige verzameling van variëteiten is, I een binaire sym-
metrische incidentierelatie, ∆ een eindige verzameling van grootte n en σ een
surjectieve type-afbeelding, zodanig dat geen twee variëteiten van hetzelfde type
incident zijn. Een vlag is een verzameling van paarsgewijs incidente variëteiten,
en het type van een vlag is zijn beeld onder σ.

Een punt-rechte meetkunde is een incidentiemeetkunde van rang 2, waarbij de
variëteiten van de twee types respectievelijk de punten en rechten zijn. Een
dergelijke meetkunde, met punten- en rechtenverzamelingen respectievelijk P

197
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en L, en met incidentierelatie I, zullen we ook met (P,L, I) noteren. Wanneer
een punt en een rechte incident zijn, dan zeggen we dat de rechte door het punt
gaat of het punt bevat, of dat het punt op de rechte ligt. Twee verschillende
punten die incident zijn met eenzelfde rechte noemen we collineair, en twee
rechten incident met een gemeenschappelijk punt zijn snijdend. Een punt-
rechte meetkunde is een partieel lineaire ruimte wanneer elke twee verschillende
punten incident zijn met ten hoogste één gemeenschappelijke rechte en elke
rechte ook incident is met minstens twee punten. Een partieel lineaire ruimte
is een lineaire ruimte wanneer elke twee verschillende punten op precies één
rechte liggen.

C.1.1 Projectieve meetkundes

De projectieve meetkunde PG(n,K) is de incidentiemeetkunde (S, I,∆, σ) van
rang n, afgeleid van een linkse vectorruimte V (n+1,K) van dimensie n+1 over
een delingsring K. De verzameling S bestaat uit de deelruimten V (n+1,K) die
niet de triviale of volledige vectorruimte zijn, I is symmetrische strikte inclusie,
∆ is {1, . . . , n}, en σ beeldt iedere deelruimte af op haar vectoriële1 dimensie
over K. De projectieve meetkunde PG(n,GF(q)) over een eindig veld GF(q)
met als grootte een priemmacht q, zullen we ook noteren met PG(n, q).

C.1.2 Polaire ruimten

De eindige klassieke polaire ruimten worden opgebouwd aan de hand van niet-
singuliere kwadratische vormen en niet-singuliere bilineaire vormen, met name
de symmetrische, alternerende en Hermitische vormen. De totaal isotrope deel-
ruimten zijn de deelruimten waarop de vorm verdwijnt. De Witt index is de
maximale dimensie van totaal isotrope deelruimten, die we de generatoren
noemen. De geassocieerde klassieke eindige polaire ruimte van rang n is dan
de incidentiemeetkunde (S, I,∆, σ), met S de verzameling van totaal isotrope
deelruimten, I de symmetrische strikte inclusie, ∆ de verzameling {1, . . . , n},
en σ de afbeelding die iedere deelruimte op haar dimensie afbeeldt.

Aan de hand van vormen met Witt index d op een vectorruimte V over GF(q)
kunnen we de volgende klassieke eindige polaire ruimten van rang d opbouwen:
de hyperbolische kwadriek Q+(2d− 1, q) (met f kwadratisch op V (2d, q)), de

1Tenzij anders vermeld zijn de dimensies steeds vectorieel en niet projectief in deze thesis.
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parabolische kwadriek Q(2d, q) (met f kwadratisch op V (2d+1, q)), de ellipti-
sche kwadriek Q−(2d+ 1, q) (met f kwadratisch op V (2d+ 2, q)), de symplec-
tische ruimte W (2d− 1, q) (met f alternerend op V (2d, q)), en de Hermitische
variëteiten H(2d − 1, q2) en H(2d, q2) (met f Hermitisch op respectievelijk
V (2d, q2) en V (2d+ 1, q2)).

De polaire ruimten van rang twee of veralgemeende vierhoeken worden in het
algemeen gedefinieerd als partieel lineaire ruimten die voldoen aan de volgende
axioma’s.

(i) Voor elk punt p dat niet op een rechte ` ligt, is er een uniek punt op `
collineair met p.

(ii) Elk punt is incident met minstens twee rechten.

Een veralgemeende vierhoek is van orde (s, t) met s, t ≥ 1 als iedere rechte
incident is met juist s + 1 punten, en elk punt met juist t + 1 rechten. Een
dergelijke veralgemeende vierhoek noteren we dan met GQ(s, t).

Tits [158] bewees dat alle eindige polaire ruimten van rang minstens drie klas-
siek zijn. De classificatie van de veralgemeende vierhoeken lijkt echter een
hopeloos probleem.

C.1.3 SPBIBD

De SPBIBDs of speciaal partieel gebalanceerde incomplete blok designs zijn een
specifiek soort eindige punt-rechte meetkundes, waaronder in het bijzonder de
partiële meetkundes pg(s, t, α).

C.2 Associatieschema’s

De concepten en technieken uit de algebräısche grafentheorie die wij zullen toe-
passen op meetkundige structuren, worden uitvoerig besproken in Hoofdstuk
2, dat nadien voortdurend als referentie wordt gehanteerd.
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C.2.1 Grafen

Een graaf is een geordend paar (V (Γ), E(Γ)), waarbij V (Γ) een verzameling
van toppen is en E(Γ) een verzameling van deelverzamelingen van V (Γ) van
grootte 2, met name de bogen. Twee toppen zijn adjacent als ze samen een
boog vormen. Een pad met lengte i is een reeks x = x0, . . . , xi = y waarbij twee
opeenvolgende toppen telkens adjacent zijn. De afstand tussen twee toppen is
de kortste lengte van alle paden tussen beide. De diameter van de graaf is de
maximale afstand tussen twee toppen.

Een deelverzameling van toppen is een kliek als elke twee elementen adjacent
zijn, en een cokliek als elke twee elementen niet-adjacent zijn. Een deelverza-
meling van toppen S is intrigerend als iedere top x juist h1 buren heeft in S
als x ∈ S, en juist h2 als x /∈ S.

De adjacentiematrix van een eindige graaf Γ is de symmetrische (0, 1)-matrix
A, met rijen en kolommen gëındexeerd door de toppenverzameling. De eigen-
waarden van Γ zijn dan de eigenwaarden van A.

De puntgraaf van een punt-rechte meetkunde P is de graaf met de punten
als toppen, waarbij twee punten adjacent zijn als ze collineair zijn. De inci-
dentiegraaf heeft als toppen zowel de punten als rechten, en hier bepaalt de
incidentierelatie de adjacentie.

De karakteristieke vector van een deelverzameling S van een eindige deelver-
zameling Ω, genoteerd met χS, is de vector in RΩ met (χS)ω = 1 als ω ∈ S en
(χS)ω = 0 als ω /∈ S.

C.2.2 Associatieschema’s

Associatieschema’s werden ingevoerd door Bose en Shimamoto [16]. Een d-
klasse associatieschema op een eindige niet-ledige verzameling Ω is een geor-
dend paar (Ω,R) metR = {R0, R1, . . . , Rd} een verzameling van symmetrische
niet-ledige relaties op Ω, zodanig dat aan de volgende axioma’s voldaan is.

(i) R0 is de identieke relatie.

(ii) R is een partitie van Ω2.

(iii) Er zijn constanten pkij, bekend als de intersectiegetallen, zodanig dat voor
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elke (x, y) ∈ Rk, het aantal elementen z in Ω met (x, z) ∈ Ri en (z, y) ∈
Rj gelijk is aan pkij.

Met elke Ri kunnen we ook een symmetrische (0, 1)-matrix Ai associëren (de
adjacentiematrix) met rijen en kolommen gëındexeerd door de elementen van
Ω, zodanig dat (Ai)ω1,ω2 = 1 als (ω1, ω2) ∈ Ri en (Ai)ω1,ω2 = 0 in het andere
geval. Uit de axioma’s van een associatieschema volgt dat deze adjacentie-
matrices een (d+ 1)-dimensionale vectorruimte over R vormen die gesloten is
onder zowel gewone matrixvermenigvuldiging als onder elementsgewijze ver-
menigvuldiging (Schur-vermenigvuldiging, genoteerd met ◦). Deze matrices
zijn de elementen van de algebra die we de Bose-Mesner algebra noemen.

Men kan bewijzen dat deze algebra ook nog een (unieke) basis {E0, . . . , Ed} van
minimale idempotenten heeft (i.e. E2

j = Ej en Ej is geen som van niet-triviale
idempotenten). Elke Ej bepaalt een orthogonale projectie op een deelruimte
van RΩ, en elke Ai werkt invariant als scalaire vermenigvuldiging met Pji ∈ R
op deze deelruimte. We spreken af dat E0 telkens orthogonale projectie op 〈χΩ〉
voorstelt. De matrix P = (Pji)i,j=0,...,d wordt de eigenwaardenmatrix genoemd.
De matrix Q = |Ω|P−1 wordt de duale eigenwaardenmatrix genoemd. Merk
op de i-de kolom van P de matrix Ai uitdrukt ten opzichte van {E0, . . . , Ed},
en duaal dat de j-de kolom van Q de matrix |Ω|Ej uitdrukt ten opzichte van
{A0, . . . , Ad}.

Een P -polynomiale of metrische ordening van een d-klasse associatieschema
(Ω, {R0, . . . , Rd}) is een ordening R0, . . . , Rd, zodanig dat (ω1, ω2) ∈ Ri als
en slechts als d(ω1, ω2) = i met betrekking tot R1. Dit is equivalent met de
voorwaarde dat Ai als een veelterm van graad i in A1 kan geschreven worden
(met gewone matrixvermenigvuldiging), ∀i ∈ {0, . . . , d}.

Duaal is een Q-polynomiale of cometrische ordening van een associatieschema
een ordening van de idempotenten E0, . . . , Ed, zodanig dat Ej geschreven kan
worden als een veelterm van graad j in E1 (met Schur-vermenigvuldiging).

Het is onze bedoeling om deelverzamelingen van Ω te bestuderen. Delsarte [65]
ontwikkelde hiertoe krachtige technieken. Wij zullen hier een selectie weerge-
ven.

Definitie C.2.1. Beschouw een associatieschema (Ω, {R0, . . . , Rd}) met S ⊆
Ω. De inwendige distributie van S (als S 6= ∅) is de (d+ 1)-vector a met

ai =
1

|S|
|(S × S) ∩Ri|,∀i ∈ {0, . . . , d}.
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De uitwendige distributie van S is de |Ω| × (d+ 1)-matrix B = (Bx,i) met

Bx,i = |{x′ ∈ S|(x, x′) ∈ Ri}|,∀i ∈ {0, . . . , d},∀x ∈ Ω.

Stelling C.2.2. Als in het associatieschema (Ω, {R0, . . . , Rd}) elke relatie Ri

als valentie ki heeft, en als eigenwaarde λi voor een zekere idempotent Ej, dan
zal van iedere niet-ledige S ⊆ Ω de inwendige distributie a voldoen aan

λ0

k0

a0 + · · ·+ λd
kd

ad ≥ 0,

met gelijkheid als en slechts als EjχS = 0. In dat geval voldoet de uitwendige
distributie B van S aan

λ0

k0

Bx,0 + · · ·+ λd
kd
Bx,d = 0, ∀x ∈ Ω.

De duale graad verzameling van een deelverzameling S in een associatieschema
met idempotenten E0, . . . , Ed is de verzameling van alle niet-nul indices j waar-
voor EjχS 6= 0.

De vorige stelling toont reeds het belang aan van idempotenten die verdwijnen
wanneer toegepast op een karakteristieke vector. Wanneer voor twee deel-
verzamelingen S1, S2 ⊆ Ω in een associatieschema (Ω, {R0, . . . , Rd}) de duale
graad verzamelingen disjunct zijn, dan zijn S1 en S2 design-orthogonaal. Het
volgende lemma toont het combinatorische belang hiervan aan.

Lemma C.2.1. Twee design-orthogonale deelverzamelingen S1 en S2 in een
associatieschema (Ω, {R0, . . . , Rd}) hebben precies |S1||S2|/|Ω| elementen ge-
meen.

C.2.3 Afstandsreguliere grafen

Definitie C.2.3. Laat Γ een eindige graaf zijn met diameter d. We zeggen dat
Γ afstandsregulier is als er getallen bi en ci zijn, genaamd de intersectiegetallen,
zodanig dat voor elke x en y op afstand i in Γ:

|Γi−1(x) ∩ Γ1(y)| = ci,∀i ∈ {1, . . . , d},
|Γi+1(x) ∩ Γ1(y)| = bi,∀i ∈ {0, . . . , d− 1}.
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Wij zullen de notatie bi en ci altijd gebruiken zoals hierboven. We zullen met
ai ook |Γi(x) ∩ Γ1(y)| aanduiden. Merk op dat ai + bi + ci = k voor elke
i ∈ {1, . . . , d− 1}.

Uit de volgende stelling blijkt dat de studie van de afstandsreguliere grafen in
feite neerkomt op de studie van de P -polynomiale associatieschema’s.

Stelling C.2.4. Laat Γ een eindige graaf zijn met diameter d en toppenverza-
meling Ω, en laat (x, y) in Ri zijn als d(x, y) = i in Γ. Dan is Γ afstandsregulier
als en slechts als (Ω, {R0, . . . , Rd}) een associatieschema is.
In dat geval is dit schema metrisch met ordening R0, . . . , Rd.

Een code in een afstandsreguliere graaf is een niet-ledige deelverzameling van
toppen. Een code S is s-regulier is als de uitwendige distributie B van S zo
is dat als d(x, S) ≤ s, Bx,i enkel afhangt van d(x, S) en i. De bedekkingsstraal
t(S) van een code S is de maximale afstand tot S. Indien S een t(S)-reguliere
code is, dan zeggen we dat S compleet regulier is.

Een graaf met v toppen is sterk regulier, genoteerd als srg(v, k, λ, µ), wanneer
iedere top k buren heeft, en wanneer twee toppen precies λ of µ gemeenschap-
pelijke buren hebben, als de twee toppen respectievelijk wel of niet adjacent
zijn. Afstandsreguliere grafen met diameter twee zijn de niet-triviale sterk
reguliere grafen.

We definiëren nu een bepaald type van afstandsreguliere grafen, waartoe veel
van de bekende grafen behoren.

Definitie C.2.5. Een afstandsreguliere graaf Γ met diameter d heeft klassieke
parameters (d, b, α, β) als

bi =

([
d

1

]
b

−
[
i

1

]
b

)(
β − α

[
i

1

]
b

)
,

ci =

[
i

1

]
b

(
1 + α

[
i− 1

1

]
b

)
,

met
[
i
1

]
b

= i als b = 1 en
[
i
1

]
b

= (bi − 1)/(b− 1) als b 6= 1.

C.2.4 Sferische designs en associatieschema’s

Sferische designs zijn ingevoerd door Delsarte, Goethals en Seidel [69]. Er is
een sterke link met de theorie van de associatieschema’s, maar ze zijn ook een
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studieobject op zich geworden.

Definitie C.2.6. Een eindige niet-ledige deelverzameling X van Sm−1 is een
sferisch t-design als ∫

Sm−1 f(u)du∫
Sm−1 1du

=
1

|X|
∑
x∈X

f(x)

geldt voor elke veelterm f ∈ R[u1, . . . , um] met graad hoogstens t.

De verzameling van genormalizeerde kolommen van een minimale idempotent
( 6= E0) van een associatieschema is steeds een sferisch 2-design. Het is een
sferisch t-design voor hogere t als het associatieschema en de idempotent aan
bepaalde voorwaarden voldoen.

C.2.5 Permutatiegroepen en modulen

Als een groep G op een eindige verzameling Ω werkt, dan kunnen we met elke
g ∈ G een endomorfisme ρ(g) van RΩ laten overeenkomen. Zo bekomt men het
permutatiemoduul. Een deelmoduul is een deelruimte van RΩ die invariant is
onder elke ρ(g), en het is een irreduciebel deelmoduul als het zelf geen eigenlijke
niet-triviale deelmodulen heeft.

We zeggen dat een groepG vrijelijk transitief op Ω werkt als (ω1, ω2) en (ω2, ω1)
steeds tot dezelfde baan van G behoren. In dit geval leidt de groepsactie tot een
associatieschema, waarvan de idempotenten overeenkomen met de orthogonale
projecties op de irreduciebele deelmodulen van RΩ.

C.3 Grassmann schema’s

In Hoofdstuk 3 behandelen we de associatieschema’s op de verzamelingen van
deelruimten met een vaste dimensie in V (n, q). We wijzen er eerst en vooral
op dat dit neerkomt op een studie van PG(n − 1, q). Om de eenvoud van de
formules enigszins te bewaren, verkiezen wij om die laatste notatie niet verder
te hanteren.
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C.3.1 Grassmann schema’s

In dit hoofdstuk stellen we de verzameling van a-ruimten in V (n, q) voor met
Ωa. De elementen van Ω1 en Ω2 worden respectievelijk de punten en rechten
genoemd. De Gauss coëfficiënt

[
n
a

]
q

wordt gedefinieerd als volgt:

[n
a

]
q

=
a∏
i=1

qn+1−i − 1

qi − 1
als 0 ≤ a ≤ n,

en
[
n
a

]
q

= 0 als a < 0 of a > n.

De groep GL(n, q) werkt vrijelijk transitief op Ωa in V (n, q), waarbij de baan
van (πa, π

′
a) ∈ Ωa × Ωa enkel afhangt van dim(πa ∩ π′a). Het hiermee overeen-

komende associatieschema (Ω, {R0, . . . , Rd}), d = min(a, n− a), is het Grass-
mann of q-Johnson schema, met Ri = {(πa, π′a) ∈ Ω2

a|dim(πa ∩ π′a) = a − i}.
Dit schema is P -polynomiaal met ordening R0, . . . , Rd, en de afstandsreguliere
graaf die overeenkomt met R1 staat bekend als de Grassmann graaf Jq(n, a).

C.3.2 Irreduciebele deelmodulen en eigenwaarden voor Grassmann
schema’s

In Sectie 3.2 bespreken we de eigenruimten van de Grassmann schema’s gede-
finieerd door Jq(n, a). Delsarte [66] ontwikkelde een algemene theorie omtrent
reguliere semitralies, die toelaat om de eigenruimten in associatieschema’s met
een specifieke onderliggende structuur te begrijpen. Wij volgen de meer groe-
pentheoretische aanpak van Ito [99].

Stelling C.3.1. Beschouw V (n, q) en G = GL(n, q). Voor elke a ∈ {0, . . . , n}
wordt het permutatiemoduul RΩa over RG op a-ruimten ontbonden in irredu-
ciebele deelmodulen als volgt:

RΩa =
min(a,n−a)

©⊥
i=0

V a
i ,

waarbij V a
i en V b

i isomorfe RG-modulen zijn.

Bij wijze van illustratie stellen we de ontbinding voor V (6, q) voor in Figuur
C.3.2. Elke kolom komt overeen met het permutatiemoduul op deelruimten van
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V (6, q) en bevat de irreduciebele deelmodulen daarin, en we schrijven isomorfe
deelmodulen op dezelfde rij.

RΩ0 RΩ1 RΩ2 RΩ3 RΩ4 RΩ5 RΩ6

V 0
0 V 1

0 V 2
0 V 3

0 V 4
0 V 5

0 V 6
0

V 1
1 V 2

1 V 3
1 V 4

1 V 5
1

V 2
2 V 3

2 V 4
2

V 3
3

Figuur C.1: De ontbinding in irreduciebelen voor V (6, q)

C.3.3 Codes in Grassmann grafen

In deze sectie bespreken we deelverzamelingen van deelruimten in V (n, q) die
interessant zijn, met name wat betreft orthogonaliteit ten opzichte van de
eigenruimten van het Grassmann schema.

Definitie C.3.2. Een t−(n, k, λ; q)-design is een verzameling S van k-ruimten
in V (n, q) met 0 ≤ t ≤ k ≤ n, zodanig dat elke t-ruimte in juist λ elementen
van S ligt.

Uit Delsarte’s theorie van de semireguliere tralies [66] volgt dat S ⊆ Ωk in
V (n, q) een t-design is als en slechts als

χS ∈ (V k
i )⊥, 1 ≤ i ≤ min(k, n− k, t, n− t).

Cameron en Liebler [40] bestudeerden groepen met evenveel banen op punten
als rechten in PG(n, q). We geven enkele voorbeelden van groepen met evenveel
banen op deelruimten van twee verschillende dimensies, en daaruit leiden we
combinatorische eigenschappen af.

Stelling C.3.3. (Theorem 3.3.13) Laat f een niet-ontaarde alternerende
vorm op V (2n, q) zijn. De verzameling S van totaal isotrope deelruimten in
Jq(2n, k), k ≤ n, heeft als duale graad de even indices in {1, . . . , k}.

Beschouw nu een vectorruimte V (4n+2, q), n ≥ 1, samen met een niet-ontaarde
kwadratische vorm Q van elliptisch type (of dus met Witt index 2n). We
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beschouwen de actie van de groep GO−(4n+ 2, q):

{g ∈ GL(4n+ 2, q)|∃λ ∈ Fq : (Q(vg) = λQ(v), ∀v ∈ V (4n+ 2, q))}.

Twee (2n + 1)-ruimten liggen in dezelfde baan van GO−(4n + 2, q) op Ω2n+1

als en slechts als de restrictie van de vorm Q tot deze ruimten van hetzelfde
type is.

Stelling C.3.4. (Theorem 3.3.15) De banen van GO−(4n+ 2, q) op Ω2n+1

in V (4n+2, q) hebben karakteristieke vectoren die orthogonaal zijn met V 2n+1
2n+1 .

Uit het voorgaande kan zonder zwaar rekenwerk respectievelijk het volgende
afgeleid worden.

Gevolg C.3.5. (Corollary 3.3.14) Van een niet-ontaarde alternerende vorm
op V (2n, q) is het aantal totaal isotrope deelruimten in een t− (2n, t+ 1, λ; q)-
design met 0 ≤ t ≤ n− 1 en t even gegeven door:

λ[
2n−t

1

]
q

t∏
i=0

(
q2(n−i) − 1

qi+1 − 1

)
.

Gevolg C.3.6. (Corollary 3.3.16) Zij S een 2n−(4n+2, 2n+1, λ; q)-design
in V (4n+ 2, q), en zij Q een niet-ontaarde kwadratische vorm met Witt index
2n. Als Oα ⊆ Ω2n+1 de verzameling is van (2n + 1)-ruimten waarop Q een
restrictie van type α heeft, dan geldt:

|S ∩Oα| =
λ[

2n+2
1

]
q

|Oα|.

C.4 Klassieke eindige polaire ruimten

C.4.1 De associatieschema’s van klassieke eindige polaire ruimten

We zeggen dat een klassieke eindige polaire ruimte van rang d parameters
(q, qe) heeft als iedere rechte incident is met q+1 punten, en elke (d−1)-ruimte
met qe + 1 generatoren. Elke klassieke eindige polaire ruimte heeft dergelijke
parameters, en die worden weergegeven in Tabel C.1 voor rang d (hier worden
twee gebruikelijke notaties vermeld). In de context van polaire ruimten, zullen
we de verzameling van totaal isotrope a-deelruimten voorstellen met Ωa.
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(s, t) e

Q+(2d− 1, q) Dd(q) (q, 1) 0

H(2d− 1, q2) 2A2d−1(q) (q2, q) 1/2

Q(2d, q) Bd(q) (q, q) 1

W (2d− 1, q) Cd(q) (q, q) 1

H(2d, q2) 2A2d(q) (q2, q3) 3/2

Q−(2d+ 1, q) 2Dd+1(q) (q, q2) 2

Tabel C.1: De klassieke eindige polaire ruimten met parameters (s, t) = (s, se)

In een klassieke eindige polaire ruimte zijn de banen van de volledige automor-
fismengroep op Ωa × Ωb gegeven door:

Rs,k
a,b := {(πa, πb)|dim(πa ∩ πb) = s, dim(〈πa, πb ∩ π⊥a 〉) = k},

met 0 ≤ s ≤ min(a, b) en max(a, b) ≤ k ≤ min(d, a + b − s). Met iedere

Rs,k
a,b komt een (0, 1)-matrix Cs,k

a,b overeen, met kolommen en rijen gëındexeerd

door respectievelijk Ωa en Ωb, zodanig dat (Cs,k
a,b )πa,πb = 1 is als (πa, πb) tot

deze relatie behoort, en anders nul. Zo definieert elke relatie een afbeelding
RΩa → RΩb .

Uit het voorgaande volgt in het bijzonder dat de volledige automorfismengroep
vrijelijk transitief op Ωa werkt en dus tot een associatieschema leidt. Het aantal
relaties in dit schema is (a+ 1)(a+ 2)/2 als 2a ≤ d en (d−a+ 1)(3a−d+ 2)/2
als 2a ≥ d.

De relatie R
a−1,min(a+1,d)
a,a bepaalt de graaf van Lie type op de a-ruimten. Voor

a = 1 is dit de polaire graaf op de punten van de polaire ruimte, waarbij twee
verschillende toppen adjacent zijn als ze op een gemeenschappelijke rechte
liggen. Voor a = d is dit de duale polaire graaf op de generatoren, waarbij
twee verschillende toppen adjacent zijn als ze door een gemeenschappelijke
(d− 1)-ruimte gaan.

De duale polaire graaf speelt een belangrijke rol in deze thesis. Voor een
klassieke eindige polaire ruimte met rang d en parameters (q, qe) is dit een af-
standsreguliere graaf met klassieke parameters (d, q, 0, qe), waarin twee toppen
op afstand i zijn als ze in een (d− i)-ruimte snijden. Merk op dat dit betekent
dat deze graaf het associatieschema op de generatoren definieert.

Een terugkerend fenomeen in deze thesis is de speciale rol van de duale polaire
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graaf op H(2d− 1, q2). Deze heeft ook nog eens klassieke parameters

(d, b, α, β) =

(
d,−q,−q(q + 1)/(q − 1),−q((−q)d + 1)/(q − 1)

)
.

Een andere bijzondere relatie is de oppositierelatie R0,a
a,a. Twee a-ruimten πa

en π′a zijn opposite als geen punt op de ene collineair is met alle punten op de
andere. Merk op dat dit voor generatoren neerkomt op het triviaal snijden,
wat dan overeenkomt met de maximale afstandsrelatie met betrekking tot de
duale polaire graaf.

C.4.2 Irreduciebele deelmodulen voor polaire ruimten

Net zoals bij de Grassmann schema’s kan men de ontbinding in irreduciebele
deelruimten begrijpen door de meetkundige objecten van verschillende types
gelijktijdig te beschouwen. De volgende stelling kan afgeleid worden uit het
werk van Stanton [135], Terwilliger [142] en Eisfeld [77].

Stelling C.4.1. Beschouw een klassieke eindige polaire ruimte van rang d.

(i) Onder de actie van de volledige automorfismengroep heeft elk moduul RΩn

een unieke (orthogonale) ontbinding in niet-isomorfe irreduciebele deel-
modulen:

RΩn = ©⊥
0≤r≤n

0≤i≤min(r,d−n)

V n
r,i.

De deelmodulen V a
r,i ⊆ RΩa en V b

r,i ⊆ RΩb zijn isomorf.

(ii) De restrictie van de incidentie-afbeelding Ca,b : RΩa → RΩb tot een deel-
moduul V a

r,i ⊆ RΩa is triviaal als er geen V b
r,i is in RΩb, en in het andere

geval is het een bijectie tussen de 2 isomorfe deelmodulen.

(iii) De restrictie van iedere afbeelding Cs,k
a,b tot V a

r,i ⊆ RΩa is een scalair veel-
voud van de restrictie van Ca,b.

De structuur van de ontbinding, zoals beschreven in Stelling C.4.1, wordt als
voorbeeld weergegeven in Figuur C.2 voor klassieke eindige polaire ruimten
van rang 4. Elke kolom komt overeen met een permutatiemoduul op een ver-
zameling van totaal isotrope deelruimten met een vaste dimensie, en isomorfe
deelmodulen worden op dezelfde rij geplaatst.
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RΩ0 RΩ1 RΩ2 RΩ3 RΩ4

V 0
0,0 V 1

0,0 V 2
0,0 V 3

0,0 V 4
0,0

V 1
1,0 V 2

1,0 V 3
1,0 V 4

1,0

V 1
1,1 V 2

1,1 V 3
1,1

V 2
2,0 V 3

2,0 V 4
2,0

V 2
2,1 V 3

2,1

V 2
2,2

V 3
3,0 V 4

3,0

V 3
3,1

V 4
4,0

Figuur C.2: De ontbinding in irreduciebelen voor klassieke eindige polaire ruimten
van rang 4

C.4.3 Specifieke eigenwaarden voor polaire ruimten

Eisfeld [77] gebruikte de ontbinding in irreduciebelen zoals beschreven in Stel-
ling C.4.1 om op inductieve wijze de eigenwaarden te berekenen. In Sectie
4.3 werken wij dit uit voor specifieke gevallen waarbij blijkt dat er uiteindelijk
toch een al bij al eenvoudige, expliciete uitdrukking kan gegeven worden.

C.4.4 Interessante deelverzamelingen in polaire ruimten

In Sectie 4.4 gebruiken we de eigenruimten en eigenwaarden om interessante
deelverzamelingen van deelruimten in de polaire ruimte met een vaste dimensie
te bespreken.

Het associatieschema op de punten heeft als ontbinding RΩ1 = V 1
0,0 ⊥ V 1

1,0 ⊥
V 1

1,1. Eisfeld [75] besprak de twee types van intrigerende verzamelingen van
de sterk reguliere polaire graaf in een algemenere context. De puntenverzame-
lingen S met χS ∈ V 1

0,0 ⊥ V 1
1,0 werden door Drudge [73] dichte verzamelingen

genoemd, en die met χS ∈ V 1
0,0 ⊥ V 1

1,1 de m-ovöıdes door Thas [132]. Deze
twee types werden samen uitvoerig behandeld in [9].

Het volgende resultaat is ook (impliciet) vermeld in [77]. Voor generatoren
volgt dit ook uit de theorie van de reguliere semitralies (zie ook [135, 136]).
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Stelling C.4.2. (Theorem 4.4.1) In een klassieke eindige polaire ruimte van
rang d met parameters (q, qe) zal een verzameling S ⊆ Ωa zo zijn dat elke b-
ruimte incident is met (of gelijk aan) een vast aantal elementen van S, als
en slechts als χS orthogonaal is met elke V a

r,i, (r, i) 6= (0, 0), die een isomorfe

kopie V b
r,i heeft in RΩb.

Wij wijzen er eerst op dat dit in veel gevallen impliceert dat de verzameling S
triviaal is.

Gevolg C.4.3. (Corollary 4.4.2) Beschouw een verzameling van a-ruimten
S in een klassieke eindige polaire ruimte, zodanig dat elke b-ruimte incident is
met (of gelijk aan) een vast aantal elementen in S, met a ≤ b en a + b ≤ d.
Dan moet S leeg zijn of de volledige verzameling Ωa.

Een partiële ovöıde (parẗıele spread) in een polaire ruimte is een verzameling
van punten (generatoren) die niet incident zijn met een gemeenschappelijke
generator (punt). In een klassieke eindige polaire ruimte met rang d en para-
meters (q, qe) kunnen beide structuren hoogstens qd−1+e + 1 elementen bevat-
ten, en dit is respectievelijk zo als iedere generator juist één element van de
partiële ovöıde bevat, of ieder punt op juist één element van de partiële spread
ligt. In dit geval spreken we respectievelijk over ovöıdes en spreads.

Shult en Thas [132] veralgemeenden dit door partiële (m − 1)-systemen te
definiëren als verzamelingen van paarsgewijs opposite m-ruimten (wij kiezen
ervoor om vectoriële dimensies te gebruiken). Wanneer men deze opvat als
klieken van de oppositierelatie en Stelling C.2.2 toepast, dan vindt men een
alternatief bewijs van hun resultaat.

Stelling C.4.4. (Theorem 4.4.14) Laat S een niet-ledig partieel (m − 1)-
systeem zijn in een klassieke eindige polaire ruimte met rang d en parameters
(q, qe). Nu is |S| ≤ qd−1+e + 1, met gelijkheid als en slechts als χS ∈ (V m

1,0)⊥.

De partiële (m − 1)-systemen die deze grens qd−1+e + 1 bereiken worden de
(m− 1)-systemen genoemd.

De deelruimte V m
1,0 van RΩm speelt een belangrijke rol, en levert via Stelling

C.2.2 vrijwel altijd de beste bovengrens voor klieken van de oppositierelatie.
Na zorgvuldig rekenwerk blijkt er echter één niet-triviale verbetering mogelijk,
namelijk voor partiële spreads van H(2d−1, q2), d oneven. Deze stelling is het
belangrijkste resultaat van Hoofstuk 4.
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Stelling C.4.5. (Theorem 4.4.16)Een partiële spread S in H(2d − 1, q2)
met d oneven bevat hoogstens qd + 1 elementen. Gelijkheid geldt als en slechts
als de karakteristieke vector χS orthogonaal is tot V d

d,0.

Thas [152] bewees reeds dat in H(2d − 1, q2) spreads, of dus partiële spreads
met grootte q2d−1 + 1, niet kunnen voorkomen. Partiële spreads met grootte
qd + 1 werden echter in H(2d − 1, q2) voor alle d ≥ 2 geconstrueerd in [1], en
bijgevolg is onze grens scherp.

We komen terug op deze grens en vooral het geval van gelijkheid in Subsectie
6.4.3 en de Appendix A.

C.5 Erdős-Ko-Rado stellingen in klassieke eindige po-
laire ruimten

In Hoofdstuk 5 bekijken we verzamelingen van generatoren in klassieke eindige
polaire ruimten die paarsgewijs niet-triviaal snijden, m.a.w het omgekeerde
probleem van de studie van partiële spreads. Dit kan opgevat worden als
één van de vele Erdős-Ko-Rado problemen die opduiken in de wiskunde (zie
hieronder voor een korte bespreking). Wij zullen voor iedere klassieke eindige
polaire ruimte de maximale grootte van dergelijke verzamelingen bepalen, als
ook de classificatie in het geval van gelijkheid, behalve in H(2d − 1, q2) voor
oneven d ≥ 5.

De resultaten in dit hoofdstuk zijn bekomen in samenwerking met Valentina
Pepe en Leo Storme.

C.5.1 Erdős-Ko-Rado stellingen

We geven eerst het oorspronkelijke resultaat van Erdős-Ko-Rado. Met k-
verzamelingen bedoelen we deelverzamelingen van grootte k.

Stelling C.5.1. [78] Zij S een verzameling van k-verzamelingen in een ver-
zameling van grootte n, die paarsgewijs minstens t elementen gemeen hebben,
met 1 ≤ t ≤ k ≤ n.

(i) Als n ≥ t+ (k − t)
(
k
t

)3
, dan is |S| ≤

(
n−t
k−t

)
.
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(ii) Als n ≥ 2k en t = 1, dan geldt |S| ≤
(
n−1
k−1

)
.

Een verzameling S van k-verzamelingen door een vaste t-verzameling is een
voorbeeld waarbij de grens bereikt wordt.

We zeggen dat een verzameling van k-ruimten t-snijdend is als de dimensie
van de doorsnede van elke twee elementen minstens t is. Hsieh bewees het
volgende analogon van Stelling C.5.1 voor vectorruimten.

Stelling C.5.2. [96] Als S een t-snijdende verzameling van k-ruimten is in
V (n, q) met 1 ≤ t ≤ k en n ≥ 2k + 1, en ook met (n, q) 6= (2k + 1, 2) als
t ≥ 2, dan is |S| ≤

[
n−t
k−t

]
q
. Gelijkheid geldt als en slechts als S bestaat uit alle

k-ruimten door een vaste t-ruimte.

Later zijn deze resultaten door verscheidene auteurs verbeterd.

We zullen EKR verzamelingen van generatoren bestuderen: verzamelingen van
generatoren in klassieke eindige polaire ruimten die paarsgewijs niet-triviaal
snijden. We zeggen dat een dergelijke verzameling maximaal is als het geen
echte deelverzameling is van een andere EKR verzameling. Een eenvoudig
voorbeeld van dit laatste is de verzameling van alle generatoren door een vast
punt van de polaire ruimte. We zullen zien dat dit in de meeste gevallen ook
daadwerkelijk de enige EKR verzamelingen van maximale grootte zijn.

Voor d = 2 zijn de maximale EKR verzamelingen de verzamelingen van rechten
door een punt, en dus hoeven we enkel rang d ≥ 3 te beschouwen.

C.5.2 Algebräısche technieken

In de duale polaire graaf op een klassieke eindige polaire ruimte met rang d,
liggen twee toppen op afstand d als en slechts als ze triviaal snijden. Bijgevolg
zijn de EKR verzamelingen precies de coklieken van de maximale afstandsre-
latie van de duale polaire graaf. In deze sectie geven we de technieken aan uit
de algebräısche grafentheorie waarmee we dit probleem zullen aanpakken.

Het belangrijkste hulpmiddel is Hoffman’s stelling.

Stelling C.5.3. [95] Beschouw een k-reguliere graaf Γ, k ≥ 1,met toppenver-
zameling Ω en kleinste eigenwaarde λ. Als S een cokliek is in Γ, dan geldt:

|S| ≤ |Ω|
1− k/λ

,
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en wanneer gelijkheid geldt kan χS geschreven worden als |S||Ω|χΩ + v met v een

eigenvector voor λ van de adjacentiematrix A.

Verder zullen we ook steunen op een algemene theorie omtrent deelverzamelin-
gen in associatieschema’s van Brouwer, Godsil, Koolen en Martin [24]. Tanaka
[139] ontwikkelde dit verder, en bekeek de parameters van associatieschema’s
gëınduceerd door deelverzamelingen van een specifiek type. Dit kan dan toe-
gepast worden om classificatie in verscheidene Erdős-Ko-Rado problemen te
bekomen.

Tenslotte beschouwen we in een associatieschema (Ω, {R0, . . . , Rd}) een veral-
gemening van het concept van de uitwendige distributie, waarbij we tellen ten
opzichte van een vast element dat tot een verzameling Ω′ behoort, en waar-
bij een groepactie de verzamelingen Ω en Ω′ linkt. Dergelijke ideeën werden
voor specifieke associatieschema’s reeds expliciet uitgewerkt door Calderbank
en Delsarte (zie [31] en [68]).

C.5.3 Grenzen voor EKR verzamelingen van generatoren

Stanton [134] gebruikte Stelling C.5.3 om bovengrenzen voor EKR verzame-
lingen te berekenen. Op die manier komt men tot het volgende resultaat.

Stelling C.5.4. (Theorem 5.3.1) Zij S een EKR verzameling van generato-
ren in een klassieke eindige polaire ruimte P van rang d met parameters (q, qe),
en beschouw de ontbinding RΩd = V d

0,0 ⊥ . . . ⊥ V d
d,0.

• Als P = Q+(2d − 1, q) met d oneven, dan is |S| hoogstens (q + 1) · · ·
(qd−1 + 1), en bij gelijkheid geldt: χS ∈ V d

0,0 ⊥ V d
d,0.

• Als P = Q+(2d − 1, q) met d even, dan is |S| hoogstens 2(q + 1) · · ·
(qd−2 + 1), en bij gelijkheid geldt: χS ∈ V d

0,0 ⊥ V d
1,0 ⊥ V d

d−1,0.

• Als P = H(2d− 1, q2) met d oneven, dan is |S| hoogstens |Ωd|/(qd + 1),
en bij gelijkheid geldt: χS ∈ V d

0,0 ⊥ V d
d,0.

• Als P = Q(2d, q) of P = W (2d − 1, q), met d oneven in beide gevallen,
dan is |S| hoogstens (q + 1) · · · (qd−1 + 1), en bij gelijkheid geldt: χS ∈
V d

0,0 ⊥ V d
1,0 ⊥ V d

d,0.
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Voor alle andere polaire ruimten is |S| hoogstens het aantal generatoren door
een punt, en bij gelijkheid geldt: χS ∈ V d

0,0 ⊥ V d
1,0.

C.5.4 Algemene observaties omtrent maximale EKR verzamelin-
gen van generatoren

In Sectie 5.4 worden een aantal belangrijke observaties gedaan omtrent maxi-
male EKR verzamelingen S. Hier wordt het belangrijke concept van de kern
van een element van S (ten opzichte van S) ingevoerd.

C.5.5 Classificatie van maximum EKR verzamelingen van genera-
toren in de meeste polaire ruimten

In de gevallen die niet als uitzondering in Stelling C.5.4 optreden, volgt de
classificatie vrijwel onmiddellijk uit het werk van Tanaka [139].

Stelling C.5.5. (Theorem 5.5.2) Zij P één van de volgende polaire ruimten
van rang d ≥ 3: H(2d, q2), H(2d − 1, q2) met d even, Q(2d, q) met d even,
W (2d − 1, q) met d even of Q−(2d + 1, q). Als S een EKR verzameling van
generatoren in P is, dan is |S| hoogstens het aantal generatoren door een punt,
met gelijkheid als en slechts als S bestaat uit alle generatoren door een punt.

C.5.6 Hyperbolische kwadrieken

In de hyperbolische kwadriek Q+(2d− 1, q) zijn er twee systemen van genera-
toren: Latijnse en Griekse. Twee generatoren behoren tot hetzelfde systeem
als en slechts als hun doorsnede even codimensie heeft.

Als d oneven is, dan kunnen twee generatoren van eenzelfde type niet triviaal
snijden.

Stelling C.5.6. (Theorem 5.6.1) Als S een EKR verzameling van genera-
toren is met grootte |Ωd|/2 in Q+(2d − 1, q), d oneven, dan is S één van de
twee systemen.

Als d even is, dan kunnen twee generatoren van een verschillend type niet tri-
viaal snijden. Men kan met Stelling C.5.3 aantonen dat een EKR verzameling
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in één systeem hoogstens (q + 1) · · · (qd−2 + 1) elementen bevat. Aangezien
de automorfismengroep van de polaire ruimte transitief werkt op generatoren,
kunnen we ons dus concentreren op het probleem in één systeem.

Stelling C.5.7. (Theorem 5.6.8) Als S een EKR verzameling van Latijnse
generatoren in Q+(2d−1, q), d even en d ≥ 6, dan is |S| ≤ (q+1) · · · (qd−2+1),
met gelijkheid als en slechts als S de verzameling is van alle Latijnse genera-
toren door een vast punt.

Stelling C.5.8. (Theorem 5.6.10) Als S een EKR verzameling is van La-
tijnse generatoren in Q+(7, q) met |S| = (q+1)(q2 +1), dan bestaat S ofwel uit
alle Latijnse generatoren door een vast punt, ofwel uit alle Latijnse generatoren
die een vaste Griekse generator in een vlak snijden.

C.5.7 Q(2d, q) voor oneven d

Aangezien Q(2d, q) ingebed kan worden in Q+(2d+ 1, q) aan de hand van een
niet-singulier hypervlak, kunnen we het Erdős-Ko-Rado probleem hier ook vrij
eenvoudig oplossen.

Stelling C.5.9. (Theorem 5.7.1) Als S een EKR verzameling van genera-
toren is in Q(2d, q), met d ≥ 3 oneven, dan is |S| ≤ (q+ 1) · · · (qd−1 + 1), met
gelijkheid als en slechts als:

(i) S de verzameling van generatoren door een vast punt is,

(ii) S de verzameling van alle generatoren van één systeem van een ingebedde
Q+(2d− 1, q) is,

(iii) d = 3 en S bestaat uit één vlak en alle generatoren die het in een rechte
snijden.

C.5.8 W (2d− 1, q) voor oneven d

De duale polaire grafen opW (2d−1, q) enQ(2d, q) hebben dezelfde parameters,
maar ze zijn enkel isomorf voor even q. Voor even q is de classificatie dus reeds
gebeurd in Sectie 5.7. De classificatie voor oneven q is veel minder eenvoudig.
Door gebruik te maken van de uitwendige distributie, als ook de veralgemeende
uitwendige distributie met betrekking tot de (d − 1)-ruimten van de polaire
ruimte, kan men het volgende bewijzen.
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Stelling C.5.10. (Theorem 5.8.13) Zij S een EKR verzameling van gene-
ratoren in W (2d − 1, q) met q oneven, d oneven en d ≥ 5. Dan is |S| ≤
(q+1) · · · (qd−1 +1), met gelijkheid als en slechts als S de verzameling van alle
generatoren door een vast punt is.

Stelling C.5.11. (Theorem 5.8.14) Zij S een EKR verzameling in W (5, q)
met q oneven. Dan is |S| ≤ (q + 1)(q2 + 1), met gelijkheid als en slechts als
S bestaat uit ofwel alle generatoren door een vast punt van de polaire ruimte,
ofwel één vlak π en alle generatoren die π snijden in een rechte.

C.5.9 H(2d− 1, q2) voor oneven d

Opnieuw speelt de duale polaire graaf op H(2d− 1, q2) een speciale rol, maar
hier is dit in ons nadeel voor oneven d: Stelling C.5.3 geeft ons hier een grens
voor de grootte van de EKR verzamelingen van generatoren (nl. |Ωd|/(qd+1))
die veel groter is dan het aantal generatoren door één punt (nl. |Ωd|/(q2d−1 +
1)). Met behulp van Stelling C.4.2 vindt men nog vrij eenvoudig het volgende
resultaat.

Stelling C.5.12. (Theorem 5.9.1) Als S een EKR verzameling is van gene-
ratoren in H(2d− 1, q2) met d oneven en d ≥ 3, dan geldt |S| < |Ωd|/(qd + 1).

Het is mogelijk dat voor oneven d ≥ 5 de EKR verzamelingen van generato-
ren door een vast punt nog steeds de enige zijn van maximale grootte, maar
algebräısche technieken lijken hier minder toepasbaar. Met puur meetkundige
argumenten kunnen we het probleem echter nog oplossen als d = 3.

Stelling C.5.13. (Theorem 5.9.4) Zij S een EKR verzameling van vlakken
in H(5, q2). Nu is |S| ≤ q5 + q3 + q + 1, met gelijkheid als en slechts als S
bestaat uit één vlak π en alle vlakken die π in een rechte snijden.

C.5.10 Overzicht

In Sectie 5.10 vatten we alle resultaten over EKR verzamelingen van gene-
ratoren in klassieke eindige polaire ruimten samen, met verwijzingen naar de
bewijzen.
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C.6 Schier veelhoeken

In Hoofdstuk 6 worden de veralgemeende veelhoeken en duale polaire ruimten
samen in de algemenere context van schier veelhoeken bestudeerd.

C.6.1 Definities en basiseigenschappen

Definitie C.6.1. Een schier veelhoek is een partieel lineaire ruimte P die aan
de volgende axioma’s voldoet.

(i) De puntgraaf is samenhangend met diameter d ≥ 1.

(ii) Voor elk punt p en elke rechte ` met d(p, `) < d in de puntgraaf is er een
uniek punt p′ op ` dat op minimale afstand van p ligt.

We zeggen dat P een schier (2d + 1)-hoek is als er een punt op afstand d in
de puntgraaf van een zekere rechte ` ligt, en een schier 2d-hoek in het andere
geval.

Schier 2d-hoeken zijn ingevoerd door Shult en Yanushka [133]. We zullen vooral
die structuren bekijken.

De schier vierhoeken met minstens twee rechten door ieder punt zijn precies
de veralgemeende vierhoeken.

We zeggen dat een schier n-hoek P regulier is als de puntgraaf afstandsregulier
is. Voor n ≥ 4 impliceert dit dat P een orde (s, t) heeft: iedere rechte bevat
juist s+ 1 punten, en ieder punt ligt op juist t+ 1 rechten.

Tenzij anders vermeld, bedoelen we met de afstand tussen 2 punten of tussen
een punt en een rechte, de afstand in de puntgraaf.

C.6.2 Types van schier veelhoeken

We zullen twee belangrijke types van schier veelhoeken bekijken.

De veralgemeende veelhoeken zijn door Tits [156] ingevoerd. De veralgemeende
2d-hoeken van orde (s, t) zijn precies die reguliere schier 2d-hoeken van orde
(s, t) waarvan de puntgraaf voldoet aan c1 = . . . = cd−1 = 1, met andere
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woorden: tussen elke twee punten op niet-maximale afstand is er een uniek
kortste pad in de puntgraaf. Dit zijn zelf-duale structuren.

Een beroemde stelling van Feit en G. Higman [80] stelt dat indien s, t > 1,
veralgemeende 2d-hoeken met d ≥ 2 van orde (s, t) enkel kunnen bestaan als
d ∈ {2, 3, 4}. Voor d = 2 bestaan er de klassieke polaire ruimten van rang 2,
maar er zijn ook andere voorbeelden. Voor d = 3 zijn, op dualiteit na, enkel de
split Cayley zeshoeken H(q) van orde (q, q) en de getwiste trialiteitszeshoeken
T (q3, q) van orde (q3, q) gekend. Tenslotte zijn voor d = 4, opnieuw op dualiteit
na, enkel de Ree-Tits achthoeken van orde (q, q2) met q = 22e+1, e geheel,
gekend.

C.6.3 Eigenwaarden van schier 2d-hoeken

In Sectie 6.3 bespreken we eigenwaarden van de puntgraaf van een schier 2d-
hoek. De idempotent voor de kleinste eigenwaarde kan heel elegant uitgedrukt
worden en is één van de belangrijkste instrumenten in deze thesis.

Stelling C.6.2. Als Γ de puntgraaf is van een reguliere schier 2d-hoek van
orde (s, t) met d ≥ 2, en Ai is de adjacentiematrix van de afstand-i relatie,
dan is

M :=
d∑
i=0

(
−1

s

)i
Ai

op een positive scalair na, een minimale idempotent en dus positief semidefi-
niet. De overeenkomstige eigenwaarde is −(t+ 1).

C.6.4 Puntenverzamelingen in schier 2d-hoeken

In Sectie 6.4 bespreken we puntenverzamelingen in reguliere schier 2d-hoeken
en hun interactie. We doen dit eerst algemeen, en dan voor veralgemeende
2d-hoeken en duale polaire ruimten.

Stelling C.6.3. (Theorem 6.4.2) Beschouw een reguliere schier 2d-hoek,
d ≥ 2, van orde (s, t). Laat S een niet-ledige puntenverzameling met inwendige
distributie a zijn. Nu geldt:

d∑
i=0

(
−1

s

)i
ai ≥ 0,
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met gelijkheid als en slechts als MχS = 0, en in dat geval voldoet de uitwendige
distributie B van S voor elk punt p aan:

d∑
i=0

(
−1

s

)i
Bp,i = 0.

We zullen alle puntenverzamelingen S met MχS = 0 dichte puntenverzame-
lingen noemen. Voor veralgemeende vierhoeken valt dit samen met het gelijk-
namige concept ingevoerd door Payne [121].

Een m-ovöıde in een reguliere schier 2d-hoek is een puntenverzameling waarvan
iedere rechte juist m punten bevat.

In veralgemeende 2d-hoeken P zijn partiële afstands-j-ovöıdes puntenverzame-
lingen S waarbij de afstand tussen elke twee elementen van S in de puntgraaf
minstens j is. We zeggen dat S een afstands-j-ovöıde is als er van ieder punt
en van iedere rechte in P minstens één element op afstand hoogstens j in de
incidentiegraaf ligt.

Stelling C.6.4. (Theorem 6.4.19) Zij S een maximale partiële afstands-3-
ovöıde in een veralgemeende zeshoek van orde (s, t).

• Als s ≤ t, dan is |S| ≤ 1 + s3, met gelijkheid als en slechts als S compleet
regulier is, en als en slechts als S dicht is. In dat geval snijdt S elke
m-ovöıde in m(s2 − s+ 1) punten.

• Als s > t, dan is S ≤ 1 + (
√
st)3, met gelijkheid als en slechts als S

compleet regulier is.

Stelling C.6.5. (Theorem 6.4.20) Als S en S ′ twee afstands-2-ovöıdes zijn
in een veralgemeende zeshoek van orde (s, s3) met s > 1, dan is |S ∩ S ′| gelijk
aan 0 of h(s2 + s+ 1) met h geheel en h ≥ s3 − s+ 1.

Stelling C.6.6. (Theorem 6.4.21) Beschouw een veralgemeende achthoek P
van orde (s′, t′). Als S de puntenverzameling is van een deelachthoek van orde
(s′, t′), dan geldt s = s′ of s ≥ s′t′, en S is dicht in P als en slechts als s = s′

of s = s′t′. Elke m-ovöıde van P snijdt S in m(st′ + 1)((st′)2 + 1) punten in
het eerste geval, en in m(s′ + 1)(s2 + 1) punten in het tweede geval.

In duale polaire ruimten bekomen we vooral informatie over (partiële) spreads.
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Stelling C.6.7. (Theorem 6.4.26) In H(2d − 1, q2) bevat een niet-ledige
partiële spread S voor oneven d ≥ 3 hoogstens qd + 1 elementen, met gelijkheid
als en slechts als S dicht is. In dat geval is S ook 1-regulier, en geldt voor
iedere totaal isotrope d-ruimte π:

d∑
i=0

(
−1

q

)i
Bπ,i = 0.

waarbij Bπ,i het aantal elementen in S voorstelt dat π snijdt in een (d − i)-
ruimte.

Stelling C.6.8. (Theorem 6.4.27) In H(5, q2) bevat een maximale partiële
spread S hoogstens q3 + 1 elementen, en gelijkheid geldt als en slechts als S
dicht is, en als en slechts als S compleet regulier is.

Stelling C.6.9. (Theorem 6.4.29) Voor elke oneven d ≥ 3 is een niet-
ledige partiële spread S in de parabolische kwadriek Q(2d, q) of de symplec-
tische ruimte W (2d−1, q) dicht als en slechts als S een spread is. In dat geval
is S ook 2-regulier, en geldt voor iedere totaal isotrope d-ruimte π:

d∑
i=0

(
−1

q

)i
Bπ,i = 0,

waarbij Bπ,i het aantal elementen van S voorstelt dat π in een (d− i)-ruimte
snijdt. Elke totaal isotrope d-ruimte snijdt minstens één element in een deel-
ruimte met dimensie minstens 2.

Stelling C.6.10. (Theorem 6.4.30) Een spread in Q(10, q) of W (9, q) is
compleet regulier met bedekkingsstraal 3.

C.6.5 Krein condities en sferische designs

In Sectie 6.5 tonen we hoe we zonder lastig rekenwerk kunnen nagaan wanneer
de kolommen van M voor duale polaire ruimten na normalizering een sferisch
3-design vormen.
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C.6.6 Higman ongelijkheden voor reguliere schier 2d-hoeken

D. Higman [87] bewees dat als een veralgemeende vierhoek van de orde (s, t)
is met s > 1, dan moet t ≤ s2, of dus dat de puntgraaf dan voldoet aan
c2 ≤ s2 + 1. De volgende veralgemening voor schier 2d-hoeken is één van de
belangrijkste resultaten in dit hoofdstuk.

Stelling C.6.11. (Theorem 6.6.1) Beschouw een reguliere schier 2d-hoek
van orde (s, t) met s > 1. De puntgraaf voldoet aan:

ci ≤
s2i − 1

s2 − 1
, ∀i ∈ {1, . . . , d}.

Voor d ≥ 3 zijn de reguliere schier 2d-hoeken met ci = (s2i − 1)/(s2 − 1) voor
elke i ∈ {1, . . . , d} precies de duale polaire ruimten op H(2d− 1, q2).

Gevolg C.6.12. (Corollary 6.6.7) Beschouw een reguliere schier 2d-hoek
van orde (s, t), s > 1 en d ≥ 2, met puntgraaf Γ. Dan geldt:

t+ 1 ≤ s2d − 1

s2 − 1
,

Bij gelijkheid geldt voor elk drietal punten a, b en c, paarsgewijs op afstand d:

|Γ1(a) ∩ Γd−1(b) ∩ Γd−1(c)| = (sd − (−1)d)(sd−1 + (−1)d)

s2 − 1
.

C.6.7 Subgrafen in extremale schier 2d-hoeken

In Sectie 6.7 bekijken we subgrafen in de reguliere schier 2d-hoeken die extre-
maal zijn met betrekking tot Stelling C.6.11.

Het is reeds gekend dat als Γ de duale polaire graaf is op H(2d − 1, q2), of
de puntgraaf van een veralgemeende vierhoek van orde (q, q2), Γd(p) (met
d = 2 in het laatste geval) dan voor ieder punt afstandsregulier is met klassieke
parameters.

Hier is ons hoofdresultaat de volgende constructie. Het is een veralgemening
van een resultaat van Thas [148] voor rang d = 2.
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Stelling C.6.13. (Theorem 6.7.8) Zij S een (q + 1)/2-ovöıde in de duale
polaire ruimte op H(2d− 1, q2) voor oneven q. De gëınduceerde subgraaf Γ′ op
S is afstandsregulier met klassieke parameters:

(d, b, α, β) =

(
d,−q,−

(
q + 1

2

)
,−
(

(−q)d + 1

2

))
.

Een (s + 1)/2-ovöıde in een veralgemeende vierhoek van orde (s, s2), s > 1,
wordt een hemisysteem genoemd. Cameron [37] bewees algemener dat deze in
elke veralgemeende vierhoek van orde (s, s2) een sterk reguliere graaf induce-
ren.

C.6.8 Reguliere schier vijfhoeken

Definitie C.6.14. Een partiële vierhoek PQ(s, t, µ) met s, t, µ ≥ 1 is een par-
tieel lineaire ruimte die aan de volgende axioma’s voldoet.

(i) Elke rechte bevat juist s+ 1 punten en elk punt ligt op juist t+ 1 rechten.

(ii) Als een punt p niet op de rechte ` ligt, dan is er hoogstens één punt op `
collineair met p.

(iii) Als twee punten niet collineair zijn, dan zijn er juist µ punten collineair
met beide punten.

Deze structuren werden ingevoerd door Cameron [32]. De partiële vierhoeken
van orde (s, t) die geen veralgemeende vierhoeken zijn, zijn precies de reguliere
schier vijfhoeken.

Wij zeggen dat twee rechten in een PQ(s, t, µ) parallel zijn als ze ofwel gelijk
zijn, ofwel disjunct terwijl er geen rechte ze allebei snijdt. We tonen aan dat
wanneer twee verschillende rechten parallel zijn, de ongelijkheid µ ≤ st/(t+ 1)
moet gelden, en bij gelijkheid is parallelisme onder meer een equivalentierelatie,
waarbij elke klasse hoogstens µ+ s+ 1 elementen bevat.

De intrigerende puntenverzamelingen in partiële vierhoeken werden bestudeerd
door Bamberg, De Clerck en Durante [6], en vooral in de PQ(s, t, µ) die ingebed
zijn in een veralgemeende vierhoek van orde (q, q2). Wij zullen de PQ(s, t, µ)
met µ = st/(s + 1) beschouwen. Hier heeft de puntgraaf als eigenwaarden
µ(s+ 1) + s, s en −µ− 1.
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Stelling C.6.15. (Theorem 6.8.7)Beschouw een PQ(s, t, µ) waarvoor µ =
st/(s + 1). Als voor een puntenverzameling S geldt dat χS orthogonaal is tot
de eigenruimte voor s van de puntgraaf, dan zullen elke twee parallelle rechten
S snijden in hetzelfde aantal punten.

Stelling C.6.16. (Theorem 6.8.8)Beschouw een PQ(s, t, µ) waarvoor µ =
st/(s+1) en waarin elke parallelklasse µ+s+1 rechten bevat. Een puntenver-
zameling S is zo dat elke twee parallelle rechten S snijden in eenzelfde aantal
punten, als en slechts als χS orthogonaal is met de eigenruimte voor s van de
puntgraaf.
In dat geval is elk punt collineair met |S|/(s+1)−µ−1 punten in S als p ∈ S,
en met |S|/(s+ 1) punten in S als p /∈ S, en moet |S|(t+ 1) deelbaar zijn door
µ+ s+ 1.

Appendix A: Een meetkundig bewijs voor partiële spreads
in H(2d− 1, q2) voor oneven d

In Appendix A geven we een bewijs dat volledig geschreven is in de taal van
de eindige meetkunde. Nochtans is het sterk gëınspireerd door concepten uit
de algebräısche grafentheorie zoals 1-regulariteit van codes en drietal intersec-
tiegetallen.

Stelling C.6.17. (Theorem A.2.1) Zij S een partiële spread in H(2d−1, q2)
met d oneven en d ≥ 3. Dan is |S| hoogstens qd + 1. Als |S| > 1 en π ∈ S,
dan zal iedere generator die π in een (d − 1)-ruimte snijdt, hetzelfde aantal
elementen van S in juist één punt snijden, als en slechts als |S| = qd + 1. In
dat geval is dit aantal qd−1.
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