469 research outputs found

    Design, implementation and testing of SRAM based neutron detectors

    Get PDF
    Neutrons of thermal and high energies can change the value of a bit stored in a Static Random Access Memory (SRAM) memory chip. The effect is non destructive and linearly dependent on the amount of incoming particles, which makes it exploitable for use as a neutron detector. Detection is done by writing a known pattern to the memory and continuously reading it back checking for wrong values. As the SRAM memory is immune to gamma radiation it is ideal for use in for instance medical linear accelerators for detection of neutron dose to a patient. The intention of this work has been twofold: (1) Testing of different SRAM devices of different bit-sizes, manufacturers, feature sizes and voltages for their sensitivity to neutrons of different energies from thermal to high energies. (2) Design and implement detector hardware, firmware and its accompanying readout system for successful use in irradiation testing. The work has been done in close collaboration with Eivind Larsen, whose main contributions has been related to the nuclear physics aspect of the work in addition to arrangements in regard to beam setup and experimentation. Testing have been done at the Physikalisch-Technische Bundesanstalt (PTB) facility in Braunschweig Germany in a quasi-monochromatic neutron beam of 5:8MeV, 8:5MeV and 14:8MeV, finding a dependence of the sensitivity on the energy. In addition there have been testing conducted in the high energy hadron field at CERF at CERN, finding that by using the results from the other experiments an estimated range of the saturation cross section could be determined. Testing was also conducted at two occasions in the 29MeV proton beam at Oslo Cyclotron Laboratory (OCL) in Oslo Norway, where it was found that the detector could be used as a reference detector for beam monitoring and for beam profile characterization. The cross sections of the detectors were found to be comparable to the 14:8MeV cross section found at PTB. Thermal neutron testing of the devices was done in the thermal neutron field of the nuclear reactor at Institute for Energy Technology (IFE) at Kjeller Norway. All the devices were found to be sensitive to the field. Detector electronics, adapted to the different devices, has been built which can withstand the same radiation as the memory device without malfunctioning. There has been a focus on using Commercial Off The Shelf (COTS) components for reducing the total cost of the detector to about 100-200$US. The use of COTS SRAM memory devices also simplifies the reproducibility and availability of spares. The detector currently uses a two way communication between the detector and iv Abstract the readout computer over two pair of cables reducing the amount of cabling needed for experiments. The detectors can be connected to the communication link in a bus fashion, currently enabling a total of 14 detectors to be tested simultaneously from 100m away, over the same cable. Single Event Latch-up (SEL) and problems with irregular count rate of SRAMs created in the 90nm fabrication node has created problems during testing. Some solutions and techniques to mitigate these in hardware and firmware are presented in this work.Master i FysikkMAMN-PHYSPHYS39

    A design concept for radiation hardened RADFET readout system for space applications

    Get PDF
    Instruments for measuring the absorbed dose and dose rate under radiation exposure, known as radiation dosimeters, are indispensable in space missions. They are composed of radiation sensors that generate current or voltage response when exposed to ionizing radiation, and processing electronics for computing the absorbed dose and dose rate. Among a wide range of existing radiation sensors, the Radiation Sensitive Field Effect Transistors (RADFETs) have unique advantages for absorbed dose measurement, and a proven record of successful exploitation in space missions. It has been shown that the RADFETs may be also used for the dose rate monitoring. In that regard, we propose a unique design concept that supports the simultaneous operation of a single RADFET as absorbed dose and dose rate monitor. This enables to reduce the cost of implementation, since the need for other types of radiation sensors can be minimized or eliminated. For processing the RADFET's response we propose a readout system composed of analog signal conditioner (ASC) and a self-adaptive multiprocessing system-on-chip (MPSoC). The soft error rate of MPSoC is monitored in real time with embedded sensors, allowing the autonomous switching between three operating modes (high-performance, de-stress and fault-tolerant), according to the application requirements and radiation conditions

    Contributions to the detection and diagnosis of soft errors in radiation environments

    Get PDF
    Texto completo descargado desde Teseo1. Introducción Los efectos de la radiación ionizante sobre dispositivos semiconductores es objeto de estudio desde la invención del transistor bipolar en 1947. El espacio es un entorno de alta radiación, como pusieron de manifiesto los primeros satélites puestos en órbita, y fue durante la carrera espacial de los años 50 cuando se impulsó el estudio de errores generados en componentes electrónicos críticos a bordo de las primeras misiones espaciales. La necesidad de robustecer la electrónica frente a la radiación ha estado siempre presente en el sector aeroespacial, además, el progresivo escalado de las tecnologías microelectrónicas, hace que el problema sea cada vez más acuciante, afectando incluso a dispositivos que operan a nivel del mar. El advenimiento de tecnologías nanométricas augura que serán necesarias nuevas y más eficaces técnicas de robustecimiento que garanticen la fiabilidad de equipos electrónicos críticos en sectores tan importantes como la aviación, automoción o energía nuclear. Existen dos métodos de robustecimiento para los dispositivos electrónicos, por proceso y por diseño. En el primer caso, el circuito integrado es fabricado en una tecnología que presenta baja sensibilidad a los efectos de la radiación, como la ampliamente utilizada SOI (Silicon On Insulator). En el segundo caso, el circuito presenta topologías en su diseño que mitigan en mayor o menor grado el daño por radiación. La efectividad de cualquier medida de protección debe ser validada en el correspondiente ensayo de radiación de acuerdo a los estándares vigentes (ESA, NASA, JEDEC, AEC,...). Existen varios tipos de daño por radiación, asociados a dosis acumulada (TID) y a eventos únicos (SEE), fundamentalmente. Estos últimos están asociados al paso de una única partícula energética a través del dispositivo, que genera una estela de carga y puede dar lugar a respuestas eléctricas no deseadas, como conmutación 2 2 Antecedentes de biestables, enclavamiento de un bit o excursiones de voltaje transitorias. A su vez, dentro de los errores asociados a eventos únicos se puede distinguir entre daños físicos, que pueden destruir el dispositivo de manera irreversible, y errores lógicos o soft errors que conllevan la corrupción del estado de un circuito digital, por ejemplo por la conmutación del valor lógico de un biestable. Los tests en aceleradores de partículas o con fuentes radiactivas, se consideran los ensayos más representativos para conocer la inmunidad de un componente frente al daño de tipo SEE. Sin embargo, la complejidad de estos ensayos dificulta la observabilidad experimental y la interpretación de los resultados obtenidos. En particular los tests dinámicos, que implican que el chip esté operando durante la irradiacón, comportan una dificultad añadida a la hora de interpretar los errores observados en las salidas del circuito. El test dinámico de radiación es el más realista, ya que introduce la variable temporal en el experimento y da lugar a efectos reales que no son reproducibles en condiciones estáticas, como el evento único transitorio (SET). El trabajo a realizar durante esta tesis pretende aportar una metodología de test que mejore la observabilidad de errores lógicos en un test dinámico de radiación de circuitos digitales mediante detección y diagnóstico en tiempo real. 2. Antecedentes La experiencia investigadora del grupo al que pertenece el autor de esta tesis en el campo de los efectos de la radiación sobre dispositivos electrónicos, ha puesto de manifiesto la necesidad de establecer una metodología que permita el diagnóstico de los errores observados en un componente electrónico sometido a radiación ionizante. Generalmente, no es posible correlacionar con certeza el efecto (anomalía detectada en los puertos de salida) con la causa del mismo. La complejidad inherente a la instrumentación de un ensayo de radiación en un acelerador 3 3 Hipótesis y Objetivos de partículas, así como la propia comlejidad del circuito bajo estudio, requieren algún criterio de clasificación de los errores observados que pueden ser de muy diversa naturaleza. Algunos autores han aportado técnicas que combinan inyección de fallos dinámica con test en acelerador estáticos para estimar la probabilidad de fallo real del circuito, salvando la complejidad del test de radiación dinámico. La protección selectiva, consistente en adoptar topologías de diseño robustas en ¿puntos calientes¿ o críticos del circuito, requiere técnicas de ensayo que permita el diagnóstico y localización del daño por radiación. El uso de microsondas nucleares permite la focalización de un haz de iones en una región relativamente pequeña, facilitando el diagnóstico. La disponibilidad de uso de la microsonda nuclear en el Centro Nacional de Aceleradores puede contribuir al desarrollo de la técnica de detección y diagnóstico que es objeto de esta tesis. La curva de sección eficaz de fallo SEE es la forma más extendida de representación de resultados de experimentación. Estas curvas representan una colección de datos experimentales que deben ser minuciosamente clasificados. Lo mismo ocurre en los tests destinados a evaluar la tasa de errores lógicos en tiempo real (RTSER). En este sentido, la norma JEDEC JESD89-1A recomienda que se sigan ¿criterios de fallo¿ para la correcta identificación de los errores detectados a la salida de un circuito en tests de radiación. 3. Hipótesis y Objetivos El grupo de investigación al que pertenece el doctorando, posee una contrastada experiencia en el uso de emuladores hardware para la evaluación temprana de la robustez de diseños digitales ante errores lógicos. Estos emuladores inyectan fallos en la netlist de un diseño digital y estudian la evolución del estado del circuito durante la ejecución de un conjunto de estímulos. La principal ventaja de estas herramientas frente a la simulación, radica en la aceleración hardware de los 4 3 Hipótesis y Objetivos tests que permite la finalización de campañas de inyección masivas en un tiempo relativamente corto. Las campañas masivas o sistemáticas de inyección de fallos permiten comprobar de forma exhaustiva la respuesta de un diseño digital a un entorno de alta radiación. Estas campañas arrojan una ingente cantidad de información acerca de las vulnerabilidades del diseño que debe ser procesada generalmente de forma estadística. La correlación entre el instante y lugar de inyección del fallo emulado y la respuesta del mismo, sería una información que permitiría establecer la causa de un error (comportamiento anómalo) observado durante un test de radiación, donde generalmente sólo están accesibles las salidas del dispositivo. Los resultados de una campaña de inyección dependen, además del diseño bajo test, del conjunto de estímulos aplicado (workload). A partir de los resultados de la campaña de inyección masiva, se puede realizar un estudio estadístico que determine la calidad de los vectores de test desde el punto de vista del diagnóstico. Es de esperar que diferentes fallos inyectados compartan la misma firma, de manera que en caso de obtener dicha firma en un test de radiación, sea imposible determinar exactamente el punto de inyección del fallo. A la hora de preparar un test de radiación, es recomendable emplear vectores de test que garanticen que la certidumbre del diagnóstico sea máxima, lo cual es un aporte adicional de la tesis. Esta tesis pretende establecer un procedimiento que permita obtener ¿diccionarios de fallos¿ en los que se establece una correlación entre el punto de inyección y la respuesta del circuito codificada en una firma de pocos bytes. Durante un test de radiación se pueden obtener en tiempo real las firmas generadas por el circuito, que servirán para diagnosticar en cada caso el origen del daño empleando los diccionarios de fallos previamente generados en un emulador hardware. En el supuesto de que la firma generada durante la irradiación no estuviera contenida en un diccionario exhaustivo, se puede decir que el error no ha sido originado por el 5 4 Metodología y Trabajo Realizado modelo de fallo empleado en la generación del diccionario, debiéndose por tanto a un tipo de daño no contemplado (por ejemplo daño físico). La culminación de la tesis es el test de radiación en un acelerador de partículas. La Universidad de Sevilla cuenta con las instalaciones del Centro Nacional de Aceleradores, que puede ser un banco de pruebas idóneo para comprobar la validez de la metodología y comprobar las ventajas e inconvenientes de la misma. 4. Metodología y Trabajo Realizado El plan de trabajo incluyó los siguientes hitos en el orden expuesto: Estudio de la base de conocimiento genérica relacionada con los efectos de la radiación en circuitos electrónicos Análisis del Estado del Arte en técnicas de inyección de fallos en circuitos digitales. Recopilación de normas y estándares relacionados con los test radiación de componentes electrónicos. Estudio simulado de bajo nivel de los efectos de la radiación en tecnologías submicrométricas. Selección de un módulo adecuado para creación de firmas a partir de las salidas de un circuito digital. Adecuación del emulador hardware FT-UNSHADES para la generación de firmas durante las campañas de inyección. Selección de un vehículo de test para el experimento en la microsonda nuclear del CNA. 6 4 Metodología y Trabajo Realizado Realización de campañas de inyección masivas para la generación de diccionarios de fallos sobre diseños digitales y análisis de resultados. Preparación del setup experimental para el acelerador de partículas. Experimento en la microsonda nuclear del CNA y análisis de resultados. El estudio bibliográfico de la base de conocimiento en el campo de los efectos de la radiación sobre circuitos electrónicos ha sido fundamental para poder establecer el ámbito de aplicación de la tesis. El papel de la emulación hardware para inyección de fallos en esta investigación fue crítica y ha sido necesario un estudio de las plataformas existentes para entender qué puede aportar cada herramienta. Para acabar con la documentación, es necesario además recopilar las normas y estándares relacionados con test de radiación de circuitos electrónicos. La simulación de bajo nivel de los efectos de la radiación sobre una determinada tecnología engloba herramientas como SPICE, SRIM y TCAD. Estas simulaciones permiten estimar cuales deben ser las características del haz de iones empleado en un futuro ensayo en el acelerador de partículas. Los resultados de estas simulaciones fueron discutidos con los técnicos del acelerador para estudiar la viabilidad de los parámetros deseados. Un elemento clave en la metodología fue el bloque que debe generar las firmas a partir de las salidas del circuito digital. Es deseable que se trate de un módulo sencillo y que pueda ser implementado en un dispositivo programable sin suponer un consumo excesivo de recursos. El emulador FT-UNSHADES fue adaptado par incorporar el módulo de firmas. Se dispuso de un circuito integrado que servió vehículo de test para un experimento en el CNA. Es necesaria además la descripción VHDL del mismo para su emulación en FT-UNSHADES. No es objeto de esta tesis el desarrollo de este componente, su diseño y fabricación está fuera del alcance de esta tesis. Se gener- 7 4 Metodología y Trabajo Realizado aron diccionarios de fallos del vehículo de tests y de otros diseños digitales y, a partir de estos diccionarios, se han confeccionado estudios estadísticos de diagnóstico. En una fase ulterior, se desarrolló el hardware necesario para el setup experimental. Todo el hardware se probó en el laboratorio, antes de acudir al CNA. El resultado de esta etapa es la configuración del equipamiento de test automático (ATE) que se encargó de introducir estímulos en el chip y monitorizarlo durante el experimento en el acelerador de partículas. Finalmente, se llevó a cabo un experimento en el Centro Nacional de Aceleradores sobre el vehículo de test elegido para completar una prueba de concepto de la metodología propuesta.

    Electronic systems for intelligent particle tracking in the High Energy Physics field

    Get PDF
    This Ph.D thesis describes the development of a novel readout ASIC for hybrid pixel detector with intelligent particle tracking capabilities in High Energy Physics (HEP) application, called Macro Pixel ASIC (MPA). The concept of intelligent tracking is introduced for the upgrade of the particle tracking system of the Compact Muon Solenoid (CMS) experiment of the Large Hadron Collider (LHC) at CERN: this detector must be capable of selecting at front--end level the interesting particle and of providing them continuously to the back-end. This new functionality is required to cope with the improved performances of the LHC when, in about ten years' time, a major upgrade will lead to the High Luminosity scenario (HL-LHC). The high complexity of the digital logic for particle selection and the very low power requirement of 95% in particle selection and a data reduction from 200 Tb/s/cm2 to 1 Tb/s/cm2. A prototype, called MPA-Light, has been designed, produced and tested. According to the measurements, the prototype respects all the specications. The same device has been used for multi-chip assembly with a pixelated sensor. The assembly characterization with radioactive sources conrms the result obtained on the bare chip

    Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems

    Get PDF
    NASA's future missions are focused on long-duration deep space missions for human exploration which offers no options for a quick emergency return to Earth. The combination of long mission duration with no quick emergency return option leads to unprecedented spacecraft system safety and reliability requirements. It is important that spacecraft avionics systems for human deep space missions are not susceptible to Single Event Effect (SEE) failures caused by space radiation (primarily the continuous galactic cosmic ray background and the occasional solar particle event) interactions with electronic components and systems. SEE effects are typically managed during the design, development, and test (DD&T) phase of spacecraft development by using heritage hardware (if possible) and through extensive component level testing, followed by system level failure analysis tasks that are both time consuming and costly. The ultimate product of the SEE DD&T program is a prediction of spacecraft avionics reliability in the flight environment produced using various nuclear reaction and transport codes in combination with the component and subsystem level radiation test data. Previous work by Koontz, et al.1 utilized FLUKA, a Monte Carlo nuclear reaction and transport code, to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data for a variety of spacecraft and space flight environments. However, FLUKA has a long run-time (on the order of days). CREME962, an easy to use deterministic code offering short run times, was also compared with FLUKA predictions and in-flight data. CREME96, though fast and easy to use, has not been updated in several years and underestimates secondary particle shower effects in spacecraft structural shielding mass. Thus, this paper will investigate the use of HZETRN 20103, a fast and easy to use deterministic transport code, similar to CREME96, that was developed at NASA Langley Research Center primarily for flight crew ionizing radiation dose assessments. HZETRN 2010 includes updates to address secondary particle shower effects more accurately, and might be used as another tool to verify spacecraft avionics system reliability in space flight SEE environments

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    Development of the readout electronics for the high luminosity upgrade of the CMS outer strip tracker

    Get PDF
    The High-luminosity upgrade of the LHC will deliver the dramatic increase in luminosity required for precision measurements and to probe Beyond the Standard Model theories. At the same time, it will present unprecedented challenges in terms of pileup and radiation degradation. The CMS experiment is set for an extensive upgrade campaign, which includes the replacement of the current Tracker with another all-silicon detector with improved performance and reduced mass. One of the most ambitious aspects of the future Tracker will be the ability to identify high transverse momentum track candidates at every bunch crossing and with very low latency, in order to include tracking information at the L1 hardware trigger stage, a critical and effective step to achieve triggers with high purity and low threshold. This thesis presents the development and the testing of the CMS Binary Chip 2 (CBC2), a prototype Application Specific Integrated Circuit (ASIC) for the binary front-end readout of silicon strip detectors modules in the Outer Tracker, which also integrates the logic necessary to identify high transverse momentum candidates by correlating hits from two silicon strip detectors, separated by a few millimetres. The design exploits the relation between the transverse momentum and the curvature in the trajectory of charged particles subject to the large magnetic field of CMS. The logic which follows the analogue amplification and binary conversion rejects clusters wider than a programmable maximum number of adjacent strips, compensates for the geometrical offset in the alignment of the module, and correlates the hits between the two sensor layers. Data are stored in a memory buffer before being transferred to an additional buffer stage and being serially read-out upon receipt of a Level 1 trigger. The CBC2 has been subject to extensive testing since its production in January 2013: this work reports the results of electrical characterization, of the total ionizing dose irradiation tests, and the performance of a prototype module instrumented with CBC2 in realistic conditions in a beam test. The latter is the first experimental demonstration of the Pt-selection principle central to the future of CMS. Several total-ionizing-dose tests highlighted no functional issue, but observed significant excess static current for doses <1 Mrad. The source of the excess was traced to static leakage current in the memory pipeline, and is believed to be a consequence of the high instantaneous dose delivered by the x-ray setup. Nevertheless, a new SRAM layout aimed at removing the leakage path was proposed for the CBC3. The results of single event upset testing of the chip are also reported, two of the three distinct memory circuits used in the chip were proven to meet the expected robustness, while the third will be replaced in the next iteration of the chip. Finally, the next version of the ASIC is presented, highlighting the additional features of the final prototype, such as half-strip resolution, additional trigger logic functionality, longer trigger latency and higher rate, and fully synchronous stub readout.Open Acces

    Development and Characterization of a DEPFET Pixel Prototype System for the ILC Vertex Detector

    Get PDF
    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64×12864 \times 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented
    corecore