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NASA’s future missions are focused on long-duration deep space missions for human 
exploration which offers no options for a quick emergency return to Earth.  The 
combination of long mission duration with no quick emergency return option leads to 
unprecedented spacecraft system safety and reliability requirements. It is important that 
spacecraft avionics systems for human deep space missions are not susceptible to Single 
Event Effect (SEE) failures caused by space radiation (primarily the continuous galactic 
cosmic ray background and the occasional solar particle event) interactions with electronic 
components and systems.   SEE effects are typically managed during the design, 
development, and test (DD&T) phase of spacecraft development by using heritage hardware 
(if possible) and through extensive component level testing, followed by system level failure 
analysis tasks that are both time consuming and costly. The ultimate product of the SEE 
DD&T program is a prediction of spacecraft avionics reliability in the flight environment 
produced using various nuclear reaction and transport codes in combination with the 
component and subsystem level radiation test data. Previous work by Koontz, et al.1 utilized 
FLUKA, a Monte Carlo nuclear reaction and transport code, to calculate SEE and single 
event upset (SEU) rates.  This code was then validated against in-flight data for a variety of 
spacecraft and space flight environments.  However, FLUKA has a long run-time (on the 
order of days).  CREME962, an easy to use deterministic code offering short run times, was 
also compared with FLUKA predictions and in-flight data. CREME96, though fast and easy 
to use, has not been updated in several years and underestimates secondary particle shower 
effects in spacecraft structural shielding mass. Thus, this paper will investigate the use of 
HZETRN 20103, a fast and easy to use deterministic transport code, similar to CREME96, 
that was developed at NASA Langley Research Center primarily for flight crew ionizing 
radiation dose assessments. HZETRN 2010 includes updates to address secondary particle 
shower effects more accurately, and might be used as another tool to verify spacecraft 
avionics system reliability in space flight SEE environments. 

Nomenclature 
AMeV  = Mega-electron volt; unit of energy 
AP8  = integral proton flux for low Earth orbit 
CERN  = European Council for Nuclear Research 
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CREME  = Cosmic Ray Effects on Microelectronics 
DD&T  = Design, Development, and Test 
EPCARD  = European Program package for the Calculation of Aviation Route Doses 
FLUKA   = FLUktuierende KAskade 
FORTRAN = FORmula TRANslating System 
g/cm2  = areal density; measure of thickness in radiation calculations 
GCR  = Galactic Cosmic Ray 
GEANT  = GEometry ANd Tracking 
GEO  = Geostationary orbit 
HUP  = a CREME96 program module that evaluates direct-ionization induced SEEs 
HZETRN  = High-Charge and Energy Transport 
INFN  = Italian National Institute for Nuclear Physics 
ITAR  = International Traffic in Arms Regulations 
km  = kilometers 
LEO   = Low Earth Orbit 
LET  = Linear Energy Transfer 
SEE  = Single Event Effect 
SEU  = Single Event Upset 
SPE  = Solar Particle Event 
SPENVIS  = SPace ENVironment Information System 
TID  = Total Ionizing Dose 

I. Introduction 
HE character of long-term (1-3 years) human interplanetary space flight will lead to safety and reliability  
requirements more demanding (and costly) than any previously encountered.    To date, spacecraft crews have 

never been more than a few hours-to-days away from a safe emergency landing.  There are no comparable 
quick/safe Earth return options for the crew of an interplanetary transport a few months out from Earth.  In that case, 
spacecraft systems failures really aren’t an option. Avionics systems reliability depends on generic 
hardware/software quality as well as component/system sensitivity to the space radiation environment, especially the 
total ionizing dose (TID) and single event effects (SEE) environments. 
 Spacecraft are designed and built to meet specific safety and reliability requirements and the production of data 
products demonstrating that the spacecraft will meet those requirements is a standard part of the spacecraft design 
development and test (DD&T) phase of the project.  Spacecraft avionics systems SEE test and verification processes 
have been previously described4-7 and have most often involved ground based testing of avionics components with 
the test results feeding into a system level reliability and safety analysis using the expected mission SEE 
environment.   
 Calculation of the expected spacecraft avionics system in-flight SEE environments using a nuclear reaction and 
transport code is an important step in the avionics system SEE reliability analysis8.  The nuclear reaction and 
transport code calculates the environment resulting from the interaction of the natural space radiation charged 
particle environment with the spacecraft shielding mass and reports back both primary and secondary charged 
particle fluxes expected at the avionics system along with any secondary low LET protons or neutrons that can also 
contribute to SEE effects. The SEE environment is described primarily by the Linear Energy Transfer (LET) 
spectrum.  LET is a measure of how much ionization/excitation an energetic charged particle produces on passing 
through matter, and space radiation effects on avionics are determined by charged particle LET.  SEE caused by 
very low LET protons or neutrons also depend on the LET of charged nuclear reaction products formed inside 
microelectronic devices when the neutrons or protons collide with nuclei inside the device. 
 Spacecraft SEE environments calculated with nuclear reaction and transport codes play an important role in both 
human and robotic interplanetary flight programs so that the precision, accuracy, and ease of use of such codes are 
important considerations for any flight program.  Monte Carlo codes, like FLUKA, accurately capture verified 
nuclear and particle physics and produce high accuracy results, but require massive computational resources and can 
need execution times on the order of days to weeks for even very simple spacecraft geometries.  Deterministic 
codes, like CREME96 and HZETRN can execute quickly on personal computers, enabling configuration 
comparison studies on complex 3D spacecraft geometries, but may not have the desired precision and accuracy.  
Often the Monte Carlo codes are used to benchmark and support development of more accurate deterministic codes, 
as previously described9-11.  
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 HZETRN12 was developed primarily to support human space flight radiological health requirements.  LET and 
secondary neutron spectra are basic to calculating effective or equivalent space radiation dose to astronauts.   
HZETRN 2010 is a recent update to the HZETRN family and includes a more accurate representation of secondary 
particle shower products.  In the following, LET spectra calculations produced with CREME96 and HZETRN 2010 
are compared at different aluminum shielding mass thicknesses for both the interplanetary GCR environment and 
the International Space Station low-Earth orbit environment.  Finally, space flight SEU rates are compared with rate 
predictions made using both deterministic codes.  

II. Background 

A. CREME96 
CREME962 is based on the earlier work13-16 by Dr. Jim Adams, formerly of the Naval Research Laboratory, 

Washington, DC, and University of Alabama, Huntsville. The Cosmic Ray Effects on Microelectronics (CREME) 
software package allows a spacecraft designer or operator to estimate error rates arising from cosmic ray 
bombardment of satellite microelectronics. Program functions include calculation of (1) differential and integral 
cosmic ray flux (for any element) vs. particle energy or vs. linear energy transfer (LET), (2) geomagnetic shielding 
for a given orbit using the tabulation of geomagnetic cutoff values by Shea and Smart17 as described by Ref. 14, (3) 
ordinary and worst-case solar flare proton fluxes, and (4) single event upset rates for microelectronics in the orbiting 
satellite. 

B. HZETRN 
The high-charge-and-energy (HZE) transport (TRN) computer program, HZETRN12, was developed at NASA 

Langley Research Center to address the problems of space radiation transport and shielding. The HZETRN18 
program is intended specifically for the design engineer who is interested in obtaining fast and accurate dosimetric 
information for the design and construction of space modules and devices. The program is based on a one-
dimensional space-marching formulation of the Boltzmann transport equation with a straight-ahead approximation. 
The effect of the long-range Coulomb force and electron interaction is treated as a continuous slowing-down 
process. Atomic (electronic) stopping power coefficients with energies above a few AMeV are calculated by using 
Bethe’s theory including Bragg’s rule, Ziegler’s shell corrections, and effective charge. Nuclear absorption cross 
sections are obtained from fits to quantum calculations and total cross sections are obtained with a Ramsauer 
formalism. Nuclear fragmentation cross sections are calculated with a semi-empirical abrasion-ablation 
fragmentation model. The relation of the final computer code to the Boltzmann equation is discussed in the context 
of simplifying assumptions. 

The HZETRN code is a state-of-the-art fast computational tool available for a design engineer to obtain answers 
to some of the radiation questions that arise in planning any mission. However, major uncertainties in nuclear cross 
sections, environmental models, and astronaut risk affect the overall accuracy of the predictions of any analytical-
computational technique. These uncertainties have a major impact on the proposed shield design for any mission and 
the subsequent mission cost. Much work remains to accurately resolve the problems with nuclear cross-section 
calculations, environmental model development, and risk estimate methods. The most recent release of the 
HZETRN code is HZETRN 2010 and can be obtained from Dr. Martha Clowdsley, although the code is ITAR-
controlled. 

III. Methods 
 To generate the HZETRN data, two input spectra were used and were the same as those in Ref. 1 to keep 

consistent.  The first one was a low Earth orbit (LEO) environment that was at an altitude of 362.5 km and an 
inclination of 51.6°.  This was from the AP8 solar minimum model of May 2006 (Figure 1).  This spectrum was 
generated using SPENVIS and then interpolated against the HZETRN 2010 energy grid.     
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Radiation characterization parameters for several devices flown either on ISS, GEO, or deep space missions are 
given in Table 11. The table shows SEE sensitive volume dimensions and Weibull fit parameters for each device. 

Table 1. Device Parameters. 

 
 
SEE rates were calculated for these devices for four different LET spectra variations using the CREME96 HUP 

heavy ion SEE rate calculator. The four different LET spectra variations are showing in the following table. 
 

Table 2. LET Spectra Variations 

 
 
To calculate SEE rates with CREME96 HUP using the HZETRN 2010 LET spectra, the spectra were first 

modified to conform to the CREME96 LET spectra limits and interval spacing.  They were then imported into the 
CREME96 website. The CREME96 (Z=28 Truncated) spectra were generated in a similar fashion by truncating the 
standard CREME96, max Z = 28 output LET spectra and importing it back into the CREME96 website. SEE rates 
for a subset of the LET spectra variations are given in Table 3-Table 5 for LEO environment devices and Table 6-
Table 8 for GEO and free space environment devices. The remaining tables for the other shielding configurations 
can be found in Appendix A for the LEO environment and Appendix B for the GEO and free space environments.  
All shielding depths are aluminum equivalent.  Note that for the 50 g/cm2 thickness (Table 5 and Table 8) there is no 
data for CREME96 (Z=92) due to the inability of CREME96 to handle thicknesses around 50 g/cm2 or larger. 

 

Device Env
CREME96 RPP

x,y,z (μm)

Onset 

(MeV- cm
2
/mg)

Width 

(MeV- cm
2
/mg) Exponent

Limiting XS

(μm
2
)

IMS1601EPI ISS 39.5, 39.5, 5.92 2.75 140 0.95 1560

ISS SMJ416400 4Mx4 DRAM ISS 1.05, 1.05, 2.1 0.42 0.8 1.7 1.1
ISS KM44S32030T 128Mbit SDRAM ISS 2.42, 2.42, 0.24 13 30 1 5.859

ISS KM44S32030T 128Mbit SDRAM ISS 1.25, 1.25, 0.125 14 30 1 1.563

ISS KM44S32030T 128Mbit SDRAM ISS 0.43, 0.43, 0.043 1.95 30 1.9 0.186

V4 XQR4VFX60 – BRAM ISS 1.87, 1.87, 3.74 0.2 70 0.724 3.5

V4 XQR4VFX60  – Config. Memory ISS 5.1, 5.1, 10.2 0.5 400 0.985 26
V5 LX330T – Config. Memory ISS 3.36, 3.36, 6.72 0.5 30 1.5 11.3

Thuraya DSP Mega gate ASIC GEO 2.5, 2.5, 1.76 2.7 20.6 1.2 6.3
Mercury  Messenger ASIC GEO 2, 2, 2 0.3 60 6 4

Cassini OKI Solid State Recorder GEO 6.32, 6.32, 6.32 0.5 32 3 40

SOHO SMJ44100 4Mx1 GEO 7.07, 7.07, 2 0.7 15 2.7 50

SOHO MHS CP65656EV 32kx8 SRAM GEO 7.75, 7.75, 2 1.9 17 1.2 60
ETS-V PD4464D-20 64k SRAM GEO 19, 19, 10 0.5 15 2.9 375

Code Max Z

Max GEO 
LET

 (MeV-cm
2
/g)

Max LEO 
LET 

(MeV-cm
2
/g)

Min LET 

(MeV-cm
2
/g)

HZETRN 28 11596 1578 1

CREME96 (Z=28 truncated) 28 11596 1578 1

CREME96 28 30364 30364 1

CREME96 92 101000 101000 1
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Table 3. SEE Rate for LEO Devices at 0.1 g/cm2 

 
 

Table 4. SEE Rate for LEO Devices at 5.0 g/cm2 

 
 

Table 5. SEE Rate for LEO Devices at 50.0 g/cm2 

 
 

Depth = 0.1 g/cm
2

LEO Environment Devices

HZETRN 
Z=28

CREME96 
Z=28 

Truncated
CREME96 

Z=28
CREME96 

Z=92
IMS1601EPI 1.84E-06 1.37E-06 1.76E-06 1.77E-06
ISS SMJ416400 4Mx4 DRAM 4.49E-08 1.08E-07 1.31E-07 1.31E-07
ISS KM44S32030T 128Mbit SDRAM 4.19E-11 2.37E-10 1.33E-09 1.34E-09
ISS KM44S32030T 128Mbit SDRAM 5.92E-12 3.38E-11 2.97E-10 2.98E-10
ISS KM44S32030T 128Mbit SDRAM 5.11E-10 3.25E-10 4.09E-10 4.10E-10
V4 XQR4VFX60 – BRAM 9.62E-07 4.62E-07 4.61E-07 4.67E-07
V4 XQR4VFX60  – Config. Memory 2.54E-09 8.11E-09 1.10E-08 1.10E-08
V5 LX330T – Config. Memory 9.99E-10 4.56E-09 8.82E-09 8.85E-09

SEE/bit-day

Depth = 5.0 g/cm
2

LEO Environment Devices

HZETRN 
Z=28

CREME96 
Z=28 

Truncated
CREME96 

Z=28
CREME96 

Z=92
IMS1601EPI 1.65E-07 6.87E-07 9.24E-07 9.27E-07
ISS SMJ416400 4Mx4 DRAM 1.46E-08 7.72E-08 9.02E-08 9.04E-08
ISS KM44S32030T 128Mbit SDRAM 3.20E-11 1.64E-10 8.73E-10 8.79E-10
ISS KM44S32030T 128Mbit SDRAM 4.52E-12 2.27E-11 1.94E-10 1.95E-10
ISS KM44S32030T 128Mbit SDRAM 2.79E-11 1.05E-10 1.55E-10 1.55E-10
V4 XQR4VFX60 – BRAM 2.69E-08 6.05E-08 6.30E-08 6.33E-08
V4 XQR4VFX60  – Config. Memory 1.11E-09 6.03E-09 7.67E-09 7.70E-09
V5 LX330T – Config. Memory 6.11E-10 3.40E-09 5.99E-09 6.01E-09

SEE/bit-day

Depth = 50.0 g/cm
2

LEO Environment Devices

HZETRN 
Z=28

CREME96 
Z=28 

Truncated
CREME96 

Z=28
IMS1601EPI 3.50E-08 1.05E-07 1.39E-07
ISS SMJ416400 4Mx4 DRAM 3.40E-09 1.12E-08 1.30E-08
ISS KM44S32030T 128Mbit SDRAM 8.08E-12 2.17E-11 1.22E-10
ISS KM44S32030T 128Mbit SDRAM 1.15E-12 3.03E-12 2.73E-11
ISS KM44S32030T 128Mbit SDRAM 5.53E-12 1.60E-11 2.31E-11
V4 XQR4VFX60 – BRAM 4.30E-09 1.01E-08 1.05E-08
V4 XQR4VFX60  – Config. Memory 2.62E-10 8.70E-10 1.10E-09
V5 LX330T – Config. Memory 1.46E-10 4.80E-10 8.49E-10

SEE/bit-day
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Table 6. SEE Rate for GEO Devices at 0.1 g/cm2 

 
 

Table 7. SEE Rate for GEO Devices at 5.0 g/cm2 

 
 

Table 8. SEE Rate for GEO Devices at 50.0 g/cm2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Depth = 0.1 g/cm
2

GEO Environment Devices

HZETRN 
Z=28

CREME96 
Z=28 

Truncated
CREME96 

Z=28
CREME96 

Z=92
Thuraya DSP Mega gate ASIC 7.74E-08 1.08E-07 1.13E-07 1.13E-07
Mercury  Messenger ASIC 1.92E-12 2.54E-12 3.56E-11 3.65E-11
Cassini OKI Solid Sta te Recorder 2.82E-08 3.81E-08 5.96E-08 5.99E-08
SOHO SMJ44100 4Mx1 1.11E-06 1.45E-06 1.49E-06 1.49E-06
SOHO MHS CP65656EV 32kx8 SRAM 2.91E-06 3.54E-06 3.58E-06 3.58E-06
ETS-V PD4464D-20 64k SRAM 5.05E-06 6.76E-06 7.15E-06 7.16E-06

SEE/bit-day

Depth = 5.0 g/cm
2

GEO Environment Devices

HZETRN 
Z=28

CREME96 
Z=28 

Truncated
CREME96 

Z=28
CREME96 

Z=92
Thuraya DSP Mega gate ASIC 3.70E-08 3.71E-08 3.93E-08 3.94E-08
Mercury  Messenger ASIC 8.55E-13 9.93E-13 1.40E-11 1.43E-11
Cassini OKI Solid Sta te Recorder 1.33E-08 1.40E-08 2.26E-08 2.27E-08
SOHO SMJ44100 4Mx1 5.87E-07 5.65E-07 5.82E-07 5.83E-07
SOHO MHS CP65656EV 32kx8 SRAM 1.69E-06 1.56E-06 1.58E-06 1.58E-06
ETS-V PD4464D-20 64k SRAM 2.52E-06 2.51E-06 2.67E-06 2.67E-06

SEE/bit-day

Depth = 50.0 g/cm
2

GEO Environment Devices

HZETRN 
Z=28

CREME96 
Z=28 

Truncated
CREME96 

Z=28
Thuraya DSP Mega gate ASIC 1.53E-09 1.86E-09 1.94E-09
Mercury  Messenger ASIC 3.01E-14 4.54E-14 5.15E-13
Cassini OKI Solid Sta te Recorder 6.37E-10 6.97E-10 1.04E-09
SOHO SMJ44100 4Mx1 4.90E-08 3.33E-08 3.40E-08
SOHO MHS CP65656EV 32kx8 SRAM 1.97E-07 1.06E-07 1.06E-07
ETS-V PD4464D-20 64k SRAM 1.59E-07 1.36E-07 1.42E-07

SEE/bit-day
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V. Discussion 
Direct comparison of the LET spectra produced by CREME96 and HZETRN 2010 (Figure 3-Figure 8) 

immediately reveals an important limitation of HZETRN 2010 as applied to spacecraft avionics SEE work.  The 
range of LET values output by the current version of HZETRN 2010 is too limited for general spacecraft SEE 
avionics work. Despite the limitation in LET range, cutting off just above 1000 MeV-cm2/g, agreement with 
CREME96 LET spectra is reasonable in the overlapping regions for the most part.  HZETRN 2010 also predicts 
higher fluxes at higher shielding masses, indicating a more accurate treatment of secondary particle showers than 
CREME96.  An important exception is the LEO environment at LET values near 1000 MeV-cm2/g, where 
CREME96 particle fluxes are higher than those predicted by HZETRN 2010 (Figure 3-Figure 5).    

The most direct “Apples to Apples” comparison of calculated SEU rates is between the HZETRN2010 and 
CREME96 (GCR with maximum Z=28 and Truncated LET range) cases in Table 6-Table 8. For most of these 
cases, the CREME96 rates are somewhat higher, but not in all cases. 

Comparison of the HZETRN 2010 based rates with CREME96 un-truncated LET spectra cases (GCR with 
maximum Z = 28 and GCR with maximum Z = 92) shows that the truncated HZETRN 2010 LET spectra produces 
significantly lower rates in most cases (Table 6-Table 8) indicating the need to extend the HZETRN 2010 LET 
range in order to make the code more accurate and complete for spacecraft avionics SEE work. 

Comparison of the CREME96 GCR with maximum Z=28 runs with the GCR with maximum Z=92 SEE rates 
(Table 6-Table 8) shows that inclusion of the higher Z GCR elements had little impact on the overall SEE rates of 
the devices, as expected, given the very low flux of GCR particles with Z > 28. Note also that all of these devices 
have low or moderately low LET thresholds. Incorporating the high Z component of the environment is not so 
important for devices like these. The high Z elements become important for devices with higher LET thresholds and 
it is especially important to devices that may be susceptible to high-threshold destructive failures, such as single 
event latch-up and/or burn-out.   

As shown in Table 9 and the accompanying regression plot and least squares figures of merit above (Figure 9), 
the HZETRN 2010 predictions present a mixed bag, with some device predictions exceeding observations and a few 
coming in significantly under the observations. The significant under-predictions are most likely a result of the 
truncated HZETRN 2010 LET spectra combined with higher device thresholds.  Nonetheless, the performance of 
HZETRN 2010 in predicting in-flight SEU rates is comparable to FLUKA and CREME96 for the devices studied 
here. 

HZETRN 2010 is a promising possible tool for spacecraft avionics SEE work in that secondary particle shower 
products appear to be represented more accurately in HZETRN 2010 than in CREME96, at least over the limited 
LET range currently available in HZETRN 2010. To make HZETRN 2010 effective for spacecraft avionics SEE rate 
calculations, the code would need to be updated so as to extend the LET tables out to 100,000 MeV-cm2/g if 
possible. 

VI. Conclusion 
 HZETRN 2010 shows considerable promise as a spacecraft avionics SEE analysis and qualification tool, 

even with the present limited LET output range. To make HZETRN 2010 fully acceptable for spacecraft avionics 
SEE rate calculations, the range of the LET output tables needs to be extended to between 10,000 and 100,000 
MeV-cm2/g.  Future work will build upon this paper once the LET range has been extended.  We will also 
investigate HZETRN 2010 against additional in-space flight data of more recent devices to provide further 
validation. 
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The following are additional tables of SEE rates for the LET spectra variations in the LEO environment. 
Table 10. SEE Rate for LEO Devices at 0.5 g/cm2 

 
 

Table 11. SEE Rate for LEO Devices at 1.0 g/cm2 

 
 

Table 12. SEE Rate for LEO Devices at 10.0 g/cm2 

 
 

Depth = 0.5 g/cm
2

LEO Environment Devices

HZETRN 
Z=28

CREME96 
Z=28 

Truncated
CREME96 

Z=28
CREME96 

Z=92
IMS1601EPI 3.40E-07 8.46E-07 1.11E-06 1.12E-06
ISS SMJ416400 4Mx4 DRAM 2.44E-08 9.34E-08 1.08E-07 1.09E-07
ISS KM44S32030T 128Mbit SDRAM 5.09E-11 2.00E-10 9.82E-10 9.89E-10
ISS KM44S32030T 128Mbit SDRAM 7.18E-12 2.76E-11 2.17E-10 2.18E-10
ISS KM44S32030T 128Mbit SDRAM 6.70E-11 1.34E-10 1.90E-10 1.91E-10
V4 XQR4VFX60 – BRAM 8.71E-08 8.90E-08 9.17E-08 9.23E-08
V4 XQR4VFX60  – Config. Memory 1.82E-09 7.28E-09 9.14E-09 9.18E-09
V5 LX330T – Config. Memory 9.82E-10 4.11E-09 7.00E-09 7.03E-09

SEE/bit-day

Depth = 1.0 g/cm
2

LEO Environment Devices

HZETRN 
Z=28

CREME96 
Z=28 

Truncated
CREME96 

Z=28
CREME96 

Z=92
IMS1601EPI 2.65E-07 8.22E-07 1.09E-06 1.09E-06
ISS SMJ416400 4Mx4 DRAM 2.14E-08 9.17E-08 1.07E-07 1.07E-07
ISS KM44S32030T 128Mbit SDRAM 4.59E-11 1.96E-10 9.73E-10 9.80E-10
ISS KM44S32030T 128Mbit SDRAM 6.48E-12 2.71E-11 2.15E-10 2.16E-10
ISS KM44S32030T 128Mbit SDRAM 4.80E-11 1.28E-10 1.83E-10 1.84E-10
V4 XQR4VFX60 – BRAM 5.42E-08 7.92E-08 8.20E-08 8.24E-08
V4 XQR4VFX60  – Config. Memory 1.62E-09 7.16E-09 9.01E-09 9.04E-09
V5 LX330T – Config. Memory 8.81E-10 4.04E-09 6.91E-09 6.95E-09

SEE/bit-day

Depth = 10.0 g/cm
2

LEO Environment Devices

HZETRN 
Z=28
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Z=28 

Truncated
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CREME96 

Z=92
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ISS SMJ416400 4Mx4 DRAM 1.06E-08 6.21E-08 7.24E-08 7.26E-08
ISS KM44S32030T 128Mbit SDRAM 2.36E-11 1.30E-10 6.93E-10 6.97E-10
ISS KM44S32030T 128Mbit SDRAM 3.34E-12 1.80E-11 1.54E-10 1.55E-10
ISS KM44S32030T 128Mbit SDRAM 1.95E-11 8.44E-11 1.24E-10 1.25E-10
V4 XQR4VFX60 – BRAM 1.80E-08 4.88E-08 5.08E-08 5.11E-08
V4 XQR4VFX60  – Config. Memory 8.13E-10 4.85E-09 6.15E-09 6.17E-09
V5 LX330T – Config. Memory 4.48E-10 2.72E-09 4.78E-09 4.80E-09

SEE/bit-day
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Table 16. SEE Rate for GEO Devices at 10.0 g/cm2 

 
 

Table 17. SEE Rate for GEO Devices at 20.0 g/cm2 
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