12,362 research outputs found

    Towards design of prognostics and health management solutions for maritime assets

    Get PDF
    With increase in competition between OEMs of maritime assets and operators alike, the need to maximize the productivity of an equipment and increase operational efficiency and reliability is increasingly stringent and challenging. Also, with the adoption of availability contracts, maritime OEMs are becoming directly interested in understanding the health of their assets in order to maximize profits and to minimize the risk of a system's failure. The key to address these challenges and needs is performance optimization. For this to be possible it is important to understand that system failure can induce downtime which will increase the total cost of ownership, therefore it is important by all means to minimize unscheduled maintenance. If the state of health or condition of a system, subsystem or component is known, condition-based maintenance can be carried out and system design optimization can be achieved thereby reducing total cost of ownership. With the increasing competition with regards to the maritime industry, it is important that the state of health of a component/sub-system/system/asset is known before a vessel embarks on a mission. Any breakdown or malfunction in any part of any system or subsystem on board vessel during the operation offshore will lead to large economic losses and sometimes cause accidents. For example, damages to the fuel oil system of vessel's main engine can result in huge downtime as a result of the vessel not being in operation. This paper presents a prognostic and health management (PHM) development process applied on a fuel oil system powering diesel engines typically used in various cruise and fishing vessels, dredgers, pipe laying vessels and large oil tankers. This process will hopefully enable future PHM solutions for maritime assets to be designed in a more formal and systematic way

    Automatic allocation of safety requirements to components of a software product line

    Get PDF
    Safety critical systems developed as part of a product line must still comply with safety standards. Standards use the concept of Safety Integrity Levels (SILs) to drive the assignment of system safety requirements to components of a system under design. However, for a Software Product Line (SPL), the safety requirements that need to be allocated to a component may vary in different products. Variation in design can indeed change the possible hazards incurred in each product, their causes, and can alter the safety requirements placed on individual components in different SPL products. Establishing common SILs for components of a large scale SPL by considering all possible usage scenarios, is desirable for economies of scale, but it also poses challenges to the safety engineering process. In this paper, we propose a method for automatic allocation of SILs to components of a product line. The approach is applied to a Hybrid Braking System SPL design

    Engineering at San Jose State University, Spring 2015

    Get PDF
    https://scholarworks.sjsu.edu/engr_news/1013/thumbnail.jp

    Developing Executable Digital Models with Model-Based Systems Engineering – An Unmanned Aerial Vehicle Surveillance Scenario Example

    Get PDF
    There is an increase in complexity in modern systems that causes inconsistencies in the iterative exchange loops of the system design process and in turn, demands greater quality of system organization and optimization techniques. A recent transition from document-centric systems engineering to Model-Based Systems Engineering (MBSE) is being documented in literature from various industries to address these issues. This study aims to investigate how MBSE can be used as a starting point in developing digital twins (DT). Specifically, the adoption of MBSE for realizing DT has been investigated, resulting in various literature reviews that indicate the most prevalent methodologies and tools used to enhance and validate existing and future systems. An MBSE-enabled template for virtual model development was executed for the creation of executable models, which can serve as a research testbed for DT and system and system-of-systems optimization. This study explores the feasibility of this MBSE-enabled template by creating and simulating a surveillance system that monitors and reports on the health status and performance of an armored fighting vehicle via an Unmanned Aerial Vehicle (UAV). The objective of this template is to demonstrate how executable SysML diagrams are used to establish a collaborative working environment between multiple platforms to better convey system behavior, modifications, and analytics for various system stakeholders

    Seven Key Principles of Program and Project Success: A Best Practices Survey

    Get PDF
    The National Aeronautics and Space Administration (NASA) Organization Design Team (ODT), consisting of 20 seasoned program and project managers and systems engineers from a broad spectrum of the aerospace industry, academia, and government, was formed to support the Next Generation Launch Technology (NGLT) Program and the Constellation Systems Program. The purpose of the ODT was to investigate organizational factors that can lead to success or failure of complex government programs, and to identify tools and methods for the design, modeling, and analysis of new and more-efficient program and project organizations. The ODT conducted a series of workshops featuring invited lectures from seasoned program and project managers representing 25 significant technical programs spanning 50 years of experience. The result was the identification of seven key principles of program success that can be used to help design and operate future program organizations. This paper presents the success principles and examples of best practices that can significantly improve the design of program, project, and performing technical line organizations, the assessment of workforce needs and organization performance, and the execution of programs and projects

    Use of COTS functional analysis software as an IVHM design tool for detection and isolation of UAV fuel system faults

    Get PDF
    This paper presents a new approach to the development of health management solutions which can be applied to both new and legacy platforms during the conceptual design phase. The approach involves the qualitative functional modelling of a system in order to perform an Integrated Vehicle Health Management (IVHM) design – the placement of sensors and the diagnostic rules to be used in interrogating their output. The qualitative functional analysis was chosen as a route for early assessment of failures in complex systems. Functional models of system components are required for capturing the available system knowledge used during various stages of system and IVHM design. MADe™ (Maintenance Aware Design environment), a COTS software tool developed by PHM Technology, was used for the health management design. A model has been built incorporating the failure diagrams of five failure modes for five different components of a UAV fuel system. Thus an inherent health management solution for the system and the optimised sensor set solution have been defined. The automatically generated sensor set solution also contains a diagnostic rule set, which was validated on the fuel rig for different operation modes taking into account the predicted fault detection/isolation and ambiguity group coefficients. It was concluded that when using functional modelling, the IVHM design and the actual system design cannot be done in isolation. The functional approach requires permanent input from the system designer and reliability engineers in order to construct a functional model that will qualitatively represent the real system. In other words, the physical insight should not be isolated from the failure phenomena and the diagnostic analysis tools should be able to adequately capture the experience bases. This approach has been verified on a laboratory bench top test rig which can simulate a range of possible fuel system faults. The rig is fully instrumented in order to allow benchmarking of various sensing solution for fault detection/isolation that were identified using functional analysis

    Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0 (“roadmap”) represents the culmination of the UASSC’s work to identify existing standards and standards in development, assess gaps, and make recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 64 issue areas, identified a total of 60 gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 40 gaps/recommendations have been identified as high priority, 17 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 36 cases, additional R&D is needed. The hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will be widely promoted and discussed over the course of the coming year, to assess progress on its implementation and to identify emerging issues that require further elaboration

    CASE STUDY: Rocketdyne Propulsion and Power

    Get PDF
    Rocketdyne is a leading producer of rocket engines and related space products facing an increasingly competitive global environment. For Rocketdyne the challenges include a shift from a heavily military focus to a more commercial focus, acquisition by Boeing, environmental and pollution concerns, and developing a lean production work organization system. A vigorous employee involvement program is a defining feature of the Rocketdyne story. However there are ongoing challenges integrating front-line innovation with line leadership and business strategy
    corecore