1,914 research outputs found

    Artificial Intelligence Applied to Conceptual Design. A Review of Its Use in Architecture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Conceptual architectural design is a complex process that draws on past experience and creativity to generate new designs. The application of artificial intelligence to this process should not be oriented toward finding a solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions to meet those requirements. This work offers a tour of major research projects that apply artificial intelligence solutions to architectural conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial approaches were oriented toward finding innovative and creative forms, while the latest research focuses on optimizing architectural form.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), and the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/1

    Multi-objective optimization of reinforced concrete frames using NSGA-II algorithm

    Get PDF
    In recent decades, the use of genetic algorithm (GA) for optimization of structures has been highly attractive in the study of concrete and steel structures aiming at weight optimization. However, it has been challenging for multi-objective optimization to determine the trade-off between objective functions and to obtain the Pareto-front for reinforced concrete (RC) and steel structures. Among different methods introduced for multi-objective optimization based on genetic algorithms, Non-Dominated Sorting Genetic Algorithm II (NSGA II) is one of the most popular algorithms. In this paper, multi-objective optimization of RC moment resisting frame structures considering two objective functions of cost and displacement are introduced and examined. Three design models are optimized using the NSGA-II algorithm. Evaluation of optimal solutions and the algorithm process are discussed in details. Sections of beams and columns are considered as design variables and the specifications of the American Concrete Institute (ACI) are employed as the design constraints. Pareto-fronts for the objective space have been obtained for RC frame models of four, eight and twelve floors. The results indicate smooth Pareto-fronts and prove the speed and accuracy of the method

    Integrated design : a generative multi-performative design approach

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.MIT Institute Archives copy: with CD-ROM; divisional library copy with no CD-ROM.Includes bibliographical references (leaves 70-72).There are building systems, called "modularized", in which the component systems (for structure, lighting, etc) can be analyzed and synthesized independently since their performance and design do not interact or affect one another. There are other building systems, called "coupled", in which the component systems do interact and influence one another. The thesis acknowledges that in a building there are both sub-systems that act independently and others that interact. While many design processes have been proposed for dealing with discrete sub-systems, there is no systematic study for building sub-systems that interrelate. This thesis examines a different design approach called integrated. The term "integrated" has a dual utilization in this study. The first use refers to the integration of form and building performance. The second use refers to the integration of interrelated and diverse building performances involving multiple disciplines. The integrated design approach analyzes and evaluates several interrelated design systems involving different disciplines in the early design phase. The goal of the approach is the generation of design alternatives guided simultaneously by two basic objectives: the aspiration for form exploration and the satisfaction of the performances of interrelated systems. After defining a framework for an integrated design approach, which includes inter-disciplinary collaboration, unified design, optimization, simulation, and other formal and digital techniques, the approach will be demonstrated in a case study. The objective of the case study is to demonstrate that the integrated design approach has validity and can be realized, in this case, for the generation of high-rise buildings guided by structural, lighting, zoning codes, and aesthetic criteria.by Eleftheria Fasoulaki.S.M

    Hydration and thermal decomposition of cement/calcium-sulphate based materials

    Get PDF

    Optimal Design of MR Dampers Using NSGA-II Algorithm

    Get PDF
    In recent years, new ideas and solutions have been proposed by scientists and researchers to control the response of structures against seismic excitations. In this article, The Optimization of semi-active control systems using MR dampers has been studied to reduce the structure's response under earthquake forces. For this purpose, three frames of five, eight, and eleven stories have been examined as numerical examples. A multi-objective optimization approach based on the NSGA-II algorithm is used to control the response of structures and the fuzzy logic algorithm is used to determine the force of these dampers. The values of maximum displacement, acceleration, and inter-story drift of the top floor have been selected as objective functions. The position of dampers has been optimized to obtain optimal practical solutions. The results show that the responses are significantly reduced when using a semi-active MR damper and the arrangement of the dampers has a great impact on the amount of this reduction

    Meso-scale modeling of reaction-diffusion processes using cellular automata

    Get PDF

    Local Binary Patterns in Focal-Plane Processing. Analysis and Applications

    Get PDF
    Feature extraction is the part of pattern recognition, where the sensor data is transformed into a more suitable form for the machine to interpret. The purpose of this step is also to reduce the amount of information passed to the next stages of the system, and to preserve the essential information in the view of discriminating the data into different classes. For instance, in the case of image analysis the actual image intensities are vulnerable to various environmental effects, such as lighting changes and the feature extraction can be used as means for detecting features, which are invariant to certain types of illumination changes. Finally, classification tries to make decisions based on the previously transformed data. The main focus of this thesis is on developing new methods for the embedded feature extraction based on local non-parametric image descriptors. Also, feature analysis is carried out for the selected image features. Low-level Local Binary Pattern (LBP) based features are in a main role in the analysis. In the embedded domain, the pattern recognition system must usually meet strict performance constraints, such as high speed, compact size and low power consumption. The characteristics of the final system can be seen as a trade-off between these metrics, which is largely affected by the decisions made during the implementation phase. The implementation alternatives of the LBP based feature extraction are explored in the embedded domain in the context of focal-plane vision processors. In particular, the thesis demonstrates the LBP extraction with MIPA4k massively parallel focal-plane processor IC. Also higher level processing is incorporated to this framework, by means of a framework for implementing a single chip face recognition system. Furthermore, a new method for determining optical flow based on LBPs, designed in particular to the embedded domain is presented. Inspired by some of the principles observed through the feature analysis of the Local Binary Patterns, an extension to the well known non-parametric rank transform is proposed, and its performance is evaluated in face recognition experiments with a standard dataset. Finally, an a priori model where the LBPs are seen as combinations of n-tuples is also presentedSiirretty Doriast

    Learning automata and sigma imperialist competitive algorithm for optimization of single and multi-objective functions

    Get PDF
    Evolutionary Algorithms (EA) consist of several heuristics which are able to solve optimisation tasks by imitating some aspects of natural evolution. Two widely-used EAs, namely Harmony Search (HS) and Imperialist Competitive Algorithm (ICA), are considered for improving single objective EA and Multi Objective EA (MOEA), respectively. HS is popular because of its speed and ICA has the ability for escaping local optima, which is an important criterion for a MOEA. In contrast, both algorithms have suffered some shortages. The HS algorithm could be trapped in local optima if its parameters are not tuned properly. This shortage causes low convergence rate and high computational time. In ICA, there is big obstacle that impedes ICA from becoming MOEA. ICA cannot be matched with crowded distance method which produces qualitative value for MOEAs, while ICA needs quantitative value to determine power of each solution. This research proposes a learnable EA, named learning automata harmony search (LAHS). The EA employs a learning automata (LA) based approach to ensure that HS parameters are learnable. This research also proposes a new MOEA based on ICA and Sigma method, named Sigma Imperialist Competitive Algorithm (SICA). Sigma method provides a mechanism to measure the solutions power based on their quantity value. The proposed LAHS and SICA algorithms are tested on wellknown single objective and multi objective benchmark, respectively. Both LAHS and MOICA show improvements in convergence rate and computational time in comparison to the well-known single EAs and MOEAs
    corecore