
Automation in Construction 124 (2021) 103550

Available online 22 January 2021
0926-5805/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Review 

Artificial intelligence applied to conceptual design. A review of its use 
in architecture 

M. Luz Castro Pena *, Adrián Carballal, Nereida Rodríguez-Fernández, Iria Santos, Juan Romero 
Computer Science and Information Technology Department, CITIC-Research Center of Information and Communication Technologies, University of A Coruña, RNASA- 
IMEDIR Lab, ESCI. Campus de Elviña, 15008 A Coruña, Spain   

A R T I C L E  I N F O   

Keywords: 
Artificial intelligence 
Architectural conceptual design 
Evolutionary computing 
Cellular automata 

A B S T R A C T   

Conceptual architectural design is a complex process that draws on past experience and creativity to generate 
new designs. The application of artificial intelligence to this process should not be oriented toward finding a 
solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. 
Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions 
to meet those requirements. 

This work offers a tour of major research projects that apply artificial intelligence solutions to architectural 
conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary 
computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially 
since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial ap-
proaches were oriented toward finding innovative and creative forms, while the latest research focuses on 
optimizing architectural form.   

1. Introduction 

1.1. Conceptual design 

As Song, Ghaboussi, and Kwon have indicated, architecture differs 
from other arts in that its products are required to be simultaneously 
aesthetically pleasing, structurally stable, and functional [1]. Deter-
mining a building’s shape is the principal activity of the architectural 
design process. It is common for architects to start a design with a dis-
embodied concept and a vague image of its shape which form the basis 
for proposing a broad set of solutions. The initial form will affect both 
performance and cost of construction, daylight use, energy consump-
tion, layout configuration, shadow performance, acoustics, functional 
accessibility, and solar gain, among other features [2]. In this context, 
the search for shapes becomes one of the key steps in the conceptual 
design phase, as its results are inputs for the next steps in the design 
process, in the subsequent construction phase, and throughout the life 
cycle of the building. 

Architectural design is a complicated process that draws on experi-
ence and creativity to develop new designs. Therefore, the application of 
artificial intelligence to this process should not be oriented to finding a 

solution in a defined search space, since the design requirements are not 
yet well defined in the conceptual stage. Instead, this process should be 
considered as an exploration [3] of the requirements, as well as of 
possible solutions to meet those requirements [4,5]. Many design ele-
ments are chosen by considering a wide range of quantifiable and non- 
quantifiable features simultaneously. Even if a problem allows for nu-
merical formulation, the lack of explicit and standard evaluation criteria 
makes defining design intentions difficult [6]. 

1.2. This review 

In this work, we will examine the main research projects that applied 
artificial intelligence solutions to the design of form in architecture. As 
early as 1987, Soddu [7] created artificial DNA of Italian medieval cities 
which he used to define the Generative Design approach to Architecture 
and City Design in his book “Citta’ Aleatorie.” Since then, various ap-
proaches have been developed, such as Yeh’s [8], which used an 
annealed neural network to find solutions to a facility layout problem 
applied to a hospital building case study in 2006. Wen, Hong, and 
Xueqiang in 2010 [9], and Rian and Asayama in 2016 [10] used fractal 
algorithms for the design of architectural forms. In related work, 
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Chatzikonstantinou and Sariyildiz investigated self-associated con-
nectionist models in the design of sustainable architectural façades in 
2017 [11]. Machine learning approaches are also used in architectural 
design practice, as in the 2018 example from Tamke, Nicholas, and 
Zwierzycki [12], although most work in this area concentrates on the 
use of evolutionary computing and cellular automata to perform such 
tasks. 

Decisions regarding the shape of a building influence its architec-
tural, aesthetic, and structural features as well as its sustainability. 
Shape affects brightness and heat loss, but also cost and usable area, to 
name just a few examples. As we will see in this review, there is active 
work in this area of architecture investigating how to generate complex 
shapes in an appropriate way for the adjustment and optimization of 
these parameters. A detailed review of computational optimization 
techniques implemented for sustainable construction design can be 
found in Evins’ 2013 review [13]. 

This review began as an investigation into the state-of-art of artificial 
intelligence applied to architecture. We are particularly interested in the 
creative capabilities of AI systems, their use in artistic fields for design, 
and the creation of images with aesthetic value for humans. The meth-
odology used involved several phases: (i) An exhaustive search for 
literature on the application of artificial intelligence to architecture. 
This search has been carried out through the scientific portals Science-
Direct, Wiley Online Library, Google Scholar, and ResearchGate. The 
keywords used were artificial intelligence, cellular automata, evolu-
tionary computing, artificial neural networks, deep learning, and ma-
chine learning—each combined with architecture (and variants such as 
architectural or architectonics) or building design. (ii) Cross-references 
of these papers were sought (both papers that cite them and those 
cited by them, up to the third level). (iii) We were immediately over-
whelmed by the number of references found, and proceeded by grouping 
them into three main categories: architectural design, urban planning, 
and optimization. (iv) We decided to focus in this review on architec-
tural design, and more specifically on research that deals predominantly 
with form (although some studies also include construction variables) in 
the conceptual design phase. Research using AI for optimization that is 
not related to building shape (such as window or shading design and 
optimization of energy efficiency or thermal comfort) has not been 
considered in this study. 

After a brief introduction to relevant artificial intelligence concepts 
and methods, we will take a tour of the main research in this field and 
the results obtained. We decided that an organization of research by 
topic would be the most interesting, and so created the following 
groupings: design exploration, morphogenesis, building shape, ceiling 
form, façade design, layout design and floor plans (see Table 1 in the 
appendix). Like many classifications, ours is partially subjective, and we 
are aware that some works could move from section to section without 
altering the result. To give just one example, Pazos’ research [14] has 
been categorized as morphogenesis, but could also be classified within 
the subset of façade design. In such cases, we have chosen to include the 
reference in the category that, in our opinion, best defines the spirit of 
the research. 

1.3. Previous reviews 

Previous reviews of the optimization systems used in architecture 
include that of Evins [13], or the more recent publication by Westerman 
and Evins on alternative modeling applied to the design of sustainable 
buildings [15]. Another, by Roman, Bre, Fachinotti, and Lamberts, 
focused on artificial neural network (ANN)-based metamodels for per-
formance simulation construction [16]. Although all of these reviews 
include, in one way or another, the conceptual design phase, we have 
not found any previous publication that extensively addresses the ap-
plications of the different artificial intelligence techniques used in the 
design of architectural form. 

2. Artificial intelligence methods 

2.1. Evolutionary computation 

In the 1950s, Arthur Samuel asked how computers could learn to 
solve problems without explicit programming to do so, leading to the 
birth of evolutionary computing. Evolutionary computing has its origins 
in Darwinian evolutionism and is based on the replication of natural 
structures, through the simulation of evolution, to generate systems that 
adapt to their environment in a manner similar to natural selection. 

The field of evolutionary computing encompasses four types of al-
gorithms, known generically as evolutionary algorithms: genetic algo-
rithms (GAs) [17], evolutionary strategies [18], evolutionary 
programming [19], and genetic programming [20]. In the field of 
design, evolutionary search has been widely used to optimize existing 
designs [21] based on the realization that algorithms based on evolution 
are some of the most flexible, efficient, and robust of all known search 
algorithms [22,23]. 

Regarding conceptual design, Goldberg [24] presented an idealized 
framework for conceptual design that is composed of four components: a 
problem to be solved, someone to solve it, one or more designs and a 
means to compare them, where the GA is a lower limit in the perfor-
mance of a human designer using recombinative and selective processes. 

In general, the design of an engineering device is governed by 
numerous objective criteria that conflict, in the sense that improvement 
in any of the criteria occurs at the expense of one or more of the other 
criteria (e.g., a decrease in the capital cost of an office building may 
result in a reduction in revenue potential). This suggests the need to seek 
conceptual designs that represent the best balance between objective 
criteria in competition. The relative importance of competing criteria is 
often unknown, which further suggests the use of optimization to 
identify a field of conceptual design solutions that can be equally opti-
mal—in the sense that no design is dominated by another feasible design 
solution for all objective criteria in the solution sector. In the literature, 
this approach is known as Pareto optimization [25]. 

The use of computational tools in the generation of architectural 
designs implies the use of parametric relationships, self-organizing 
processes, and algorithms to create designs with limited human inter-
action [14]. Sutherland proposed the creation of a set of rules by means 
of parametric relationships and algorithms that evolve the original 
design via manual manipulation of its parameters by the user, leading to 
results that the designer may not necessarily expect [26]. Dunn added 
that parametric design makes it possible to define the relationships be-
tween elements or groups of elements and to assign values or expres-
sions to organize and control those definitions [27]. Further, Davis 
indicated that the geometry of a design also changes when the param-
eters change [28]; that is, a parametric design creates connections and 
relationships between all design elements, and when one is modified, 
the others also adapt to the change, usually by automatically changing 
parameters or related values, as in a system of equations. The disad-
vantage of this design methodology is the large amount of time 
consumed in the development of parametric codes. This cost has led the 
most recent approaches to use generative algorithms, taking full 
advantage of the computer’s analytical potential to address the inherent 
human limitations [29]. In 2013, Moreno-De-Luca and Carrillo [30] 
created a compilation of the most common multi-objective optimization 
techniques applied to structural and architectural design not only as an 
optimization model, but as an essential piece of a design methodology 
for creating innovative, high-performance, efficient, creative, and 
aesthetically pleasing architectural items. The authors proposed the 
combination of structural, bioclimatic, green building, acoustic, and 
lighting design considerations into one integrated optimization and 
morphogenetic procedure. In their opinion, such an approach will lead 
to holistic design solutions with the best performance and significant 
cost reductions. Dutta and Sarthak [31] conducted a literature review on 
the implementation of evolutionary computing approaches for 
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architectural spatial planning, highlighting the usefulness of these 
methods when the problem is poorly defined, and the range of con-
straints varies. They noted that evolutionary computing approaches are 
good at finding a solution that prioritizes certain criteria; somehow, in 
most cases, rather than the right and perfect solution, the best 
compromise is sought. Dutta and Sarthak concluded that there is a de-
mand for tools that can assist in space layout planning and optimization, 
though most such approaches are in research stages and have yet to be 
incorporated in commercial products. 

Generally speaking, conventional genetic algorithms identify the 
suitability criteria and then automatically search for the optimum so-
lution, while interactive approaches use input from users as subjective 
evaluation criteria. The development of user-friendly design environ-
ments, visual interface, providing parametric variables, skill visualiza-
tion, and performance feedback have strongly supported the growth of 
this approach [32]. Finally, Interactive Evolutionary Computing (IEC) is 
an optimization method based on subjective human assessment that 
adopts evolutionary computing (EC) in system optimization. It is an EC 
technique for which a human user replaces the adjustment function 
[33]. 

2.2. Artificial neural networks 

ANNs consist of neurons and layers which simulate the human brain 
structure. The layers and neurons enable ANNs to have learning and 
memory skills which can be trained using algorithms of backward 
learning. ANNs have been used successfully in analyzing and modeling 
various types of problems and are a powerful method of optimization. 
The development of systems that demonstrate self-organization and 
adaptation in an equivalent, albeit simplified, way to how biological 
systems work allows their use as search algorithms to find optimal or 
near-optimal solutions for a variety of problems. 

2.3. Fractals 

Nature is a source of inspiration for architects and designers 
designing and utilizing different geometric systems as frames to repli-
cate complex or abstract forms. Fractal geometry allows quick and easy 
modeling of the complex shapes of many objects and natural phenomena 
using some simple algorithms and is therefore one of the most appro-
priate methods for the architectural design of forms inspired by nature. 
Indeed, Wang et al. argued that fractal architecture can embody the 
ancient Chinese philosophical idea that “man is an integrated part of 
nature” [9]. Moreover, fractal models are complex models made up of 
simple elements connected by simple rules, making them an appropriate 
choice for industrialized mass production. 

2.4. Swarm intelligence 

Approaches to swarm intelligence and particle swarm optimization 
(PSO) are inspired by the behavior of insect swarms. In particular, think 
of a swarm of bees—they search for pollen in the region of space with the 
greatest density of flowers because the probability of pollen being pre-
sent is greater. The same idea was implemented in computing in the 
form of an algorithm and is now used in different types of optimization 
and search systems. According to Vehlken [34], the use of techniques 
such as swarm intelligence and agent-based computer simulation has led 
current architecture to focus on movement. Vehlken introduced the 
concept of “futurology in architecture,” related to the large number of 
different situations that can be analyzed and evaluated, offering a di-
versity of viewpoints of different desirable futures and allowing for a 
seamless synthesis of multiple ideas, or feedback from customers or 
future users during an ongoing design process. 

2.5. Cellular automata 

Cellular automata (CA) is a mathematical model of a dynamic system 
composed of a set of cells that acquire different states or values. These 
states are altered in discrete time units—that is, they can be quantified at 
regular intervals with integer values. The set of cells thus achieves 
evolution based on a certain mathematical expression, known as the 
local transformation rule, that is sensitive to the neighboring cells’ states 
[35]. One of the advantages of CA is its capacity to achieve a series of 
properties that arise from the local dynamics through time and not from 
the beginning. These properties are applied to the whole system. 
Therefore, it is not easy to analyze the global properties of a CA from its 
beginning, except using simulation, starting from an initial state or 
configuration of cells and changing in each instant the states of all of 
them in a synchronous way. In the field of architectural design, CA are 
capable of generating patterns or models that cannot be easily antici-
pated, and can suggest architectural forms. In many cases, the most 
important thing is the process: using the data generated by a CA, finding 
a pattern that will serve us, and knowing how to interpret and modify 
the results for use in architecture. The goal is not those results them-
selves, but what can be learned and inferred from the generation 
process. 

The patterns generated by CA systems are appreciated in architec-
tural design for their spatial qualities as well as for the often-surprising 
nature of their results, which allow designers to expand the scope of 
their imagination [36,37]. Design systems can be explained as a repe-
tition of the process of generating and reducing potential proposals, in 
which designers alternatively seek inspiration and an analytical evalu-
ation of the generated results. Kicinger et al. [38] wondered whether the 
advantages of generative representations result, in part, from human 
designers’ tendency to create design concepts using different heuristics 
that are gradually applied to individual parts of a building, a process that 
is at least partially imitated by the use of CA. 

3. Studies 

As mentioned in the introduction, we have classified studies by their 
application to different areas of conceptual design: design exploration, 
morphogenesis, building shape, ceiling form, façade design, layout 
design, and floor plans. A summary table can be found in the Appendix 
(Table 1). 

3.1. Design exploration 

Maher and Poon [39] stressed that the exploratory aspect of design 
has not been fully addressed, especially during conceptual design, since 
the assumption that designers have a clear idea of the problem and that 
the solution is not legitimate. Before starting design synthesis, designers 
often do not have a complete description of the problem. During con-
ceptual design, they play with ideas to better understand the problem, 
rather than focusing on finding a solution. Therefore, the authors 
argued, design is an iterative process of searching for the space of the 
problem of the design as well as the space of the solution. To do so re-
quires a computer model of exploration that can assist designers. The 
ability to change objectives, as well as the solution space, over time can 
be modeled as a co-evolutionary system, suggesting a formal exploration 
model, such as the interaction between problem space/functional re-
quirements (P), and solution space (S) [39,40]. In exploration, P in-
teracts and evolves over time with S, and the evolution of each space in 
the other space is guided by the more recent population. The basis of co- 
evolution is a genetic algorithm in which special attention is given to 
representing and applying the fitness function so that the definition of 
the problem can change in response to the current solution space. 

Specifically, Maher and Poon proposed a Design Problem Explora-
tion model that could be implemented with a modified genetic algo-
rithm called CoGA1. This approach is novel in its interpretation of the 
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skill function in which the design solution in the same genotype and 
alternative GA operations in different segments of the genotype allow 
for the co-evolution of requirements and design solutions. A second 
approach, called CoGA2, represents the problem of genotyping design in 
one space and designing solutions in a second space as genotypes. These 
spaces evolve in response to each other, each providing the fitness 
function for the other space. These algorithms alter the notion of 
searching on a fixed target to explore potential targets. The authors 
wondered whether a solution which meets more criteria is necessarily 
better than one that meets fewer overall, but all of the most relevant 
criteria. When a threshold value is used to determine a subsequent ex-
amination, it is necessary to decide whether the threshold should be a 
constant, and whether that threshold should evolve. A major problem 
with both CoGA1 and CoGA2 is that the criteria for suitability change 
over time, which excludes convergence possibilities. A condition of 
completion is needed to stop the evolutionary process. If convergence is 
not a prerequisite for ending the process, we must ask whether time is 
the only consideration, or whether we should include an objective 
function, and whether there is a guideline or general criterion indicating 
that an exploration process should end. A metric would need to be 
developed to determine a solution’s “goodness,” or “usefulness.” In 
1995, Maher and Poon [41] presented a study of this co-evolutionary 
approach to fitness function and design solution by defining fitness as 
part of the genotype using the CoGA1 system, testing the design of the 
reinforced frame panel, and asserting that the results show that inter-
esting solutions arise from genetic cycles and that the design approach is 
distributed differently. The system does not approach design as an 
optimization, but as an exploration of the space for design. 

Parmee [42,43] used an incorporated design concept in which 
different forms of evolutionary computing are employed at each stage of 
a design process and combined with the knowledge and intuition of the 
designer in the search and exploration process. The author distinguished 
three stages in the processes of the engineering design: conceptual 
design, sketch, and detailed design. The first process is a search for 
possible solutions through an undefined space, using fuzzy objective 
functions and vague concepts of the final solution structure. The rep-
resentation of design helps to clarify the subsets that make up the system 
from the initial design configuration selected in the previous stage, 
considering quantitative and qualitative criteria. In the detailed design 
phase, decisions only consider well-described quantitative criteria. Par-
mee argued there are overlaps between the three stages to consider in an 
integrated design model. 

Cvetkovic and Parmee designed a system that works with the 
designer during the conceptual design phase, prioritizing the designer’s 
interaction and knowledge over precision [44]. The core of the system 
consists of a module based on genetic algorithms for multi-objective 
optimization, one for handling dynamic constraints, for handling fuzzy 
preferences, and the designer’s input. The system was applied to a 
conceptual problem of British Aerospace (BAe) airframe design with 9 
variables and 13 outputs. Optimization is a rather small part of the 
problem; more interesting is the ability to efficiently explore many 
different variants that the designer can evaluate. To help the designer, 
the system must be able to sustain the exploration of the design and at 
the same time suggest the best direction [45]. The authors concluded 
that, although designed for the BAe problem, the techniques used are 
generic, and could easily be applied to other conceptual design 
problems. 

Gero and Kazakov [46] distinguished between routine and creative 
designs and used GA to expand the state space of potential designs as an 
aid in the conceptual design phase to achieve creative designs. Using 
Hamming distance as a measure of distance, they used the existing 
crossover of standard GAs and recast it as an interpolation in a possible 
design space. Then, through their isomorphic phenotype, they repre-
sented the genotype and generalized the interpolation. The result is an 
interpolation path, which is not necessarily within the space of possible 
designs defined in the initial problem formulation. Once this 

generalization is done, extrapolation may be added to the process to 
produce even more varied models. 

Parmee et al. pointed out [47] that the combining flexible interaction 
and visualization capabilities with evolutionary computing power will 
provide invaluable support for decision making and knowledge dis-
covery. On that basis, Packham [48] developed in 2003 an interactive 
visualization and grouping system that uses genetic algorithms, the 
Interactive and Visualization and Clustering Genetic Algorithm 
(IVCGA). The system enables the user to interact freely with specific 
areas of the search space and create new data with more GA runs. 

Rafiq [49] applied the IVCGA system in 2005 to the design of an 
office building, considering architectural, industrial, and heat and 
ventilation requirements. Each team member can independently assess 
the suitability of the various alternatives, then overlap of the different 
solutions to recognize a mutually inclusive region that partially meets 
the requirements of all design disciplines involved. In 2008 Rafiq and 
Beck presented [50] a solution that used a version of IVCGA updated by 
Packham et al. [48,51] to incorporate designer interaction along with its 
visualization capabilities to show how IVCGA can be utilized in a 
collaborative multidisciplinary design environment. 

Malkawi, Srinivasan, and Choudhary [52] developed a decision 
support model that uses GA as an evolutionary algorithm and Compu-
tational Fluid Dynamics (CFD) [53] as mechanism for assessment. In an 
attempt to stimulate the designer’s creativity, the model is integrated 
with a visualization module that allows users to interact with and select 
specific instances as the design evolves. The procedure uses an iterative 
approach that allows for an automatic evaluation of designs using CFD 
analysis to maximize various thermal and ventilation criteria while 
allowing the user to experience the design transformation based on its 
performance. The process continues, and the designer finally has the 
opportunity to visualize the evolution of the final set of design alter-
natives. The automated process has the benefit of not being biased by the 
vision of the designer, and thus has the potential to create new config-
urations that might otherwise remain unknown. 

Liu, Liu, and Duan presented [54] an approach based on the standard 
Particle Swarm Optimization (PSO) algorithm along with dynamic niche 
technology. Liu, Liu, and Duan’s approach is also oriented toward the 
creative conceptual architectural design of ecologically designed homes. 
Its main concern is to maximize the solar gain in mainland China’s 
northern latitudes, or minimize it in the tropics, while maintaining 
maximum surface area. All individuals, or particles, make up the search 
space. An individual in this structure consists of three parts: the total 
number of buildings in the area, the distribution pattern describing how 
the buildings are distributed, and information about the buildings. Each 
building has its own position, height, type, and other dimensions. 
Buildings’ architectural areas are a function of their dimensions. 

In 2010, Wen, Hong, and Xueqiang developed a computer-aided 
method for the design of architectural forms based on a fractal algo-
rithm [9]. The authors stressed that fractals can be used in architecture 
for aesthetic purposes, and proposed an algorithm that generates fractal 
dust as the data of unorganized points. They improved the Power Crust 
algorithm [55] for the surface reconstruction process and applied a KD 
tree structure [56] in the separation of the inner and outer poles to speed 
up the search for the nearest neighbor and increase reconstruction ef-
ficiency. Despite these advances, the authors indicated that further study 
was still needed on how to treat sharp edges, sew boundaries, combine 
swarm and fractal intelligence, perform automatic and interactive as-
sembly, and how to refine current visual software. 

In 2015, Mueller and Ochsendorf [57] noted that designers must 
consider both quantitative performance targets and qualitative re-
quirements in conceptual design. They proposed a computational 
approach to space exploration design that extends interactive evolu-
tionary algorithms to include designer preferences, allowing them to set 
the evolutionary parameters of mutation rate and generation size, as 
well as parent selection, to drive space exploration design. The authors 
demonstrated the potential of their approach through a numerical 
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parametric study in which they demonstrated that varying mutation 
rates and generation sizes give the user unprecedented control over the 
nature of design space exploration, enabling the prioritization of per-
formance, qualitative preferences, diversity, or some desirable combi-
nation of those objectives. They also implemented software and a 
sequence of case studies in which they showed that multiple modes of 
exploration, including performance prioritization, are possible with 
their approach, as well as compromises that consider qualitative ob-
jectives (Figs. 1 and 2). 

Other lines of research have focused on the creation of computer- 
aided design (CAD) tools through the use of evolutionary techniques. 
In 2001, Graham, Case, and Wood presented a system that creates ob-
jects that initially appear to be random [58], but may be subjected to a 
user-driven selective breeding program (also guided by predetermined 
factors, environmental or internal) to provide useful inspiration for the 
aesthetic and functional characteristics of the products. This resulted in 
an interactive tool that can help designers during the conceptual phase 
of aesthetic design, although the authors recognized that it is unrealistic 
to use the approach to develop a real product, except perhaps a sculp-
ture. DeLanda believes, though, that deliberate design remains a crucial 
component of aesthetic design, and that these systems will only be useful 
if virtual evolution can be used to explore a space rich enough to prevent 
the designer from considering all possibilities in advance. He stated that, 
“Only if the results have an impact, or at least a surprise, can genetic 
algorithms be considered useful visualization tools” [59]. Further, he 
argued that the efficient use of genetic algorithms signifies the 

deployment of three forms of philosophical thinking first put together by 
Deleuze [60]—population-based, intensive and topological— estab-
lishing the basis for a new conception of the genesis of form. 

Broadly, we can say that research focused on design exploration 
tries, in a general way, to expand the solution space, generating diverse 
models to help the designer, and does not seek a precise solution. We 
also find solutions that involve the interaction of the different profiles 
implicated in the design, creating decision aid models and iterative 
approaches, using different AI techniques, from GA to PSO, fractals and 
EA. 

3.2. Morphogenesis 

A trend in architecture is the construction of buildings inspired by 
natural forms; thus, as early as 1995, Frazer [61] tried to develop a 
theoretical basis employing analogies with the evolutionary processes 
and the morphogenesis of nature. Morphogenesis focuses on the upward 
logic of finding shape, highlighting performance over appearance [62]. 
Frazer defines his Reptilian System as a construction set capable of 
producing a wide range of structures from an initial “seed,” a minimal 
construction that is manipulated through a series of processes and 
transformations that, if environmentally sensitive, results in forms that 
are also sensitive to their location. The generalization of this system 
implies the automatic configuration of the seed from the design re-
quirements on which the solutions evolve (Fig. 3). The quantifiable and 
specific aspects of the design instructions define the formal criteria that 

Fig. 1. Excerpt of eight successive generations for a hybrid exploration approach in which designs are selected by the user based on qualitative aesthetic charac-
teristics and quantitative performance. Mueller and Ochsendorf, 2015. 

Fig. 2. Two options for the design of the lateral and gravity structural system for an airport terminal: (left) a standard rigid frame and (right) a shaped rigid frame. 
The shaped frame uses a similar amount of material and creates a more architecturally expressive interior space. Mueller and Ochsendorf, 2015. 
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are used as a standard suitability function. Non-quantifiable criteria, 
such as aesthetic judgments, will be evaluated by the person using the 
system, thus creating a personal assistant capable of adapting to various 
criteria, including aesthetic tastes, using previously successful strate-
gies. This concept is similar to that of Negroponte’s “Architecture Ma-
chine” [63], which proposed a system so personalized that it would be 
practically unusable by others. 

In 1996, Coates et al. [36] presented a series of experiments based on 
a 3D CA that explored different sets of rules related to several 
morphological issues. In particular, they suggested a generative mech-
anism which would allow genetic structure to be accessed in any form 
and manipulated to increase the possibility of an emerging architectural 
result. Their aim was to develop a customizable CA engine with the 
ability to develop shapes within defined CAD environments under a 
wide range of state change rules, as a basis for a new type of architec-
tural modeling (Fig. 4). 

In the same year, Bentley designed an evolutionary system with the 
ability to evolve solid object designs from purely random beginnings, or 
from a combination of initial random and user-specified values, guided 
only by evaluation software during the evolutionary process [64]. 
Tested with fifteen design tasks, the system can discover solutions and 
offer conventional and non-conventional designs for all problems pre-
sented to it. The less limited the problem, the wider the variety of 
alternative, even unusual, design solutions that the system evolves, 
although it should be noted that it cannot accurately represent curved 

surfaces. The author proposed the improvement of these representations 
by the addition of non-homogeneous materials or the inclusion of a 
variable of density and characteristics related to the surface appearance 
of the designs (such as colors and textures). Bentley noted that the type 
of real-world design applications best suited for his system will be those 
that do not have very limited solutions, such as aerodynamic and hy-
drodynamic shapes. Alternatively, the method could be applied to solve 
design problems for factories, oil rigs, or shops, using primitives to 
define individual rooms or walls between rooms. In 1999, Bentley pre-
sented [65,66] a prototype design system using a genetic algorithm to 
develop new conceptual designs without preliminary design input that 
emphasized the evolution of creative design concepts rather than their 
optimization. A set of tasks considered “difficult” for a genetic algorithm 
was tested on the system: the design of optical prisms. Bentley demon-
strated that the system can successfully create numerous types of prisms, 
either by performing the entire design process itself, or by assembling 
new designs from smaller, pre-developed components. 

Some years later, Funes and Pollack presented an evolutionary 
building system based on Lego pieces as modular components [67]. 
Instead of incorporating an expert engineering knowledge system into 
the program, which the authors believed would result in familiar 
structures, they provided the algorithm with a physical reality model 
and a purely utilitarian fitness function. Thus, they provided function-
ality and viability measures and developed the evolutionary system in a 
not unnecessarily limited environment, to which they added a 

Fig. 3. Example of a design based on John Frazer’s Reptile structural system, 1966.  
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computability requirement to reject overly complex structures. The 
evolved structures were far from the common knowledge of how to build 
with bricks, and the authors provided images of the manually assembled 
designs to confirm that they met the objectives introduced in the 

proficiency functions (Fig. 5). 
In 2002, Krawczyk [68] described the process of generating archi-

tectural forms with CA: use raw data from a generative method, find a 
pattern, and then define methods in interpreting that pattern. According 

Fig. 4. Multistate automata after ten iterations with counting and voting rules. Coates et al., 1996.  

Fig. 5. Scheme evolved for the ‘Long Bridge’ experiment and the Lego Long Bridge. Funes and Pollack, 1999.  
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to the author, studying and developing all considerations thus identified 
forms the basis for a better understanding of the design phase itself, and 
the final results are not the goal—rather, it is the process that is 
important. 

In the same year, Jackson [69] analyzed the use of genetic pro-
gramming and the representation of the L-system [70]—created as a 
method for modeling plant development—within the sphere of genera-
tive architectural design, and proposed a model for describing archi-
tectural forms as a set of symbiotic relationships. The author presented 
examples of successful evolution using a single function of fitness. 

In 2003, Anzalone and Clarke [71] investigated methods for 
addressing architectural design and manufacturing using complex 
adaptive systems. They presented experiments that translated the 
behavior of a one-dimensional cellular automata system [72] into 
architectural design, as well as an adaptation of Conway’s Game of Life 
[73] (Fig. 6). 

In 2007, Herr and Kvan [74] presented an investigation into the 
processes of generative architectural design using cellular automated 

systems with a high level of human engagement. In these processes, 
different options were explored to modify and expand traditional 
cellular automata systems to support searches for architectural forms. 
The authors asked: where does the development of a design promise 
desirable results from a practical point of view, during which periods of 
the process and in which functions do cellular automata? In response, 
they presented a theoretical framework for integrating CA into the 
design process and implementing a dialog-based model, and evaluated 
its performance by remodeling an existing project for architectural 
design. Following Schön’s proposal [75], which modeled the design 
process as a chat between a designer and a particular design situation, 
the authors relied on the potential to investigate generative dialog-based 
design processes instead of being fully automated and operating in 
accordance with predefined rules. However, the responsiveness of a 
design process, maintaining a constant feedback loop with the designer, 
is essential in Schön’s description of the design process. 

Assessment within CA systems is generally based on rules of local 
interaction which yield emerging results. Making assessment 

Fig. 7. High-density architecture for Aomori/Japan by Cero9 (left) and Alternative versions of the Cero9 design generated by cellular automatons. Herr and 
Kvan, 2007. 

Fig. 6. Tower generated with an architectural design algorithm based on Conway’s Game of Life (left) and Structure generated within a landscape using a design 
algorithm based on Conway’s Game of Life (right). Anzalone and Clarke, 2003. 
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mechanisms more flexible, in addition to pre-established local rules, 
Herr and Kvan proposed that CA be integrated into an interactive design 
process which involves the designer more closely. The integrated system 
utilizes CA in its capacity to generate variance and adds the ability of the 
designer to assess and control overall development. This allows the 
generative methodology to be controlled and directed according to the 
evaluation of intermediate outcomes by the designer, rather than at the 
end of a fully automated generational sequence. 

Boden [76] explained in 2004 the potential spaces of the solution as 
conceptual spaces to a design problem, where the designer navigates 
through a sequence of decisions until he obtains a suitable result. 
Effective navigation in design solution spaces requires iteration and the 
possibility of going back to previous decisions to choose an alternative 
decision from a previous stage. CA, however, are irreversible systems in 
the sense that certain states do not allow the reconstruction of previous 

states. Therefore, a CA system for a dialog-based solution space explo-
ration would require records of its preceding states. Modular software 
tools seemed to Boden to be the most appropriate, and in the model 
proposed in the design process, CA support consists of various custom-
izable options that can be adapted through a series of variables to suit 
the design context. 

To show the generative potential of the proposed process in an 
appropriate design context, Herr and Kvan decided to reshape an 
architectural design consisting of a group of buildings proposed as a 
high-density development in northern Japan (see Fig. 7). 

Von Mammen and Jacob investigated the applications of evolu-
tionary swarm models and, in 2008, presented an extended swarm 
grammar model [77,78] to create 3D structures that fit models of 
architectural ideas. They avoided structural and computational growth 
by rewarding approximation of a predefined form and rapid computa-
tion to guide the evolutionary search. Diversity, productivity, and 
collaboration are encouraged by counting construction and reproduc-
tion events and neighborhood perceptions measurement. The authors 
concluded that the evolutionary design of swarms of architectural ideas 
works as a model but that for this technology to be applicable by ar-
chitects, it must be tailored to their needs. To do so will require stronger 
construction constraints and an interactive way of promoting the 
development of compelling designs (Fig. 8). 

In 2014, Lin and Gerber [32,79] presented a multidisciplinary design 
optimization (MDO) framework that they called “Evolutionary Energy 
Performance Feedback for Design” (EEPFD). It provides information on 
energy performance as feedback to support early design decision- 
making, providing rapid iteration with performance feedback through 
parameterization, automation and multi-target optimization. Yang and 
Bouchlaghem had already studied the applicability of a multidisci-
plinary design optimization (MDO) methodology for the design of 
buildings as early as 2010 [80], developing a collaborative optimization 
framework based on a Pareto genetic algorithm (PGACO) to sustain 
interactions among various tasks and coordinate conflicting design 
goals, though this had been tested only with a mathematical example. In 
this case, Lin and Gerber presented effective applications of PGACOs for 
architectural design (Fig. 9) and concluded that the system allows ar-
chitects to make decisions more smoothly and earlier than other existing 
approaches. 

In 2016, Herr and Ford [81] analyzed the use of adaptation processes 
in CA as design tools, focusing on the translation of CA’s specific char-
acteristics into constraints, opportunities, and adaptations to fit the re-
quirements of architectural design. Among these adjustments and 
modifications are alterations in CA rules, changes in cell shapes, 
consideration of the context of the site, adaptation to specific architec-
tural scales, interpretation of results in an abstract way to obtain more 
architectural options, and, finally, conceptualization of CA systems not 

Fig. 9. Illustrated diversity among participants’ parameterization/problem formulation for the same design problem. Summary of participants’ parametric designs 
with the comparison of design parameter problem scale, coupling, and geometric complexity. Lin and Gerber, 2014. 

Fig. 8. Examples of evolutionary design of swarms of architectural ideas. Von 
Mammen, 2008. 
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as autonomous deterministic systems, but as non-deterministic design 
tools. 

Herr and Ford suggested a case study involving the design of a hotel 
residence for engineers and scientists working on the European 
Extremely Large Telescope (E-ELT) located in the Atacama Desert of 
Chile. Ford responded with an initial methodological proposal to create 
a CA machine which would adopt architecturally appropriate rules. 
These rules would generate forms which can then be subjected to 
detailed architectural examination and intervention (Fig. 10). The de-
signer’s role was defined as a shared collaborative and evaluative role 
alongside the CA system. 

Ford sought to focus the generative potential of CA systems, which is 
not solely predetermined and controlled by the goals of architects, and 
stressed that the opportunity to achieve results beyond the goals and 
intentions of architects allows the expansion of their imagination, which 
will help develop innovative solutions for some design tasks. The sur-
prising elements that appear in CA-based generative processes are 
generally appreciated. However, at the same time, strong limitations are 
imposed, since the results often do not respond directly to the task of 
design. These reviewers believe this can be described as the central 
challenge of employing CA as generative architectural design tools. 
Responses to this challenge can be varied, and adapt CA systems or the 
form in which they are used. These adaptations in the field of research 
on CA applications to architectural design have not yet been 

systematically appreciated and addressed, thus preventing continuous 
learning and exchange between different projects. 

Pazos [14] used artificial intelligence techniques to model artificial 
objects through a morphogenesis process, to make them realistic, 
creating complexity and diversity to achieve imperfections such as those 
found in natural objects, and subjected his system to various tests of 3D 
modeling of complex geometries, including the design of the façade of a 
skyscraper (Fig. 11). 

3.3. Building shape 

In 2006, Wang, Rivard, and Zmeureanu [82] proposed a methodol-
ogy for optimizing the shapes of buildings in the plan using genetic al-
gorithms. Their goal was the design of ecological buildings, with the 
footprint of a building defined as a simple polygon and the cost of the 
building’s life cycle and its impact on the environment were assessed. 
The authors presented a case study in which a multi-targeted genetic 
algorithm optimized the shape of a typical floor of an office building 
defined by a pentagon (Fig. 12). 

Seeking to optimize the shape and characteristics of a building en-
velope, Tuhus-Dubrow and Krarti [83] developed and applied a 
simulation-optimization tool in 2010. Their tool combines a genetic 
algorithm with a simulation engine for building energy to select optimal 
values for a complete list of building envelope related parameters to 

Fig. 11. Tower design resembling the Beekman Tower generated by a GA and rendered in Vray. Pazos, 2017.  

Fig. 10. Generating and interpreting architectural results in a conversational generative design process. Herr and Ford, 2016.  
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minimize energy use in residential buildings. As part of the envelope 
optimization, they investigated different building shapes, including 
cross, L, T, U, H, trapezoid, and rectangle. The optimization results were 
applied to a residential building with a Building America Benchmark; 
the results indicated that the optimal shapes were consistently the 
rectangle and trapezoid. 

Li [84] argued in 2012 that when designers attempt to optimize 
design problems with the help of a GA, facing the inherent complexities 
of architectural designs, they must convert specific problems into 
combinatorial or numerical problems that can be addressed by the GA. 
Further, the expansion of the search space can be seen as a strong test of 
the search capacity of the GA. 

Li exemplified the optimization of architectural designs aided by the 
GA with optimization of the modeling for the schematic design of the 
former Ruins Museum of the South Gate of Yangzhou City. The opti-
mization sought to reduce the number of critical points of the frame, 
adjusting the relative positions and angles of the textures projected in 
the unfolded form and the position of the frame apex. The author 
concluded that, optimization is difficult to achieve for two optimization 
problems that are embedded in each other. Further, where optimization 
efficiency is assessed or optimal solution is needed, GAs are not a suit-
able option, although they can provide architects with diverse and 
roughly optimal solutions as references. Similar work can be found in 
the GA method for producing structurally optimal spatial frames trian-
gulated in Delaunay for Papapavlou’s dynamic loads [85]. 

In 2011, Caldas presented GENE-ARCH [86], a generative design 
system combining Pareto GAs and an energy simulation engine. The 
system, integrated with a grammar of forms, was applied to the design of 
Islamic patio houses. The resulting program was able to generate new, 

more energy-efficient alternative designs, in accordance with the 
traditional rules captured from the analysis of existing houses. 

In 2014, Jin and Jeong proposed a process for optimizing the shape 
of a free-form building based on GA, using a model to predict the ther-
mal load of the envelope as an objective function [87]. According to the 
authors, the variation in thermal load characteristics caused by the 
shape of the building can be quickly predicted and optimized in the 
initial design phase using the Rhino and Grasshopper software. They 
tested the proposed process by deriving the optimized form of the con-
struction model for different climatic zones (Fig. 13) and concluded that 
the effect of GA-based shape optimization on the improvement of free- 
form building thermal performance was greater in low-latitude regions 
than in high-latitude regions. 

In 2014, Dincer [88] presented a decision support tool that combines 
the right of choice and standardization in the production of collective 
housing designs, taking into account user preferences in the early stages 
of design. The system also includes a “Reflection in Action” protocol and 
CA. The protocol provides the user/designer with the opportunity to 
participate in the process using fragmentation and feedback, and also 
aims to reduce the impact of CA as independent and uncontrolled re-
lationships. This computer model for decision support covers the stages 
of site and space planning and façade solutions. Dincer experimented 
with an implementation in the Karabuk-Yenişehir region in Turkey, 
where sample plans for housing blocks were generated using different 
parameters: landscape direction, altitude, determination of construction 
heights for special areas, definition of the area used for socialization, etc. 
Different placement orientations were collected after each generation 
(Fig. 14). In the second stage, one of the housing blocks was chosen for 
space planning, generating several alternatives for each floor using small 

Fig. 12. Building footprints of selected solutions from the global Pareto set. Wang, Rivard and Zmeureanu, 2006.  
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changes of parameters, such as the starting direction for the generation 
and prioritization of the housing types. Finally, samples of the orienta-
tion of the façades were generated (Fig. 15). The author reported that 
the results of design processes are much better and more useful when the 
mutual relations between the human designer and the generative tools 
are constructed and positively evaluated. 

With a similar objective, in 2015 Araghi and Stouffs [89] presented 
an investigation into the integration of CAs in the architectural design 
process, in particular in the design of high-density residential building 
forms. They addressed accessibility and lighting needs while creating a 
3D architectural design for a residential project in the Netherlands 
(Fig. 16). The mechanism of this generative process contains two steps: 
first, developing visual descriptions of the architectural requirements, 
and second, transcribing those descriptions into an algorithmic language 
and CA rules. In design, CA rules perform analysis and synthesis 
simultaneously. 

Yi and Kim [90] also proposed a method for optimizing access to 
direct sunlight in a building that allows for varied design possibilities for 
the layout of high-rise apartment buildings by exploring two models: a 
non-uniform rational B-spline (NURBS) and a GA model. Korean build-
ing codes set the minimum number of hours of direct sunlight that 
residential buildings should receive, and to meet that requirement, 
apartment buildings should be separated from neighboring buildings or 
other structures by certain distances. In Yi and Kim’s proposal, an initial 
random population that sets up the initial design of the apartment 
building is generated in the NURBS geometry modeling CAD tool. A 
simulation tool evaluates geometric information (building layout) in the 
CAD model to determine if each measuring point meets the target (two 
hours of direct sunlight on the winter solstice). If the geometry fails to 

meet the target, the next generation is created to change the layout of 
the building from its original geometry. The simulation tool analyzes 
this new geometry for changes in the hours of sunlight the building re-
ceives, and the result is passed on to the target function. The best 
building design at this stage will influence the next generation of GA and 
alternative building designs will be produced until a design solution is 
found or until a predefined number of generations has been reached. The 
case studies presented by the authors (see Fig. 17) show that the domain 
of solutions for the test is large enough to provide multiple viable so-
lutions, although they do not take into account other factors such as the 
surrounding views or buildings. 

In 2016, Ekici, Chatzikonstantinou, Sariyildiz, Tasgetiren, and Pan 
[91] presented a self-adaptive and multi-target differential evolution 
algorithm for solving the shape problem found during the conceptual 
phase in the design of high-rise buildings. Two different optimization 
algorithms were developed by the authors to achieve Pareto fronts with 
diversified non-dominated solutions: a Non-Dominated Genetic Classi-
fication Algorithm II (NSGA-II) and a self-adaptive Differential Evolu-
tion Algorithm (jDE). Their results showed a much more desirable 
Pareto front is generated by the jDE algorithm. 

Konis, Gamas and Kensek proposed a Passive Performance Optimi-
zation Framework (PPOF) [92] that can optimize building geometry, 
orientation, fence configurations, and other building parameters in 
response to program requirements, site-specific adjacent buildings, and 
climate-based daylighting and full-building energy use performance 
metrics. In doing so, it can improve daylight performance, solar control 
and daylight ventilation strategies in early architectural project design 
phases. The authors tested the applicability of simulation-based para-
metric modeling workflow by comparing their results to a reference 

Fig. 13. Optimal shape for climate zone B (Arid): (a) Phoenix, (b) Tehran, (c) Cairo, (d) Average of zone B. Jin, 2014.  
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model, ASHRAE 90.1, in four different climates and urban sites (Los 
Angeles, Helsinki, Mexico City and New York City). They incorporated 
the actual urban context of each site for testing (Fig. 18). They 
concluded that PPOF and simulation-based workflow help to make 
generative modeling more accessible to designers working on regular 
projects and schedules to create high-performance buildings. 

In the same year, Song, Ghaboussi, and Kwon [1] proposed the use of 
an Implicit Redundant Representation Genetic Algorithm (IRRGA) for 
an evolutionary architectural design method and applied it to the design 
of apartment buildings. They suggested a new representation for the 
design, in which building consists of the number of apartment units and 
in which each unit is defined by a staircase and an apartment space, so 

that the size and number of apartment units with staircases are not fixed 
and may be modified during the design process. The apartment units can 
be located anywhere in the three-dimensional space in this representa-
tion, allowing for greater flexibility during the evolution from a simple 
base unit to a creative building design. The process of assessing suit-
ability is selectively applied in terms of symmetry, structure, circulation, 
and façade, and each objective is used as a function of suitability to 
demonstrate system performance. Each skill function reflects the extent 
to which an apartment building possesses the characteristics specified. 
Finally, a multi-target skill function is applied, and the resulting apart-
ment building designs demonstrate their creativity level (Fig. 19). 

Zhang, Zhang and Wang [93] designed a free-form construction 

Fig. 14. Site plan implementations for Karabuk-Yenişehir. Dincer, 2014.  

Fig. 15. Views of a chosen block along with its floor plan solutions and facade orientations. Dincer, 2014.  
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method which receives more solar radiation by optimizing the shape, 
taking into account the shape coefficient and the space efficiency. Their 
work provides a method with a “Modeling-Simulation-Optimization” 
framework, in which parametric modeling with Rhinoceros and Grass-
hopper is used to build the free-form building model, and optimization 
of the building shape is processed using a multi-objective genetic algo-
rithm to ensure that three objectives are achieved: maximizing space 
efficiency, maximizing solar radiation gain, and minimizing the shape 
coefficient. Finally, a Pareto frontier is created to demonstrate the 
optimal solutions and help designers make final decisions. Their case 
study showed that the total solar gain from the optimized free-form 
building was between 30 and 53% higher than the reference cube- 
shaped building, and the shape coefficient value was reduced by 15 to 
20%, with a decrease in the space efficiency values of less than 5%. 

In 2019, Fang and Cho [94] suggested a process that uses parametric 
design, genetic algorithms and building simulation to explore alterna-
tives to building design automatically, assess daylighting and energy 
performance simultaneously, and find design options with optimum 
performance. A case study of a small office building that they optimized 
for hot, mixed, and cold climates (Miami, Atlanta, and Chicago) tested 
the applicability and effectiveness of this approach. The authors 
concluded that design solutions with significant performance improve-
ments can be found with this method, and their results show that the 
skylight width and length of the analyzed variables are the most 

important factors for all locations. The authors of this review believe it 
will be necessary to further expand the optimization objectives and to 
perform further testing of the process optimization for more complex 
design projects to confirm its effectiveness more generally. 

In the same year, Cubukcuoglu, Ekici, Tasgetiren, and Sariyildiz 
presented OPTIMUS [95], a self-adaptive differential evolution algo-
rithm with a set of mutation strategies (jEDE) for Grasshopper algo-
rithmic modeling in the Rhinoceros CAD program. The experimental 
results showed that Optimus (jEDE) outperforms other optimization 
tools such as Galapagos (genetic algorithm), SilverEye (particle swarm 
optimization), and Opossum (RbfOpt), achieving better results for 19 of 
the 20 proposed problems. The authors noted that OPTIMUS can be 
extended for multi-target optimization problems due to its modular 
system. 

Si, Wang, Yao, Shi, Jin, and Zhou [96] applied the building perfor-
mance optimization (BPO) method to the conceptual design phase of a 
newly built tourist complex to improve energy efficiency and indoor 
thermal comfort, the two design goals of greatest interest to the project’s 
designers. Some variables, such as the shape of the building’s eaves, 
were optimized using an artificial neural network model designed to 
reduce calculation time. They evaluated the performance of four 
commonly used multi-objective optimization algorithms—NSGA-II, 
MOPSO, MOSA, and ES—using the performance assessment criteria 
proposed to select the best algorithm and parameter values for 

Fig. 16. Example of integration of CAs in the design of architecture of high-density buildings: residential project in the Netherlands. Araghi and Stouffs, 2015.  

Fig. 17. Image captured from the CAD tool which indicates the unsatisfied area of sunlight access for the base case. Yi and Kim, 2015.  
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population size and number of generations. The results indicated that 
NSGA-II performs better in all aspects assessed. The authors stated that 
the optimal end solution significantly improves the performance of the 
building, demonstrating the success of the BPO technique in solving 
complex construction design problems. They also noted that the results 
of the algorithm’s performance evaluation guide users to select appro-
priate algorithms and configure parameters according to the most 
important performance criteria (Fig. 20). 

3.4. Ceiling form 

In 2007, Pugnale and Sassone [97] described a method for 
morphogenesis and structural optimization of a reinforced concrete roof 
based on the application of a genetic algorithm. They performed a case 
study of the Kakamigahara crematorium in Gifu (Japan), designed by 
Toyo Ito with Mutsuro Sasaki. The shape of the reinforced concrete roof 
is free in plan, with a set of support columns placed randomly at ground 
level. The use of a NURBS (Non-Uniform Rational B-Spline) 

representation of the roof allows the shape to be modified by changing 
the position of the control points or by interpolating points, so that the 
coordinates of these points can be assumed as design variables. The 
optimization improved the structural behavior about tenfold in 75 
generations by selectively modifying the parts of the structure with the 
worst behavior. 

In 2011, Gaspar-Cunha, Loyens and van Hattum [98] tested a 
computational method of iterative design optimization that combines 
multi-objective evolutionary algorithms (MOEA) in conjunction with 
decision-making methodology and critical decision-making interaction 
(DM) to optimize the “generic” roof structure under natural light con-
ditions, minimizing the surface area, and thus the weight and materials 
used. 

In the same year, Rakha and Nassar [99] investigated the geometry 
of the ceiling as an element capable of controlling natural light by 
reflecting and diffusing light in the components and presenting archi-
tects with a generic optimization procedure to help generate and find 
forms of curved and meshed ceilings. The authors found an optimal 

Fig. 18. Parametric building models generated by the PPOF leading to the best (center column) and worst (right column) performance outcomes for each of four 
climate-based scenarios. The base case model for each scenario is shown in the left column. Konis, 2016. 
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ceiling geometry and shape for a case study and noted that the code had 
demonstrated different new directions for performative fit geometry, 
providing the architect with a variety of design options and offering a 
robust and accurate shape-finding method (Fig. 21). 

Turrin, von Buelow, and Stouffs [100] investigated in 2011 the 
benefits derived from the combination of parametric modeling and ge-
netic algorithms to attain a performance-oriented design process and 
presented a tool they called ParaGen, which allows integration of the 
evaluation of various performance values in the first stage of the design 
process. Doing so guides the generation of the alternatives using GA and 

supports designers in navigating through the alternatives generated and 
assessment of their performance. The authors presented a specific case 
study that uses large decks and a method of parameterization enabling 
the creation of design alternatives that represent the deck geometry, the 
pattern and densities of its structural tessellation, and, in a second case 
study, its cladding system (Fig. 22). 

In 2016, Zaremba used genetic algorithms [101] to adjust the arches 
of a roof system that follows a free-form NURBS surface, with double 
curved glass panels covering the structure. The algorithm adjusts ele-
ments to minimize the deviation from the initial curve and maximize 

Fig. 19. Diverse solutions after applying the symmetry, structure, cost and connection rule. Song, Ghaboussi and Kwon, 2016.  

Fig. 20. Shape of the eaves of different design solutions. Si et al., 2019.  
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continuity between arches to provide full design freedom while still 
ensuring construction is possible. 

In 2016, Rian and Asayama [10] used self-similar and random 
fractals to design a large-scale wrinkled roof structure inspired by a 
natural terrain’s random shape to explore the power of fractal geometry 

as a framework that can provide new structural forms. The authors 
explored the relationship between the irregularity factor (fractal 
dimension) and structural resistance and analyzed the relationship be-
tween the roof shape’s fractal dimension and its weight. This study’s 
structural analysis confirms the structural feasibility and strength of 

Fig. 22. Examples of results from the ParaGen cycle for summer conditions (with normalized values). Turrin, von Buelow, and Stouffs, 2011.  

Fig. 21. Examples of ceiling geometry and shapes. Rakha and Nassar, 2011.  
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such an irregular roof structure, although the authors proposed the 
implementation of a process of computer optimization based on auto-
matic search algorithms (such as GA) to find the optimal shape of such a 
structure (Fig. 23). The authors of this review agree with Rian and 
Asayama that the creative possibilities of using fractals are undeniable, 
but several questions remain before they can be applied in real design 
cases, since their structural stability against strong winds has not been 
studied, nor other practical problems such as water or snow collection in 
concave areas or the difficulty of cleaning such an irregular structure. 

3.5. Façade design 

Skavara [102] explored in 2009 the possibilities of controlling a 
cellular automata’s emerging behavior to develop an adaptive, high- 
performance façade that provides optimal lighting conditions inside a 
building. To do so, he implemented an artificial neuron network and 
through a flow of experiments on the control of cellular automata 
complexity with retro propagation and optimization with genetic algo-
rithms. He trained the façade to handle cellular automata’s structural 
characteristics, to achieve optimum lighting conditions within, to 
constitute an adaptive and kinetic architectural entity that allowed the 
system to successfully evolve in its context (Fig. 24). The author argued 
it is not necessary to reach a compromise between aesthetic merit and 
pragmatic objectives, and demonstrated that the façade of a building can 
be trained to improve adaptability to its environment, together with a 
high aesthetic value (Fig. 25). 

In 2010, Gagne and Andersen [103] studied a GA approach that 

allows performance-based exploration of façade designs. The design of a 
building’s façade has a huge effect on the performance of the interior 
spaces in daylight, and this method combines an efficient micro-GA al-
gorithm [104,105] with a large number of user inputs, including an 
original three-dimensional mass model and user-specific performance 
targets, and assumes the overall shape of the building remains the same 
while the façade elements may change. The authors presented two case 
studies that show the performance of the single-objective [106] and 
multi-objective [107] micro-GA search processes and reflected on the 
limitations of GA-based approaches. One limitation is the lack of con-
sistency in the final solutions found, owing to the random generation of 
initial design solutions. This limitation can be addressed to some extent 
by additional generations, adding extra time to an already long process. 
Another restriction is the GA’s tendency to become “stuck” in a solution 
that is only a minimum or maximum for the local population. However, 
the authors of this review agree with Gagne and Anderson that it is not 
necessary to find an overall optimum to explore performance-based 
design; it should be sufficient to present the user with a design or set 
of designs to use as an initial, not a final design (Fig. 26). 

In 2017, Chatzikonstantinou and Sariyildiz [11] presented a 
decision-based support framework for the treatment of design prefer-
ences. Their proposed framework is based on self-associated machine 
learning models which inductively learn the relationships between 
design features that characterize high-performance designs. The 
knowledge to be learned is derived through stochastic multi-objective 
optimization; the model offers a high-performance design solution, in 
which preferences regarding physical characteristics are also satisfied as 

Fig. 23. Wireframe geometric model of the fractal-based canopy structure. Rian, 2016.  

Fig. 24. Seven-state discrete CA implemented on the façade. Screenshots of the program running in Processing 1.0. Skavara, 2009.  
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possible. The authors stressed that decision-makers can focus on 
addressing the desirable aspects of design with their method, with the 
certainty that the resulting solutions will be near-optimal. They assessed 
the proposed method using an application designed for a sustainable 
façade. 

In 2017, Karaman et al. [108] proposed a multi-target optimization 
implementation for a rectangular façade design for the common space of 
a healthcare building in Izmir, Turkey. The objective was to improve 
interior comfort through cost-effective façade design alternatives, 

maximizing natural light performance, and minimizing construction 
costs. To do so, they used NSGA-II and the multi-target, self-adaptive 
differential evolution set (jE_DEMO). The authors stated that both al-
gorithms achieve feasible facade design solutions; NSGA-II converges 
very quickly and offers better performance in terms of hypervolume 
calculation, while jE_DEMO presents a broader range of objective results 
and a greater variety of alternatives to façade design. 

In 2019, Agirbas [2] studied the principles of cohesion, alignment 
and separation from nature, for possible use in architectural design and 

Fig. 25. Physical kinetic model. Skavara, 2009.  

Fig. 26. Seven example designs from the Pareto front with their illumination and glare values. Gagne, 2010.  
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façade construction. In the design process, the author combined the use 
of (user-defined) morphodynamic and (automated) morphogenetic 
perspectives; thus, user-defined parameters could be integrated into an 
automation system based on swarm. The properties of the variations in 
the façade resulting from this combined approach were evaluated and 
the results compared based on relative daylight capture (Fig. 27). 

3.6. Layout design 

The problem with the layout of the facility is to find feasible locations 
for a set of interrelated objects which satisfy all design requirements. 
Rafiq, Mathews, and Bullock [109] investigated the use of GA in the 
design of buildings by extending the previous work of Park and Grierson 
[25], Grierson and Khajehpour [110] and Sisk et al. [111] to demon-
strate the potential of GA-based software. Their approach allows 
research questions to be addressed from a design engineer ‘s perspective 

Fig. 27. Façade alternatives produced using swarm intelligence. Agirbas, 2019.  

Fig. 28. Visualization of the best concept for land cost variations. Rafiq, Mathews and Bullock, 2003.  
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and GA’s capacity within a decision support system, capable of consid-
ering alternative structural systems in parallel, as long as genes 
belonging to different design solutions that are incompatible with each 
other are not mixed. Rafiq, Mathews, and Bullock avoided this problem 
by using a structured GA applied to the design of medium-height office- 
type buildings with a rectangular floor plan. The cost functions used to 
measure the suitability of different design concepts only considered the 
building’s capital cost and expected revenues over its lifetime. The au-
thors concluded that with their system, designs which use different 
configurations, construction methods and materials can be investigated 
simultaneously, and that it can also be used for parametric studies of 
how a change in the value of one design parameter affects the selection 
of other parameters when searching for an overall optimum design 
(Fig. 28). 

In 2006, Yeh proposed a combination of Hopfield’s neural networks 
(a model representing the problem of design) with annealing simula-
tions (a search algorithm for finding optimal or near-optimal solutions) 
[8]. A case study of a hospital building with 28 establishments was used 
to demonstrate the model’s efficiency for an architectural distribution 

problem, and Yeh concluded that it is suitable for the rapid calculation 
of large distribution problems. 

In 2009, Wong and Chan [112] presented the evolutionary system 
EvoArch, used with a graphical coding scheme. They represented the 
spatial organization in the form of a labeled graphic, so functions such as 
kitchens and bedrooms can be represented as nodes and the adjacency 
between them, such as separation by a wall, can be represented as edges. 
These graphics are similar to bubble diagrams, from which the di-
mensions and geometries can be inserted to generate floor plans. The 
process includes budget and other design constraints in addition to 
preferred adjacencies. Thus, the resulting graphics that satisfy these 
constraints will facilitate the next stage of generating the architectural 
layout plan. The authors utilized EvoArch to design a house with nine 
functional spaces (Fig. 29). 

In 2015, Ugurlu, Chatzikonstantinou, Sariyildiz, and Tasgetiren 
[113] addressed a layout optimization problem for restaurant archi-
tecture. They presented the results of the application of a rapid and 
unmastered classification GA called NSGA-II [114] and differential 
evolution (DE) algorithms to identify suitable solutions to this design 

Fig. 29. Examples of optimal architectural space topology generated by experiment with corresponding floor plans. Wong, 2009.  
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problem. The multi-target problem is how to locate a kitchen and a set of 
tables to increase profit and decrease investment, using an approach that 
considers the functional, economic, constructive and architectural as-
pects of the layout. The authors reported that they achieved plausible 
design solutions and that the DE algorithm achieves the best perfor-
mance when calculating hypervolume, as well as promising results when 
examining a frontal Pareto approach. 

The same problem was addressed by Cubukcuoglu, Chatzikon-
stantinou, Ekici, Sariyildiz, and Tasgetiren [115] in the following year. 
In this case, a multi-target self-adaptive differential evolution algorithm 
(jDEMO) inspired by the DEMO algorithm [116] was developed and 
compared with the NSGA-II genetic algorithm. The authors concluded 
that the proposed algorithm offered results competitive with the NSGA- 
II algorithm (Fig. 30). 

In 2016, Dino [117] presented a tool called EASE (Evolutionary 
Architectural Space layout Explorer) to make it easier to optimize the 
design of 3D spaces. EASE addresses the exploration of architectural 
design and the need to consider several alternatives in the design of the 
layout simultaneously, using evolutionary optimization to find a balance 
between divergent exploration and convergent exploitation. Dino 
stressed that the designs generated by his system are not intended to be 
final, but rather serve as design artifacts that provide space for further 
exploration of the solution. The tool has been tested in the design of a 

library building, assessing its performance for different construction 
forms and different parameters of evolutionary algorithms (Fig. 31). 

In the same year, De Almeida, Taborda, Santos, Kwiecinski, and Eloy 
[118] introduced an evolutionary approach that allows modular resi-
dential housing to be designed automatically for personalized mass 
production. Given a set of modular design placement rules, the formal 
problem can be seen as a two-dimensional issue of placing large objects 
with fixed dimensions and additional positioning constraints. This 
formulation outcome in the search for a layout of the floor plan is limited 
by dimensional and positioning constraints on a size-search space 
combinatorial. A genetic algorithm strategy for floor plan design auto-
mation (G-Shaper) was implemented and exhibited. Once integrated 
into a suitable graphic interface system, it can help future owners ac-
quire homes at affordable prices that fit their needs. The authors sub-
sequently optimized the system by including, among other 
improvements, the management of variable room dimensions [119]. 

In 2017, Guo and Li [120] presented an automated design technique 
for space allocation, with an approach similar to that previously used by 
Doulgerakis [121], who developed internal polygon designs represent-
ing the boundary of the building. Rooms are created by dividing the 
original polygon into small parts and division operations were coded 
using genetic algorithms; although multi-story layouts are addressed, 
vertical spaces, such as two-story living rooms [122] and stairs 

Fig. 31. Examples of AESE tool for the design of a library building, best layout of two forms alternatives. Dino, 2016.  

Fig. 30. Cubukcuoglu, 2016.  
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[122,123] were only later addressed by Merrell et al. 
The method proposed by Guo and Li combines a multiagent system 

and progressive process. The multiagent system models the layout as 
points and lines, reduces the search space, and allows for the optimi-
zation of 3D designs (Fig. 32). The model that evolutionary optimization 
uses is based on a three-dimensional grid system that is easy to imple-
ment but limits the space for the solution. Non-orthogonal designs 
within a grid system are difficult to generate, and curved rooms cannot 
be achieved in this model (Fig. 33). 

In 2018, As, Pal and Basu [124] presented a graphically based 
automatic learning system to generate a conceptual design. The authors 
trained deep neural networks to evaluate and score existing designs 
coded as graphics, decompose them as subgraphs to extract meaningful 
building blocks, and merge them into new compositions. They also used 
generative adversarial networks (GAN) to create new designs, not seen 
in the training set. The system has the disadvantage that, at the moment, 

no tool automatically converts orthographic drawings into graphics. The 
authors also indicated that human intervention will be necessary to 
assess the effectiveness of the AI-generated designs. 

3.7. Floor plans 

Gero and Schnier [125] worked in 1995 on the adaptation of creative 
design based on the notion of creativity as “a goal-oriented change of 
focus in a search process.” They used genetic algorithms and an evolving 
representation to restructure the search space such that designs similar 
to the example case are at the center of the search and this approach is 
the starting point for new design generation. Rosenman and Gero [126], 
in 1999, worked on the evolution of designs by generating complex and 
useful genetic structures with a genetic engineering approach applied to 
architectural plans to overcome the combinational effect of large design 
spaces by focusing on useful areas of research. Their method starts with 

Fig. 32. Left: generated topology relationships of the three-level houses. Blue points and lines show the internal geometries of bubbles, and red lines represent 
connections between bubbles. Right: optimized grid-based layout. Guo and Li, 2017. 

Fig. 33. Spatial layout generated based on the bubble diagram. The left image is rendered without an exterior wall, and the right images are separated into layers. 
Guo and Li, 2017. 
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design spaces defined by low-level basic genes and creates design spaces 
defined by increasingly complex genetic structures. The low-level basic 
genes are simple design actions which produce parts of design solutions 
when executed. 

Park and Grierson [25] developed in 1999 a computational proced-
ure for optimal conceptual multi-criteria design of the structural 
arrangement of buildings subject to specific requirements and specifi-
cations. Two objective criteria are used for evaluation of alternative 
designs: first, minimizing the cost of the construction project by mini-
mizing the function defining the combined costs of the building’s 
structural system and of the land for the work; second, optimizing the 
flexibility of the use of space, a qualitative criterion given a quantitative 
form by minimizing the exponential function relating to the tax burden 
area and the spacing of the columns. Using Pareto’s optimization theory, 
they applied a multi-criteria genetic algorithm to solve the building’s 
conceptual design problem and introduced a variable mutation tech-
nique to maintain genetic diversity and speed up the stochastic search 
for the global optimum and test the system in a building’s concept 
design. The authors concluded that, by providing Pareto curves that 
define the balance between the various competing objective design 
criteria, the system is suitable to support a designer’s decision making. 

In 1999, Rafiq, Bugmann, and Easterbrook [127] developed a GA- 
based tool for the design of office buildings using an objective func-
tioning neural network. The system is restricted to buildings with a 
concrete structure and contains the minimum and maximum number of 
floors, preferred floor height, site dimensions, construction footprint, 
various grids, loads, and lightness requirements as constraints. The 
system also calls for inputs of costs for materials, land, and labor. The 

parameters are the number of floors, their dimensions and the ratio of 
beam width to depth. They consulted with architects, structural engi-
neers, and quantity surveyors at the start of their work, and used the 
information they gathered to verify the software’s usefulness. Their 
system delivers a single optimum design, although the user can access 
information about other options produced by the tool. 

In 2001, Miles, Sisk, and Moore [128] developed a decision support 
system for the conceptual design of commercial office buildings that 
they call BGRID (full details of BGRID are provided in Sisk’s thesis 
[129]). Previous work [130] had demonstrated the need to support 
rather than replace the designer in the decision-making process, so the 
style of the system must be that of a decision support system. It uses a 
genetic algorithm as a search tool to provide the designer with viable 
design options, rather than an optimization tool, and incorporates a high 
level of knowledge about structural design and its constraints. The 
design process focuses on the floor plan and the determination of column 
layout based on a wide range of criteria, including lighting re-
quirements, ventilation strategies, limitations introduced by the avail-
able dimensions of typical building materials, and structural systems 
available. The authors noted that the system allows users to quickly 
explore the design space and consider many options and highlighted 
that it underwent extensive evaluation to ensure that its shape and 
characteristics are appropriate and meet the user’s chosen domain 
needs. 

In 2002, Von Buelow [131] studied the application of an intelligent 
genetic engineering tool (IGDT) to explore structures that would 
otherwise be difficult to assess. The author intended the tool as an aid for 
designers to meet aesthetic and performance criteria when solving 

Fig. 34. Performative Computer Architecture (PCA) framework. Ekici, Cubukcuoglu, Turrin and Sariyildizat, 2018.  
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problems, while also offering economic benefits with reduced building 
weight, although the author indicated tests with external projects and 
designers would be necessary. 

In the same year, Michalek, Choudhary, and Papalambros [132] 
tested an optimization model for quantifiable architectural design as-
pects and presented a method for integrating mathematical optimization 
and subjective decision-making during conceptual design. Their model 
applies evolutionary algorithms to discrete decision-making and global 
search. The results of automated optimization of a tiny apartment 
complex with three independent houses are comparable to those of other 
methods, and their formulation allows the power of human decision 
making to be integrated in the process. 

Sisk [133] considered that research on computer-aided design is 
often carried out with little input from designers, and indicated that the 
techniques developed are not subject to any kind of independent 
assessment, so such methodologies are therefore lacking in scientific 
rigor. As an example, he pointed out that the evolutionary computer 
system applied to the conceptual design of the Khajehpour and Grierson 
office buildings [134], without any significant industrial involvement. 
In 2003, he published a research project [133] examining the BGRID 
evolutionary computing system’s application to the design of commer-
cial office buildings. The project involved several designers (two archi-
tects, two structural engineers, and a construction service engineer) who 
provided assessments of the technique, allowing the author to claim that 
a search engine based on evolutionary computing is an appropriate tool 
for this type of design problem. 

Vertical circulations (stairs and elevators) have been treated as fixed 
and rigid elements when dealing with the issue of multiple levels in 
automated architectural design research, which are usually set as con-
straints at the start of the problem. In 2013, Rodrigues, Gaspar, and 
Gomes [123] presented a multi-level approach to floor plan design using 
a hybrid evolutionary technique in which stairways and elevators are 
parametric objects interacting with other spaces during the search. The 
authors demonstrated that the algorithm is capable of generating 
coherent floor plans at several levels in three case studies. The algorithm 
was tested to deal with large and complex problems—seeing how con-
current vertical circulation objects interact and how multiple levels are 
stacked within a building boundary. The main advantage of the pro-
posed approach is that it allows stairs and elevators to be part of the 
evolutionary process and, as a result, the technique expands the region 
of possible design solutions and increases the number of floor plans from 
which the architect can choose. 

In 2018, Ekici, Cubukcuoglu, Turrin, and Sariyildizat [135] con-
ducted a review of performative computer architecture (PCA) that uses 
evolutionary and swarm optimization for sustainability, cost, function-
ality, or structure related goals. This framework consists of three basic 
phases (as shown in Fig. 34): form generation, performance evaluation, 
and optimization. The main objective of PCA is to find the geometry that 
best meets performance-related objectives at the conceptual design 
stage. 

The authors noted that one algorithm can outperform another in 
solving a particular problem only, since architectural designs are unique 
problems because of their objectives, schedule of construction, limita-
tions, customer expectations and environmental impacts, different al-
gorithms must be explored and compared to solving the same 
architectural design problem in order to make more appropriate design 
decisions. However, the authors of this review have observed that very 
few studies have compared the application of different swarm and 
evolutionary computation (SEC) algorithms to the same architectural 
design problem. 

4. Results 

From our analysis of the publications cited (see Table 1 in the Ap-
pendix) we obtain the following results: 

There is a remarkable increase in the number of publications on the 

topic over time from 2015 onwards, with 85% growth in the last 5 years 
compared with previous years (see Fig. 35). Most of the articles 
reviewed have been published in “Automation in Construction,” “Energy 
and Buildings,” and “Building and Environment,” with residential and 
office buildings receiving the most research attention. 

As for the AI methods used (Figs. 36 and 37), we can see that the vast 
majority (more than 73%) employ EC. Of the various EC techniques 
used, GA stands out, with 48 papers (89%), of which 18 use multi- 
objectives GA. 

We found several features that make the way an EC system works and 
generates new ideas for an architectural object adaptable. The crossover 
operator allows various potential solutions to be combined whilst the 
mutation introduces new features. The fact that GAs generate successive 
generations of solutions from the best results enables a broad 

Fig. 36. AI methods used in the analyzed research.  

Fig. 37. AI methods used by date of publication.  

Fig. 35. Studies by date of publication.  
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exploration of the search space while high-quality regions are identified. 
Finally, these techniques are adapted to multi-target design problems. 

CA were mainly employed in early, more exploratory work; the last 
publication using CA is from 2016. ANN have been little used to date, 
although we should highlight an example from 2018 of ANN using GAN 
[124]. It is foreseeable that more publications will appear in coming, 
years given the growing application of deep learning in other creative 
fields, such as the arts [136–138]. 

If we analyze the applications of the research and the topics covered 
(Fig. 38), we can observe a trend moving from an exploration of design 
in early years (design exploration, morphogenesis) where inspiration is 
sought or the generation of complex shapes to an optimization of the 
shape in recent years—where the goal is not to start from scratch, but to 
improve a pre-existing design (building shape, layout design, façade 
design) (Fig. 39). 

5. Conclusions 

This article provides an overview of the application of state-of-the- 
art AI techniques to conceptual design problems in architecture. We 
must highlight the remarkable increase in publications from 2015 on-
wards. Over the past five years, the number of investigations using AI 
methods to solve conceptual design problems in architecture has 
increased by 85%. We also not a trend toward solutions for shape 
optimization in the latest research. If, at the end of the last century, 
research was oriented toward the exploration of design and morpho-
genesis, as an inspiration for the designer through the generation of 

complex and unexpected shapes, most studies now aim to improve pre- 
existing designs, and in particular, to optimize their shapes. 

As far as AI methods used are concerned, the vast majority of the 
articles analyzed employ EC methods, and specifically, GA. EC is used to 
create innovative, creative, efficient, and aesthetically pleasing archi-
tectural objects with good performance. EC serves not only as an opti-
mization tool, but as an important component of a design methodology. 

GAs can handle large problems easily, because they work with a 
solution population and provide optimum balance between multiple 
design criteria, making them an appropriate method for solving prob-
lems involving design and optimization. As proposed by Caldas as early 
as 2003, the use of GA to generate the shape of a building or their fa-
çades would benefit from an interface enabling designers to generate 
initial CAD solutions and view modified GA solutions within the same 
CAD environment [139]. In this sense, we agree with Ekici, Cubukcuo-
glu, Turrin, and Sariyildizat in their review of PCA: “A better integration 
of investigations related to computer science within the architectural 
domain is missing despite its expected benefits” [135]. 

Other lines of research apply neural networks, fractal algorithms, or 
automatic learning approaches to the practice of conceptual architec-
tural design. The creation of IEC solutions can facilitate design cus-
tomization to meet specific user requirements. Automatic systems based 
on aesthetic concepts are becoming increasingly popular in related fields 
(e.g., art and design) [140–143]. And more specifically, aesthetics 
optimized for an individual or society. We believe that the use of deep 
learning, especially in combination with ANN, as well as the application 
of new paradigms in creative systems, such as those presented at the 

Fig. 39. Topics of research by date of publication.  

Fig. 38. Topics of research.  
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International Conference on Computational Creativity (ICCC) or the 
International Conference on Artificial Intelligence in Music, Sound, Art 
and Design (EvoMUSART*) can open new paths in this area. 
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Appendix A  

Table 1 
Summary table of the analyzed research, in chronological order, with information about the main author of the article, the topic addressed, the IA methods used 
and the reference in the bibliography.  

Ref. Author Date Method Topic 

125 Gero 1995 GA Floor Plans 
61 Frazer 1995 CA Morphogenesis 
39,40 Maher 1996 CoGA Design Exploration 
36 Coates 1996 CA Morphogenesis 
64 Bentley 1996 GA Morphogenesis 
44 Cvetkovic 1999 MOGA Design Exploration 
25 Park 1999 MOGA(MGA) Floor Plans 
126 Rosenman 1999 GA Floor Plans 
127 Rafiq 1999 GA + ANN Floor Plans 
110 Grierson 1999 MOGA + ANN Layout Design 
134 Khajehpour 1999 MOGA Layout Design 
67 Funes 1999 GA Morphogenesis 
46 Gero 2000 GA Design Exploration 
58 Graham 2001 GA Design Exploration 
128 Miles 2001 GA (BGRID) Floor Plans 
131 Von Buelow 2002 GA Floor Plans 
132 Michalek 2002 GA + SA Floor Plans 
68 Krawczyk 2002 CA Morphogenesis 
69 Jackson 2002 GP + L-system Morphogenesis 
48 Packham 2003 MOGA (IVCGA) Design Exploration 
133 Sisk 2003 GA (BGRID) Floor Plans 
109 Rafiq 2003 SGA Layout Design 
71 Anzalone 2003 CA Morphogenesis 
49 Rafiq 2005 MOGA (IVCGA) Design Exploration 
52 Malkawi 2005 GA + CFD Design Exploration 
82 Wang 2006 MOGA Building Shape 
8 Yeh 2006 Annealed NN Layout Design 
97 Pugnale 2007 GA Ceiling Form 
54 Liu 2007 PSO Design Exploration 
121 Doulgerakis 2007 MOGA Layout Design 
74 Herr 2007 CA Morphogenesis 
50 Rafiq 2008 MOGA (IVCGA) Design Exploration 
77,78 Von Mammen 2008 PSO Morphogenesis 
102 Skavara 2009 CA + ANN + GA Façade Design 
112 Wong 2009 EA (EvoArch) Layout Design 
83 Tuhus-Dubrow 2010 GA Building Shape 
98 Gaspar-Cunha 2010 MOEA Ceiling Form 
9 Wen 2010 Fractal Design Exploration 
103 Gagne 2010 micro-GA Façade Design 
122 Merrell 2010 Bayesian network Layout Design 
86 Caldas 2011 GA Building Shape 
99 Rakha 2011 GA Ceiling Form 
100 Turrin 2011 GA (ParaGen) Ceiling Form 
84 Li 2012 GA Building Shape 
123 Rodrigues 2013 EP (EPSAP) Floor Plans 
87 Jin 2014 GA Building Shape 
88 Dincer 2014 CA Building Shape 
32,79 Lin 2014 MOGA Morphogenesis 
89 Araghi 2015 CA Building Shape 
90 Yi 2015 GA Building Shape 
57 Mueller 2015 IEA Design Exploration 
113 Ugurlu 2015 MOGA (NSGA-II) + DE Layout Design 
1 Song 2016 IRRGA Building Shape 
91 Ekici 2016 MOGA (NSGA-II), EA (jDE) Building Shape 
92 Konis 2016 MOGA Building Shape 
93 Zhang 2016 MOGA Building Shape 
10 Rian 2016 Fractal Ceiling Form 
101 Zaremba 2016 GA Ceiling Form 

(continued on next page) 
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Table 1 (continued ) 

Ref. Author Date Method Topic 

115 Cubukcuoglu 2016 MOGA (jDEMO) Layout Design 
117 Dino 2016 GA (EASE) Layout Design 
81 Herr 2016 CA Morphogenesis 
11 Chatzikonstantinou 2017 Auto-associative NN Façade Design 
108 Karaman 2017 MOGA (jE_DEMO, NSGA-II) Façade Design 
118 De Almeida 2017 GA Layout Design 
120 Guo 2017 GA Layout Design 
14 Pazos 2017 GA, IEC Morphogenesis 
119 Taborda 2018 GA Layout Design 
124 As 2018 DNN, GAN Layout Design 
94 Fang 2019 MOGA Building Shape 
95 Cubukcuoglu 2019 EA (jEDE) Building Shape 
96 Si 2019 MOGA (NSGA-II, MOPSO, MOSA, ES) + ANN Building Shape 
2 Agirbas 2019 Swarm Façade Design  
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