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Meso-scale modeling of

reaction-diffusion processes

using cellular automata

Thesis submitted in fulfillment of the requirements for the degree of

Doctor (Ph.D) of Applied Biological Sciences

Academic year 2013-2014



Dutch translation of the title:

Mesoschaal modellering van reactie-diffusieprocessen aan de hand van cel-

lulaire automaten

Please refer to this work as follows:
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1 General introduction

Mathematics has always interacted with other disciplines and has been

influenced by them as well as provided to these disciplines a universal lan-

guage to significantly advance their own fields of knowledge [1]. Exam-

ples of this interaction date back to the early days of human civilization.

Summation series helped Ancient Egyptians build the pyramids and An-

cient Greek philosophers studied the manner in which species evolve to fit

their environment, which formed the basis for modern evolution theories.

Since the beginning of the 20th century, mathematical models have be-

come increasingly important in the life sciences. Examples of such models

include the Michaelis-Menten equation for enzyme kinetics [2], Haldane’s

equation for genetic mapping [3], the Lotka-Volterra equations for predator-

prey systems [4] and the Hodgkin-Huxley’s equations for the neural axon

membrane potential [5]. The long history between mathematical and life

sciences proves that collaborations between scientists from different disci-

plines is a necessity and that they can lead to new methods, tools and

approaches. Mathematical modeling of real-world problems attempts just

that by bringing the different fields from which the problems arise in contact

with mathematics and informatics.

Mathematical models, which are a translation of an artificial or natural

system into a set of mathematical equations, are crucial in the life sciences

and therefore their role has continued to increase. Indeed, these models

can be used to support theories, however, they can also suggest the need

for better experiments and more focused observations that in their turn

can be employed to check the model accuracy. Further, large amounts

of (experimental) data can be intelligently processed by o.a. efficient data

mining algorithms and vizualisation tools. Ultimately, the integration of

these large data sets should lead to models with predictive capabilities that,

together with the ever increasing computational power, could partly replace

the very costly and time consuming experimental analyses.

Different problems and processes require different models and methods and

therefore, a variety of models have been developed. For example, ordinary,

partial, integro-differential, functional and stochastic differential equations,

methods of dynamical systems theory, neural networks, discrete mathe-
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Chapter 1. General introduction

matics approaches, tools from statistics and algebraic geometry, have all

contributed to life sciences as such enriching the knowledge on them [1].

Nevertheless, compared to many physical and engineering systems, where

mathematics has long played a key role in their understanding and quan-

tification, the available knowledge of biological and (bio)chemical systems

is still quite limited. Moreover, the complexity of biological systems, which

arises from their heterogeneity, the large range of spatio-temporal scales

and non-deterministic behavior, hampers the development of accurate ma-

thematical models. For these reasons, this dissertation tries to contribute

to a better understanding of a certain type of discrete mathematical mod-

els, namely cellular automaton based models, and the processes they model.

The processes to be modeled are chosen from the broader field of chemi-

cal engineering and are all reaction-diffusion processes. The latter type of

processes, which are naturally applied in chemistry, explains how the con-

centration of one or more substances distributed in space changes under the

influence of two processes: local chemical reactions in which the substances

are transformed into each other, and diffusion which causes the substances

to spread out in space.

Part I gives some basic information about different subjects that are of

importance in this dissertation. It starts by taking a closer look at mathe-

matical modeling (Chapter 2) and goes deeper into one specific modeling

paradigm, i.e. cellular automata (Chapter 3), which is the core modeling

paradigm used throughout this dissertation. Further, Part I discusses the

basics of sensitivity analysis, while elaborating on the Elementary Effects

method (Chapter 4), since it is employed in the following parts of the dis-

sertation.

Part II uses different case studies to examine the possible pitfalls and dif-

ficulties when modeling chemical systems using cellular automata. Every

chapter in this part follows the same pattern: A problem is introduced, the

acquisition of the experimental data is discussed, a mathematical model em-

ploying a cellular automaton is developed, the model is tested and validated

and the conclusion of each chapter summarizes the key points of interest

from each case study with regard to cellular automaton based modeling of

chemical processes. The four different case studies that are discussed in

Part II are reaction kinetics (Chapter 6), photocatalysis (Chapter 7), oil

migration (Chapter 8) and pitting corrosion (Chapter 9).

2



Chapter 1. General introduction

From the different cases studies in Part II, it is clear that efficiently pa-

rameterizing the developed cellular automaton based models is tedious.

Therefore, in Part III an improved grid search method based on the in-

formation gained from a global sensitivity analysis is introduced. Firstly,

the theory behind the proposed approach is discussed in detail (Chapter 11)

after which the different introduced concepts are illustrated making use of

a simple linear model and two well-known nonlinear models (Chapter 12).

Further in Chapter 12, it is verified whether or not the proposed approach

gives rise to better results in practice by revisiting the parameterization of

one of the case study models from Part II by the strategy described in this

part.

In the final part, i.e. Part IV, some general conclusions are drawn. These

conclusions are written in the form of a checklist for good practice when

using CA-based models in (bio)chemical engineering, based on the informa-

tion gathered through a literature survey and the case studies in Part II.

Further, a Dutch summary of this disseration can be found in this part.
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2 Mathematical modeling

Mathematical models describe how people believe the world functions. In

mathematical modeling, the process of developing a mathematical model,

those beliefs are translated into mathematical concepts and language (see

Figure 2.1). Mathematical models are used not only in the natural sciences

(e.g. physics, biology, earth science and meteorology) and engineering dis-

ciplines (e.g. computer science and artificial intelligence), but also in the

social sciences (e.g. economics, psychology, sociology and political science).

An increasing number of researchers and companies, partly due to the ever

growing computational power and speed and the overall knowledge on ma-

thematical modeling, are employing mathematical models in their research

or company.

There exist many introductory text books on mathematical modeling. All

concepts that are introduced and discussed in this chapter, and much more,

are delt with at length in e.g. Aris [6], Bender [7], Gershenfeld [8] and

Shearer et al. [9].

2.1. Building blocks

A mathematical model usually describes a system by a set of variables

and a set of equations that establishes relationships between the variables.

Relationships can be described by operators, such as algebraic operators,

functions, differential operators, . . . Variables represent some properties of

Real-world

data
Model

Mathematical

conclusions
Predictions

Test Analysis

Formulation

Interpretation

Figure 2.1: Schematic representation of the process of mathematical modeling.
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Chapter 2. Mathematical modeling

the systems that are of interest and that can be quantified. Different types

of variables can be discerned. Dependent variables are model constituents

of which the value changes in function of the independent variables (such as

time and space). Inputs, outputs and states are therefore variables and are

named input variables, output variables and state variables, respectively.

Finally, there exist also exogenous variables which are sometimes known

as constants or parameters. The former have the same value, regardless of

the application, while the latter have a value that depends on the applica-

tion.

Objectives and constraints of the system and its users can be represented

as functions of the output variables or state variables. Although there is no

limit to the number of objective functions and constraints a model can have,

using or optimizing the model becomes more involved (computationally) as

this number increases.

2.2. Classification

There are many different ways to classify models. In what follows, some of

the more popular ways are discussed.

Linear vs. nonlinear One possible way to distinguish between linear

and nonlinear models is the following: If all the operators in a mathema-

tical model exhibit linearity, the resulting mathematical model is defined

as linear. A model is considered to be nonlinear otherwise. However, the

definition of linearity and nonlinearity is dependent on the context and lin-

ear models may have nonlinear expressions in them. Nonlinearity, even in

fairly simple systems, is often associated with phenomena such as chaos

and irreversibility. Although there are exceptions, nonlinear systems and

models tend to be more difficult to study than linear ones. A common ap-

proach to nonlinear problems is linearization, but this can be problematic

if one is trying to study aspects such as irreversibility, which are strongly

tied to nonlinearity.

Static vs. dynamic A dynamic model accounts for time-dependent

changes in the state of the system, while a static (or steady-state) model

8



§2.2. Classification

calculates the system in equilibrium, and thus is time-invariant. Dynamic

models typically are represented by differential equations.

Explicit vs. implicit If all of the input variables of the overall model

are known, and the output variables can be calculated by a finite sequence

of computations, the model is said to be explicit. But sometimes it are the

output parameters that are known, and the corresponding inputs are solved

by an iterative procedure, in which case the model is termed implicit.

Discrete vs. continuous A discrete model treats objects as discrete,

such as the particles in a molecular model or the states in a statistical

model. A continuous model represents the objects in a continuous manner,

such as the velocity field of fluid in pipe flows and temperatures and stresses

in a solid.

Deterministic vs. stochastic A deterministic model is one in which

every set of variable states is uniquely determined by parameters in the

model and by sets of previous states of these variables. Therefore, de-

terministic models perform the same way for a given set of initial condi-

tions. Conversely, in a stochastic model, randomness is present and variable

states are not described by unique values, but rather by probability distri-

butions.

Black-box vs. white-box A black-box model simply reproduces the

input-output behavior of the system, but makes no use of a priori infor-

mation on the process at hand [10]. White-box models on the other hand

are based on a detailed understanding of the underlying physical laws and

processes. Usually it is preferable to use as much a priori information

as possible to make the model more accurate. Therefore the white-box

models are usually considered easier, because if the information is handled

correctly, the model will behave correctly. Often the a priori information

comes in the form of knowing the type of functions relating different vari-

ables. Sometimes it is useful to incorporate subjective information into a

mathematical model. This can be done based on intuition, experience, or

expert opinion, or based on convenience of mathematical form.

9



Chapter 2. Mathematical modeling

Nevertheless, practically all systems are gray-box models, meaning that

they are somewhere between the black-box and white-box models. Like the

black-box models, the gray-box models are parametric models where the pa-

rameters are learned from data, but the difference with black-box models is

that here the parametric model is motivated by basic physical ideas instead

of simply being selected from a class of universal approximators. Usually

gray-box models, in comparison to black-box models, are characterized by

smaller parameter sets and the parameters themselves yield some physical

insight into the problem.

2.3. Advantages and limitations

The use of mathematical models entails a number of advantages. First of

all, mathematics is a very concise and precise language, which facilitates

the formulation of ideas and identification of the underlying assumptions.

Further, all the results that mathematicians have proven over hundreds of

years are available, resulting in a well-defined modeling toolbox.

When studying new processes or processes that are poorly understood, a

lot of knowledge is gathered via experimental analysis in the laboratorium.

However, this analysis is time consuming and expensive, making mathema-

tical modeling an attractive alternative since it offers a large gain in time,

because computers can be used to perform numerical calculations. Still, the

model first has to be developed and implemented, which costs some time as

well. Furthermore, experimental analysis is not redundant when perform-

ing virtual experiments: Sound data is still essential for model calibration

and validation.

In the case of an existing, well-known system, modeling allows for scenario

analysis. The latter means that many different scenarios can be computed

in a relatively short time. This allows for example to estimate the effect of

different chemical production processes on humans and the environment or

the yield of the chemical production process under various operating condi-

tions. Another use of modeling in this case is process optimization, where

modeling facilitates the search for an optimal design. Finally, operational

optimization and control are also mentioned here as important modeling

incentives.

The main limitation of using mathematical models is that any model is

10



§2.4. Spatio-temporal modeling

not the real system, it is always an approximation. Therefore, there is

never a perfect model and results can be influenced by model inaccuracies.

There is a large element of compromise in mathematical modeling. The

majority of interacting systems in the real world are far too complicated to

model in their entirety (cf. Occam’s razor [11]). Hence, the most important

parts of the system need to be identified and included in the model, while

the rest is excluded. For that reason, the task of the modeler consists of

selecting the appropriate parts and ensuring that a good agreement with

the experimental measurements can be achieved with the model.

2.4. Spatio-temporal modeling

Spatial-temporal models arise when data is collected across space as well

as time. Until recently, there has not been a theory of spatial-temporal pro-

cesses separate from the already well-established theories of spatial statis-

tics and time series analysis [12]. For example, the methods for the fitting

of spatio-temporal models are mostly the same as for time series and spa-

tial models, i.e. least squares methods, maximum likelihood estimation or

Bayesian inference, but there is a lack of general purpose software when

it comes to fitting these models [13, 14]. However, due to the prolifera-

tion of data sets that are both spatially and temporally indexed, spatial-

temporal modeling has received dramatically increased attention in the last

few years.

Within the field of (bio)chemistry, spatio-temporal processes, and therefore

also spatio-temporal models, constitute an important category. The mod-

eling of (bio)chemical processes up till now has been performed in various

ways, some of the more popular ones being empirical approaches, stochas-

tic models and (partial) differential equations ((P)DEs). Many of these

models show a good performance and are successful at describing natu-

ral phenomena in a mathematical way [15]. Catalyzed by the develop-

ment of extremely powerful, high-speed computers, two novel approaches

to study (bio)chemistry emerged in recent years, being molecular dynamics

and Monte Carlo calculations [16, 17]. These models rely on the inter-

action of atoms and molecules in a system via electric and steric forces,

expressed in terms of force fields. Both of them have great strengths and

often lead to similar results for the properties of the system under inves-

11



Chapter 2. Mathematical modeling

tigation. On the other hand, these methods depend on elaborate models

for the molecular interactions, which results in computationally demanding

calculations.

The most popular and also classical way to model spatio-temporal chemical

processes is by means of (P)DEs [18, 19]. These established mathematical

constructs, of which the state, space and time domains are continuous, play

an important role in modeling virtually every physical, chemical, technical,

or biological process, from celestial motion, to bridge design, and interac-

tions between neurons. The (bio)chemical process to be modeled is broken

down to its fundamental building blocks and for each of these blocks a

(P)DE describes the underlying physical phenomenon, resulting in a rigor-

ous mathematical description of the macroscopic process at hand. Different

aspects of (P)DEs, mostly concerned with their solutions, have been and

are being studied, which has led to the availability of a myriad of mathema-

tical tools to study (P)DE-based models. Furthermore, these models are

often transparant in terms of how a change in parameter values affects the

outcome and are therefore relatively interpretable [20].

Nevertheless, there are some downsides to the use of (P)DEs. Finding

and implementing a system of (P)DEs for a specific process still remains

tedious and when such a system of PDEs is used to describe real-world

problems, it may not necessarily be directly solvable, i.e. it does not have

closed-form solutions. In this case, solutions have to be approximated us-

ing numerical methods that unavoidably give rise to approximation errors

and often also to stability problems [21, 22]. Furthermore, spatial homo-

geneity is frequently assumed when (P)DEs are employed to describe the

system’s dynamics even when this is a strong simplification of reality. There-

fore, researchers often look for novel modeling methods to better suit their

needs.

Of course, (P)DEs are not the only mathematical formalism to describe

spatio-temporal processes. Table 2.1 shows eight different types of spatio-

temporal modeling paradigms depending on the state, space and time do-

main being continuous or discrete [23]. This dissertation will focus on

the use of cellular automata (CAs) for the modeling of spatio-temporal

processes within the broader field of chemistry and the possibilities and

(practical) limitations that go together with this.
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Table 2.1: Spatio-temporal modeling paradigms [23].

State Space Time Name

continuous discrete discrete coupled map lattice

continuous discrete continuous reaction-dispersal network

continuous continuous discrete reaction-dispersal network

continuous continuous continuous partial differential equation

discrete continuous discrete neighborhood model

discrete continuous continuous spatial point process

discrete discrete discrete cellular automaton

discrete discrete continuous interacting particle system

1
3





3 Cellular automata

In this chapter, a short introduction to CAs is given, followed by the for-

mal, general mathematical definition of a CA, which will be adhered to

throughout this dissertation. Some parts of this definition are elaborated

on with special attention for the different updating mechanisms. For the

case studies of Part II, the different parts of this definition will be further

specified. Finally, advantages and disadvantages of the use of CAs are

discussed.

3.1. Introduction

A CA is a collection of cells on a tessellation, i.e. they are spatially discrete,

where each cell changes its discrete state as a function of time according to a

given transition function, based on the cell’s own state and the states of its

neighboring cells. This transition function is applied iteratively for as many

discrete time steps as desired. CAs are discrete, abstract computational

systems that have proven useful both as general models of complexity and as

more specific representations of non-linear dynamics in a variety of scientific

fields. CAs appeared for the first time in literature in the first half of the

20th century under the name of ‘cellular spaces’. This early work forms the

starting point for research in this field, although the real breakthrough of

CAs in the academic world began with the publication of Conway’s Game

of Life in the early 70s [24] and Wolfram’s pioneering work [25, 26].

Today, CAs have been successfully employed in the study of several bio-

logical and abiological processes, overcoming some of the issues addressed

in the previous chapter inherent to the more classical modeling methods

as well as providing researchers with novel insight in the processes. The

domains where CA-based models have been proposed range from traffic con-

trol [27] over economics [28] and politics [29] to applied biological sciences.

One of the first attempts to model chemical processes by means of discrete

models was the HPP model (after the inventors Hardy, Pomeau and de

Pazzis) [30, 31], which was in fact the first Lattice Boltzmann model. The

latter model makes use of the discrete Boltzmann equation, instead of the
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Navier-Stokes equations, to simulate the flow of a Newtonian fluid, where

the particles move alongside the edges of the tessellation and do not occupy

the cells. In the HPP model, the tessellation is square, and particles can

move to any of the four sites whose cells share a common edge. If two

particles collide head-on, the outcome will be two particles leaving the site

at right angles to the direction they came in. This model lacked rotational

invariance, which made it highly anisotropic. To overcome this problem,

the FHP model (after the inventors Frisch, Hasslacher and Pomeau) was

developed on a hexagonal grid and with particles with six or seven different

velocities [30, 31].

Through the years, CA-based models have been increasingly used to model

different types of reaction-diffusion processes. The stochastic CA-based

model to describe the diffusion equation as proposed by Chopard and

Droz [32, 33] is able to simulate well the simultaneous random walk of

many particles. The parameters of the CA’s transition function allow for

an adjustment of the diffusion constant and play an important role in the

isotropy of the dynamics, while making the model suitable to describe a

range of reaction-diffusion processes [33]. Further, Kier et al. developed a

CA-based model to describe the interaction between two H2O molecules

employing a stochastic CA [15]. Their CA-based model is used to model,

a.o., the solid-liquid interface [34], the bulk structure of water [35] and

solute diffusion through water [36].

A remarkable type of reaction-diffusion process is the oscillating reaction,

where the concentration of one or more components undergoes periodic

changes in time and/or space [37]. Normally, chemical reactions are char-

acterized by a continuous decrease of substrate and a corresponding con-

tinuous increase of reaction products. However, for oscillating reactions,

the change in concentration of intermediate products is not continuous

and this undulating behavior results in specific spatio-temporal patterns.

Figure 3.1 shows some of these patterns for the Belousov-Zhabotinsky re-

action [38] taking place on a petri dish. CAs, such as the one used in

the Greenberg-Hasting model [39], are capable of reproducing the spatial

patterns of oscillating reactions thanks to their discrete tessellation. Fig-

ures 3.2(a)–3.2(e) show simulated outcomes at given moments in time using

the Greenberg-Hasting model with different parameter settings [40]. The

spiral-shaped patterns can be clearly observed where the black line repre-

sents the excitation front. This excitation front is formed by excited cells
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Figure 3.1: Examples of spiral-shaped patterns formed by the Belousov-
Zhabotinsky reaction on a petri dish [38].

(a) (b) (c) (d) (e)

Figure 3.2: Simulated outcomes at given moments in time using the Greenberg-
Hasting model with different parameter settings [40].

and can itself excite new cells. The disadvantage of using CAs to model os-

cillating reactions is that usually a smooth curvature is not easily attainable

(see Figures 3.2(a) and 3.2(b)) unless large neighborhoods are considered,

which results in extensive calculation times.

Of course, reaction-diffusion processes are not the only type of process mod-

eled by means of CAs over the years. Other authors cover, a.o., the use

of CA-based models in chemistry to model a recrystallization process [41]

or to study the structural chemistry of molecules [42]. Furthermore, the

last years, CA-based models have also been introduced in the broader field

of chemical engineering and are being used to tackle problems in the do-

mains of biochemistry [43, 44, 45, 46], biotechnology [47, 48] and food chem-

istry [49]. Nevertheless, despite the growing interest in CA-based models,

publications on the use of such models within the field of (bio)chemical

engineering are still scarce, due to the limitations inherent to CAs (see

infra).

It is therefore the goal of this dissertation to investigate the potential of

CA-based modeling for spatio-temporal (bio)chemical processes. On the

one hand, these models could provide researchers with a wider range of

modeling tools and, in some complex cases, a solution to problems encoun-
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tered with some of the more classical modeling methods. Furthermore, it

would allow to make better use of the increasingly more detailed spatio-

temporal data that is available from e.g. microscopy and tomography. On

the other hand, most researchers experience a number of practical difficul-

ties when working with CA-based models in the broader field of chemical

engineering. In addition, many reports on modeling efforts in this field are

incomplete, therefore making it hard to learn from each other. This disser-

tation explores the various difficulties modelers encounter with CA-based

modeling through the study of four case studies in Part II. Each of these

case studies will highlight different modeling choices or possibilities, as such

providing a variety of information. Besides, more than just summing up the

potential pitfalls, this dissertation tries to provide the means to deal with

them. Nevertheless, the conclusions drawn throughout this dissertation are

based on these four case studies, which are selected for their increasing com-

plexity of the underlying phenomenon and the availability of experimental

data, and are therefore just a first step in the development of a general

framework that is valid for a broad class of spatio-temporal (bio)chemical

processes.

3.2. Paradigm

In this dissertation, the following definition of a CA is relied upon.

Definition 1 (Cellular automaton)

A cellular automaton C can be represented as a quintuple

C = ⟨T , S, s,N,Φ⟩ ,

where

(i) T is a countably infinite tessellation of a d-dimensional Euclidean

space R
d, consisting of cells ci, i ∈ N.

(ii) S is a finite set of h states, often S ⊂ N.

(iii) The output function s ∶ T ×N → S yields the state value of cell ci at

the t-th discrete time step, i.e. s(ci, t).

(iv) The neighborhood function N ∶ T →
∞
⋃
q=1
T q maps every cell ci to a
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finite sequence N(ci) = (cij)
∣N(ci)∣

j=1
, consisting of ∣N(ci)∣ distinct

cells cij .

(v) Φ = (φi)i ∈N is a family of functions

φi ∶ S ∣N(ci)∣ → S ,

with each φi governing the dynamics of cell ci, i.e.

s(ci, t + 1) = φi(s̃(N(ci), t)),

where s̃(N(ci), t) = (s(cij , t))
∣N(ci)∣

j=1
.

For reasons of clarity, the different parts of this definition will be elaborated

on in the remainder of this section.

3.2.1. Tessellation

A tessellation T is a collection of spatial entities that fills the Euclidean

space R
d without overlap or gaps, with mostly d ∈ {1,2,3}. A regular 2D

(resp. 3D) tessellation is a highly symmetric tessellation made up of congru-

ent regular polygons (resp. polyhedrons), where consequently every cell ci
of T has the same number of neighbors. The three most popular regular 2D

tessellations are those which consist of squares (see Figure 3.3(a)), triangles

(see Figure 3.3(b)) or hexagons (see Figure 3.3(c)). Often a tessellation of

R
2 that consists of squares is used in literature [50, 51, 52], because it has

the most straightforward implementation and suffices for most modeling

purposes.

Although these regular tessellations are widely used, some phenomena can-

not be explained by employing CAs with these regular tessellations. Points

of concern are, a.o., the fixed number of neighbors and the lack of isotropy.

To overcome the former problem, CAs on irregular tessellations were devel-

oped (see Figure 3.3(d)) [53]. Such tessellations can be constructed in an

elegant and straightforward way, but are less efficient to perform calcula-

tions with.

Further, the infinite nature of T hampers the practical use of CAs, since

for computer simulations, only a finite number of cells can be considered.

Furthermore, the applications of CAs in (bio)chemistry are not taking place
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(a) (b)

(c) (d)

Figure 3.3: Different tessellations of R2 composed of (a) squares, (b) triangles,
(c) hexagons and (d) irregular cells.

... ...

i

c1 ci-1 ci ci+1 cÈT *È

Figure 3.4: Indexing of the cells of a 1D CA.

in infinite space. Therefore, a finite tessellation T ∗, consisting out of ∣T ∗∣
cells is normally used. An indexing of the cells of a regular 1D, 2D and 3D

CA is introduced in Figures 3.4, 3.5 and 3.6, respectively.

Finally, the importance of the tessellation size ∣T ∗∣ on the model calculation

times is mentioned here. On the one hand, a low number of cells implies a

low number of evaluations and therefore faster calculation than when a large

number of cells is employed. On the other hand, a sufficiently high number

of cells is needed to get accurate simulation results. Consequently, the

tessellation size ∣T ∗∣ has to be as small as possible without compromising

the accuracy the results produced.
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j

i

... ...

... ...

... ...

...

...

...

...

...

...
c1,1 c1,2 c1,j c1, j*-1 c1, j*

c2,1 c2, j*

ci,1 ci, j ci, j*

ci*-1,1

ci*,1 ci*, jci*,2 ci*, j*-1 ci*, j*

ci*-1, j*

Figure 3.5: Indexing of the cells of a 2D CA.

1
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j*
j

1

i*

i

1

Figure 3.6: Indexing of the cells of a 3D CA.
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(a) (b)

Figure 3.7: (a) 2D and (b) 3D Moore neighborhood of a cell ci (gray) in a (a)
square and (b) cubic tessellation.

3.2.2. Discrete states

Every cell ci takes as value one of the h discrete values comprised in the set

S. The state of the cells of T ∗ at t = 0, i.e. s(ci,0), forms the initial con-

dition of T ∗. Spatially seen, an even distribution of the different discrete

states is, technically, the most straightforward initial condition, which ex-

plains its popularity as initial condition in literature. However, this initial

condition is not easily obtained in the laboratory [23].

3.2.3. Neighborhood function

Many different neighborhood functions can be defined, the two most impor-

tant ones on regular tessellations being the Moore and the von Neumann

neighborhood. The Moore neighborhood of ci comprises those cells that

share at least a vertex with cell ci. The von Neumann neighborhood is a

more restricted neighborhood in which only those cells that share an edge

with the central cell ci are considered as neighbors. Figures 3.7(a) and 3.7(b)

show the nine and 27 neighbors in the 2D and 3D radius one Moore neigh-

borhood, respectively, while Figures 3.8(a) and 3.8(b) show the five and

seven neighbors in the 2D and 3D radius one von Neumann neighborhood,

respectively.

The radius one neighborhoods are the most occuring, although in this

dissertation, also the radius two 2D Moore neighborhood is used. Fig-

ure 3.9 shows the 2D radius two Moore neighborhood on a square tessella-
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(a) (b)

Figure 3.8: (a) 2D and (b) 3D von Neumann neighborhood of a cell ci (gray) in
a (a) square and (b) cubic tessellation.

Figure 3.9: 2D radius two Moore neighborhood of a cell ci (gray) on a square
tessellation.

tion.

The finite nature of T ∗ calls for boundary conditions. In this case, the

boundary cells of the tessellation are possibly, depending on the type of

boundary condition, governed by a different transition function than the

rest of the cells. The three most common boundary conditions are fixed, pe-

riodic and absorbing boundaries. Fixed boundaries act like a wall through

which no movement or contact is possible. For instance, Figure 3.10(a)

shows a 5×5 square tessellation in which the transition function states that

a cell in state 1, i.e. a black cell, takes the state of the cell left of it and

that a cell in state 0, i.e. a white cell, takes the state of the cell right of

it. The resulting tessellation at t = 1 is depicted in Figure 3.10(b). Fig-

ure 3.10(c) shows the result at t = 2 when fixed boundaries apply. The

transition function for boundary cells when fixed boundaries apply states

that the cell has no neighbors past the borders, such that the cell in state

23



Chapter 3. Cellular automata

t = 0

(a)

t = 1

(b)

t = 2

(c)

t = 2

(d)

t = 2

(e)

Figure 3.10: Square tessellation in which the transition function states that a
cell in state 1 (black) takes the state of the cell left of it and that a cell in state 0
(white) takes the state of the cell right of it at (a) time step t = 0, (b) time step
t = 1 and time step t = 2 when (c) fixed boundaries, (d) periodic boundaries and
(e) absorbing boundaries apply.

1 remains unchanged.

The second type of boundary condition are the periodic boundaries where

the opposite border along the same dimension is considered the neighbor-

ing border, so that in practice no boundary cells exist in this case. For

instance, for a regular 2D CA the latter implies that the cells of the first

row (column) are considered the neighbors of the cells of the last row (col-

umn) (see Figure 3.10(d)). Periodic boundaries are the most popular ones

since N is the same for all cells and furthermore, they simulate the infinite

nature that was lost by going from T to T ∗. It should be mentioned that

the former only holds for a regular tessellation, since not necessarily every

cell of an irregular tessellation has the same number of neighbors. Finally,

the resulting tessellation at t = 2 when absorbing boundaries apply is shown

in Figure 3.10(e). Here, the transition function of the boundary cells states

that all boundary cells in a state different from 0 are set to 0, as such

‘absorbing’ the states.
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3.2.4. Transition function

The transition function Φ determines the state of a cell ci at the (t + 1)-th
time step based on the cell’s current state and the states of its neighboring

cells, s̃(N(ci), t). Two important CA families can be distinguished, based

on the way the transition function is applied [15]. A first one is the family

of deterministic CA-based models, which is the classical way of applying

Φ and is also used in Definition 1. Here, the transition function is always

applied, i.e. with probability P equal to one. A second family is that of

stochastic CA-based models, which is used regularly when (bio)chemical

processes are concerned. In this case, the transition function Φ is subject

to a probability P , determining whether or not the transition function is

executed (see Definition 2). This entails that the outcome of a stochastic

CA-based model differs for every simulation.

Definition 2 (Stochastic cellular automaton)

A stochastic cellular automaton is a CA fulfilling premises (i) − (iv) of

Definition 1, and for which there exists a P ∈ ]0,1[ such that

s(ci, t + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
φi(s̃(N(ci), t)) , with probability P,

s(ci, t) , with probability 1 − P.

Further, it can be noticed that not necessarily every cell ci has to possess its

own transition function φi. In the case of homogeneous CA there is a single

transition function Ψ that governs the dynamics of all cells. Homogeneous

CAs can be defined according to Definition 3.

Definition 3 (Homogeneous cellular automaton)

A homogeneous cellular automaton is a CA fulfilling premises (i) − (iv) of
Definition 1, and for which there exists a Ψ ∶ ⋃h∈NMh(S)→ S such that

s(ci, t + 1) = Ψ(s̃(N(ci), t)),
whereMh denotes the set of all multisets of cardinality h in S.

In this dissertation, only homogeneous CAs are discussed, with exception

for the transition function of the boundary cells, depending on the applied

boundary conditions (see supra). Besides the distinction between updating

the CA in a deterministic or probabilistic manner, it should be mentioned
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that Ψ can be applied either synchronously, i.e. Ψ is applied at each time

step for every cell ci ∈ T ∗, or asynchronously, whereby cells are not up-

dated simultaneously. Because this is such an important issue when model-

ing (bio)chemical processes, as will be shown in this dissertation, the next

section deals with the different updating methods.

3.3. Synchronous and asynchronous updating

3.3.1. Choice of update method

When performing simulations with CAs, a decision has to be made on

how to apply the transition function Ψ. This can be done either syn-

chronously or asynchronously. A synchronous update of the cells ci of

T ∗ means that all cells are updated simultaneously according to Ψ at every

consecutive time step. Although this approach is widely used and effec-

tive in many cases, questions arise when synchronous CAs are used to

model physical phenomena, since nature does not have a universal clock

and, hence, the synchronous update method is rather artificial [38]. To

overcome this drawback, asynchronous update methods have been devel-

oped [54, 55, 56, 57, 58].

Updating asynchronously can result in qualitatively and quantitatively dif-

ferent dynamical behavior of CAs as compared to updating synchronous-

ly [38, 54], especially when stochastic components are involved [54]. For

example, it has been observed that cyclic patterns as well as various other

patterns can only occur with synchronous updating. Further, the stationary

states that can be reached with a CA are identical for both synchronous

and asynchronous updating. However, which stationary state is reached

starting from a given initial state may depend on the update method used.

Moreover, the influence of the different update methods depends strongly

on the actual transition function employed.

Most researchers opt for synchronous updating in their work [43, 49, 59],

as it complies with the CA paradigm as conceived originally and it also

entails a more straightforward implementation compared to asynchronous

update methods. However, the choice for a given update method should be

motivated by the process one wants to study: if a discrete time step of the

CA corresponds to a relatively large time interval, expressed in physical
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time units, it may be assumed that every cell in T ∗ will be updated during

each time step and synchronism is justified [54]. Yet, as the physical time

that is covered per time step becomes smaller, the number of events that

occur during its elapse decreases and asynchronism becomes a more natural

option.

Further, asynchronous updating can help to respect the law of mass con-

servation, which is of interest when modeling (bio)chemical processes. Con-

sider, for example, the diffusion process, which is often simulated by switch-

ing a cell’s state with the state of the cell it diffuses towards. When at a

discrete time step n cells try to switch state with the same cell, this leads

in a synchronous update to the reduction of the total number of diffus-

ing states by n − 1. Moreover, this reduction can take place at different

places of the tessellation and at every time step, potentially resulting in

an unacceptable loss in mass. Asynchronous update methods circumvent

this problem by evaluating cell by cell and respect as such the law of mass

conservation.

In the remainder of this section different synchronous and asynchronous

update methods are discussed [38, 54, 60]. In order to discriminate easily

among the different methods, the following parameters are introduced [60]:

(i) Ei represents the number of time steps between two consecutive up-

dates of a cell ci, i.e. how many time steps it takes for ci to be updated.

(ii) Fi represents the delay of update, i.e. the number of time steps it

takes before cell ci is updated for the first time.

(iii) Gt represents the number of cells ci that are being updated at time

step t.

3.3.2. Synchronous update methods

Every cell ci in T ∗ is updated in parallel at each time step, when syn-

chronous updating is concerned. This update method is represented in

Figure 3.11 where the gray cells indicate which cells are updated at a spe-

cific time step. As can be seen, all cells are updated simultaneously at every

time step, such that it may be written

∀ i ∶ Ei = 1, Fi = 0 ,
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...

t = 1 t = 2 t = 3 t = 16 t = 17 t = 18

Figure 3.11: Representation of the cells being updated (gray) at time steps 1, 2,
3, 16, 17 and 18 according to the synchronous update method.

∀ t ∶ Gt = ∣T ∗∣ .
Instead of choosing an asynchronous update method to comply with the law

of mass conservation, one can also opt for the adjustment of the synchronous

update method to obey the law of mass conservation. In some cases, it is

also possible to employ a block CA, which is a special type of synchronous

updating. Both are discussed next.

Adjustment to obey the law of mass conservation The most com-

mon way to do so is by looking at the intention of the transition function

rather than directly executing it [32, 33, 61, 62]. For the case of diffusion,

this comes down to constructing both a list of the locations of all cells that

are allowed to switch their state in that specific time step and a list of the

locations of the cells they want to switch state with. Next, a list of conflicts

is constructed containing the cells that try to switch state with the same

cell, as well as those cells that try to switch state with a cell that at that

time step also wants to switch state with another cell. The cells on this

conflict list are not allowed to switch state in that particular time step, as

such getting around the issue of mass disappearance.

Although a valid and often used technique, it does nullify to some extent

the implementation convenience and time and memory gain synchronous

updating has over asynchronous updating. Furthermore, when a real-world

interpretation of the model parameters through parameterization is desired,

large conflict lists, and therefore many incomplete evaluations, influence the

obtained parameter values and their interpretability.

Block cellular automaton Block CAs are commonly used to implement

lattice gases, a type of CA used to simulate fluid flows, and other quasi-

physical simulations, since it is straightforward to construct a transition
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function that obeys physical constraints such as reversibility and conserva-

tion laws [26, 63]. Firstly, the tessellation is split up into non-overlapping

blocks, where each block has the same size and shape. The simplest parti-

tioning of the tessellation is the Margolus neighborhood, where the tessel-

lation is divided into 2-cell blocks (or 2 × 2 squares in two dimensions, or

2 × 2 × 2 cubes in three dimensions, etc.) [63].

In each time step, the transition function is applied to a whole block at a

time rather than a single cell and all blocks are evaluated simultaneously,

as such making it a special case of synchronous updating. It is important to

note that during the application of the transition function, no communica-

tion is possible between the different blocks and that therefore all processes

take place between the molecules present in the same block. Finally, af-

ter the blocks are evaluated, the tessellation is reassembled and a rule for

shifting the partition is applied. The latter is necessary to ensure that the

pattern of cell states changes over time to perform some nontrivial compu-

tation or simulation. The shifting rule usually accompanying the Margolus

neighborhood dictates that every block of 2 cells is shifted by one cell (along

each dimension) in alternate time steps [63]. The use of a block CA speeds

up calculations, facilitates implementation, obeys mass conservation laws

and eliminates the need for boundary conditions. However, it can only

be employed for well-mixed systems where the physical boundaries are not

included in the tessellation.

3.3.3. Asynchronous update methods

There are different asynchronous update methods described in literature.

Here, four of the most popular ones are elaborated on.

Random independent update method At each time step a single cell

ci is selected at random from T ∗ (see Figure 3.12). For this update method,

it may be written

∀ i ∶ Ei ∼ H( 1∣T ∗∣) , Fi ∼ H( 1∣T ∗∣) ,
∀ t ∶ Gt = 1 ,

where H ( 1
∣T ∗∣) stands for the geometric distribution with mean ∣T ∗∣.

29



Chapter 3. Cellular automata

...

t = 1 t = 2 t = 3 t = 16 t = 17 t = 18

Figure 3.12: Representation of the cell being updated (gray) at time steps 1, 2,
3, 16, 17 and 18 according to the random independent update method.

...
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Figure 3.13: Representation of the cell being updated (gray) at time steps 1, 2,
3, 16, 17 and 18 as well as the update order according to the random order update
method.

Random order update method All cells are updated consecutively in

a random order. After every cell ci in ∣T ∗∣ is updated, the random order is

shuffled. The random order used for the first 16 time steps is indicated for

the tessellation at t = 1, t = 2, t = 3 and t = 16 in Figure 3.13. After the 16th

update, a new order for update is chosen at random as can be seen from

the two right most configurations depicted in Figure 3.13. Making use of

the parameters introduced earlier, it follows that

∀ i ∶ Ei < 2 ∣T ∗∣ , Fi ∼ H( 1∣T ∗∣) ,
∀ t ∶ Gt = 1 .

Random cyclic update method At each time step a cell ci is selected

for update according to a predefined, fixed order, as opposed to the random

order. Figure 3.14 is similar to Figure 3.13 except for the update order being

the same for all the time steps of the simulation, such that it can be written

that

∀ i ∶ Ei = ∣T ∗∣ , Fi ∼ H( 1∣T ∗∣) ,
∀ t ∶ Gt = 1 .

30



§3.4. Pros and cons

...

t = 1 t = 2 t = 3 t = 16 t = 17 t = 18

12

3

4

5

6

7

8 9

10

11

12

13

14

15

16

12

3

4

5

6

7

8 9

10

11

12

13

14

15

16

12

3

4

5

6

7

8 9

10

11

12

13

14

15

16

12

3

4

5

6

7

8 9

10

11

12

13

14

15

16

12

3

4

5

6

7

8 9

10

11

12

13

14

15

16

12

3

4

5

6

7

8 9

10

11

12

13

14

15

16

Figure 3.14: Representation of the cell being updated (gray) at time steps 1, 2,
3, 16, 17 and 18 as well as the update order according to the random cyclic update
method.
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Figure 3.15: Representation of the cell being updated (gray) at time steps 1, 2,
3, 16, 17 and 18 as well as the exponentially distributed waiting time of every cell
according to the exponential update method.

Exponential clocked update method Every cell ci has a clock, which

is specific for each cell and indicates when the cell is to be updated. The

waiting time for update is exponentially distributed with a mean of one. To

implement this, initially, every cell ci is assigned a waiting time pi according

to the aforementioned exponential distribution. The cell that possesses the

lowest value of pi is updated first and afterwards a new p∗i is selected at

random from this exponential distribution which is then added to the old

value, i.e. pi = pi + p∗i . After this, the cell that now has the lowest pi is

updated, and this process continues until a preset number of time steps is

reached. This is represented in Figure 3.15. Following the notations of the

other update methods, it follows that

∀ i ∶ Ei ≥ 1 ,
∀ t ∶ Gt = 1 .

3.4. Pros and cons

It is important to state that the use of CAs does not exclude the use

of other modeling paradigms, but is rather complementary to the use of
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those paradigms, especially for systems that consist of discrete components

with local interactions. CA-based models can be seen as an alternative to

PDE-based and other more classical models, providing researchers with a

wider range of modeling tools and, in some complex cases, a solution to

problems encountered with some of the more classical modeling methods.

Furthermore, there exists a large number of researchers who are using a

mixture of CA modeling and other techniques, including the development

of hybrid models, to tackle challenging problems [64, 65, 66, 67, 68, 69,

70].

CAs have a number of characteristics that can be advantageous for ma-

thematical modeling. First of all, the level of knowledge that the modeler

has of the process is of importance. When the modeler has no knowledge

of the underlying process at hand, the intractable dynamics can be trans-

lated into a CA transition function that reflects intuition and is easy to

compute [38, 71]. Therefore, CAs have great potential to simulate natural

phenomena when there is no other mathematical model available [72, 73].

Further, although the processes underlying the phenomenon might not be

completely elucidated, the information a modeler has at hand can still

be employed, since CAs lend themselves well for gray-box modeling (see

Section 2.2). Finally, even when all necessary information is at hand, PDE-

based modeling constitutes a roundabout approach if one considers that it

first involves the derivation of a set of continuous equations from discrete

mass balances after which these equations have to be discretized again as

it is for most practical problems impossible to retrieve an analytic solu-

tion [22]. By making use of CAs to directly calculate the solution, the

modeler can circumvent the latter tedious job.

A second important issue to take into account when developing a model

is the choice of the level of description, be it microscopic, mesoscopic or

macroscopic. Microscopic models mostly focus on processes taking place at

the atomic level, i.e. between different molecules, but are not interesting for

many chemical processes since the phenomena that are studied constitute

rather scarce events at the atomic scale. Furthermore, with microscopic

models, the state of the cells often represents an individual molecule. Ob-

viously, this limits the system space that can be studied without resulting

in excessively large computation times. On the other hand, a macroscopic

description with classical kinetic equations, besides the fact that in most

cases analytical solutions of the resulting equations are not at hand as
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was mentioned before, is often unable to capture the stochasticity of the

underlying processes causing that some of the information, important to en-

gineers, is not readily available [10, 74]. The mesoscopic approach is seen as

a way to combine the macroscopic phenomenology with the stochastic char-

acter of the processes originating from the microscopic scale processes [75].

CAs are suited to construct these mesoscopic models, where the goal is

not to describe a specific system, but rather to analyze how a combination

of a small number of basic processes, very well accepted by researchers,

might determine general features. The latter entails that cells are not to

be associated directly with the individual atoms or molecules, but rather

with a homogeneous grouping of the same type of atom or molecule. This

means that atomic size effects are not accounted for, which is a simple

approximation intended to capture the synoptic effects of the process at

hand [76, 77].

Finally, the modular nature of CAs, which enables them to efficiently handle

heterogeneity and/or complicated boundary conditions [78, 79], can be used

to the modelers benefit. Moreover, it also makes them more immediately

suitable for parallelization which may give very large increases in speed in

comparison to more conventional models.

Nevertheless, there are some points of attention when using CAs. A major

point is that the modeling framework for CAs is not as vast as for PDEs,

for instance. Up to today, no general framework for designing and testing

CA-based models for real-world problems and validating them using experi-

mental data has been established [80]. This is partly due to the skepticism

in the scientific community about the CA paradigm, but mainly because

CA-based models are intrinsically difficult to validate. This is due to the

absence of a direct link between model parameters and real-world physical

variables and the intricate translation of a discrete time step to continu-

ous time. Unfortunately, this lack of general guidelines according to which

results are reported often results in incomplete reports of research efforts,

making it difficult or even impossible to reproduce results. Finally, despite

the fact that the possibility of constructing transition functions based on

intuition is an advantage, it opens the door to misinterpretations. The lat-

ter meaning that the risk exists that researchers are reading too much into

the simulated results and may draw incorrect conclusions.
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4 Sensitivity analysis

4.1. Definition, uses and potential pitfalls

A possible definition of sensitivity analysis (SA) is that it is the study of

how uncertainty in the output of a model (numerical or otherwise) can

be apportioned to different sources of uncertainty in the model input (see

Figure 4.1) [81]. A common uncertain type of input is a model parameter,

especially when modeling complex natural systems [82, 83]. Therefore, one

of the first steps taken by modelers when studying a newly developed model

is to perform a SA, to obtain useful insights into the level of uncertainty

contributed by each parameter.

SA methods have been mostly developed in the risk analysis realm. It

allows to check how the risk is distributed among parameters and which

assumptions to monitor in order to reduce risk. However, SA nowadays

is an established practice in different (scientific) fields. Depending on the

field and the specific method used, motivations for SA are [81]:

• Model corroboration. It can be checked whether the model is overly

dependent on fragile assumptions.

• Research prioritization. Which input is most deserving of future ana-

lysis or measurement?

• Model simplification. Possibly, some inputs or parts of the model

can be fixed or simplified. In this way, model complexity could be

reduced by filtering out parameters that have a minor effect on the

model outcome.

• Identifying critical or otherwise interesting regions in the space of the

input factors. Identifying factors which interact and which may thus

generate extreme values. This is important for system reliability.

• Prior to parameter estimation, to help set up the (actual or numerical)

experiment in those conditions in which the sensitivity of the output

to the factor to be estimated is the greatest.
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Assumptions

Inputs

Simulation model

Outputs

Figure 4.1: Schematic representation of the process of sensitivity analysis.

Further in this dissertation, SA will also be used to improve the parame-

terization of models (see Part III). The use of SA information in improv-

ing parameter estimation is not new, however, it is mostly used to guide

(additional) experiments to gather data [84]. The main advantages here

are that the sensitivity information is already available through the model

exploration and that this information is suitable for different parameter

sets, since the sensitivity information does not depend on the experimental

data.

Despite the potential advantages an SA holds, there are some pitfalls if SA

is at stake. The most important one is that the underlying purpose needs

to be clearly defined. A researcher can perform a lot of different (statistical)

tests to study a problem and not become any wiser afterwards. Secondly,

a modeler needs to be aware that there exist different methods for different

purposes. This means that it comes down to using the right technique

in the right situation. More often than not the choice of method will be

challenged before anything else. Finally, performing an SA when too many

inputs or outputs are involved diminishes the value of the SA results. In

what follows, an overview of different types of SA are presented.
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§4.2. Local and global sensitivity analysis

4.2. Local and global sensitivity analysis

There exists a wide variety of SA techniques that all express how a small

change in parameter (which will be the inputs for the models in this dis-

sertation) value(s) influence(s) the output [81]. Most of the SAs met in

literature are based on derivatives. Indeed, the derivative ∂ Y /∂ qi of an

output Y with respect to an input parameter qi can be thought of as a

mathematical definition of the sensitivity of Y for qi. However, derivatives

are only informative at the base point where they are computed and do

not provide for an exploration of the rest of the parameter space Ω. Such

an SA that does not attempt to fully explore the parameter space, but fo-

cuses on the sensitivity around a fixed point q0 is called a local sensitivity

analysis.

The majority of SAs in chemistry and physics is performed locally, partly

due to their usefulness for inverse problem solving [83]. Often, a local SA

is performed by changing the value of one parameter at a given time while

keeping all other parameter values constant and allows as such to detect

the net effect of a single parameter on the model outcome [83, 85, 86]. The

sensitivity Hi of the model output Y to a single parameter qi is in this case

computed as:

Hi = ∣∂ Y (q1, ..., qi, ..., qb)
∂ qi

∣
q0

, (4.1)

with b the number of model parameters. The simplest method to compute

local sensitivities involves replacing the derivative in Eq. (4.1) by its finite

difference approximation, so that Eq. (4.1) is rewritten as:

Hi = ∣Y (q1, ..., qi +∆ qi, ..., qb) − Y (q1, ..., qi, ..., qb)
∆ qi

∣
q0

. (4.2)

This approximation is only valid for a sufficiently small perturbation of

qi, because the nonlinearity of the model will become important if the

perturbation factor 1 +∆ is too large. However, ∆ should also not be too

small, as this would give rise to numerical inaccuracies [86].

The fact that a local SA only looks at the sensitivity at a defined base

point, does not matter for linear systems, since the sensitivity at any point
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in the parameter space is the same. For nonlinear systems on the other

hand, the results from a local SA do not tell anything about the sensitivity

in the parameter space Ω except at q0. For that reason, more interesting

when performing model exploration is a global SA as it can give an idea

of the sensitivity over the full range of the parameters and where all pa-

rameters are varied at the same time, although this comes at the cost of a

higher number of model runs needed. Some global SA techniques rely on

averaging out a set of local SAs [87, 88], although many different types of

global SA techniques exist, each of them with certain advantages depend-

ing on the case at hand. Table 4.1 gives a (non exhaustive) overview of

some of the more popular types of global SA and their advantages and

disadvantages.
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Table 4.1: Overview of global SA techniques with advantages and disadvantages.

Technique Advantages Disadvantages

Regression-based
* Simple to code
* No design required
* Quick assessment

Works for (quasi) linear models

Rank-based regression
and correlation

Works for nonlinear models
* Works for monotonic models
* Conclusions do not translate
to original model

Screening
* 10 <# inputs < 100
* Computationally intensive models
* Analysis by groups of inputs

* Special design
* Special sampling
* Unclear interpretability
of importance indices

Variance-based

* Clear interpretability of
importance of indices
* Interaction at any order
* Analysis by groups

* Special design
* Computationally expensive
* Second order moment

Moment-independent
Captures changes in the
entire distribution

* Specific design
* Computationally expensive

Meta-modeling
Cheap functions to replace
expensive models

* Maximal dimensionality (20–30)
* Loss of parameter interpretability

Based on Monte
Carlo sampling

* No design required
* Model free
* Fast to implement

Limited to first order effects

3
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4.3. Choice of appropriate technique

The choice of method of SA is typically dictated by a number of prob-

lem constraints or settings. The most common ones are computational

expense, correlated inputs, linearity of the model results, multiple outputs

and whether or not the model itself is available or just a set of given data

obtained with the model.

In deterministic models, the outcome for a specific set of parameters is es-

sentially the same for identical initial conditions. Stochastic models, like

the ones that will be used in this dissertation, on the other hand, have

varying outputs between simulations, even if parameter values and initial

conditions are identical [85]. Rather than comparing two single output

values for sensitivity analysis, as is the case for deterministic models, two

distributions of output values have to be compared. SA for stochastic mod-

els is often based on the mean of the different distributions of output values,

although a better approach also accounts for the shape of the distributions,

for instance by taking into account the variance [83].

Furthermore, since simulations with CA-based models are generally more

time consuming than e.g. simulations with a PDE-based model, a screening

method for SA is adopted here because such method has a relatively low

computational cost when compared to other approaches. With screening

methods, the objective is to identify which input variables are contributing

significantly to the output uncertainty and roughly rank them, rather than

exactly quantifying sensitivity. They are often employed for problems with

long model evaluation times or reasonably high dimensionality.

Taking both arguments into account, the Elementary Effects (EE) method

or method of Morris [88, 89, 90] is used throughout this dissertation as SA

technique, because it is a variance-based screening method that is thus not

overly computationally expensive.

4.4. Elementary Effects method

The EE method is an effective variance-based screening method that uses

an average measure of the EE effect of each parameter by observing the

effect on the output. Note that this is a quantitative method, but does not
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have a direct interpretation in terms of output variance. The design consists

of R trajectories in the parameter space Ω. The range of each parameter

is normally divided into a number of levels, creating a grid. A random

point is chosen as a starting point. The design then moves a distance of

∆ q1 in the direction of q1, then ∆ q2 in the direction of q2 and so on for

all b parameters. This creates a winding stairs trajectory of b + 1 points.

After the trajectory is constructed, a new random point is chosen and a

new trajectory is constructed. This is repeated for R trajectories, at a total

cost of R (b + 1) model runs.

The sensitivity is calculated for each parameter as the mean ofR elementary

effects:

EEi = Y (q1, ..., qi +∆ qi, ..., qb) − Y (q1, ..., qi, ..., qb)
∆ qi

, (4.3)

i.e.

µi = ∑
R
r=1EEi,r

R , (4.4)

with r an index referring to the runs. The overall influence of a parameter

qi on the output is assessed using this µi. Often it is useful to compute

µ∗i , being the mean of ∣EEi,r ∣, as it comes at no extra cost to calculate and

resolves the issues encountered with non-monotonic models [91]:

µ∗i =
∑Rr=1 ∣EEi,r ∣

R . (4.5)

Another useful measure of nonlinearity and interaction is given by the stan-

dard deviation of the modulus of the elementary effects:

σi =
¿ÁÁÀ∑Rr=1 (EEi,r − µi)2

R . (4.6)

The logic here is that if the response of the output to a given input were

perfectly linear, the EE would be identical anywhere in the input space. In

the nonlinear case the latter would not hold true. The importance of the

different parameters can be assessed graphically using a (µ∗, σ)-plot, with
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the parameters closest to the origin, i.e. with low value for both µ∗ and σ,

being the least influential [91].

Nothwithstanding the fact that a few authors in literature report an SA

for CA-based models [92, 93], the use of the EE method, although widely

and successfully used in literature and recently also for stochastic biolog-

ical models [94], for CA-based models is to the author’s knowledge very

limited.
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5 Introduction

Part II of this dissertation is all about exploiting the advantages of CAs

and trying to overcome their limitations. Four different case studies receive

ample treatment in this part. All case studies are distinct, both in the

process that is modeled as well as in the aspects of CA modeling explored

to develop the models. In this way, a range of possible applications and

fields of research are presented next to a more detailed description on what

modeling choice can be made to overcome a specific hurdle. The level

of complexity of the developed model and modeling choices as well as the

experimental data used increases from the first to the last case study.

Each of the chapters is organized similarly. First some details are given on

the process that is modeled and the previous modeling efforts that have

been made in this field. Next, the data acquisition is discussed after which

the major part of each chapter deals with the development of the stochastic

CA-based model and the modeling choices linked to this. Once the model

is developed, experimental data are used to solve the inverse problem, i.e.

to retrieve the values of the model parameters such that the simulated data

come as close as possible to the observed data, also called parameterization

of the model. Finally, some conclusions are drawn and future work is

suggested with focus on the modeling choices made in that chapter.

With regard to the experimental data, time series are used to parameterize

the CA-based models in all four case studies. A time series is a collec-

tion of observations of well-defined data items obtained through repeated

measurements over time, usually in regular time intervals [95]. Time series

occur naturally in many application areas such as economics, finance and

medicine. Two main applications of time series data can be discerned. A

first one is to obtain an understanding of the underlying forces and struc-

ture that produced the observed data. The second use is to fit a model and

proceed to forecasting, monitoring or even feedback and feedforward con-

trol, which is also why they are used throughout Part II of this dissertation.

The time series employed in Chapters 6 and 9 were gathered in the labo-

ratory by the author, while the time series employed in Chapters 7 and 8

were made available to the author.
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Chapter 6 deals with the reaction of calcium carbonate and hydrochloric

acid. A CA-based model with only one parameter that incorporates diffu-

sion and reaction is developed. In order to show that CAs can indeed be

an alternative to PDEs, a PDE-based model with one parameter describing

the same reaction is introduced. This chapter discusses the advantages and

limitations of incorporating the effects of various processes into a single

parameter. Further, the use of the block CA paradigm for this specific case

is motivated and discussed. Finally, the parameterization of the developed

model is done through an exhaustive search which was possible due to the

presence of a single parameter. The experimental data employed in this

chapter consist of a single time series of the decrease in mass due to the

escape of formed CO2 from the reaction mixture.

The second case study discusses the photocatalytic degradation of fluoro-

quinolones. The four key processes behind this phenomenon, i.e. photo-

lysis, adsorption, desorption and photocatalysis, are incorporated in the

CA-based model developed in Chapter 7. Four model parameters are em-

ployed, one for each key process. From this chapter, it is clear that there

exists a relationship between the physical dimension of a tessellation cell,

the physical time that corresponds to a discrete time step ∆ t and the diffu-

sion coefficient. When, like is the case in Chapter 7, the diffusion coefficient

is known, choosing a number of seconds that corresponds to a time step at

the same time determines the physical size of a cell and vice versa. Like in

Chapter 6, the system being modeled is well mixed such that the choice is

made to model only a part of the entire system which is then afterwards

scaled in order to minimize computation times. However, here sparse ar-

rays are preferred, since the phenomenon being modeled is more complex

and the use of a block CA would result in a continuous scanning of the

entire tessellation in order to retrieve the small number of cells that are of

interest. The latter would result in a severe computational effort. Periodic

boundaries are used to simulate the presence of a larger system. In order

to still respect the law of mass conservation, having abandoned the block

CA paradigm, an asynchronous update method is adhered to. Finally, the

results of an SA are used to guide the parameterization of the CA-based

model which is done via grid search using experimental data from a lab-

scale batch reactor. Here, five different time series of experimental data

are at hand that all describe the same process, but with different initial

concentrations of fluoroquinoles to degrade. All five time series are used to
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retrieve the optimized parameter set.

In Chapter 8, a CA-based model is proposed to describe oil migration in

chocolate-coated confectionery. Like in Chapters 6 and 7, a 2D tessellation

is used. However, this time the tessellation represents a cross-section of

the complete system under investigation, rather than a small part. The

latter has an influence on the choice of tessellation resolution as well as

on the choice of boundary conditions, both of which are elaborated on in

this chapter. One of the four model parameters to be optimized is ∆ t, the

physical time corresponding to one discrete time step. This is due to the

fact that there is no value available for the diffusion coefficient D under

the circumstances described in Chapter 8. After parameterization of the

CA-based model, an effective diffusion coefficient D for this specific case

is calculated. Like in Chapter 7, more than one time series of data (two

in this case) is used to retrieve a single optimal parameter set. However,

in this case the time series do not constitute the same process at different

concentrations, but two time series originating from two different processes.

Therefore, the optimized parameter set has to correctly give rise to two

different types of output simultaneously. Finally, it is mentioned that the

choice to apply the transition function in an asynchronous manner is based

on the fact that synchronous updating would result in an excessive number

of conflicting movements during the diffusion part of the transition func-

tion as such influencing the parameterization to an unacceptable extent for

further interpretation.

Finally, Chapter 9 introduces a 3D CA-based model with the incorporation

of the key processes of pitting corrosion. In contrast with the first three

case studies, a 3D tessellation is employed since the experimental data call

for it: three dimensions are needed when the surface and the depth of cor-

rosion pits have to be modeled simultaneously. The domain, like is also

done in Chapters 6 and 7, represents only a part of the entire system. How-

ever, here a combination of periodic and fixed boundaries is used since the

system under study is not a well-mixed reaction solution, but contains an

interface of two different components. Further, again ∆ t is introduced as a

parameter since no diffusion coefficient is known for the experimental con-

ditions at hand. Although the situation in this case study is similar to the

one presented in Chapter 8, the update of the state of the cells of the tes-

sellation is not performed in an asynchronous manner, the reason for this

being twofold. Firstly, the number of update conflicts in this specific case is
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limited and so the influence on the optimal parameter values is small. The

second reason for choosing a synchronous updating mechanism is the reduc-

tion in computation times it offers, which is of utmost importance when

working with 3D models. Finally, the results of an SA are used to simplify

the parameter estimation. Via a grid search in two steps, the inverse prob-

lem is solved using three different time series that each describe a different

type of output. It is mentioned here that the time series of experimental

data used in this chapter had to be derived from a set of micrographs and

another, not directly employable, time series of data.
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In this chapter, a stochastic CA-based model for modeling physico-chemical

reactions is designed, applying it as illustration to a well-known reaction,

namely the reaction of calcium carbonate (CaCO3) with an aqueous so-

lution of hydrochloric acid (HCl). The main goal of this chapter is to

illustrate that a CA-based model can be an alternative for a PDE-based

model. Special attention is given to the workability of the CA-based model,

incorporating, a.o., the block CA paradigm, to create a practical modeling

tool for performing calculations with real data instead of developing a CA-

based model that merely gives qualitative results, as was mostly done in

the past [15, 33]. The model takes into account the changes in concentra-

tion due to diffusion as well as reaction. Experimental data were gathered

in the laboratory and the CA-based model was parameterized using these

data. The optimization is performed through an exhaustive search of the

solution space since the interest lies in an approximate solution to the prob-

lem. Furthermore, a PDE-based model, for which the system of PDEs is

deduced from a CA, is parameterized using the same experimental data in

order to compare both models.

6.1. The phenomenon

Chemical kinetics or reaction kinetics is the study of rates of chemical pro-

cesses, meaning that it investigates how different experimental conditions

can influence the speed of a chemical reaction. Further, it yields informa-

tion about the reaction’s mechanism and transition states, as well as the

construction of mathematical models that can describe the characteristics

of a chemical reaction. In 1864, Waage and Guldberg [96] pioneered the de-

velopment of chemical kinetics by formulating the law of mass action, which

states that the speed of a chemical reaction is proportional to the quantity

of the reacting substances. Chemical kinetics deals with the experimental

determination of reaction rates from which rate laws and rate constants are

derived. The reaction studied in this chapter is that of CaCO3 with HCl,

which is used to produce the salt CaCl2 that finds applications in brine for

refrigeration plants, ice and dust control on roads, and desiccation.
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6.2. Data acquisition

The reaction of CaCO3 with HCl can be written as

CaCO3(s) + 2HCl(aq) → CaCl2(aq) +H2O(l) +CO2(g). (6.1)

The reaction given by Eq. (6.1) was conducted in the laboratory at ambient

temperature and pressure to obtain a time series of the cumulative mass

CO2 that escaped from the solution. For that purpose, 7.5 g of CaCO3

(GPR RECTAPUR, 99 % purity) was added to 35.6 10−3 l distilled H2O

in a measuring beaker open to the air. The CaCO3 dissolved until the

liquid was saturated, while the remaining undissolved CaCO3 sank to the

bottom of the beaker. To this mixture, 14.4 10−3 l of a 23 % (w/w) HCl

solution (AnalaR NORMAPUR) was added. The density of this solution

was 1100 g/l, which means that there was 3.64 g (0.0998 mol) HCl present

at the beginning of the reaction, next to 0.075 mol of CaCO3. Taking into

account that two moles of HCl are required to gasify one mole of CaCO3,

CaCO3 was in excess.

As soon as the CaCO3 and HCl solution came into contact with one another,

gaseous CO2 was formed that immediately escaped from the open beaker.

The weight loss due to this gas formation was measured by means of an

analytical balance (Mettler-Toledo, ± 0.0001 g). The solution was contin-

uously stirred in order to keep the reaction going, promote the dissolving

of additional CaCO3 and allow the formed CO2 to easily escape from the

stirred solution. The weight loss of CO2 was measured for 565 seconds

since by then the weight loss was no longer significant. In the beginning a

reading was done every 5 or 10 seconds and towards the end of the exper-

iment every 100 seconds. The theoretical stoichiometric maximum weight

loss due to CO2 formation is 3.3 g.

During the execution of the experiment, it was noticed that other sources

of weight loss occurred like evaporation to the open air, as well as adhesion

of fluid on the plastic beaker where it could evaporate more rapidly. These

additional sources of weight loss were quantified by means of a blank ex-

periment under the same conditions, and added up to 0.80 g at the end of

the experiment. Corrections to the model output were made, making use

of the quantified additional weight loss, by adding this additional weight
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Figure 6.1: Cumulative loss of CO2 in function of time

loss to the simulated weight loss by the model to give a total simulated

weight loss. The experimental loss of CO2 in function of time is given in

Figure 6.1.

6.3. Gasification of calcium carbonate

6.3.1. The CA-based model

In this chapter a stochastic CA-based model is developed according to

Definition 3. A tessellation of R2 that consists of squares is used, because

it has the most straightforward implementation and suffices to illustrate the

validity of the model that will be constructed. The size of the tessellation

T ∗ used is 99× 99 cells. Further, the Moore neighborhood function is used

and a set of states S = {H2O,HCl,CaCO3} is adhered to. For reasons of

simplicity and workability of the model, no additional state for the CO2 or

CaCl2 molecules is introduced, the former because it is assumed that they

escape immediately from the medium and are therefore never present in

the tessellation and the latter because they are completely dissolvable salts

that are non-reactive.

To initialize the CA at the beginning of a simulation, every ci,j ∈ T ∗ is

assigned a state according to the molar ratios of the reactants and water

in the recipient at the start of the experiment described in Section 6.2.
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Figure 6.2: Splitting a tessellation T ∗ in blocks of three by three cells.

After the initialization of the tessellation a scaling factor κ, which links the

number of cells of the tessellation in state CaCO3 at any given time to a

physical amount of CaCO3, is calculated. Therefore, the total number of

cells of the tessellation in state CaCO3 at t = 0 is compared to the number

of CaCO3 molecules present at the beginning of the experiment. The latter

is calculated by determining the number of molecules present in 0.075 mol

CaCO3 (7.5 g CaCO3), which is the exact amount of CaCO3 present at the

beginning of the experiment, making use of Avogadro’s number (6.0221023),

resulting in 4.5171022 CaCO3 molecules. For the tessellation size considered

here, the scaling factor κ is equal to 1.7111020. Thus, the tessellation

represents only a part of the entire system under study and is therefore more

a calculation tool rather than an accurate representation of a system.

The CA-based model is implemented by relying on the block CA paradigm

(see Section 3.3). This choice is made here because it allows the transi-

tion function to be applied in a synchronous manner while still obeying

the law of mass conservation. Here, the tessellation is split into non-

overlapping blocks of three by three cells ci,j , ci+1,j , ci−1,j , ci,j+1, ci,j−1,

ci+1,j+1, ci+1,j−1, ci−1,j+1, ci−1,j−1, where ci,j is the central cell of the block

(see Figure 6.2).

The transition function Ψ of the CA-based model falls apart into two parts

which describe diffusion 1 and reaction, respectively. Diffusion is simulated

by redistributing the state of the cells within every block of nine cells (see

Figure 6.3), which is plausible since the system under study is well-mixed.

This redistribution may happen with a probability PD ∈ ]0,1[ or can occur

at every time step, i.e. PD = 1. A second step, simulating reaction, con-

sists of an evaluation of the central cell ci,j of every block of nine cells. The

1 Throughout this chapter diffusion is employed to refer to the movement of molecules in
the system, although in reality the driving force for movement in the system is advection.
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PD

Figure 6.3: Simulation of diffusion by redistributing the state (H2O (white), HCl
(gray) and CaCO3 (black)) of the cells within every block of nine cells.

Pr

(a)

Pr

(b)

Pr

(c)

Figure 6.4: Reactions that can occur if the central cell is (a) H2O (white), (b)
HCl (gray) or (c) CaCO3 (black).

molecule in ci,j will react with a probability Pr, which is a key model param-

eter representing the reaction rate constant at which Eq. (6.1) takes place.

If reaction is allowed to occur, then there are, based on the stoichiometry

of Eq. (6.1), several pathways, which are also illustrated in Figures 6.4(a) –

6.4(c):

1. ci,j contains a water molecule: as a water molecule is non-reactive,

nothing happens.

2. ci,j contains a HCl molecule: if another HCl molecule as well as a

CaCO3 molecule are present in the Moore neighborhood, reaction

takes place with probability Pr and the three cells involved in the

reaction turn to water, while CO2 is formed and immediately escapes.

If multiple possibilities for reaction exist, one combination is chosen

at random.

3. ci,j contains a CaCO
3
molecule: if two HCl molecules are present

in the Moore neighborhood, reaction takes place with probability Pr

and the three cells involved in the reaction turn to water, while CO2

is formed and immediately escapes. If more than two HCl molecules

are present, two are selected at random.

Despite the synchronous updating of the different three by three blocks,

only one cell, i.e. the central cell, is evaluated for the reaction part of Ψ,

such that the applied update method constitutes an asynchronous update
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(a) (b)

Figure 6.5: Shifts that take place with the block CA-based model: (a) shift of
upper row to the bottom and (b) shift of the utter right column to utter left.

method for this part of the transition function. To ensure that at every

time step another cell is considered as central cell, a shifting mechanism is

incorporated (see Section 3.3). The specific rule applied here is that after

every time step the first row of the tessellation is removed and placed at

the bottom (see Figure 6.5(a)) and the utter right column is transferred to

the utter left (see Figure 6.5(b)).

Finally, the choice is made to set PD = 1 for all simulations, making the

diffusion part of the transition function deterministic. This implies that the

stochasticity associated with the diffusion process is incorporated into Pr.

Figure 6.6 shows a flow chart of the CA-based model developed in this

chapter.

6.3.2. The PDE-based model

CAs can be an alternative, as mentioned earlier, for PDEs in the study of

spatio-temporal processes. Therefore a continuous PDE-based model is im-

plemented and parameterized to investigate whether a higher correlation

can be found with regard to the observed data than with the CA-based

model. The system of PDEs is deduced according to the principles de-

scribed by Reichenbach et al. who show that a spatially discrete, stochas-

tic system can be transformed into a system of stochastic PDEs, which

can, in some cases, aptly capture a system’s behavior in the continuum

limit [97].

In agreement with the set-up of the CA-based model, a finite, square tes-

sellation T ∗ is presumed in which every cell ci,j is either occupied with a

CaCO3 or a HCl molecule or is empty. Reaction is only allowed between

the nearest neighbors, which are determined by the neighborhood function

N(ci,j) under consideration. Further, all molecules are given a mobility γ,
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Figure 6.6: Flow chart of CA-based model for reaction kinetics.
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x

y

Dx

Dy

Figure 6.7: Representation of a spatially discrete system.

the speed with which molecules can move between neighboring cells. Note

that this mobility γ has the same meaning as the parameter PD in the

CA-based model.

Let d denote the dimensionality, then the macroscopic diffusion coefficient

D is defined as [97]:

D = γ d−1 ∣T ∗∣−2/d . (6.2)

Here, D is assigned the value 10−9 m2 s−1, a value found in literature for

similar conditions [97, 98]. If τ = 2d is defined as the number of closest

neighbors of every cell ci,j , P
∗
r as the probability of reaction, the concen-

tration of HCl and CaCO3 at time t and position r = (x, y) as X(r, t),
respectively, Y (r, t), and the distance between two neighboring cells in the

x direction as ∆x and in the y direction as ∆y (see Figure 6.7), then it

is possible to obtain a time evolution of the average value of X(r, t) and
Y (r, t) for different neighborhood functions. In order to take a similar

neighborhood as for the CA-based model, the Moore neighborhood will be

considered and thus X(r, t) is defined as follows:

∂X

∂t
= 1

τ
[Diffusion +Reaction] . (6.3)

The diffusion (reaction) term is the summation of the diffusion (reaction)

of the constituents of the cell under consideration with each of its nearest
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neighbors. Therefore, a coefficient 1
τ
is included to average over the neigh-

bors of a given cell ci,j . The diffusion of HCl between x and x−∆x is given

by

2γ (X(x −∆x, y, t) −X(x, y, t)), (6.4)

with γ being dependent on D as indicated by Eq. (6.2) and the addition

of the coefficient 2 to account for the fact that diffusion can occur in both

directions. When repeating this reasoning for all neighbors, the diffusion

term of Eq. (6.3) can be written as

Diffusion = 2γ (X(x −∆x, y, t) +X(x +∆x, y, t) +X(x, y −∆y, t)
+X(x, y +∆y, t) +X(x −∆x, y +∆y, t) +X(x +∆x, y +∆y, t)
+X(x −∆x, y −∆y, t) +X(x +∆x, y −∆y, t) − 8X(x, y, t)) . (6.5)

The second term of Eq. (6.3) is the reaction term. Two molecules of HCl

and one molecule of CaCO3 are needed for reaction, according to Eq. (6.1).

When we consider reaction between HCl at (x, y) and at (x−∆x, y), CaCO3

can be taken from one of the seven remaining sites in the Moore neighbor-

hood, resulting in seven possible ways for reaction to occur

− P ∗r X(x, y, t)X(x −∆x, y, t)Y (x +∆x, y, t)
− P ∗r X(x, y, t)X(x −∆x, y, t)Y (x +∆x, y −∆y, t)
− P ∗r X(x, y, t)X(x −∆x, y, t)Y (x −∆x, y −∆y, t)
− P ∗r X(x, y, t)X(x −∆x, y, t)Y (x, y −∆y, t)
− P ∗r X(x, y, t)X(x −∆x, y, t)Y (x +∆x, y +∆y, t)
− P ∗r X(x, y, t)X(x −∆x, y, t)Y (x −∆x, y +∆y, t)
− P ∗r X(x, y, t)X(x −∆x, y, t)Y (x, y +∆y, t) ,

where the minus sign accompanying P ∗r indicates that HCl is consumed dur-

ing reaction. This can be repeated for the reaction possibilities of HCl at(x, y) with HCl at one of the seven remaining neighbors in the Moore neigh-
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borhood besides (x −∆x, y), each of them again generating seven reaction

terms for the reaction with CaCO3 at one of the other seven sites.

When we consider ∆x→ 0, as well as ∆y → 0 and therefore ∆r = ∣T ∗∣−1/d →
0, r can be treated as a continuous variable which means that the Taylor

expansion is justified:

X(r ± ∆r, t) =X(r, t) ±∆rX ′(r, t) + 1

2
∆r2X ′′(r, t) , (6.6)

upon dropping higher order terms. When Eq. (6.6) together with τ = 4 (for

a two-dimensional system) is considered, Eq. (6.3), after substituting the

diffusion and reaction terms given by Eq. (6.5) and the different reaction

parts, can be rewritten in the following manner:

∂X

∂t
= γ ∆r2 (∂2X

∂x2
+
∂2X

∂y2
) − 14P ∗r X(x, y, t)2 Y (x, y, t) . (6.7)

By applying the same procedure, a similar equation can be obtained for

∂Y /∂t and taking into account the fact that γ∆r2 = 2D and by substituting

X and Y by respectively [HCl] and [CaCO3], the following system of PDEs

is obtained for a Moore neighborhood:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂[HCl]
∂t

= 2D(∂2[HCl]
∂x2

+
∂2[HCl]

∂y2
) − 14P ∗r [HCl]2[CaCO3],

∂[CaCO3]
∂t

= 2D(∂2[CaCO3]
∂x2

+
∂2[CaCO3]

∂y2
) − 7P ∗r [HCl]2[CaCO3] .

(6.8)

The form of System (6.8) is in accordance with what can be found in litera-

ture for reaction-diffusion processes, whereby the reaction terms are specific

for the reaction at stake [33, 48].

6.4. Parameterization

The probabilities Pr and P ∗r of reaction for the CA- and PDE-based models

respectively, are parameters belonging to the interval [0,1]. Because there
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is only a single parameter in both cases to be optimized and the interest

lies only in an approximate value for Pr and P ∗r , it is opted to perform

an exhaustive search for values of Pr and P ∗r with a limited number of

decimal places. Further, it also stands without saying that the obtained

optimized values for Pr and P ∗r are only valid for the conditions at which the

experiment was conducted. If the model results are desired at for instance

a different temperature, experimental data at this temperature has to be

collected.

6.4.1. The CA-based model

At every time step of the evaluation of the CA-based model, the simulated

loss of HCl molecules is registered. This loss can be linked to the number of

CO2 molecules formed and, together with the scaling factor κ mentioned in

Section 6.3 as well as the molecular weight of CO2, gives the simulated loss

of CO2 as a function of the time step. The experimental data is given as a

cumulative loss of CO2 in function of time. This means that a decision has

to be made with regard to the relationship between the physical time and

a discrete time step. This is done by choosing the number of seconds that

equals one time step of the stochastic CA-based model. If one time step is

set as 0.01 s, the cumulative loss of CO2 after 100 time steps is linked to

the observed weight loss after 1 s. The influence of this choice is embedded

in the parameter Pr. It holds that a time step equaling a larger number

of seconds, corresponds to a higher value of Pr in order to reach the same

result.

The simulated CO2 loss is calculated, using values of Pr ranging from 0

to 1 in steps of 0.001. The choice for an accuracy of 0.001 is based on

the fact that the use of a smaller step size does not result in a significant

decrease in root mean squared error (RMSE) between the experimental

data and the simulated ones. The optimal value for Pr is chosen as the

one that gives rise to the lowest RMSE. Because of the stochasticity of the

CA-based model, the calculations are performed in tenfold, resulting in an

average optimal value for Pr of 0.907, with a corresponding RMSE of 0.388.

Figure 6.8 shows both the experimental data and the simulated data with

the optimized value of Pr.
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Figure 6.8: Simulated (◾), with CA-based model, and observed (●) cumulative
mass loss of CO2 in function of time.

6.4.2. The PDE-based model

The system of PDEs, described by (6.8), is solved numerically for values of

P ∗r ranging from 0 to 1 in steps of 0.0001. In the case of the PDE-based

model, a higher accuracy in comparison to the simulations with the CA-

based model offers a significant improvement in the obtained RMSE. Here,

the equations of the system of PDEs are expressed in physical time units

and hence, there is no need for assuming a relationship between physical

time and a discrete time step. The RMSE is again used as criterion to

find an optimized value of P ∗r for which the simulations with the PDE-

based model correspond best to the observed data. Since no stochasticity is

involved, a repetition of the calculations is unnecessary and the P ∗r for which

the lowest RMSE is encountered, is 0.0103. The corresponding RMSE

amounts to 0.869. The simulated mass of CO2 using the PDE-based model

with the aforementioned value of P ∗r , as well as the observed measurements

used in the parameterization procedure are represented in Figure 6.9.

Comparing the fit with the CA- and the PDE-based model by means of

Figures 6.8 and 6.9, it can be seen that both models produce results that

are simular to the experimental data and to each other. It is difficult to

distinguish between the simulated results of the two models, except for

the first three data points. It can be seen, that here simulated loss with

the CA-based model fits the experimental data better than for the PDE-
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Figure 6.9: Simulated (◾), with PDE-based model, and observed (●) cumulative
mass loss of CO2 in function of time.

based model. Further, it can be noticed that the optimized value for Pr is

about 90 times bigger than that of P ∗r . This is due to a number of reasons.

First of all, as mentioned before, the CA-based model is asynchronous,

making that in every single time step Pr only has an impact on one ninth

of all cells, while P ∗r influences all molecules simultaneously. Secondly, both

parameters cannot easily be compared, since they are not completely the

same: P ∗r is a pure reaction probability, whereas Pr also has the effect of

diffusion as well as that of the choice of what physical time corresponds to

one discrete time step embedded in it.

6.5. Conclusions

In this chapter, a CA-based model was presented to describe the reaction

of CaCO3 and HCl. This reaction was performed in the laboratory and

the cumulative loss of CO2 in function of time was registered. The CA-

based model incorporates diffusion and reaction and gives a simulated loss

of CO2 in function of a discrete time step. The key parameter in this

model was optimized using an exhaustive search, such that the RMSE

between the simulated weight loss and the observed weight loss was minimal

and that the fitted relationship had a high correlation to the observed

data. Further, also a system of PDEs was implemented, starting from a
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set of CA rules, to compare the CA-based model to the more established

continuous PDE-based models. After fitting the PDE-based model to the

observed data, it could be seen that the simulated results with the models

resemble both each other and the experimental data, with the CA-based

model performing best. Nevertheless, Figures 6.8 and 6.9 show that there is

still room for improvement. The use of just one model parameter in this case

is probably an oversimplification of the process at hand. A more elaborate

and complex model will potentially improve the fit of the simulated data

to the experimental data. Further, it might also be necessary to consider

more physical processes in the construction of the transition function of the

CA-based model. One of these processes is the partial dissolution of CO2

in the reaction solution. The latter implies that instead of assuming the

instantaneous escape of CO2, a delay factor is introduced, which dictates

how long CO2 remains in the reaction solution before escaping it.

This chapter not only shows that CA-based models are indeed an alternative

for their PDE-based counterparts, but moreover, that a PDE-based model

can be deduced starting from a set of CA rules. Further, by choosing

to model a relatively simple reaction and by merging the effect of several

parameters, the proposed CA-based model only has one parameter. On the

one hand, this immensely facilitates the parameterization of the model to

the point where an exhaustive search is possible. On the other hand it also

blurs the interpretability of the optimized value of the parameter, making it

difficult to attribute an unambiguous physical meaning to the result.

Another point to address here is that the tessellation used in this chapter

does not represent the complete physical domain of the beaker in which

the reaction was performed. The tessellation in this case is rather a small

part of a much larger system that is used for calculations after which the

results are scaled using the scaling factor κ. Although in theory it would be

possible to construct a tessellation that accurately represents the complete

physical system, in practice this would result in unnecessary calculations

and excessive computation times. Especially since the CA-based model

deals with a well-mixed solution where the reactions that are occurring are

the same in every part of the system. The fact that we are dealing with a

well-mixed system also justifies the use of the block CA, which speeds up

calculations, facilitates implementation, obeys mass conservation laws and

eliminates the need for boundary conditions.
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7 Photocatalysis

Fluoroquinolones (FQs) are a family of synthetic broad-spectrum, antibac-

terial compounds, with moxifloxacin (MOX) being one of the most impor-

tant members. Although very efficient and active, they are incompletely

metabolized during human therapy and traditional wastewater treatment

plants cannot remove them completely, so that they accumulate in the

environment. Research is therefore directed towards novel methods, such

as titanium dioxide (TiO2) assisted photocatalysis, to achieve complete

mineralization of organic contaminants. Despite the great potential of pho-

tocatalysis and the ongoing research in this field, the reaction mechanism

behind photocatalysis is still not completely elucidated and the oxide sur-

faces of the TiO2 photocatalyst are more complex than anticipated, which

hampers the development of a mathematical model for describing photo-

catalytic degradation. In this chapter, a stochastic CA-based model is

proposed to simulate the mechanism behind photocatalysis. The model

is validated and evaluated through SA. Subsequently, it is parameterized

using experimental data from a lab-scale batch reactor.

7.1. The phenomenon

FQs are a family of synthetic broad-spectrum, antibacterial compounds

that are widely used for both human medicine and livestock operations [99,

100]. The most popular quinolone antibiotic in Europe is ciprofloxacin

(CIP) (see Figure 7.1(a)), which is a potent second-generation fluoroquinolone

that kills bacteria by interfering with the enzymes that cause DNA to

rewind after being copied and which is used to treat, a.o., skin and uri-

nary tract infections. However, the increased use and exposure to CIP

can increase bacterial resistance so that the search for new compounds is

ongoing. One of those new FQs is MOX (see Figure 7.1(b)), an upcoming

fourth-generation FQ, which is at the moment the last resort when all other

antibiotics have failed [100].

Although very efficient and active, FQs are incompletely metabolized dur-

ing human therapy and are consequently partially (> 50 %) excreted in their
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(a) (b)

Figure 7.1: Molecular structure of (a) CIP and (b) MOX.

pharmaceutically active form, ending up in the municipal sewer [99, 101].

Due to their limited biodegradability, widespread use and incomplete re-

moval in wastewater treatment plants, they accumulate in the environ-

ment and cause adverse effects on (aquatic) organisms [99, 101]. There-

fore, FQs and other recalcitrant organic pollutants continue to increase

in air and wastewater flows, which does not only pose an environmental

problem, but as environmental laws and regulations are becoming more

stringent, also creates an economic necessity to degrade these synthetical

compounds which are resistant to conventional treatment methods [101,

102, 103, 104].

As such, research is directed towards advanced oxidation processes (AOPs)

that rely on the generation of highly reactive radical species such as HO · by

using solar, chemical or other forms of energy, to obtain complete mineral-

ization of organic pollutants. Among the AOPs, TiO2-assisted photocatal-

ysis is one of the most promising methods [101, 103, 105, 106, 107, 108]. Ti-

tanium has proven to be a good photocatalyst for it gives an excellent com-

bination of photoactivity and photostability, i.e. it does not change upon ex-

posure to light, while being well available and low in cost [102, 103, 104, 109].

When irradiated with UV light in the presence of O2, TiO2 catalysts gen-

erate highly reactive radical species that can convert organic compounds

into CO2, H2O and mineral acids (see Eq. (7.1)), rendering them harm-

less:

organic contaminant
O2, hv
ÐÐÐÐ→
TiO2

intermediates→ CO2 +H2O +mineral acid(s).

(7.1)
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Despite the great potential of photocatalysis and the numerous studies in

this field, the reaction mechanism behind photocatalysis is still not com-

pletely elucidated and the surface structure of the TiO2 photocatalyst is

more complex than anticipated, which hampers the development of a ma-

thematical model describing photocatalysis [101, 103, 109]. Therefore, a

stochastic CA-based model is proposed in this chapter to provide an al-

ternative to the time-consuming experimental analyses and to gain further

insight into the mechanism behind photocatalysis.

7.2. Data acquisition

For the parameterization of the CA-based model, experimental data were

obtained according to the method described by Van Doorslaer et al. [105].

Experiments were performed using a lab-scale batch reactor (see Figure 7.2)

which was kept at 298 ± 1 K and was equipped with a UV-A light source

(485 µW/cm2, 300-440 nm with main peak at 365 nm). The reactor was

filled with a buffered solution to maintain a pH of 7, the organic pollutant

to be degraded and the photocatalyst TiO2 (if only photolysis was desired,

the photocatalyst was omitted). The reaction mixture was, prior to irradi-

ation, stirred under darkness and sparged with pure oxygen for 30 min so

that an adsorption equilibrium was reached, after which the UV-A lamp

was switched on and photocatalytic degradation took place (if TiO2 was

present).

The photocatalytic reactor, screened from natural light, is assumed to be

well mixed and can therefore be considered as a batch reactor. At pre-

defined times during the photocatalytic degradation, samples were taken,

filtered and analyzed by a liquid chromatograph coupled to a photodi-

ode array detector, as such measuring the concentration of organic pol-

lutants. More details about this procedure can be found in Van Doorslaer

et al. [105].

The experimental data used in this chapter were obtained from solutions

with 5 g/l TiO2 and different initial concentrations of MOX, being 5, 10,

15, 20 and 25 mg/l for photocatalysis and an initial MOX concentration

of 15 mg/l and no TiO2 for photolysis, i.e. the direct degradation through

UV light [105]. Depending on the experiment, four up to eight measure-

ments at different points in time were taken. From these measurements,
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Figure 7.2: Lab-scale batch reactor with (1) oxygen input, (2) sampling port, (3)
UV-lamp, (4) quartz tube, (5) reaction vessel and (6) stirr bar.
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Figure 7.3: Concentration of MOX remaining in the solution for photolysis start-
ing from a mixture with an initial concentration of 15 mg/l MOX, according to
Van Doorslaer et al. [105].

the concentration of MOX remaining in the solution, adsorbed onto the

catalyst and already degraded could be determined at every sampling time.

The concentration of these different fractions in function of time, starting

from a mixture with 15 mg/l MOX for photolysis and mixtures with 5, 10,

15, 20 and 25 mg/l MOX for photocatalysis, is shown in Figure 7.3 and

Figures 7.4(a)–7.4(e), respectively.
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Figure 7.4: Concentration of MOX remaining in the solution (●), adsorbed (◾)
and degraded (◆) for photocatalysis starting from a mixture with an initial con-
centration of (a) 5, (b) 10, (c) 15, (d) 20 and (e) 25 mg/l MOX, according to Van
Doorslaer et al. [105].
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7.3. Model development

In this chapter, a 2D stochastic CA-based model is used in which T ∗ is

a square tessellation. Like in the previous chapter, the tessellation under

consideration represents only a small part of the studied system of which

the results will be translated to those for the original system making use

of a scaling factor κ. The difference with the previous chapter, however,

is that the phenomenon at hand is more complex and therefore demands

a model with a more complex transition function. The latter also implies

the need for more model parameters. Furthermore, as will be shown later

on in this section, the use of a block CA is not favorable due to the model

complexity. Since the block CA is not adhered to, boundary conditions

need to be defined. In this case, as the tessellation is a small part of a

larger whole, periodic boundary conditions are used, as such wrapping the

tessellation on a torus and simulating the presence of an infinite/larger

system.

Further, a set of three states is chosen as S = {H2O,MOX,TiO2}. Na-

turally, there are more components present in the experimental reaction

mixture, e.g. to buffer the solution. Nevertheless, all of these ingredients

are non-reactive and in fact do not play a significant role in the process

that is modeled. The two key components are the organic pollutant and

the catalyst and for that reason, all non-reactive components are regarded

as water.

To initialize the CA, every cell ci,j ∈ T ∗ is assigned a state according to the

proportion of the pollutant, catalyst and water in the batch reactor at the

start of the experiment (see Section 7.2). This proportion can be based on

the number of particles, the mass, the volume or the surface area of the

three components in the reaction mixture. Although discussion on the exact

mechanism behind photocatalysis is ongoing, it seems that particles have to

be either in direct contact with the catalyst surface or in the close vicinity

of this surface in order to degrade [101, 102, 103, 110], such that it seems

appropriate to assign the initial condition of T ∗ according to the proportion
of surface area. This leads to a surface area percentage of 8.3541 × 10−4,
1.5465×10−2 and 99.9837 of MOX, TiO2 and H2O, respectively. It is brought

to the attention of the reader that by making the aforementioned choice

to assign the initial condition, that cells of T ∗ do not directly represent a

molecule or not even a homogeneous amount of a component. Nevertheless,
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for the ease of reading, in what follows every cell is assumed to contain one

‘particle’.

In order to obtain a representative number of cells containing MOX and

TiO2, due to their low area percentage, a sufficiently large tessellation is

required that nonetheless does not result in excessive computation times.

A square tessellation with 40002 cells is chosen, yielding 134, 2474 and

1.5997 × 107 cells containing MOX, TiO2 and H2O, respectively, which are

randomly distributed across the tessellation since the batch reactor is as-

sumed to be well mixed (see Section 7.2). Furthermore, a scaling factor κ

is defined that relates the initial number of cells in state MOX to the initial

concentration of MOX in the batch reactor. Since the value of κ depends

on the initial concentration of MOX in the reactor, it is different for each

of the experimental data sets.

Note that only a small portion of the cells in the tessellation contains MOX

or TiO2, such that sparse matrices, only keeping track of the MOX and

TiO2 particles can be used to speed up calculations and spare computer

memory. Further, a list that contains the number of MOX particles that

is absorbed on every TiO2 particle and a list that comprises the number

of MOX particles that are free, adsorbed and degraded in every time step,

are employed.

The transition function Ψ falls apart into two parts that describe reaction

and diffusion 1, respectively.

7.3.1. Reaction

For the reaction part of Ψ, four stochastic key processes are considered,

which are depicted in Figure 7.5 and are elaborated on in this paragraph.

Photolysis The first key process is photolysis, which is the direct degra-

dation of MOX by UV light without assistance of the catalyst. In this case,

only the cells containing MOX particles are updated, where every particle

is broken down with probability Pphot (see Figure 7.6(a)).

1 Throughout this chapter diffusion is employed to refer to the movement of molecules in
the system, although in reality the driving force for movement in the system is advection.
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Figure 7.5: Schematic representation of the different components of the reaction
part of Ψ.

Adsorption Adsorption of MOX particles onto the catalyst surface is the

second key process [111]. To comply with the law of mass conservation, the

cells that contain a TiO2 particle are evaluated asynchronously in a random

order (see Section 3.3), to prevent two different TiO2 particles adsorbing

the same MOX particle in the same time step. The reason why specifically

random order is chosen here is because it has the simplest implementation

and there is no real indication why every TiO2 cell should be evaluated

once before cells are evaluated a second time. All TiO2 cells are equivalent

and therefore the number of evaluations is more important than knowing

which cells exactly are evaluated.

For this second key process, the neighborhood of the cells that contain a

TiO2 particle is checked and if a neighboring cell contains a MOX particle

(if more are present, one particle is selected randomly), the MOX particle

is adsorbed with probability Pads (see Figure 7.6(b)). Here, it is assumed

that every catalyst particle can adsorb an infinite number of MOX particles,

which in practice will never occur due to the limited total number of MOX

particles.

A neighborhoodN for reaction still has to be defined, as well as the absolute

time that corresponds to a discrete time step. On the one hand, a large

neighborhood and a time step that corresponds to a long absolute time are
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preferable, because this would reduce the computation time. On the other

hand, it has to be taken into account that the probabilities for reaction

(Pphot, Pads, Pcat and Pdes) have to be comprised in [0,1], which poses a

problem when opting for a very large neighborhood in combination with a

large time step. Through preliminary model exploration, taking the above-

mentioned constraints into account, a balance is found when employing

the extended Moore neighborhood with radius two (see Figure 3.9) as the

reaction neighborhood and with one time step equaling 0.1 s.

Catalysis MOX particles adsorbed on the catalyst surface can be de-

graded by photocatalysis, the third key process (see Figure 7.6(c)). There-

fore, all cells containing catalyst particles are evaluated by randomly se-

lecting one adsorbed MOX particle to be degraded with probability Pcat,

even if more particles are adsorbed on the surface. As this degradation is

catalyst assisted, Pcat is expected to be (much) larger than Pphot.

Desorption The fourth and last key process is desorption, where an ad-

sorbed MOX particle can desorb again. The extended Moore neighborhood

of a cell containing TiO2 is checked for the presence of a cell containing H2O

(if there are more options, one cell is chosen at random), after which an

adsorbed MOX particle can go back into solution with probability Pdes (see

Figure 7.6(d)). Again, all cells containing catalyst particles are evaluated

asynchronously in a random order to respect the law of mass conserva-

tion.

7.3.2. Diffusion

The second part of the transition function Ψ, namely diffusion, is essentially

deterministic, which means that particles diffuse with a probability of one

in every time step. In the model implementation, only the MOX particles

are allowed to diffuse, while the catalyst particles are static throughout the

simulation. The diffusion of the MOX particles is done asynchronously in

a random order, so that no two particles can diffuse to the same cell ci,j
during a given time step.

A physical measurement of the speed of diffusion is the diffusion coefficient

D which equals 7.13×10−5 cm2/s for MOX under conditions similar to those
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Figure 7.6: Reaction part of Ψ: (a) photolysis, (b) adsorption, (c) catalysis and
(d) desorption.
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ci, j

Figure 7.7: Neighborhood for diffusion (gray) of a cell ci,j .

in the batch reactor [112]. The average distance a MOX particle travels in

one time step therefore is 2
√
D∆ t and for ∆ t = 0.1 s an average distance

of 5.34 × 10−5 m per time step is obtained. Comparing this distance to

the diameter of the batch reactor (i.e. 0.07 m, see Figure 7.2) and relating

this ratio to the dimension of the tessellation, i.e. 4000 cells, results in

an average diffusion distance of three cells per time step (see Eq. (7.2)).

Figure 7.7 shows the neighborhood for diffusion employed in the CA-based

model, where if cell ci,j contains a MOX particle, this particle will diffuse at

random to one of the gray cells in its neighborhood at radius three.

Diffusion distance = 2
√
D∆ t

0.07 m

√∣T ∗∣ = 5.34 × 10−5 m

0.07 m
4000 cells ≈ 3 cells.

(7.2)

A flow chart of the developed CA-based model for the photocatalytic degra-

dation of MOX is presented in Figure 7.8.

Finally, it is pointed out that in the current model implementation, the

effect of pH and temperature are not taken into account, so that the fo-

cus can be put on the development of the CA-based model. The rate of

photocatalytic mineralization, however, does not strongly depend upon pH

for pH values ranging from four to ten [113] and is also not much affected

by minor changes in temperature [103]. Given that the employed batch

reactor is buffered and adiabatic (see Section 7.2), it may be argued that

it is justified to leave aside both factors.
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Figure 7.8: Flow chart of CA-based model for photocatalytic degradation of
MOX.
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7.4. Results and discussion

7.4.1. Verification

In order to check whether or not the CA-based model can be parameterized

and which is the best way to do so, 50 time series of model outputs are

generated through simulations for 500 s, an initial concentration of MOX

of 10 mg/l and Pphot = 3.5 × 10−6, Pads = 0.6, Pcat = 0.01 and Pdes = 0.08,

which are thereafter used as observed data. Such a repeated simulation is

necessary to account for the stochasticity involved in the CA-based model.

The choice of parameter setting is the consequence of a preliminary model

exploration. Afterwards, the inverse problem is solved for each simulated

model output, to verify whether or not the original parameter set can be

retrieved.

Since there are four parameters to be optimized, a complete exhaustive

search like was done in Chapter 6 is not feasible nor desirable. When

parameterizing models that give rise to multiple local optima and where

one model evaluation is highly time consuming, which is often the case for

CA-based models, unnecessary model evaluations should be avoided and

more protection against local optima is desired [114, 115]. Furthermore,

when several computer nodes are at disposal for calculating several solutions

simultaneously, iterative heuristics pose a problem, since a calculation is

always based on the previous result. Further, the number of parameters

to be determined is not excessive. Various optimization techniques were

investigated in the framework of this dissertation, such as particle swarm

optimization [116] and stochastic gradient descent [117]. In the end, a

grid search, which evaluates the model in a number of predefined points

in the parameter space Ω, was chosen as the preferred procedure given the

aforementioned criteria.

For every set of model outputs that serves as observations, a grid search

of 1600 Sobol generated parameter combinations in the search space is

performed [118]. The optimal combination is chosen as the one that gives

rise to the lowest weighted RMSE over the three time series of data (see

Figures 7.4(a)–7.4(d)), resulting in 50 optimized values for every parameter,

i.e. one for every series of observations. These values can be visualized

pairwisely in two-dimensional plots. The result for Pcat and Pads and for

75



Chapter 7. Photocatalysis

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

àà

0.50 0.55 0.60 0.65 0.70

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

Pads

P
ca

t

Figure 7.9: Values for Pcat and Pads found through grid search (●) and the original
parameter combination (◾) from which the observed data set for parameterization
was obtained.

Pphot and Pdes is shown in Figures 7.9 and 7.10, respectively. It can be

observed that the parameter values are situated near the original value of

the parameters. Due to the stochasticity involved and the fact that only

a limited number of combinations of parameter values in the search space

is investigated, it was to be expected that the exact values would not be

found. The plots for other parameter combinations yield similar results

and therefore, it may be concluded that the parameters corresponding to a

given set of observed data can be identified by means of a grid search.

7.4.2. Sensitivity analysis

As a part of the model exploration, but also to get an idea on how much

effort should be spent on each parameter during the parameterization, an

SA is performed. Like explained in Section 4.4, a screening of the param-

eters is performed based on the EE method. The simulated outcome Y

on which the influence of a small perturbation of the parameter values is

studied, is the weighted RMSE between the simulated and experimental

time series for an initial concentration of MOX of 10 mg/l. The simulated

time series of data are obtained through 4200 time steps of the CA-based

model, which is the number of time steps corresponding to the 7 min during

which the samples were taken in the photocatalytic experiment with initial

concentration of MOX of 10 mg/l and taking into account ∆ t = 0.1.
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Figure 7.10: Values for Pphot and Pdes found through grid search (●) and the
original parameter combination (◾) from which the observed data set for parame-
terization was obtained.

Further, 50 trajectories, i.e. R = 50, are used to calculate the EE with the

starting points of the trajectories chosen by means of a Sobol sequence [118]

in the search space Ω. The perturbation is achieved by multiplying the

parameter values at the starting points of the trajectories by 1.1, so that

the perturbation for each parameter is, relatively seen, equal. Figure 7.11

shows the sensitivity measure H for the four model parameters. It can be

observed that none of the parameters is redundant and that small variations

of Pphot and Pdes have less pronounced effects than small variations of Pcat

and Pads, so that a correct determination of the latter two parameters is

more important than the former two. Although obtained for an initial

concentration of MOX of 10 mg/l, the results in Figure 7.11 are also valid

for the other initial concentrations.

7.4.3. Parameterization

The inverse problem of retrieving the values of the four model parameters

corresponding to the observed data from Section 7.2, is solved in two steps.

In the first step, Pphot is determined using the data of photolysis, i.e. the

degradation of MOX through UV light in absence of a catalyst (Pads = Pdes

= Pcat = 0). Since an approximative value of Pphot suffices and in this case

there is only one parameter to be determined, it is opted to perform an

exhaustive search for the values of Pphot with a limited number of decimal

places.
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Figure 7.11: Screening of the model parameters based on the EE method.

The observed data for photolysis are obtained from a reaction mixture with

an initial concentration of MOX of 15 mg/l that was sampled during 40 min

(see Figure 7.3), which are translated to an initial number of MOX particles

present in T ∗ and a number of time steps (using ∆ t = 0.1 s), respectively. At
every time step during the evolution of the CA-based model, the simulated

number of free, adsorbed and degraded MOX particles is registered. These

numbers, together with the scaling factor κ mentioned in Section 7.3 and

the relationship between a discrete time step of the model and absolute

time, resulted in the simulated concentration of the different fractions of

MOX as a function of time. As for the verification of the model earlier on in

this section, the RMSE is used as measure of fitness. The parameterization

is repeated ten times and the average of these repetitions is used to obtain

the optimized value for Pphot, i.e. the value of Pphot which results in the

lowest RMSE. The found optimized value is 6.41 × 10−5.

The probabilities of the four key processes (see Figure 7.5) are assumed to

be independent of the initial concentration of MOX or TiO2. This allows

to employ the formerly found value of Pphot for the parametrization of the

model with experimental data from photocatalytic degradation, as such

reducing the number of parameters that have to be determined through a

grid search from four to three. There is, however, an increase in turbidity

in the lab-scale reactor by adding the catalyst powder, so that the light

scattering increases and Pphot decreases. Nevertheless, the choice is made

not to include Pphot in the grid search optimization as it is much smaller in

comparison to the three other model parameters (see infra) so that a small
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alteration of Pphot does not seriously affect the final simulated outcome for

photocatalysis.

For the determination of Pads, Pdes and Pcat, there are five different data

sets (see Section 7.2, one data set for each initial concentration) that can

be used, assuming that the three parameters are independent of the initial

concentration of MOX. In theory, the three parameters could therefore be

determined using the data from one initial concentration of MOX as was the

case for the assessment of Pphot. However, from the SA it was concluded

that a correct determination of especially Pads and Pcat is important, as

these parameters have a more pronounced influence on the model outcome

than the other parameters. For this reason, all five data sets are used for

the parameterization of the CA-based model in order to account for varia-

tions in set-up and measurement. Following preliminary data exploration,

a domain for grid search was chosen as given in Table 7.1, with L, U being

respectively the lower and upper bound of the search interval per parameter

and V the step size within that search interval.

Table 7.1: Set up for grid search, with L, U being respectively the lower and
upper bound of the search interval for the parameter and V the step size within
that search interval.

L U V

Pads 0.5 0.86 0.04

Pdes 0.01 0.09 0.01

Pcat 0.001 0.0105 0.0005

The RMSE, resulting from comparing the experimental data from Sec-

tion 7.2 to the simulated output of the different fractions of MOX, is cal-

culated for all parameter combinations that are possible according to Ta-

ble 7.1. To determine the parameter combination that gives rise to model

simulations that best correspond to the experimental data, a graphical rep-

resentation is employed where a separate graph is used for each of the three

parameters.

Figure 7.12 shows the result for Pdes, where for each initial concentration of

MOX from the experimental data the fitness of each discrete point of the

parameter space is depicted, with larger circles corresponding to greater

fitness. This fitness is obtained by taking the lowest RMSE found through

grid search of all the parameter combinations that contain that specific
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Figure 7.12: Graphical representation for the determination of Pdes, where larger
circles correspond to a greater fitness.

discrete parameter value. Figure 7.12 confirms the assumption that the

probabilities of the key processes are independent of the initial concentra-

tion of MOX. As can be seen, Pdes = 0.02 gives the best result considering all
different initial concentrations of MOX. The same procedure was followed

for the two remaining parameters, resulting in Pads = 0.78 (see Figure 7.13)

and Pcat = 0.0015 (see Figure 7.14).

Figure 7.15 shows the comparison of the model simulation with the fitted

values for Pads, Pdes, Pphot and Pcat and the experimental data for a pho-

tocatalytic degradation of a mixture with an initial MOX concentration of

10 mg/l, in which the diamonds represent the fraction of MOX still in so-

lution, the circles represent the fraction of MOX broken down, the dashed

lines represent the experimental data and the dotdashed lines represent

the simulated data. The adsorbed fraction is not represented in the fig-

ure in order not to overcomplicate the figure. This figure shows that the

simulated outcomes approximate the experimental ones quite good. Better

results for a single concentration are most probably attainable. However,

the goal was to find a parameter set that gives a good fit for each of the five

studied concentrations of MOX and not a parameter set for each individual

concentration.
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Figure 7.13: Graphical representation for the determination of Pads, where larger
circles correspond to a greater fitness.
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Figure 7.14: Graphical representation for the determination of Pcat, where larger
circles correspond to a greater fitness.
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Figure 7.15: Concentration of MOX remaining in the solution (●) and degraded
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A similar result is obtained for the other initial concentrations (see Fig-

ures 7.16(a)–7.16(d)).

7.4.4. Hospital wastewater treatment

In order to illustrate the potential of the developed model, the remainder

of this section deals with an exemplary case study for the photocatalytic

degradation of MOX.

Companies and institutes are fined if their wastewater effluent exceeds le-

gal concentration limits for harmful substances. As a result, many com-

panies and institutes have their own wastewater treatment plant in order

to comply with regulations. However, FQs are not completely removed by

traditional treatment (see Section 7.1) and can therefore pose a significant

problem when the use of FQs is ample, as is the case at the accident and

emergency department of hospitals, where average CIP concentrations of

60 µg/l are measured [119]. It is assumed here that as the successor of CIP,

MOX will eventually reach similar concentrations in the future. Instead of

treating the relatively large volume of wastewater coming from the whole

hospital with photocatalysis after the traditional treatment, it would be

more energy and time efficient to treat the effluent from first aid, rich in
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Figure 7.16: Concentration of MOX remaining in the solution (●) and degraded
(◆) for photocatalysis starting from a mixture with an initial concentration of (a)
5 mg/l MOX, (b) 15 mg/l MOX, (c) 20 mg/l MOX and (d) 25 mg/l MOX. Dashed
lines (experimental data) and dotdashed lines (simulated data) are drawn to guide
the eye.
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FQs, separately before aggregating it with the rest of the hospital water.

Namely, TiO2-based systems for treating large volumes of contaminated wa-

ter are suffering from low yield and consequently their economic feasibility

is questioned [104].

It is presumed that a test phase reactor to treat wastewater rich in FQs,

used in the first aid of a hospital, is an upscaled version of the lab-scale

batch reactor in Figure 7.2 with a volume of 7.5 l and a reaction time of

the effluent of 30 min. Further, it is assumed that in the future a maximum

concentration of MOX in effluent of 5 µg/l will be allowed. The parameter-

ized CA-based model is used to search an adequate catalyst concentration

for the aforementioned assumptions. A high concentration of photocatalyst

speeds up degradation, but an excess must be avoided to ensure total ab-

sorption of efficient photons [103, 120, 121]. Namely, an unfavorable light

scattering and reduction of light penetration into the solution is observed

with excess photocatalyst loading. Thus, the minimal catalyst concentra-

tion so that the maximum allowed concentration of MOX is obtained after

photocatalysis, is desired. Since only one parameter has to be determined,

this was done through an exhaustive search as was done for the retrieval

of Pphot for photolysis earlier on. Figure 7.17 shows the difference between

the simulated remaining amount of MOX in the effluent under the condi-

tions mentioned above and the maximum allowed concentration of MOX

in the effluent in function of the mass of catalyst added to the reactor. To

obtain adequate usage of the catalyst, the maximum allowed and simulated

amount of MOX should be equal, which resulted in 0.165 mg of TiO2 to be

added to the reactor.

7.5. Conclusions

The developed CA-based model with the incorporation of the four key pro-

cesses, being photolysis, adsorption, desorption and photocatalysis, enables

the simulation of the photocatalytic degradation of FQs. It can be argued

that the incorporation of photolysis is redundant as the impact of this pro-

cess on the simulated model outcome is small in comparison to the other

three key processes. However, it was decided to keep photolysis in the

model, because it does have an influence, it is a real physical process that

takes place and its incorporation does not pose a large burden on the com-
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Figure 7.17: Difference between the simulated remaining amount of MOX in
the effluent and the maximum allowed concentration of MOX in the effluent in
function of the mass of catalyst (mg) added to the reactor.

putation times.

The results obtained with the sensitivity analysis show that small perturba-

tions of Pcat and Pads have a more pronounced effect on the model outcome

than the two other parameters, implying that their correct determination

is extra important. The parameterization of the CA-based model was done

via grid search using experimental data from a lab-scale batch reactor and

a potential application of the CA-based model was illustrated by means of

a case study.

Like in the previous chapter, the system being modeled is well mixed such

that the choice is made to model only a part of the entire system which is

then afterwards scaled in order to minimize computation times. However,

in contrast with Chapter 6, the block CA paradigm is not adhered to here.

The use of sparse arrays in this case is preferred as it allows to keep track

of the limited number of fixed TiO2 cells and moving MOX cells among

the vast number of H2O cells. Employing a block CA in this case would

result in a scanning of the entire tessellation after every diffusion step in

order to retrieve the small number of cells that are of interest, which would

result in a severe computational effort. The choice not to employ a block

CA calls for boundary conditions. Here, periodic boundary conditions are

used since the tessellation represents a small part of a larger system and

because of their ease of implementation.
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Having made the aforementioned choices in order to reduce computation

times, the model is sufficiently fast such that a preliminary search of the

parameter space was possible. In this way, smaller bounds for each parame-

ter could be found. Regarding the parameterization, here all different data

sets were used to find one single combination of parameter values, since

they are assumed to be independent of the initial concentration of MOX.

Finally, the effect of diffusion in this case study is not incorporated into the

other parameter(s), but modeled explicitly. From this chapter, it is clear

that there is a relationship between the physical dimension of a tessellation

cell, the physical time that corresponds to a discrete time step and the

diffusion coefficient. When, like was the case here, the diffusion coefficient

is known, choosing a number of seconds that correponds to a time step at

the same time determines the physical size of a cell and vice versa.
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8 Oil migration

Oil migration is an important process in the formation of fat bloom on

chocolate-coated confectionery, leading to consumer rejection. However,

the exact mechanisms behind this phenomenon are still not completely

elucidated, which hampers the development of a mathematical simulation

model. In this chapter, a stochastic CA-based model is proposed and pa-

rameterized using experimental data obtained from confectionery model

systems. This CA-based model is shown to be able to describe the oil

migration in an adequate manner and can therefore be used to calculate

an effective diffusion coefficient. Further, the potential of a CA-based ap-

proach for the further investigation of the fat bloom mechanisms is demon-

strated by means of a case study where capillary rise is incorporated in the

model.

8.1. The phenomenon

Belgian pralines, commonly known as Belgian chocolates, were first intro-

duced in 1912 by Jean Neuhaus II, a Belgian chocolatier. They usually con-

tain a hard chocolate coating with a softer, for example (hazel)nut-based,

filling. Today, Belgian pralines still have an excellent reputation on the

international market. However, the whitish haze formed over time on the

surface of chocolate, known as fat bloom (see Figures 8.1(a) and 8.1(b)),

poses a worrisome problem hampering the export of these products [122].

This haze is the result of dispersion of light on small fat crystals that are

formed when recrystallization occurs at the surface. Figure 8.2 shows a

microscopic image (156× magnification) of the surface of a bloomed praline.

Fat bloom occurs on all chocolate products, but the presence of a liquid

filling accelerates the process as the filling oils are often completely liquid at

room temperature and can therefore easily transfer through the chocolate

coating to the surface [123].

Bloomed pralines are harmless and still consumable, but a softening of the

chocolate coating, a hardening of the filling, a flattening of the taste and

most importantly a rejection of the pralines by the consumers due to the
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(a) (b)

Figure 8.1: Chocolate praline: (a) no fat bloom and (b) with presence of fat
bloom.

Figure 8.2: Microscopic image of the surface of a fat bloomed praline (156×
magnification).
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Fat bloom

hazelnut particles)

Figure 8.3: Schematic representation of fat bloom in chocolate confectionery,
with indication of the composition of the different layers in volume percentages.

association with inferior and expired products may occur [124]. A solu-

tion to this problem would therefore be very valuable for this multimillion

dollar industry. Unfortunately, the actual mechanisms behind fat bloom

remain speculative and a more thorough understanding is necessary to bet-

ter abate quality deterioration. This knowledge can aid a manufacturer to

determine a priori the effect on the rate and amount of fat bloom when

changing an ingredient or process. Therefore, there is a need to develop

better models that combine mass transfer with the phase behavior for ac-

curately predicting the migration of liquid fat and the occurrence of fat

bloom [41, 125, 126].

The phenomenon of fat bloom is presented schematically in Figure 8.3. A

crucial step in the formation of fat bloom is the migration of liquid fat

to the surface. Several hypotheses and mechanisms have been put for-

ward to explain oil migration in chocolate. Originally, the driving force

for the migration was believed to be diffusion due to a difference in liq-

uid fat content [41], but nowadays diffusion is ascribed to a gradient in

triacylglycerol (TAG) concentration between the chocolate coating and the

filled center [125]. The addition of extra cocoa particles and sugar particles

is said to retard the oil migration rate, because they are impenetrable to

oil [41]. However, a recent study has shown that cocoa particles disrupt the

formation of the cocoa butter (CB) crystal network such that the resulting

crystal network is less dense and more permeable to oil [127]. Besides dif-

fusion, capillary forces may play a significant role and have therefore been

proposed as an alternate mechanism of oil migration [123, 125].

Another hypothesis for oil migration states that the increase in volume

when CB melts forces liquid fat to the surface through pores and micro
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fractures formed during crystallization [128]. Several other theories focus

on the thermal stability of the different polymorphic forms of CB as the

cause of fat bloom [125], but although bloom formation is accompanied

by a polymorphic transition of CB, it is by itself not sufficient to always

cause visual fat bloom [123]. In literature, there is neither a consensus on

which mechanisms actually play a role nor on their relative importance,

but most papers focus on the diffusion of TAGs and the capillary rise or a

combination of both.

8.2. Data acquisition

In order to collect the necessary experimental data to calibrate the CA-

based model, a number of confectionery model systems were produced and

analyzed. A standard dark chocolate with 25% (m/m) fat (Barry Callebaut,

Wieze) was adjusted to 35% fat (m/m) by adding CB. In order to monitor

oil migration in this set-up, a hazelnut filling was produced by Barry Calle-

baut (Wieze, Belgium). The hazelnut base was prepared by mixing 50%

(m/m) sugar, with 50% (m/m) hazelnuts. A standard dark chocolate was

added in a ratio of 25/75 chocolate/hazelnut filling. Confectionery model

systems were produced in small cylinders having a height of 4 cm and a

radius of 1.3 cm by adding a 0.5 cm chocolate layer on top of a 3.5 cm

filling layer (see Figure 8.4). The different samples were stored at 20 ○C

and monitored for 48 weeks (i.e. 29030400 s) by analyzing three samples

on a two- to three-weekly basis.

By using a LKB Bromma 2218 Historange microtome, ten slices of 0.5 mm

were obtained from the original chocolate layer. Layers two, four, six and

eight (with layer one being the layer in contact with the filling) were fur-

ther analyzed in order to monitor the migration of filling oil through the

chocolate. Firstly, the fat phase from every layer was extracted by dissolu-

tion of the fat. The chocolate sample was dissolved in 10 ml of petroleum

ether, vigorously shaken and centrifuged (10 min, 3000 rpm), after which

the solvent of the supernatant was evaporated at 50 ○C. The remaining

fat was dissolved in the mobile phase, being acetonitrile/dichloromethane

70/30 (v/v). In order to assess the degree of migration of the filling oil

into the chocolate during the storage period, the TAG composition of the

different layers, obtained through HPLC of the fat phase of every layer,
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Fat extraction

HPLC: TAG

 profile

Figure 8.4: Data acquisition: On the left the chocolate model system and on the
right the sliced chocolate layer and subsequent analysis steps.

was analyzed. As shown in [129], a number of these TAGs could be used

as markers for the migration of fat through the chocolate.

Figures 8.5 and 8.6 show the mass of nut oil and liquid CB, respectively, in

the studied layers through time. It is important to point out that the mea-

surements at every sampling time constitute an average of three different

confectionery model systems and that the measurements for the different

layers at one sampling time originate from the same set of confectionery

model systems. However, as the measurement method is destructive, the

measurements at different sampling times originate from a different set of

three confectionery model systems. Further and more detailed information

on the data acquisition can be found in [129].

8.3. Model development

In this section, a stochastic, homogeneous 2D CA-based model describing

oil migration, a key process in fat bloom, is proposed.

A square tessellation T ∗ is used with periodic boundary conditions along

the horizontal axis and fixed boundary conditions along the vertical axis.

A schematic representation of the tessellation T ∗ is shown in Figure 8.7.

The fixed boundaries are dictated by the experimental confectionery model

systems and mean that through these boundaries, no movement is possible.

On the other hand, the periodic boundaries in the horizontal direction
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Figure 8.5: Evolution of the mass of nut oil in function of time for layers two
(blue, ●), four (red, ◾), six (green, ◆) and eight (yellow, ▴).
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Figure 8.6: Evolution of the mass of liquid CB fat in function of time for layers
two (blue, ●), four (red, ◾), six (green, ◆) and eight (yellow, ▴).
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Figure 8.7: Schematic representation of the square grid.

make that every cell has the same number of neighbors according to the

horizontal axis which facilitates calculations. Here, the first and the last

column are considered as adjacent as such simulating a continuous space

according to the horizontal axis.

The tessellation T ∗ as a whole represents of a vertical cross-section of the

system wherein oil migration is studied. This is different from the case

studies in the two previous chapters, where the tessellation represented a

part of a larger whole that had to be scaled up afterwards. In this case,

the tessellation captures the entire system that is being studied, although

only in two dimensions. By presuming the side length of a square cell, ∆x,

to be 0.0001 m, 50 rows and 260 columns of cells are needed to represent

a chocolate layer of height 0.5 cm and diameter of 2.6 cm. The value of

∆x is the result of a trade-off. On the one hand, setting ∆x as large as

possible is desired to reduce the computation time of the simulations. On

the other hand, a small enough grid resolution and therefore small enough

∆x is wanted to prevent overly sensitive model parameters that result in

very fluctuating solutions from simulation to simulation. The used value of

∆x keeps the middle between the aforementioned requirements.

Besides the chocolate layer, T ∗ encloses two more parts being three rows of

imaginary cells on top of the chocolate layer for imposing the fixed boundary

conditions and four rows of filling below it. The filling is considered as an

infinite source of nut oil which is replenished at every time step by setting

the states of these filling cells back to their state at t = 0 after every time

step.

Further, seven different discrete states are discerned, i.e. S = {cavity, solid

CB, liquid CB, sugar, cocoa particle, nut oil, hazelnut particle}, where a
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Figure 8.8: Initial condition of the CA, with cavities in white, liquid CB in blue,
nut oil in green, imaginary cells in purple and the other states in brown.

cell in a certain state represents a homogeneous amount of an ingredient,

which is a simple approximation intended to capture the synoptic effects of

oil migration [76, 77]. Diffusion is the consequence of a gradient in TAGs

(see Section 8.1). However, here nut oil is considered as a general state

rather than a different state for each TAG in order not to overcomplicate

the model.

The initial configuration of the CA is established by assigning every ci,j ∈ T ∗
for both the chocolate coating part and the filling a state according to the

volume proportion of the different states in S as depicted in Figure 8.3.

The volume percentages are chosen here since the presence of cavities in

the chocolate coating can only be expressed on a volume base. For the

basic model, all initial states are randomly distributed across T ∗. Further, a
scaling factor κ is determined. This factor is used to convert the simulation

results that are expressed as a number of cells into their corresponding

magnitude in grams by taking into account the total mass in grams of the

liquid fat components at t = 0 and the number of cells in T ∗ at t = 0

used to represent this amount. Figure 8.8 shows the initial condition of

the CA where the cavities are colored white, liquid CB blue, nut oil green,

imaginary cells purple and for reasons of clarity, the other states comprised

in S are colored brown.

The transition function Ψ consists of two parts that describe dissolution of

solid CB, and oil migration, respectively.

8.3.1. Dissolution

The first part of the transition function describes the transition of solid CB

to liquid CB. Under normal conditions there exists a chemical equilibrium

94



§8.3. Model development

ci, j

ci+1, j-1 ci+1, j ci+1, j+1

ci-1, j-1 ci-1, j ci-1, j+1

ci, j-1 ci, j+1

ci+2, j-1 ci+2, j ci+2, j+1

ci-2, j-1 ci-2, j ci-2, j+1

ci+1, j-2

ci, j-2

ci-1, j-2

ci, j+2

ci+1, j+2

ci-1, j+2

(a)

ci, j

ci+1, j-1 ci+1, j ci+1, j+1

ci-1, j-1 ci-1, j ci-1, j+1

ci+2, j-1 ci+2, j ci+2, j+1

ci-2, j-1 ci-2, j ci-2, j+1

ci+1, j-2

ci-1, j-2

ci+1, j+2

ci-1, j+2

(b)

Figure 8.9: Neighborhoods in a square grid for (a) transition and (b) migration.

between the amount of liquid CB and the amount of solid CB in a certain

region of the chocolate coating, which is described by Eq. (8.1) [130]. How-

ever, as nut oil migrates through the chocolate layer, this equilibrium is

disturbed because nut oil acts as a solvent for solid CB. This results in an

increase of the amount of liquid CB in the chocolate layer. Further, from

the experimental data (see Figures 8.5 and 8.6) a maximal amount of liquid

CB per layer of 0.05 g, obtained when a layer is saturated with nut oil, was

deduced. Here it is assumed that the increase in liquid CB in a layer is only

caused by the transition of solid CB. The latter means that the increase (or

decrease) in liquid CB in a certain layer is not due to migration of liquid

CB through the layers (see infra).

A (liquid CB)
β−1↼ÐÐÐÐ⇁
β

B (crystalline CB). (8.1)

To model this transition reaction, a model parameter Pt is introduced,

which represents the transition probability of solid CB to liquid CB. This

probability Pt is multiplied with the number of cells in the nut oil state in

the transition neighborhood Nt, which is depicted in Figure 8.9(a), to ob-

tain a dissolution probability Ps. This is done to account for the fact that a

higher concentration of nut oil results in a higher probability of dissolution.

However, if the calculated value for Ps exceeds 1, Ps is set equal to 1 to

ensure that Ps ∈ [0,1]. Further, when the maximal amount of liquid CB in

that layer is reached, Ps is set to 0.
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8.3.2. Migration

For the migration part of the transition function Ψ it is assumed that

only nut oil migrates through the chocolate coating. This choice is based

on preliminary results with an earlier developed model where both nut

oil and liquid CB were allowed to migrate. However, by doing this, the

experimental data in Figures 8.5 and 8.6 could not be reproduced. Both

types of liquid fat clearly have different properties and migration potential,

with the nut oil being more mobile than the liquid CB. Therefore, only

cells in the nut oil state are evaluated for this part of the model evaluation.

The diffusion is governed by a diffusion probability Pd and proceeds in

the direction of the local gradient in concentration. To incorporate this

gradient-driven diffusion, a neighborhood for diffusion Nd is introduced in

Figure 8.9(b). This neighborhood is split up into eight cells forming the

upper part (cells closer to the open air) and eight cells forming the lower

part (cells closer to the filling).

The number of cells in the nut oil state are counted in both the upper and

lower part of Nd and it is presumed that nut oil will move one cell according

to the vertical gradient, i.e. in the direction having the smallest number of

cells in this state. If both the upper and lower part of Nd contain the same

number of cells in the liquid state, the liquid fat in ci,j will move one cell

with probability Pd (to the left or to the right, chosen at random). Clearly,

this entails that liquid fat tries to move in every time step. In the CA-based

model, the motion dynamics of nut oil are simulated by switching the state

of the central cell ci,j and the state of the cell it moves towards. Since the

diffusion coefficient of nut oil in chocolate confectionery is not known, ∆ t,

i.e. the number of seconds corresponding to one discrete time step of the

CA-based model, is set as a model parameter. The total number of time

steps of the CA-based model is denoted tn and is given by Eq. (8.2):

tn = ⌊29030400/∆ t⌋ . (8.2)

Normally, diffusion cannot occur if the nut oil has to pass through sugar,

because this compound is impermeable to oil (see Section 8.1). However,

to account for the possibility of oil migration by capillarity, volume and

thermal effects as well as to take the influence of cocoa particles on the

crystalline structure (see Section 8.1) into consideration, ‘diffusion through
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sugar’ is allowed and is assumed to depend on a permeability factor ζ ∈ [0,1].
Thus, the nut oil does not really migrate through sugar, rather ζ is a quan-

tification of the part of oil migration that gradient-driven diffusion cannot

account for. The permeability parameter ζ is expected to have an influ-

ence on the simulated results, especially since sugar is the most important

component of the chocolate in terms of percentage (see Figure 8.3). If the

CA-based model is parameterized in the next section using experimental

data, the calibrated value for ζ should give an indication of the proportion

of oil migration that can be contributed to mechanisms other than gradient-

driven diffusion. If these other mechanisms play a minor role, ζ is expected

to be close to zero, while if the other mechanisms play a significant role, ζ

should be larger.

Table 8.1 gives an overview of the model parameters that need to be cali-

brated using the experimental data from Section 8.2.

Table 8.1: Overview of model parameters.

Symbol Description Range Unit

Pt Transition probability [0,1] -

Pd Diffusion probability [0,1] -

ζ Sugar permeability [0,1] -

∆ t Physical time for one discrete time step ]0,29030400] s

Finally, a choice has to be made on the manner of applying the transition

function, be it synchronously or asynchronously. This is particularly im-

portant for the migration part of the transition function Ψ. When opting

for a synchronous updating mechanism, the number of conflicts resulting

from two cells trying to switch state with the same cell in a certain time

step is quite substantial, since there are relatively seen sufficient cells in

state nut oil present on the tessellation, especially later on in the evalua-

tion. This entails that not all cells in state nut oil will get the possibility

to move during each time step if the transition function Ψ is applied in a

synchronous manner. Both a synchronous and an asynchronous updating

mechanism can be used for this specific case and an optimized parameter

set through fitting to the experimental data can be found. However, the op-

timized parameter values when using the synchronous updating mechanism

will reflect not only the physical meaning associated with the parameters,

but also the influence of (many) cells not being able to switch state in a
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certain time step. The latter hinders the link of the optimized parameters

with physical values and process, which is key in this work.

Therefore, both the dissolution and the migration part of the transition

function are applied in an asynchronous manner. It is mentioned here

that the dissolution part of the transition function could be applied in a

synchronous manner, but the choice is made to choose one updating mech-

anism for the complete transition function in order not to overcomplicate

things.

The choice for which type of asynchronous updating mechanisms is driven

by computational cost. The use of a certain random order in which cells

are updated, whether this order changes after all cells are evaluated or

not, requires a list that keeps track of not only all cells that (still) have

to be evaluated, but that also keeps track of every change (in position and

state) that occurs. Especially the latter incurs a lot of extra costs and is

for practical uses of the developed model not desirable. For that reason,

the random independent update method is employed here. Although it

does not guarantee that every cell is evaluated before a cell is evaluated

a second time, the decrease in computational cost and the fact that on

average every cell will be evaluated once, justify this option. Figure 8.10

shows a flow chart of the CA-based model for oil migration in chocolate

confectionery.

8.4. Results and discussion

8.4.1. Parameterization

The inverse problem of retrieving the values of the four model parameters

corresponding to the data presented in Section 8.2, is solved by a grid search

of the parameter space. A Sobol sequence is used to generate 2000 points

in such a way that a good coverage of the parameter space is obtained [131].

The sum of absolute errors (SAE) for each parameter combination is ob-

tained by comparing the experimental data from Figures 8.5 and 8.6 to the

simulated model output at the different sampling times. The simulation

results are in fact an average of five repetitions to account for the model’s

stochastic nature. Here, the SAE is used rather than the more common

RMSE as it is less sensitive to outliers, which are clearly present in the
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Figure 8.10: Flow chart of CA-based model for oil migration.
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experimental data (see Figures 8.5 and 8.6). The main problem that arises

from using the RMSE instead of the SAE is the larger relative importance

the data points of layer two from week 30 onward play in the parameteriza-

tion process, causing the simulated results of all other layers to be higher

than the experimental results, since the obtained results from all layers are

dependent on each other. The tested parameter combination that gives rise

to the lowest SAE is listed in Table 8.2. It is pointed out here that the op-

timal parameter combination from Table 8.2 is only valid at 20 ○C, i.e. the

same temperature at which the experimental data were gathered. In order

to investigate which parameters are influenced by temperature and to what

extent, more experimental data at different temperatures are needed.

Table 8.2: Optimized model parameter values.

Parameter Optimized value Unit

Pt 0.01776 -

Pd 0.4882 -

ζ 0.8567 -

∆ t 348748 s

Figures 8.11 and 8.12 show both the experimental data of layers two, four

and six as well as the simulated model output that was obtained using the

parameters in Table 8.2. Layer eight is not visualized for the sake of clarity.

It can be seen from the figures that there is a good fit for both the nut oil

and liquid CB data. From Figure 8.11 the wave of nut oil rising through

the chocolate coating can be recognized by the later appearance of nut oil

in the chocolate layers further away from the filling. The simulation results

of the in silico experiments show that for each layer there is a clear lag

phase during which no nut oil is present and this period becomes longer

as the layer is located further away from the filling. This corresponds

with expectations as a gradient is necessary for the diffusive mechanism

incorporated in the CA-based model and as this gradient is initially the

strongest in the layers closest to the filling.

Further, the simulated total amount of nut oil that migrated into the choco-

late coating from the filling in function of time is registered. Figure 8.13

shows the corresponding graph, while Figure 8.14 depicts the same result

but as a function of the square root of time. Both figures are in accordance

with oil migration profiles reported in literature [125, 127, 132, 133]. It
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Figure 8.11: Experimental data (with markings) and fitted data (without mark-
ings) of the mass of nut oil in function of time for layers two (blue, ●), four (red,◾) and six (green, ◆).
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Figure 8.12: Experimental data (with markings) and fitted data (without mark-
ings) of the mass of liquid CB fat in function of time for layers two (blue, ●), four
(red, ◾) and six (green, ◆).
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Figure 8.13: Total amount (g) of nut oil in the chocolate layer in function of
time.

should be mentioned here that similar profiles to the ones depicted in Fig-

ures 8.13 and 8.14 can be found in the field of soil physics to describe the

infiltration of water into (heterogeneous) soils [134, 135].

From Table 8.2, it can be seen that the optimal value for ∆ t is approxi-

mately 4 days. This is a realistic value as oil migration is a slow process and

therefore changes only become noticeable when studying the system with

a large enough time step. This value for ∆ t, together with the other values

from Table 8.2, can also be used to calculate an effective diffusion coefficient,

a physical indication of the speed of diffusion. In the considered 2D system,

the average distance, i.e. 0.0005×Pd, that nut oil progresses in one time step

is 2
√
D∆ t. The average distance here is interpreted as the side length of

one cell of T ∗ multiplied with the probability that this distance is crossed.

This results in a diffusion coefficient D = 4.5 × 10−14 m2/s, which is within

the range for D described in literature. The latter range is quite broad

and values for the diffusion coefficient range from 2.5× 10−14 m2/s [136] to

1.5 × 10−11 m2/s [137], with our result pertaining to the lower end of the

range. For completeness, it should be mentioned that also other parame-

ter combinations gave rise to an SAE close to the optimal one. However,

the calculated diffusion coefficient D for all these parameter combinations

had the same order of magnitude as the one for the optimal parameter

set.

Further, for the parameter combinations giving rise to the lowest SAE, the
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Figure 8.14: Total amount (g) of nut oil in the chocolate layer in function of the
square root of time.

sugar permeability ζ clearly has a value different from zero and centered

around the optimal value from Table 8.2. This relatively high value indi-

cates that indeed oil migration is more complex than just gradient-driven

diffusion and that more mechanisms for oil migration have to be considered.

However, the variation of ζ amongst the best parameter combinations is

larger than for D, meaning that the simulated model output is probably

less sensitive to small variations of this parameter. More and specific ex-

perimental data are needed to accurately determine the role of the sugar

permeability ζ or, more generally, other mechanisms for oil migration, in

the CA-based model. Finally, the optimal value for Pt corresponds to ex-

pectations. The low value of Pt indicates that as long as no or very little

nut oil is present in the local neighborhood, the dissolution probability Ps

is also low and the chemical equilibrium stands. It is only when enough nut

oil has migrated into the local neighborhood that the chemical equilibrium

is disturbed and that dissolution becomes of importance.

8.4.2. Influence of grid resolution

For practical purposes, modeling results are ideally obtained as fast as

possible. One way to achieve this with the CA-based model, would be

by respresenting the chocolate confectionery model system by less cells,

as such speeding up calculations. However, as mentioned before, this has

103



Chapter 8. Oil migration

implications for both the accuracy of the simulated outcome as well as for

the parameter sensitivity.

Table 8.3, together with Figures 8.15–8.17, shows the results of the influ-

ence of the tessellation resolution on the accuracy of the simulated outcome

as well as the speed of the calculations. For each of the studied tessellation

resolutions, i.e. 50 × 260, 40 × 208, 30 × 156 and 20 × 104 cells, the param-

eterization as explained before is repeated. This means that out of 2000

parameter combinations in the search space, generated by a Sobol sequence,

the best parameter combination is sought by looking for the lowest SAE

between the experimental and the simulated time series for the migrating

fat. The simulation with the optimal parameter combination is repeated 20

times. The SAE that is shown in Table 8.3 is the average SAE over these

20 repetitions and is also represented in Figure 8.15. It can be seen that

although the total number of tessellation cells decreases, that the goodness

of the fit between experimental and simulated time series stays more or less

the same.

Further, as expected, it is clear that having a lower number of tessellation

cells substantially decreases calculation times, where the values for the cal-

culation time in Table 8.3 and Figure 8.17 represent the average (out of the

20 repetitions) time needed to complete an evaluation with the CA-based

model that corresponds to the 48 weeks during which the experimental

data were gathered. On the other hand, it is clear that this increase in

calculation speed comes at a price when looking at the standard deviation

ξ between the 20 repetitions (see Table 8.3 and Figure 8.16). This standard

deviation ξ is an average of the standard deviation at the different measur-

ing times and is almost four times as large for a tessellation of 20×104 cells

than for a tessellation of 50 × 260 cells. The latter implies that although

the calculations go faster when the tessellation resolution is 20 × 104, the
results fluctuate much more from simulation to simulation.

Table 8.3: Influence of tessellation resolution on SAE, ξ and calculation time.

Resolution SAE ξ Calculation time (s)

50 × 260 0.0817 0.00126 213

40 × 208 0.0752 0.00159 109

30 × 156 0.0774 0.00247 47

20 × 104 0.0787 0.00395 17
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Figure 8.15: Influence of tessellation resolution on SAE.
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Figure 8.16: Influence of tessellation resolution on standard deviation.
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Figure 8.17: Influence of tessellation resolution on calculation time.
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Next, the influence of the tessellation resolution on the parameter sensitivity

is studied. The EE for each parameter is calculated according to the method

described in Section 4.4. Here, a total of 30 trajectories (R = 30) in the

search space Ω is chosen. Each trajectory consists of five points: a starting

point and a perturbation ∆ from this starting point according to each of

the b, i.e. four, parameters with ∆ = 0.02. The starting points of the R
trajectories are generated according to the Sobol method to obtain a good

coverage of Ω. Further, each of the 150 parameter combinations (R (b+1))
is repeated 30 times in order to account for stochasticity.

Table 8.4 shows the results of the SA. To facilitate comparison, the table

contains the Euclidean distance of a parameter to the origin in the (µ∗, σ)

plot as a measure of its sensitivity. Although a clear trend is difficult to

discern due to the stochasticity of the model for the three grids with the

highest resolution, it is clear that once below a certain threshold resolution,

in this case the resolution of 20 × 104 cells, the parameter sensitivity more

than doubles. The latter signifies that small deviations from an optimal

value for the parameters, results in large differences of the simulated output

if the tessellation resolution drops below a certain threshold.

Table 8.4: Influence of tessellation size on parameter sensitivity.

Resolution HPt
HPd

Hζ H∆ t

50 × 260 1.027 1.363 1.357 1.427

40 × 208 1.223 1.278 1.491 1.361

30 × 156 0.925 1.025 1.243 0.965

20 × 104 2.305 3.120 2.950 2.974

Knowing this, the modeler has to weigh out the advantages and disadvan-

tages of choosing a certain tessellation resolution, depending on the research

question.

8.4.3. The importance of capillarity

In order to illustrate the potential of the developed model, the remainder

of this section will deal with the incorporation of capillary rise in the CA-

based model. Many authors in literature argue that capillary rise plays a

role in oil migration in chocolate confectionery (see Section 8.1). However,

there is no consensus on how these capillaries appear and how important
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Figure 8.18: Initial condition of the CA, with cavities grouped into capillaries in
white, liquid CB in blue, nut oil in green, imaginary cells in purple and the other
states in brown.

their presence is. In this setting, model-based hypothesis exploration can

provide valuable information. Furthermore, the spatially discrete nature of

the proposed CA-based model allows for a straightforward incorporation

of spatial information on the chocolate layer if this would be available.

Attempts to incorporate spatial information into mathematical models are

already being made in the field of soil physics and wood technology [138] and

therefore similar approaches could also be applied for studying oil migration

in chocolate confectioneries.

To mimic the presence of capillaries, it is assumed that the cavities are

grouped to form vertical capillaries through which nut oil can migrate in-

stead of distributing the cavities randomly. These capillaries could be the

result of rising air bubbles captured in the chocolate layer during the ma-

nufacturing process. Ten capillaries with an average length of 26 cells (i.e.

2% of the total number of cells in the tessellation of size 50×260 cells) were

randomly distributed across the cross-section of the chocolate coating [126].

Figure 8.18 shows the initial condition of the CA with the cavities grouped

into capillaries. It is noted here that the situation as presented in Fig-

ure 8.18 exists only at the beginning of each time step and is therefore only

a snapshot of an infinitesimally small moment in time. During each time

step, the capillaries are filled with liquid fat migrating upwards.

Capillary rise is described by the Lucas-Washburn equation [139]:

2

r
α cosθ = 8

r2
ω l

dl

dt
+ ρg l, (8.3)

where l (m) is the vertical rise of nut oil in the capillary, α (N/m) the

surface tension of the fluid, θ (○) the contact angle between the nut oil

and the capillary wall, r (m) the radius of the capillary, ρ (kg/m3) and
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ω (Pa s) the density and viscosity of the fluid, respectively, and g (m/s2)

the acceleration due to gravity. Eqs. (8.4) and (8.5) show the solution of

Eq. (8.3) for l.

l = l∞ [1 − exp(− ρg r2
8ω l∞

) t] , (8.4)

l∞ = 2α cosθ

ρ g r
. (8.5)

When making use of the model variables and physical values reported in

Altamiras et al. [140] and Aguilera et al. [125], the maximum capillary

rise of nut oil during ∆ t can be calculated. This rise is far greater than

the length of the model capillaries. Therefore, it is assumed that nut oil

entering a capillary will reach the top cell of that capillary during the same

time step.

As can be seen from Figure 8.11, the lag phase where no nut oil is present

is not in agreement with what can be inferred from the experimental data.

The data show that there is already a small amount of nut oil present in the

upper layers of the chocolate coating early on in the experiment. However,

the presence of this nut oil cannot be explained by gradient-driven diffusion

as this process is much slower. The refinement of the proposed CA-based

model by adding the capillaries could help to explain the traces of nut oil

in the upper layers in the early stages of the experiment.

Figure 8.19 shows the state of the CA cells after 40 time steps (± 23 weeks)

when the cavities are grouped into capillaries, with initial state given in

Figure 8.18 and using the parameter values from Table 8.2 for model evalu-

ation. It can be seen that traces of nut oil (green cells) have already reached

the upper layers of the chocolate coating before nut oil cells driven by a

diffusion gradient have. Nevertheless, more and specific data are needed to

thoroughly investigate the role of capillary rise in oil migration.

8.5. Conclusions

In this chapter, a CA-based model was proposed to describe oil migration

in chocolate-coated confectionery. The intuitive nature of such models led
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Figure 8.19: Representation of the CA after 40 time steps, with cavities grouped
into capillaries in white, liquid CB in blue, nut oil in green, imaginary cells in
purple and the other states in brown.

to the construction of a transition function based on the principles of oil

migration found in literature. This CA-based model was parameterized

using experimental data such that in silico results were satisfactory. Fur-

ther, the model was used to calculate an effective diffusion coefficient as

well as to study the importance of oil migration mechanisms different from

gradient-driven diffusion through the parameter ζ.

However, more than just an adequate alternative to existing methods, the

CA-based approach offers great potential to tackle various kinds of prob-

lems. This was demonstrated by performing hypothesis exploration with

the introduction of capillaries. Alterations of the transition function or

of the structure of the chocolate coating can be readily implemented in

the model. Instead of using one general state for all TAGs, one could opt

to assign different states to different TAGs if these would differ greatly

in physicochemical properties and have a great relative importance within

the composition of different TAGs. Each TAG will have its own Pt, Pd

and ζ. Therefore, the availability of sufficient and appropriate experimen-

tal data is vital in order to introduce different discrete states for different

TAGs. The spatial nature of CA-based models also allows for embedding

structural information, such as tomographic images. When tomographic

images of chocolate confectionery are available, they can be used to more

precisely determine the initial state of the CA. In this way the effect of e.g.

insufficient mixing of the ingredients in the production stage can be studied.

Further, the CA-based model can also keep track of the amount of nut oil

that reaches the surface as a function of time. This information, coupled

with fat bloom scores by an expert panel and other data and measurements

on fat bloom could be of use when studying the moment of onset and the

intensity of fat bloom.
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It is important to note that although like in the previous cases a 2D tessel-

lation was used, this time, the tessellation represents a cross-section of the

complete system under investigation, rather than a small part. The latter

enforces the modeler to carefully choose a tessellation resolution, as was

shown in Section 8.4. Further, the tessellation representation also has an

impact on the boundary conditions. Normally, fixed boundary conditions

should be adhered to for all boundaries of the tessellation since the real

system is also bounded. However, since no experimental data is available

in the horizontal direction but only per vertical layer, the fact that peri-

odic boundary conditions are applied in the horizontal directions does not

interfere with the parameterization of the CA-based model. Nevertheless,

the periodic boundary conditions do entail an easier model implementation

which is the reason they are employed in the horizontal direction for this

case. A final remark on the tessellation is that the filling layer is repre-

sented by just four rows of which the cells are reset to their initial state

after every time step. The latter suffices to simulate a nut oil source that is,

for the time range of the experiments considered, infinite, without creating

the necessity to model the complete filling layer. The latter would not only

be very time consuming, but moreover, would not yield new information

since no experimental data of the filling layer are available. Further, the

migration of components from the chocolate layer to the filling layer is not

taken into account because of the lack of experimental data of the filling

layer and also because earlier experiments have shown that this migration

is negligible.

Another difference with the previous case study is that albeit more than

one time series of data (two in this case) is used to retrieve one single

optimized parameter set, in this case the time series do not constitute the

same process at different concentrations, but two time series originating

from two different processes. Therefore, the optimized parameter set has

to correctly give rise to two different types of output simultaneously. One

of the parameters that had to be optimized was ∆ t. This is due to the fact

that there is no value available for the diffusion coefficient D under these

circumstances. The latter implies that although a choice was made for the

tessellation size ∆x, D was not able to link it to a value for ∆ t. After

parameterization of the CA-based model, the optimized value of ∆ t could

be used, together with the value of ∆x, to calculate an effective diffusion

coefficient D for this specific case.
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Finally, it is mentioned that the choice to apply the transition function in an

asynchronous manner is based on the fact that synchronous updating would

result in an excessive number of conflicting movements as such influencing

the parameterization to an unacceptable extent for interpretation.
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9 Pitting corrosion

Pitting corrosion is difficult to detect, predict and design against. Modeling

and simulation can help to increase the knowledge on this phenomenon as

well as to make predictions on the initiation and progression of it. A CA-

based model describing pitting corrosion is developed in this chapter based

on the main mechanisms behind this phenomenon. Further, a sensitivity

analysis is performed in order to get a better insight in the model, after

which the information gained from this analysis is employed to estimate

the model parameters by means of experimental time series for a metal

electrode in contact with different chloride concentrations.

9.1. The phenomenon

Corrosion of metals is a natural process, because just like water flows to the

lowest level, all natural processes tend toward the lowest possible energy

state. To produce metals, starting from naturally occurring minerals and

ores, energy needs to be added. It is therefore only natural that when these

metals are exposed to their environments, they would revert back to the

original state in which they were found [141, 142]. Crucial in the occurrence

of corrosion is the combination of the material and the environment, since

the corrosion behavior of a material depends both on the environment to

which it is subjected and on the metal or alloy composition [141]. In the

case of unfavorable combinations, severe corrosion damage to the metal

appears.

The effects of corrosion in our daily lifes are both direct, in that corrosion

affects the useful service live of our possessions, and indirect, in that pro-

ducers and suppliers of goods and services incur corrosion costs, which they

pass on to customers. The total cost of damage caused by corrosion and the

efforts in fighting its destructive effects amounts to 1% - 5% of a country’s

GNP, of which 10% to 40% can be avoided, mainly by broader application

of corrosion-resistant materials and the application of best corrosion-related

technical practices [141, 143]. Besides economic issues, there are also safety

hazards involved such as contamination by chemical processing plants or
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Figure 9.1: Pitting corrosion with indication of anodic and cathodic half-
reactions.

construction collapse [142].

One of the forms of corrosion that can be identified based on the morphology

of the corroded metal is pitting corrosion [141]. This form of localized cor-

rosion is restricted to small areas and can be recognized by the appearance

of small holes on the metal surface as shown in Figure 9.1 [144, 145].

The first step in the pitting corrosion process is the passivity breakdown and

the initiation of a localized attack, which can be brought about by various

mechanisms [146, 147]. Firstly, the environment of the metal can possess

several critical conditions leading to the breakdown of the film in small

areas, while preventing dissolution of the entire surface cover [148]. Sec-

ondly, the breakdown of the passive film can occur due to special features

of the cover itself. Films are generally crystalline or get crystalline with

time such that local thinning mechanisms, related to the nanostructure of

the barrier layer that consists of nanograins separated by grain boundaries,

render these regions susceptible to the pit nucleation process [146]. Besides

crystalline grains in the passive film, other point defects are assumed to

be electrons, holes, and oxide vacancies [149]. Finally, local depassivation

can also be promoted by the presence of impurities or irregularities on the

metal surface. All metals or alloys have some physical or chemical inhomo-

geneities that make them more susceptible to attack in aggressive environ-

ments compared to the remaining surface [150]. The chemical composition

of the surface will affect the protective properties of passive films more

severely than physical defects in the film [150]. These chemical inhomo-

geneities can be boundaries between the metal matrix and inclusions or be-

114



§9.1. The phenomenon

tween second phase precipitates [151]. Therefore, pits can nucleate at grain

boundaries [150], on the grains itself [152], at mechanical damages [153],

in heat-affected weld zones [154], dislocations [155] and at defects or in-

clusions (e.g. MnS, oxides, sulfides, silicates, precipitates of carbides and

carbonitrites) in the microstructure of many metals or alloys [156]. When

the pitting corrosion is promoted by the presence of inclusions in the metal

surface [150, 151], the shape of the pits can be modified by them as shown

by Vignal et al. [156] and Gahari et al. [157]. In the latter, for example, the

authors showed that the orientation of an MnS inclusion can be important

for the pit evolution.

After the pit initiation in these regions, the acidity inside the pit is main-

tained by the spatial separation of the cathodic and anodic half-reactions,

which creates a potential gradient and electromigration of aggressive anions

into the pit [158]. As pit growth progresses, different solution compositions

develop inside the cavity and the consequent voltage (IR) drop along the

metal/electrolyte interface dictates that the deeper the pit is, the lower the

pit growth rate is [159, 160, 161]. In addition, the formation of a lacy metal

cover over a growing pit could occur. This cover provides a diffusion barrier

which stabilizes the pit growth since it keeps the bottom of the pit in active

dissolution [162].

Distributions and characteristics of pitting sites on metal surfaces have

been determined through microscopic inspection [163, 164]. The metal

surface apparently has a fixed number of these inclusions, i.e. sites for pit

nucleation, as observed in recent works by Punckt et al. [163] and Zimer et

al. [164]. The absence of pit creation nearby already existing pits is another

issue that is studied. Reuter and Heusler [155] showed that the probability

of finding no pit decreases exponentially with the area around an active

pit. This produces an exclusion zone of a few µm around each active pit

in which new pits cannot be nucleated [155]. González-Garćıa et al. [165]

detected anodic and cathodic current transients on 304 grade austenitic

stainless steel by scanning electrochemical microscopy measurements. The

microscope tip, set to detect the Fe2+ in the anolyte from the metastable

pits, detects the reduced background of cathodic current after the anodic

transient associated with the pit itself.

A better understanding of the pitting corrosion phenomenon is necessary

to combat its destructive effects [141, 143]. Even a small pit with minimal
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overall metal loss can lead to the failure of an entire engineering system

because of other corrosion types that can stem from pitting corrosion such

as stress corrosion cracks [142, 150, 166]. Therefore, pitting corrosion has

been widely studied for many years. Nevertheless, some aspects of this

phenomenon remain unclear. Modeling and simulation enables us to under-

stand and predict the nature and intensity of corrosion, decreases the need

for difficult experimental measurements of corrosion under different electro-

chemical conditions and allows for extrapolating over longer time scales and

to other physical conditions. However, the modeling of the corrosion phe-

nomenon is challenging due to its complex nature and the involvement of

many variables and consequently up till present, no satisfactory, validated

models exist [159].

In the second half of the 20th century, initial corrosion models, mostly

based on (P)DEs, were used to describe either the initialization of corro-

sion [167, 168] or the propagation of corrosion [169, 170, 171]. Later on,

models were introduced incorporating both steps, more processes such as

passive film formation were added and specific models for specific conditions

were developed. Although these models are elaborate, they require exten-

sive knowledge about the material, its origin and the process, which poses

problems for both their development and more so for their validation [172].

Therefore, the use of new modeling paradigms such as artificial neural net-

works [173], statistical models [174] and CAs are being explored [175].

In this chapter, a 3D CA-based model describing pitting corrosion is devel-

oped. The use of CAs in the field of corrosion is relatively new [176, 177],

but the number of researchers employing CAs as well as the knowledge on

the subject is growing. Although many different aspects that influence cor-

rosion, such as film formation, pH, potential differences and heterogeneous

composition of alloys, are being explored and are incorporated in CA-based

models, most of them only establish a qualitative resemblance between the

simulated model output and the real-world phenomenon, ignoring the im-

portance of a sound model validation that is a prerequisite to have a model

with predictive value [144, 159, 161, 178, 179, 180, 181].

Only very recently, a few authors validated their CA-based model using

time series of data, but with modest success [10]. Furthermore, CA-based

models in literature are usually two-dimensional, making them unsuited to

model the growth of corrosion pits in the direction of the pit depth and
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surface simultaneously [161]. Three-dimensional models could provide new

information about dynamic processes like pit coalescence or the formation

of channels and peninsulas inside the metal. Nevertheless, the simultane-

ous study of all factors involved in pitting corrosion is a complex task to

overcome using a single approach. For that reason, the model introduced

in this chapter focuses on mass transport, IR drop, pit initiation, metal

dissolution and cathodic protection, but leaves aspects such as passivation

and bimetallic corrosion with spatially different behavior towards corrosion,

aside for the time being.

9.2. Data acquisition

Pitting corrosion on AISI 1040 steel was performed in a hydrogen carbonate

solution (0.1 mol dm−3) prepared by the dissociation of NaHCO3 (Merck)

in deionized water at pH 8.3. Prior to data acquisition, the solution was

deaerated for 10 min with N2. The study of the influence of the chloride

concentration during pit initiation and propagation was performed using

following weight percentages: 2.25, 2.5 and 3.5 wt. % of NaCl (JT Backer) in

the solution. Further, cylindrical steel samples (Sanchelli) with a diameter

of 9.5 mm (A = 0.7 cm2) were used as the working electrode (WE). The

WEs were previously abraded with sandpaper up to 2000-grit, polished

with diamond paste (1 and 0.25 µm), and degreased in acetone for 1 min

in an ultrasonic bath. The material composition is described in Zimer et

al. [164]. As the reference electrode and auxiliary electrode, Ag/AgCl/KCl

(saturated) and a Pt wire were used, respectively.

Two types of electrochemical measurements were performed with an Auto-

lab model PGSTAT 30, being the open-circuit potential (Eoc) and chronoam-

perometric measurements. A homemade flat-bottom cell, previously de-

scribed in literature [182], was employed in these experiments. The use of

this cell enables the coupling of the electrochemical techniques and measure-

ments with in situ temporal series of micrographs (TSM) obtained with an

inverted optical microscope, brand Opton model TNM-07T-PL. The soft-

ware tools Scope Photo® 1.0 and MCDE (AMCAP) were used for the data

acquisition.

In this approach, the Eoc was followed up to its stabilization during 6000 s.

After stabilization, all chronoamperometric measurements were performed
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(a) (b)

(c) (d)

Figure 9.2: Micrographs of the metal surface (680 µm × 544 µm) in contact with
a solution with a chloride concentration of 3.5 wt. % at (a) start of experiment,
(b) after 15 s, (c) after 50 s and (d) 200 s.

for 1800 s with an overpotential (η) of 350 mV more positive than Eoc.

At the same time, an area of 680 µm × 544 µm, i.e. 0.52% of the WE,

was recorded using an acquisition rate of 0.05 and 1 image per second

during the Eoc and chronoamperometric measurements, respectively. The

optimization of the overpotential η to be applied during the chronoampero-

metric measurements was investigated at a low chloride concentration of 1.5

wt. %. The value of 350 mV was chosen because it allows for observation

of the first pit nucleation when verifying the in situ image of the electrode

surface. Figures 9.2(a)–9.2(d) show four micrographs of the metal surface

at different times during the experiment in contact with a solution with a

chloride concentration of 3.5 wt. %.

It is noted here that different areas of 680 µm × 544 µm of the WE elec-
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§9.2. Data acquisition

trode were followed in order to assure that this small part of the surface

was representative of the whole process occurring during the measurements.

Starting at the center of the WE, where the TSM were collected, the elec-

trode surface was studied towards the corners of the sample in the orthog-

onal directions. Thus, several in situ micrographs were collected for these

new positions and they were compared with the last frame of the temporal

series. For each experimental condition, the spatial distribution of pits on

the metal surface in the final frame of the studied time series was similar to

the spatial distribution of pits of the rest of the electrode surface, excluding

edge effects.

To convert the images (frames) from the TSM into quantitative informa-

tion, a procedure previously described in literature [164, 183] was employed.

The number of pits and total pit area were obtained from the in situ TSM.

The average pit depth was estimated using a fraction of the total charge

consumed during the pit formation. This fraction of total charge changes

in every frame according to the pit mouth area observed during chronoam-

perometric measurements. Finally, a 3D model of pit evolution based on

Faraday’s law was used to calculate the average pit depth and its evolution

over time. Figures 9.3–9.5 show the number of pits, the corroded surface

area and the average pit depth, respectively, in function of time and for

the different mass percentages of chloride ions in solution. It is noticed

from Figure 9.3 that a maximum number of pits is reached for 2.5% chlo-

ride in solution instead of for 3.5%. Although not completely elucidated,

the explanation seems to lie in a shift in corrosion emphasis dependent on

the chloride concentration. At lower concentrations of chloride, more pits

are formed than at higher concentrations, but these pits are volume-wise

smaller. One possible explanation is that the higher diffusion gradient at

higher chloride concentrations forces the chloride cells more towards the

inside of the pits. This explains that although 3.5% chloride in solution

does not yield the highest number of pits, the total affected surface and

the average pit depth at 3.5% chloride is the highest. More details on the

procedure and data can be found in Zimer et al. [184].
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Figure 9.3: Number of pits in function of time for mass percentages of 2.25%
(green, ●), 2.5% (blue, ◾) and 3.5% (red, ◆) of chloride ions in corrosive solution.
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Figure 9.4: Corroded surface area in function of time for mass percentages of
2.25% (green, ●), 2.5% (blue, ◾) and 3.5% (red, ◆) of chloride ions in corrosive
solution.
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Figure 9.5: Average pit depth in function of time for mass percentages of 2.25%
(green, ●), 2.5% (blue, ◾) and 3.5% (red, ◆) of chloride ions in corrosive solution.

9.3. Model development

In this section, a stochastic 3D CA-based model describing pitting corrosion

is proposed.

A finite 3D tessellation consisting of cubes is used (see Figure 3.6), with i∗,

j∗ and k∗ the number of layers, rows and columns, respectively. Therefore,

i represents the thickness direction of the metal, while j and k together form

the surface. This tessellation allows for modeling both the affected metal

surface as well as the depth of the corrosion pits, both in function of time.

Here, a tessellation T ∗ consisting of 151 × 200 × 200 cubes is used where

the top layer represents the aqueous solution containing the corrosive agent

while the other 150 layers represent the metal subjected to corrosion. The

number of cells of the tessellation is chosen in this way to obtain a small

enough tessellation resolution to prevent overly sensitive model parameters

that result in very fluctuating solutions from simulation to simulation, while

still not resulting in excessive computation times. Along the j- and k-axes

periodic boundary conditions apply, meaning that the cells of the first row

(column) are considered to be adjacent to those of the last row (column)

to avoid border effects [144]. Along the i-axis on the other hand, fixed

boundary conditions are employed since the top layer (aqueous solution)

and bottom layer (metal) of T ∗ do not physically form an interface and so
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Figure 9.6: Schematic representation of the 3D grid.

through these boundaries no movement is possible.

A schematic representation of the tessellation T ∗ is shown in Figure 9.6.

The metal part of the tessellation T ∗, i.e. the bottom 150 layers, represents

only a part of the studied electrode surface used for the data collection

to get a resolution fine enough to approximate the experimental results as

well as to avoid excessive computation times. By presuming ∆ j and ∆k

to be 1.24 × 10−6 m and ∆ i = 1.44 × 10−7 m, the tessellation captures one

sixth of the total studied electrode surface area and has a maximum depth

large enough to allow for the maximum average experimental pit depth

(see Figure 9.5) to occur. The solution in which the metal electrode is

submerged is represented here initially by a single layer wherein chloride can

diffuse. Since the modeling interest lies in capturing the pitting initiation

and propagation processes, in this way the computationally demanding

diffusion process is kept to a minimum.

Further, three different discrete states, i.e. S = {water, chloride, metal},

are discerned. Although the corrosive solution contains more components

than merely water and chloride, here all the non-reactive components are
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§9.3. Model development

considered as water since they are irrelevant for the current modeling pur-

poses. This chapter deals with a mesoscopic description of the corrosion

phenomenon, and therefore cells are not to be associated directly with the

individual atoms, anions or cations, but rather to a homogeneous grouping

of the same type of atom. The latter means that atomic size effects are not

accounted for [185], which is a simple approximation intended to capture

the synoptic effects of pitting corrosion [76, 77].

The initial condition of T ∗ is determined by the experimental set-up (see

Section 9.2) meaning that initially no pits are present in the metal such that

all cells of layer two up to layer 151 of T ∗ have state metal at t = 0. In layer

1, a number of cells is assigned the chloride state according to the mass

percentage of chloride in the solution and is randomly distributed across

this layer, while the rest of the cells gets assigned the water state.

The transition function Ψ is executed in a stochastic and synchronous man-

ner and falls apart into three parts that describe diffusion, pit initiation and

pit propagation, respectively. For the first part of the transition function,

only the cells in the chloride state are evaluated, since only their movement

is both possible and relevant. Every cell in the chloride state can move

once via diffusion in each time step. The motion dynamics of a cell in

state chloride are simulated by switching the state of the central cell ci,j,k
and the state of the cell in its neighborhood it moves towards. To comply

with the law of mass conservation, if more than one cell in state chloride

tries to switch state with the same cell, none of them is allowed to switch

state, as such employing the adjusted synchronous update mechanism as

described in Section 3.3. The complete reaction and diffusion neighborhood

N employed in this dissertation is the 3D Moore neighborhood depicted in

Figure 3.7(b). However, depending on the position of ci,j,k, N can be trun-

cated to fit the fixed boundaries of the system. Initially, a random neighbor

of ci,j,k in N is chosen to switch state with after which it is checked whether

this cell is in the water state and is therefore a viable candidate to switch

state with. Nevertheless, once pits appear on the surface and grow, a con-

centration and potential gradient emerges and chloride will preferably move

(deeper) inside the pits. To capture this, a suction probability ι ∈ [0,1] is
introduced that indicates the probability that a cell in state chloride tries

to switch state with the lowest possible position in N or if it tries to switch

state with any free position in N at random.
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Furthermore, since the diffusion coefficient of chloride in these specific con-

ditions is not known, ∆ t, i.e. the number of seconds corresponding to one

discrete time step of the CA-based model, is set as a model parameter. The

total number of time steps the CA-based model is denoted tn and is given

by Eq. (9.1):

tn = ⌊200/∆ t⌋ . (9.1)

It is pointed out here that a calibrated value for ∆ t will not depend on the

experimental data alone, but also on the values chosen for ∆ i, ∆ j and ∆k,

since the cell dimensions and the time step cannot be chosen independently

and are connected via the diffusion coefficient [179].

The second part of Ψ is the pit initiation where surface metal cells, i.e.

where s(c2,j,k, t) =metal, get their state changed to state water or chloride,

based on the same ratio as the tessellation initiation, with a probability Pp

through an attack of a cell in the chloride state. An attack of a cell in the

chloride state starts, like the diffusion part of Ψ, by choosing another cell

in its neighborhood N to direct its attack towards. Firstly, it is checked

whether the selected cell is a surface metal cell. The next step consists

of verifying whether the cell under attack is not already protected through

cathodic protection. The latter phenomenon occurs when the metal surface

around a newly formed or growing pit becomes negatively charged (see

Section 9.1) as such preventing the appearance of new pits in close vicinity

of existing pits. The radius of the exclusion zone for each active pit here

is taken as 5 µm, based on previous works and observations of the in situ

images from the metal surface. Translating this cathodic protection to

the tessellation T ∗, a protection distance of four cells is taken around any

existing pit. Finally, an attack only becomes effective with a probability

Pp ∈ [0,1]. From the experimental data (cf. Figure 9.3) a maximal number

of pits for each chloride concentration is deduced and when this maximum is

reached, Pp is set to 0 from that point on, as such preventing the formation

of new pits.

The pit propagation or pit growth, both on the surface as in the depth,

forms the third and final part of the transition function Ψ. As for the pit

initiation, metal cells get their state changed to water or chloride, based

on the same ratio as the initiation of T ∗, after an attack by a cell in the

chloride state. However, unlike for the pit initiation, the candidate metal
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§9.4. Results and discussion

cells for attack are metal cells that are part of an already existing pit. In

this part of Ψ, all chloride cells choose one of their 3D Moore neighbors at

random to attack, and when this neighbor is a metal cell belonging to a pit

edge, this metal is dissolved with a probability Pd. There is an indubitable

IR control of the current pit growth laws [159, 160] and therefore the IR-

factor is incorporated in the CA-based model as a parameter υ ∈ [0,1].
This parameter is used together with the dissolution probability without

potential gradient (i.e. the dissolution probability at the metal surface) Pd0,

again ∈ [0,1], to calculate Pd in the following manner [159]:

Pd = Pd0 (1 − υ w

wm

) , (9.2)

with w the depth of the metal cell under attack and wm the total depth of

the metal layer, i.e. 150 cells. From Eq. (9.2), it can be seen that with the IR

drop the dissolution probability decreases with increasing pit depth.

Table 9.1 gives an overview of the model parameters that need to be cali-

brated using the experimental data from Section 9.2 and Figure 9.7 shows

a flow chart of the CA-based model.

Table 9.1: Overview of model parameters.

Symbol Description Range Unit

ι Suction probability [0,1] -

∆ t Physical time for one discrete time step ]0,200] s

Pp Pit initiation probability [0,1] -

Pd0 Dissolution probability at metal surface [0,1] -

υ IR drop [0,1] -

9.4. Results and discussion

9.4.1. Sensitivity analysis

The SA results that follow next are obtained using the EE method (for

R = 30, ∆ = 0.02 and 30 repetitions) and for a mass percentage of chloride

ions of 3.5%, but uphold for the two other chloride concentrations. From

Figure 9.8 it can be concluded that with regard to the number of pits in

function of time, parameters ∆ t and Pp are the most sensitive, since the
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Figure 9.7: Flow chart of CA-based model for pitting corrosion.
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Figure 9.8: Screening of the parameters based on the EE method for the data
on the number of pits in function of time for a mass percentage of chloride ions in
corrosive solution of 3.5%.

sensitivity measures for these parameters are located furthest away from the

origin. This result was expected, because these two parameters together

establish the probability of a new pit appearing at a certain moment in

time. Analogously, from Figure 9.9 it can be seen that parameters Pd0 and

ι are the ones that most influence the affected metal surface in function

of time. This again is a logical outcome since Pd0 is the probability that

a metal cell pertaining to an already formed pit dissolves while ι dictates

the preference of a corrosive agent to stay in the neighborhood where it

is (by random movements) or move preferentially towards the bottom of

the existing pit. Finally, Figure 9.10 shows that the average pit depth in

function of time is clearly most sensitive to the value of ι, which could also

be anticipated.

9.4.2. Parameterization

The next part of this section deals with solving the inverse problem, i.e.

retrieving the values of the model parameters from Table 9.1, corresponding

to the observed data from Figures 9.3–9.5 for each of the three different

chloride concentrations. This comes down to estimating five parameters,

making use of three time series of data (number of pits, affected surface

area and average pit depth). Two measures of fitness between the observed

data and the corresponding simulated time series with the CA-based model

are used. The absolute error (AE) is used between the experimental and
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Figure 9.9: Screening of the parameters based on the EE method for the data
of the corroded surface in function of time for a mass percentage of chloride ions
in corrosive solution of 3.5%.
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simulated number of pits in function of time, since this is a discrete measure,

and the RMSE is used for the remaining two time series.

Although similar research questions in literature have been tackled by it-

erative optimization using the Nelder and Mead method and genetic al-

gorithms [10], the optimization method used in this chapter to minimize

the AE and the RMSE is a grid search [186], for the same reasons as in

the previous two chapters. Initial attempts to estimate all five parameters

simultaneously using a grid search have proven unfruitful, probably due to

the complex nature of the CA-based model. Therefore, the information

gained from the SA is employed during the parameter estimation process

to overcome this problem. In a first step, only υ, ∆ t and Pp are estimated

using the time series of the number of pits, while Pd0 and ι are given a

constant value of 0.3. This is justified, since the former three parameters

are the most sensitive model parameters for this output and therefore de-

termine predominantly whether the number of pits in function of time can

be correctly predicted. Then, in a second step, using the optimal values for

υ, ∆ t and Pp found in the first step, Pd0 and ι are estimated using the two

time series that have not yet been used, being the affected surface area and

the average pit depth. In what follows, this approach is elaborated on for

a mass percentage of chloride ions of 3.5%.

Some preliminary model exploration allowed to select a subspace of the

search space defined in Table 9.1, which is represented in Table 9.2. The

subrange of ∆ t is explained by the fact that values that are too small

increase computation times beyond the desirable time a modeler wants to

wait for results, while values that are too large are not able to capture

the observed data to an acceptable precision. A small value for Pp is also

expected since a limited number of pits has to be initiated with a relatively

large number of cells in the chloride state being able to attack the metal

surface.

Table 9.2: Selected subspace of the search space for the model parameters.

Symbol Subrange

ι [0,1]
∆ t [0.2,1.2]
Pp [0,0.001]
Pd0 [0,1]
υ [0,1]
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By means of a Sobol sequence [118], 2000 combinations of υ, ∆ t and Pp

are chosen from their subranges as presented in Table 9.2 in order to get a

good coverage of this subspace and as mentioned before Pd0 = ι = 0.3. An

evaluation with the CA-based model is performed with each of the 2000

parameter combinations, the simulated number of pits in function of time

is determined, after which the AE is calculated with the experimental data

at every point of the time series. Since the proposed CA-based model is

stochastic in nature, model evaluations with the 200 parameter combina-

tions that give rise to the lowest AE, are performed in tenfold to account

for the stochasticity. Subsequently, from the ten repetitions, the average

result is calculated and again the AE is calculated, after which the param-

eter combination that results in the lowest average AE is selected as the

optimal combination. It is worth mentioning that different combinations

can result in similar solutions due to equifinality [187]. This is explained

by the fact that increasing both ∆ t and Pp to a certain ∆ t∗ and P ∗p can

result in more or less the same simulated output. However, in order to

compare the optimal parameter values for different chloride concentrations,

a same ∆ t has to be chosen for all three concentrations. Therefore, a rel-

atively small ∆ t is selected in order to approximate the observed data for

the different concentrations. The obtained optimal parameter values are:

υ = 0.503, ∆ t = 0.399 and Pp = 0.000201. Figure 9.11 shows the mean value

at each point plus and minus the standard deviation of the ten repetitions

and the observed number of pits in function of time.

Next, the optimized parameter values for υ, ∆ t and Pp are set as a constant

for these parameters and 2000 combinations for Pd0 and ι are chosen using

a Sobol sequence. The weighted RMSE is determined for each of the 2000

combinations. This is done by adding up the RMSE that is the result of

the comparison between the simulated affected surface area and the expe-

rimental data represented in Figure 9.4 and the RMSE that is the result

of the comparison between the average pit depth in function of time and

the experimental data represented in Figure 9.5. Afterwards, simulations

are again performed in tenfold with the 200 parameter combinations that

result in the lowest weighted RMSE. It is mentioned here that for reasons

of simplicity of the calculations, the data from Figure 9.4 are expressed in

the percentage of the metal surface that is affected instead of the surface

area in µm2. The optimal parameter values found here are Pd0 = 0.650 and

ι = 0.918 and the simulated outputs using these optimized values are shown
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Figure 9.11: Average simulated number of pits (black line) with υ = 0.503,
∆ t = 0.399, Pp = 0.000201, Pd0 = 0.3 and ι = 0.3, the confidence interval around this
average output, constructed by the mean value at each point plus and minus the
standard deviation of the ten repetitions (red dotdashed lines), and the observed
number of pits (blue dots) in function of time for mass percentage of chloride
concentration of 3.5%.

in Figures 9.12 and 9.13. It is clear from these figures and Figure 9.11 that

although the simulated output corresponds quite good with the observa-

tions, further improvement is possible. However, further simulations have

shown that when optimizing the parameters for one time series of data, e.g.

the number of pits, that a ‘good’ fit for the other two time series of data

is not possible with the model in its current form. Therefore, a parameter

combination is chosen that results in a simulated output that gives the best

result when all three time series are considered simultaneously.

Figures 9.14(a)–9.14(c) show one of the pits after 200 s as modeled with

the CA-based model, i.e. at the end of the experiment. These figures show

that the pit grows in a circular shape at the surface, however, this is not

the case for all pits that are created during simulations. This is realistic

since pits preferentially grow along impurities on the surface, such as small

scratches, and are therefore not necessarily circular in shape.
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Figure 9.12: Average simulated affected surface area (black line) with υ = 0.503,
∆ t = 0.399, Pp = 0.000201, Pd0 = 0.650 and ι = 0.918, the confidence interval
around this average output, constructed by the mean value at each point plus and
minus the standard deviation of the ten repetitions (red dotdashed lines), and the
observed number of pits (blue dots) in function of time for mass percentage of
chloride concentration of 3.5%.
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Figure 9.13: Average simulated pit depth (black line) with υ = 0.503, ∆ t = 0.399,
Pp = 0.000201, Pd0 = 0.650 and ι = 0.918, the confidence interval around this
average output, constructed by the mean value at each point plus and minus the
standard deviation of the ten repetitions (red dotdashed lines), and the observed
number of pits (blue dots) in function of time for mass percentage of chloride
concentration of 3.5%.
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Figure 9.14: Simulated pit in metal surface after 200 s: (a) Pit in 3D, (b)
projection on the j k-plane (top view) and (c) projection on the i k-plane (vertical
cross-section).
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9.4.3. Influence of chloride concentration

The same procedure as before is used to estimate the parameters corre-

sponding to the three time series for the two remaining chloride concentra-

tions, giving rise to the results in Table 9.3. It is clear that the optimized

parameter values are dependent on the mass percentage of chloride ions.

The suction probability ι is larger for the two highest concentrations since

larger concentrations of chloride induce larger concentration and potential

gradients, making the influence of this parameter on the diffusion direction

of chloride increasingly more important.

The obtained value for Pp increases from a mass percentage of chloride ions

of 2.25% to 2.5% and decreases again from 2.5% to 3.5%. The total number

of pits in function of time almost doubles going from a mass percentage of

chloride ions of 2.25% to 2.5%, which can not be completely attributed to

the (small) rise in the mass percentage and therefore a higher value for Pp

is necessary. On the other hand, at a mass percentage of 3.5%, both the

total number of pits in function of time is lower and the concentration is

much higher, resulting in a lower value for Pp again. A similar trend as

for Pp can be observed for Pd0. The increase in value for Pd0 from a mass

percentage of 2.25% to 2.5% can be explained by the larger affected surface

and the higher average depth of the pits as seen in Figures 9.4 and 9.5.

Nevertheless, when the chloride concentration rises from 2.5% to 3.5%, the

optimal value for Pd0 drops. The cause for this drop in value is probably

due to the combination of the higher chloride concentration on the one hand

and the high value for ι on the other hand, keeping the chloride trapped

inside the pit and producing the aforementioned results with regard to the

affected metal surface and average pit depth.

Finally, although for the three different studied chloride concentrations in

the same range, the optimized value for υ shows the same trend as those

of Pp and Pd0, i.e. rising from 2.25% to 2.5% chloride and decreasing again

from 2.5% to 3.5% chloride. This indicates that υ behaves similarly to Pp

and Pd0 to changes in chloride concentration.

9.4.4. Pitting corrosion in bimetals

There are many difficulties associated with the experimental measurements

necessary to understand bimetallic corrosion, which is caused by the jux-
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Table 9.3: Optimized model parameter values for the experimental data with
different chloride concentrations.

Mass percentage chloride ions

Parameter 2.25% 2.5% 3.5%

ι 0.703 0.975 0.918

∆ t 0.399 0.399 0.399

Pp 0.000278 0.000422 0.000201

Pd0 0.150 0.843 0.650

υ 0.586 0.647 0.503

taposition of two or more metals, and as a result a number of theoretical

models of the various stages of this and other types of localized corrosion

have been developed [148]. Therefore, in order to illustrate the potential

of the developed model, the remainder of this section will deal with an

exemplary case study for the pitting corrosion of a bimetal.

It is assumed here that the metal block of T ∗, i.e. layers two up to 151 in

Figure 9.6, is composed out of two types of metal. The first layer of T ∗
remains the aqueous layer. Figure 9.15 shows layers two till 151 of T ∗ that
will be used in the remainder of this section. The central part of the metal

block (M1), i.e. columns 51 till 150, is chosen to be a weaker metal, meaning

that it is more susceptible to corrosion, than the remaining columns of the

metal block (M2). This difference in resistance to corrosion is expressed

in the choice of parameter values. Since ι and ∆ t do not depend on the

type of metal, they are chosen to be 0.918 and 0.399, respectively, while for

the three remaining parameters a different value is chosen for each type of

metal (see Table 9.4).

Table 9.4: Bimetallic parameters for the weaker metal (M1) and the stronger
metal (M2).

Parameter M1 M2

Pp 0.4 0.2

Pd0 0.8 0.65

υ 0.4 0.5

Simulations are performed with the stochastic CA-based model with a mass

percentage of chloride ions of 3.5% and with a maximum number of pits

equal to 25. Figures 9.16–9.18 show the simulated time series of data for
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Figure 9.15: Schematic representation of the bimetallic part of the 3D grid.

both types of metal. It can be seen that more pits are initiated on M1

than on M2 and moreover, that the surface of M1 is more affected than

that of M2 in function of time. However, it is seen from Figure 9.18 that

the average pit depth is larger for pits initiated in M2 than for those that

are initiated in M1. This is explained by the fact that with the chosen

parameter values, pits in M2 are deeper and more narrow, while pits in M1

are wider and more shallow. Of all the metal cells that are corroded (either

by pit initiation or pit propagation), 58% belonged to M1.

Further, when studying the pits that grow in the different types of metal,

it can be seen that pits that start in M1 mostly progress in M1 (see Fig-

ure 9.19(a)). Pits that initially start in M2 on the other hand, often find

a way into M1 and have a branch of the pit in this part as well (see Fig-

ure 9.19(b)).

9.5. Conclusions

The developed 3D CA-based model with the incorporation of the key pro-

cesses of pitting corrosion enables the simulation of pit growth in three
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Figure 9.16: Simulated number of pits originating in M1 (black) and M2 (gray,
dashed).

0 50 100 150 200
0.00

0.01

0.02

0.03

0.04

0.05

Time HsL

A
ffe

ct
ed

su
rf

ac
e

ar
eaH
%
L

Figure 9.17: Simulated affected surface of M1 (black) and M2 (gray, dashed).
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Figure 9.18: Simulated average pit depth of pit originating in M1 (black) and
M2 (gray, dashed).
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Figure 9.19: Bimetalic 3D pit growth of a pit initiated in (a) M1 (gray) and (b)
M2 (white).
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dimensions. A sensitivity analysis showed that all parameters incorporated

into the model are non-redundant and, moreover, the information obtained

from this analysis was used to facilitate the parameter estimation. Via a

grid search in two steps, the inverse problem of finding a set of parameters

that gives rise to three simulated time series as close as possible to the

three experimental time series, obtained by the authors in the laboratory,

was solved. Further, the influence of the chloride concentration on the ca-

librated model parameters was investigated. Finally, the potential of the

CA-based model was illustrated by means of a case study where pitting

corrosion of a bimetalic material was studied.

Nevertheless, it is clear that the fitting of the simulated results to the

experimental ones is subject to further improvement. Depending on the

degree of accuracy desired of the model, new parts can be added to the

transition function of the CA, most likely coupled with the addition of more

model parameters, which would possibly improve accuracy, but also make

the parameter estimation more difficult. It is therefore crucial to get more

insights into the pitting corrosion phenomenon and the CA-based model

before adding new parts to the transition function. Model simulations can

be used to generate and/or test hypotheses as such increasing the knowledge

on the phenomenon. However, experimental data is important to test the

validity and necessity of additions and/or changes to the model.

The most limiting point of the model at this moment is the initiation of

pits, both in the number of pits as their position and shape. In the current

version of the model, the total number of pits is limited by the user, based

on the experimental data. Nevertheless, it would be an improvement to the

model if the process that stops new pits from appearing, is incorporated

into the transition function. If more data were available, this process could

possibly be learned from those data. Secondly, the shape of the pit at the

surface is more or less circular (see Figure 9.14(b)), although this is not

necessarily so in reality. Finally, the positions at which new pits appear are

at present randomly distributed over the surface (with the exception of the

cathodically protected zone around the existing pits). Therefore, the inte-

gration of information on the experimental metal surface would ameliorate

the model since new pits are preferentially formed along scratches and other

impurities on the metal electrode. Further, it is stressed that the experi-

mental data employed in this chapter stem from a low number of replicated

experiments such that little information on the uncertainty of these data
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is available. Data on more processes and more replications could help to

discover new elements to be added to the model as well as to improve the

modeling of the processes already incorporated into the model.

For the first time in this dissertation, a 3D tessellation is employed since

the experimental data call for it: three dimensions are needed when the

surface and the depth of corrosion pits have to be modeled simultaneously.

The domain, like was done before, represents only a part of the entire

system. However, in contrast with before, periodic boundary conditions are

not applied to every boundary. The reason for this is that the tessellation

contains an interface of two different components (i.e. aqueous solution and

metal) in the vertical direction that cannot be connected through periodic

boundary conditions. Therefore, fixed boundary conditions are applied

according to the vertical direction, while periodic boundary conditions are

used according to the remaining two dimensions, once more simulating the

presence of the larger system of which the chosen tessellation is only a

part.

Simulating diffusion is a time-consuming task. For this reason, like was

done in the case study of oil migration in Chapter 8 with the filling layer,

the part of the system where diffusion takes place, but for which no ex-

perimental data are available, is kept to a minimum. Here, the choice

was made to incorporate just one single layer of aqueous solution in which

the corrosive agent diffuses. Obviously, as the simulation progresses and

metal is being dissolved, more aqueous solution is introduced in the tessel-

lation. Further, with respect to the diffusion, again ∆ t is introduced as a

parameter since no diffusion coefficient under the circumstances described

in Section 9.2 is known.

Finally, the choice for a synchronous application of the transition function

is elaborated on. Although the situation in this case study is quite similar

to the one presented in Chapter 8, the update of the state of the cells of

the tessellation is not performed in an asynchronous manner. The reason

for this being twofold. Firstly, the number of cells in state chloride, i.e. the

ones that diffuse and attack metal cells, is relatively small in comparison to

the total number of water and metal cells. The latter implies that conflicts

arising from two chloride cells trying to switch state with the same cell

or attempting to attack the same metal cell is limited. Therefore, the

influence this choice has on the optimized parameter values is small. The
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second reason for choosing a synchronous updating mechanism is because of

the reduction in computation times it offers, which is of utmost importance

when working with 3D models.
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10 Introduction

Simulations with computer models offer a great time reduction when com-

pared to laboratory experiments. However, the performance of these mod-

els strongly depends on the knowledge that is incorporated into the model

as well as a correct parameterization of the model [188]. Solving the in-

verse problem, i.e. the retrieval of optimal values of model parameters from

experimental data, remains a bottleneck when modeling (a)biological pro-

cesses [189, 190]. Also for the different case studies presented in Part II,

the parameterization of the developed CA-based models was a complex

and time-consuming task. Due to various, mostly unavoidable sources of

noise inherent to experimental data, it is impossible to find a set of param-

eter values for which the model simulations would generate exactly these

data, even if the proposed model were the correct one. Therefore, a myriad

of optimization algorithms that try to find a near-optimal solution have

been developed over the years. Traditionally, the goal of these algorithms

consists of finding a set of parameter values that minimizes the (regular-

ized) model error. This error is generally expressed through an objective

function.

It is mentioned here that although the interest in the domain of chemical

engineering for CA-based models is growing, most of the reported models

are neither calibrated, nor validated. This is partly due to the relative

newness of this modeling paradigm in this domain and the lack of adequate

data to calibrate and validate these models. However, another issue is that

the parameterization of CA-based models generally involves non-classical

optimization techniques.

Some of the more popular optimization algorithms used for continuous prob-

lems are stochastic steepest descent [117], genetic algorithms [191], (sim-

plex) simulated annealing [192, 193] and particle swarm optimization [116].

Although these heuristics have proven to be quite successful in numerous

cases, they are not always the best choice as was mentioned already in

Part II. Namely, when parameterizing models that give rise to multiple

local optima and where a single model evaluation is highly time consum-

ing, unnecessary model evaluations should be avoided and more protection

against local optima is desired [114, 115]. Furthermore, when several com-
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puter nodes are at disposal for performing model evaluations simultane-

ously, the (often) iterative heuristics pose a problem, since a calculation

is always based on the previous result. In these cases, a grid search [186]

that evaluates the model in a number of predefined points in the parameter

space, is the preferred procedure, especially when the number of parameters

to be determined is not excessively large. The challenge with grid search

is efficiently choosing a finite subset of the parameter space for evaluation

when a limited number of model evaluations are allowed or desired. The

naive approach is to take the same number of parameter values equidis-

tantly according to each of the dimensions of the parameter space, and

consider all combinations of these values. However, from the results of the

SA of the various case studies it is clear that some parameters are more

important to be estimated correctly than others. Therefore, in this part

an improved approach for selecting a subset from the parameter space is

suggested that makes use of sensitivity measures obtained in earlier stages

of model exploration.

In Chapter 11, information is given about the selection of the search grid

and how sensitivity information obtained through SA can be employed to

improve the selection of a subset of the parameter space for evaluation.

Subsequently, in Chapter 12 the proposed approach is exemplified using a

simple linear model as well as two well-known nonlinear models and the

CA-based model for oil migration in chocolate, introduced in Chapter 8 of

Part II.
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11 Grid search using sensitivity

measures

11.1. Selection of the search grid

11.1.1. Rectangular search grid

It is assumed here that the parameter vector u to be optimized is a vector

of two parameters u1 and u2 and that the search grid G ⊂ R2 contains N
grid points:

G = {uj}N
j=1
= {(uj1, uj2)}Nj=1 . (11.1)

Let q
∗ = (q∗1 , q∗2) ∈ R2 be the optimal parameter vector according to some

optimality criterion. The Euclidean distance between q
∗ and a grid point

u ∈ G can be used to measure the approximation error of u, i.e. u has

fitness (u1 − q∗1)2 + (u2 − q∗2)2. Moreover, the approximation error dG of a

grid G can be defined as the minimum of the approximation errors of its

elements:

dG =
N
min
j=1
((uj1 − q∗1)2 + (uj2 − q∗2)2) . (11.2)

Now, assume that the optimal parameter vector is a random vector u
∗

that is uniformly distributed over the parameter space. Naturally, the

approximation error of G becomes a random variable as well:

DG =
N
min
j=1
((uj1 − u∗1)2 + (uj2 − u∗2)2) . (11.3)

Thus, DG represents the smallest Euclidean distance to u
∗ among the N

search grid points. Further, we say that a grid G1 performs better than

another grid G2, which is denoted as G1 ⊴ G2, when DG2 stochastically
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dominates DG1 [194]. Explicitly, G1 ⊴ G2 expresses that

(∀r ∈ R+)(FDG1
(r) ≥ FDG2

(r)). (11.4)

Equation (11.4) is a very strict condition: G1 ⊴ G2 is equivalent to saying

that the cumulative distribution function FDG1
of the random variable DG1

has to be greater than or equal to the cumulative distribution function

FDG2
of DG2 (see Figure 11.1).

Interestingly, for a given grid G and using the Euclidean distance to measure

the approximation error, evaluating FDG(r) boils down to determining the

ratio of the area enclosed by circles with radius r around each grid point

to the total area of the search space:

FDG(r) = P ( Nmin
j=1
((uj1 − u∗1)2 + (uj2 − u∗2)2) ≤ r) . (11.5)

When considering the most basic search grid where the grid points form

squares that have a length m, hereafter referred to as a square search grid

(see Figure 11.2), this ratio can be determined from an elementary part of

the grid. Two examples are shown in Figures 11.3(a) and 11.3(b). These

figures show that as long as r ≤m/2, there is no overlap of the circles with

radius r around the different grid points. By calculating the ratio of the
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Figure 11.2: Square search grid with indication of the gray area enclosed by
circles with radius r around the search grid points.

r

m

m

(a)

r

m

m

(b)

Figure 11.3: Representation of an elementary part of the square search grid
with indication of the circle segments with radius r around the grid points for: (a)
r ≤m/2 and (b) m/2 ≤ r ≤m/√2.
area of the gray circles to the area m2 of the elementary part, FDG(r) can
be computed as: FDG(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π r2

m2
, if r ≤ m

2
, (11.6a)

π r2 − 2 r2 (2arccos ( m

2r
) − sin (2arccos ( m

2r
)))

m2
, if m

2
≤ r ≤ m√

2
, (11.6b)

1 , if r ≥ m√
2
. (11.6c)

When comparing the square search grid with any other grid, it has to be

taken into account that the same number of grid points has to be consid-

ered. So, when the square grid is compared with a rectangular search grid,
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the area of a rectangle has to be equal to m2. Figure 11.4 shows a pos-

sible rectangular search grid where the elementary parts have an area of

m2 and where the gray circles represent the area enclosed by circles with

radius r around each grid point. Again, the ratio of the area of the gray

circle segments within an elementary part to m2 can be calculated (see Fig-

ures 11.5(a) and 11.5(b)). However, compared with the previous setting,

there is now a fourth situation that occurs when the circle segments are al-

ready overlapping along the shortest sides of the rectangle but not yet along

the longest sides. In case of the rectangular search grid with dimensions as

shown in Figures 11.5(a) and 11.5(b), FDG(r) is given by: FDG(r) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π r2

m2
, if r ≤ m

3
, (11.7a)

π r2 − r2 (2arccos ( m

3r
) − sin (2arccos ( m

3r
)))

m2
, if m

3
≤ r ≤ 3m

4
, (11.7b)

π r2 − r2 (2arccos ( m

3r
) + 2arccos ( 3m

4r
))

m2
+

r2 (sin (2arccos ( m

3r
)) + sin (2arccos ( 3m

4r
)))

m2
, if 3m

4
≤ r ≤ √97m

12
, (11.7c)

1 , if r ≥ √97m

12
. (11.7d)

When comparing Eqs. (11.6a)–(11.6c) with Eqs. (11.7a)–(11.7d), it is clear

that Gsquare ⊴ Grectangle. Next, Eqs. (11.7a)–(11.7d) are written in a more

general form where the length of the long rectangular side is denoted zm

and the short side m/z, with z ≥ 1: FDG(r) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π r2

m2
, if r ≤ m

2z
, (11.8a)

π r2 − r2 (2arccos ( m

2z r
) − sin (2arccos ( m

2z r
)))

m2
, if m

2z
≤ r ≤ zm

2
, (11.8b)

π r2 − r2 (2arccos ( m

2z r
) + 2arccos ( zm

2r
))

m2
+

r2 (sin (2arccos ( m

2z r
)) − sin (2arccos ( zm

2r
)))

m2
, if zm

2
≤ r ≤ √1+z4 m

2z
, (11.8c)

1 , if r ≥ √1+z4 m

2z
. (11.8d)

Figure 11.6 shows FDG for different values of z and with m = 1. It is

clear from this figure that FDG(r) for threshold values r between 0 and 1

and for z = 1 is greater than or equal to FDG(r) for any other value of z.

For that reason, it can be concluded that the optimal value for z is 1 and
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r

Figure 11.4: Rectangular search grid with indication of the gray area enclosed
by circles with radius r around the search grid points.
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Figure 11.5: Representation of an elementary part of the rectangular search grid
with indication of the circle segments with radius r around the grid points for: (a)
r ≤m/3 and (b) m/3 ≤ r ≤ 3m/4.

151



Chapter 11. Grid search using sensitivity measures

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r

F
D

G

Figure 11.6: FDG with m = 1 using Eqs. (11.8b)–(11.8d) for: (a) z = 1 (blue),
(b) z = 1.25 (green), (c) z = 1.5 (red), (d) z = 1.75 (black) and (e) z = 2.0 (gray).

that the optimal ratio of the lengths of the rectangle sides is also 1. The

latter implies that when the studied area around the grid points is made up

out of circles, the optimal rectangular search grid is the square one. This

conclusion can also be directly derived from Eqs. (11.8b)–(11.8d) and is

illustrated in Figure 11.6.

So far the Euclidean distance between a candidate set of parameter values

and u
∗ was used as a measure of the quality of approximation. Neverthe-

less, in practice u
∗ is unknown and only the observations that are used

for parameterization are available, such that another measure of fitness is

necessary. A common choice is the sum of squared errors (SSE):

R(u) =∑
i

(yi − f(xi,u))2, (11.9)

with u the parameter vector, yi the experimental data, xi the input vectors

and f(xi,u) the simulated model outputs obtained with parameter vector

u. It is assumed here that there exists only one global optimum u
∗ where

R(u∗) is minimal. Further, for reasons of simplicity, u is still taken as

a vector of two parameters u1 and u2. Figure 11.7 shows a possible 2D

contour plot of R(u) for a linear model with indication of u∗ as a white

dot and with an equal plot range for both parameters.

Although the exact location of u∗ is not known beforehand, information

152



§11.1. Selection of the search grid

u1

u 2

Figure 11.7: 2D contour plot of R(u) for a linear model with indication of u∗

as a white dot and with an identical plot range for both parameters.

on the contour lines is available via the Hessian H of R(u). The first-

order partial derivative of R(u) to u1 is calculated in Eq. (11.10) and the

second-order partial derivatives of R(u) using Eq. (11.10) are presented in

Eqs. (11.11) and (11.12):

∂R(u)
∂u1

= ∑
i

−2 (yi − f(xi,u)) ∂f(xi,u)
∂u1

= ∑
i

−2 (yi ∂f(xi,u)
∂u1

− f(xi,u) ∂f(xi,u)
∂u1

) (11.10)

∂2R(u)
∂u2

1

= ∑
i

−2 (yi ∂2f(xi,u)
∂u2

1

− (∂f(xi,u)
∂u1

)2 − f(xi,u) ∂2f(xi,u)
∂u2

1

)
= ∑

i

2 (∂f(xi,u)
∂u1

)2 + 2 ∂2f(xi,u)
∂u2

1

(f(xi,u) − yi) (11.11)

∂R(u)
∂u1 ∂u2

= ∑
i

−2 (yi ∂2f(xi,u)
∂u1 ∂u2

− ∂f(xi,u)
∂u1

∂f(xi,u)
∂u2

− f(xi,u) ∂2f(xi,u)
∂u1 ∂u2

)
= ∑

i

2
∂f(xi,u)

∂u1

∂f(xi,u)
∂u2

+ 2 ∂2f(xi,u)
∂u1 ∂u2

(f(xi,u) − yi) (11.12)

Analogous derivatives can be computed starting with the first-order partial
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derivative of R(u) to u2, such that the Hessian is given by:

H(R) =
⎛⎜⎜⎜⎜⎝

∂2R(u)
∂u21

∂R(u)
∂u1∂u2

∂R(u)
∂u2∂u1

∂2R(u)
∂u22

⎞⎟⎟⎟⎟⎠
.

For a linear model

f(x,u) = u1 + u2 x, (11.13)

H(R) can be simplified in the following manner:

H(R) =
⎛⎜⎜⎜⎝

2∑
i

x2i 2∑
i

xi

2∑
i

xi 2∑
i

N

⎞⎟⎟⎟⎠
.

It is clear that for the special case of the linear model in Eq. (11.13) where

2∑
i

xi = 0 and∑
i

x2i equals the total number of grid points, the contour lines

are indeed circles as discussed previously. When ∑
i

x2i ≠ N , the contour

lines are ellipses that have axes parallel to the Cartesian coordinate axes.

The same calculations as for the circular contours on a regular rectangular

grid can be repeated with ellipses. Here, a ratio of the lengths of the ellipse

axis parallel to the vertical grid axis to the one parallel to the horizontal grid

axis equal to two is selected. Figure 11.8 shows the area enclosed around

the grid points for these ellipsoidal contours for a square search grid. The

ratio of the area covered by the ellipsoidal contours to the total grid area in

function of the threshold r and where the length of the long rectangular side

is again zm and the short side m/z (z ≥ 1), can again be determined from

an elementary part of the grid (see Eqs. (11.14a)–Eqs. (11.14e)).
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FDG (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π r2

2m2
, if r ≤ zm

2
and r ≤ m

z
, (11.14a)

π r2/2 − r2 (arccos(1 − r−mz/2
r
) − (1 − r−mz/2

r
) √ 2r−mz

r
− (r−mz/2)2

r2
)

m2
, if zm

2
≤ r ≤ m

z
, (11.14b)

π r2/2 − r2 (arccos(1 − r−m/z
r
) − (1 − r−m/z

r
) √ 2r−2m/z

r
− (r−m/z)2

r2
)

m2
, if m

z
≤ r ≤ zm

2
, (11.14c)

π r2

2m2
− r2

m2

⎛⎝arccos(1 − r −mz/2
r

) − (1 − r −mz/2
r

)
√

2 r −mz

r
− (r −mz/2)2

r2

⎞⎠ (11.14d)

− r2

m2

⎛⎝arccos(1 − r −m/z
r

) − (1 − r −m/z
r

)
√

2 r − 2m/z
r

− (r −m/z)2
r2

⎞⎠ , if r ≥ m

z
, r ≥ zm

2
and r ≤ √5m

z
,

1 , if r ≥ √5m

z
. (11.14e)
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Figure 11.8: Square search grid with indication of the gray area enclosed around
the search grid points by ellipses with length of long and short axis equal to r and
r/2, respectively.
Next, FDG is studied for different values of z and with m = 1, either directly
making use of Eqs. (11.14a)–(11.14e) or graphically employing Figure 11.9.

It is clear that an optimum is reached for z =
√
2 since larger or smaller

values of z result in suboptimal solutions. This means that if the goal is to

have a FDG as large as possible, the optimal rectangular search grid when

the contour lines are ellipses with axes parallel to the Cartesian coordinate

axes, is a search grid where the ratio of the length of the rectangle sides is

the same as the ratio of the length of the ellipse axes (in this case equal

to two). The latter implies that circles are indeed a special case of ellipses

since the ratio of the length of the axes of a circle is one which, when

translated into the ratio of the lengths of the sides of the elementary parts

of the search grid, results in squares, as shown earlier.

So, when the contour lines are ellipses, the naive square search grid can be

improved by using a search grid where the elementary parts are rectangles

with the ratio of the lengths of the rectangle sides equal to the ratio of the

lengths of the ellipse axes. This information is contained in the Hessian

H(R). From H(R), the eigenvalues can be calculated and as seen from

Figure 11.10, the radii of the ellipsoidal contour are inversely proportional

to the square roots of the eigenvalues of the matrix H(R). So, when H(R)
is constructed, the eigenvalues of H(R) contain the necessary information

to improve the search grid.

Figure 11.8 shows ellipses with axes parallel to the axes of the search grid.

However, more generally, there is no such limitation and ellipses can have
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Figure 11.9: FDG with m = 1 using Eqs. (11.14a)–(11.14e) for: (a) z = 1 (blue),

(b) z = 1.25 (green), (c) z =
√
2 (red), (d) z = 1.5 (black), (e) z = 1.75 (gray) and

(f) z = 2.0 (purple).

2

p

Figure 11.10: A contour line of R(u). The radii of the ellipsoidal contour are
inversely proportional to the square roots of the eigenvalues (λ1 and λ2) of the
matrix H(R).
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Figure 11.11: Square search grid with indication of the gray area enclosed around
the search grid points by ellipses with length of long and short axis equal to r and
r/2, respectively, and with axes not parallel to the search grid axes.

axes that are not parallel to the search grid axes, as depicted in Figure 11.11,

i.e. when 2∑
i

xi ≠ 0 (see supra). In this case, the eigenvectors of H(R) are
used to rotate the search grid axes. Let ABA⊺ denote the eigendecom-

position of H(R), where A is a square matrix of which the columns are

eigenvectors of H(R) and B is a diagonal matrix of which the diagonal

elements are the eigenvalues of H(R). Then, the rotated grid G′ has search
grid axes that are parallel to the ellipse axes:

G′ = {u⊺A ∣ u ∈ G} . (11.15)

Subsequently, the eigenvalues can be employed to stretch the search grid

like was done before.

11.1.2. Close-packing of equal spheres search grid

Although popular, a square search grid is not the most efficient one. A

close-packing of equal spheres (CPES) provides the greatest fraction of

space occupied by spheres that can be achieved by a regular grid arrange-

ment [195]. Figure 11.12 shows this search grid with triangles with area√
3m2 as elementary parts. Since it is already stated that this configura-

tion is the best attainable configuration when circles are concerned, in what

follows this CPES grid is investigated for ellipsoidal contour lines.
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Figure 11.12: CPES search grid with indication of the gray area enclosed by
circles with radius r around the search grid points.
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Figure 11.13: CPES search grid with indication of the gray area enclosed by
ellipses with length of long and short axis equal to r and r/2, respectively.
Firstly, the ellipse axes are considered parallel to the Cartesian coordinate

axes. Like before, ellipses where the ratio of the lengths of the ellipse axis

parallel to the vertical grid axis to the one parallel to the horizontal grid axis

is equal to two are considered. The area enclosed around the grid points by

the ellipsoidal contours is represented in Figure 11.13. The length of the

base of the equilateral triangular elementary cell is 2m/z and the height is√
3 zm, with z ≥ 1. The ratio of the enclosed area to the total grid area in

function of the threshold r can be determined from an elementary part of

the grid.

As the explicit expression to calculate FDG(r) would be very lengthy due

to the number of possible scenarios by which three ellipses can overlap in a

triangular elementary cell, FDG(r) is determined by means of numerical sim-

ulations. A high number of points is selected uniformly in the elementary

cell and subsequently the ratio of the number of points that are enclosed

by an ellipsoidal contour to the total number of points of the elementary
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Figure 11.14: FDG with m = 1 for ellipsoidal contours with axes parallel to the
Cartesian coordinate axes and for a CPES search grid with base length 2m/z and
height

√
3 zm for: (a) z = 1 (blue), (b) z = 1.25 (green), (c) z =

√
2 (red), (d)

z = 1.5 (black), (e) z = 1.75 (gray) and (f) z = 2.0 (purple).

cell is determined. The result in function of the threshold value r for dif-

ferent values of z and with m = 1 is shown in Figure 11.14. Once more, the

optimum is reached when z =
√
2, since larger or smaller values of z result

in suboptimal solutions. So, it is concluded that the optimal CPES search

grid is one where the ratio of the height of the triangular elementary cell

and the length of base is equal to
√
3/2 times the ratio of the length of

the ellipse axes, which can again be inferred from the eigenvalues of H(R).
Further, for ellipsoidal contours with axes that are not parallel to the search

grid axes, again the eigenvectors of H(R) are used to rotate the search grid

axes after which the eigenvalues can again be employed to appropriately

stretch the search grid.

11.1.3. Comparing search grids

In the following chapter, both the standard square search grid, because it

is a popular choice and has the most straightforward implementation, as

well as the standard CPES search grid, since it is an optimal regular grid

arrangement, are used as starting points for the computational experiments.

They are hereafter referred to as the naive square search grid (Gns) and the

naive CPES search grid (Gncp). Their transformed counterparts using the in-

formation from H(R) are denoted as Gts and Gtcp, respectively. Figure 11.16
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Figure 11.15: Representation of an elementary part (with the same area in all
cases) of the search grids for ellipsoidal contours whose axes form a 45○ angle with
the Cartesian coordinate axes and where the ratio of the length of the long axis to
the length of the short axis is equal to two: (a) Gns, (b) Gts, (c) Gncp and (d) Gtcp.

shows FDG for the four aforementioned grids (see Figures 11.15(a)–11.15(d))

for ellipsoidal contours whose axes form a 45○ angle with the Cartesian co-

ordinate axes and where the ratio of the length of the long axis to short

axis is equal to two.

The elementary parts represented in Figures 11.15(a)–11.15(d) all have the

same area, i.e. 0.25. Further, to enable the comparison of Gncp and Gtcp

with Gns and Gts, two triangular elementary parts have to be considered

together as such forming a parallelogram. This is explained by the fact

that when an ellipsoidal contour is centered at each of the four corners of

a (transformed) square grid, the four ellipsoidal parts (taking into account

overlap) enclosed by the elementary part of the search grid add up to a
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Figure 11.16: FDG for ellipsoidal contours whose axes form a 45○ angle with the
Cartesian coordinate axes and where the ratio of the length of the long axis to the
length of the short axis is equal to two for the search grids with elementary cells as
shown in (a) Figure 11.15(a) (blue), (b) Figure 11.15(b) (green), (c) Figure 11.15(c)
(red) and (d) Figure 11.15(d) (black).

complete ellipse. However, when the same is done for a (transformed)

triangular grid, only half of an ellipse is enclosed. Therefore, two triangular

elementary parts need to be considered together when comparing Gncp and

Gtcp with Gns and Gts. From Figure 11.16, it can be seen that Gtcp performs

better than Gncp and more so, it performs the best out of the four search

grids, which was expected. Nevertheless, Gtcp performs only slightly better

than Gns, which outperforms Gts. This can be explained when looking at

Figures 11.15(a) and 11.15(d), where it is clear that in this case Gns shows

a good resemblance to Gtcp.

Finally, it is mentioned here that in many cases the stochastic dominance

requirement of Eq. (11.4) is too strict for practical use. In order to still be

able to make a statement about whether G1 performs better than G2, other
measures such as the expected value of the random variables DG1 and DG2
have been adopted. In the following chapter, two such measures will be

introduced and employed.
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11.2. Sensitivity measures and the Hessian matrix

In this part, the information obtained from an SA will be used to improve

the parameterization of models. The main advantages here are that the

sensitivity information is already available through the model exploration

and that this information is suitable for different parameter sets, since the

sensitivity information does not depend on the experimental data. The use

of SA information in improving parameter estimation is not new, although

mostly it is used to guide (additional) experiments to gather data [84].

In the remainder of this section, it will be demonstrated how sensitivity

measures obtained through a global SA can be used to improve the grid

design for a grid search parameterization with a limited number of grid

points.

Given a maximum SSE, denoted SSEacc, that is acceptable for a good fit,

the goal of this chapter is to select the grid points of the search grid in such

a way that the probability of having at least one grid point within the area

enclosed by the contour line corresponding to SSEacc is as high as possible.

This can be done by exploiting the information from the contour plots. By

projecting the ellipse on the vertical and horizontal axes in Figure 11.7, it

is clear that the ellipse spans a wider range for u2 than for u1. Therefore,

when selecting N points at which the model is to be evaluated, instead of

selecting
√
N coordinate values equidistantly along both the u1- and the

u2-axis and making all combinations with these coordinate values, it would

be advantageous to select less coordinate values along the u2-axis and more

along the u1-axis to increase the chance of finding at least one point within

the contour line corresponding to SSEacc.

Here, it is suggested that transforming a naive search grid Gn by employing

the eigenvalues and -vectors of H(R) results on average in a better solution

of the optimization problem. It will be shown that on average the SSE for

the best solution found with the transformed search grid Gt is smaller than

the SSE of the best solution found with the naive search grid Gn.

It is noted that up to this point, there is no need for the information

obtained through SA. However, in order to calculate the eigenvalues and

-vectors using H(R), it is a prerequisite that f(x,u) is a known expression.

Yet, when working with black- and gray-box models (see Chapter 2) like

was the case for the CA-based models developed in Part II, this is not the
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case, meaning that the eigenvalues and -vectors cannot be calculated via

H(R). Consequently, a modification of the approach is needed. Here, it

is assumed that the interest lies in the neighborhood of the search space

around the optimum u
∗ and that there it holds that (f(x,u) − yi) ≈ 0.

In this setting, H(R) approximately equals the Fisher information matrix

(FIM):

FIM(R) =
⎛⎜⎜⎜⎜⎜⎝

∑
i

2 (∂f(xi,u)
∂u1

)2 ∑
i

2
∂f(xi,u)

∂u1

∂f(xi,u)
∂u2

∑
i

2
∂f(xi,u)

∂u2

∂f(xi,u)
∂u1

∑
i

2 (∂f(xi,u)
∂u2

)2
⎞⎟⎟⎟⎟⎟⎠
.

The Fisher information matrix is already being applied in the field of pa-

rameter estimation [196]. Here, the eigenvalues and -vectors of FIM(R)

are used to determine G#t which is an approximation of Gt. Referring to

Eq. (4.2), it can be observed that FIM(R) can be constructed using the SA

information acquired during the model exploration as such avoiding the

problem of not knowing the function explicitly. It will be shown in the

next chapter that although G#t is an approximation of Gt, the use of the

information it contains can lead to better grid search results.

A final remark is that when the model is nonlinear, the contour lines may

have very complex shapes, deviating a lot from the ellipsoidal shape for

which the approach is derived. Nevertheless, from Taylor’s theorem it fol-

lows that in the neighborhood of the optimum the contour lines will ap-

proximate an ellipse such that the proposed approach of using Gt or G#t
rather than Gn remains valid in this vicinity.

In the following chapter, the effectiveness of the proposed approach will

firstly be demonstrated in the case of a linear model. In a second step,

two well-known nonlinear models and a more complex gray-box CA-based

model will be studied to verify whether the approach continues to produce

better results for these models.
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12.1. Linear model

The effectiveness of the proposed approach is tested by constructing G#t
and comparing the results obtained with those for Gn for two different cases.

The linear model introduced earlier (see Eq. (11.13)) is used here, where

u1 and u2 are replaced with q1 and q2 in order to be in agreement with the

notation introduced in Chapter 11, and with both belonging to [0.1,0.9].
For a linear model it holds that FIM(R) = H(R) and therefore G#t = Gt.

In each of the following cases, a series of input values xi is chosen and

Eq. (11.13) is used to obtain the corresponding observations y = f(xi,q).
Afterwards, H(R) is calculated using this simulated dataset. Finally, the

results obtained with both a naive square grid Gns and a naive CPES grid

Gncp are compared with those obtained with their transformed variants Gts

and Gtcp, respectively.

12.1.1. Case 1

In this first case, ellipsoidal contours whose axes are parallel to the Carte-

sian coordinate axes are considered. This implies that the series of inputs

has to be centered around zero, i.e. ∑
i

xi = 0. The chosen input series con-

sists of 11 points, equidistantly chosen from the interval [−1,1]. A possible

contour plot for this case is shown in Figure 12.1.

Next, FIM(R) is calculated:

FIM(R) =H(R) = ⎛⎝ 22 0

0 8.8

⎞⎠.
At this point, it should be checked whether the ellipsoidal contours have

the same shape and orientation throughout the selected search space. For

the linear model this is always the case, however, if this were not the case,

as will be seen with the nonlinear models, a subspace of the search space

should be selected where the ellipsoidal contours (and consequently FIMs)

are similar. Then, an average FIM can be calculated from different FIMs in
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Figure 12.1: Contour plot of R(q) for Case 1 of the linear model with q∗1 = 0.82
and q∗2 = 0.39.

this subspace, each with a different optimal parameter combination (q∗1 , q∗2).
However, for the linear case this is redundant and the eigenvalues and cor-

responding normalized eigenvectors are given by λ1 = 22 and v1 = (−1,0)⊺
and λ2 = 8.8 and v2 = (0,−1)⊺. The eigenvectors suggest, in agreement with

Figure 12.1 and with what was postulated, that a rotation of the naive grid

in unnecessary, while the eigenvalues indicate a ratio of the ellipse axes β

of
√
22/8.8 = 1.58.

Figures 12.2(a) and 12.2(b) and Figures 12.3(a) and 12.3(b) illustrate how

β is used in this case to transform Gns into Gts and Gncp into Gtcp, respec-

tively. It is mentioned here that always getting the exact same number of

grid points in both naive search grids and their transformed variants using

β is impossible. A small deviance in the number of grid points and/or β

is sometimes necessary in order to compare the different search grids. The

grids Gns, Gts, Gncp and Gtcp contain 100, 104, 99 and 103 grid points, respec-

tively. Further, for the transformation of Gns to Gts a value of β = 1.70 was

employed, instead of 1.58.

Table 12.1 shows the numerical results from the comparison of the different

approaches for Case 1. The results are obtained by selecting a random

q
∗ 2000 times and calculating the corresponding observed values for the

selected series of inputs, after which the different search grids are used

to perform the parameter estimation. The minimal SSEs found with the

different search grids are then compared. The improvement of the proposed

approach is quantified in two ways.
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Figure 12.2: Transformation of (a) a square search grid Gns with 100 grid points
into (b) a transformed grid Gts with 104 grid points using β = 1.70.
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Figure 12.3: Transformation of (a) a CPES search grid Gncp with 99 grid points
into (b) a transformed grid Gtcp with 103 grid points using β = 1.58.
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G1 G2 ΓG1,G2 ΘG1,G2
Gts Gns 0.552 1.217

Gtcp Gncp 0.514 1.142

Gncp Gns 0.548 1.244

Gtcp Gts 0.534 1.104

Table 12.1: Numerical results for Case 1 of the linear model.

The first way is by means of the measure ΓG1,G2 which expresses the fraction

of the simulated cases in which a lower SSE is found with G1 compared

with G2:

ΓG1,G2 =
1

2000

2000

∑
i=1

I (SSE(i)G1 < SSE(i)G2 ) , (12.1)

with I the indicator function which returns the value 1 for all elements

where SSE
(i)
G1
< SSE

(i)
G2

is true and the value 0 for all other elements and

SSE
(i)
G the lowest SSE obtained with grid G for the ith repetition. Clearly,

a value of ΓG1,G2 greater than 0.5 is indicative for the superiority of G1 over

G2. Note that Γ is additively reciprocal, i.e. ΓG1,G2 + ΓG2,G1 = 1.

Secondly, the measure ΘG1,G2 represents the ratio of the absolute average

difference in SSE between G1 and G2 when G1 performs better than G2 to

the absolute average difference when G2 performs better than G1:

ΘG1,G2 =

2000∑
i=1

(I (SSE(i)G1 < SSE(i)G2 )(SSE(i)G2 − SSE(i)G1 )) / 2000∑
i=1

I (SSE(i)G1 < SSE(i)G2 )
2000∑
i=1

(I (SSE(i)G1 > SSE(i)G2 )(SSE(i)G1 − SSE(i)G2 )) / 2000∑
i=1

I (SSE(i)G1 > SSE(i)G2 )
.

(12.2)

Clearly, a value of ΘG1,G2 greater than 1 is indicative for the superiority of G1
over G2. Note that Θ is multiplicatively reciprocal, i.e. ΘG1,G2 ΘG2,G1 = 1.

From Table 12.1 it is clear that transforming the naive grids leads to better

results in both cases. Further, an improvement can also be made by simply

selecting a CPES grid compared with a naive square grid. The results in

this specific case do not amount to a large profit for switching from a naive

to a transformed grid. However, this is not inherent to the method, but
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Figure 12.4: Influence of β on the transformation of the square search grid: (a)
ΓGts,Gns and (b) ΘGts,Gns , both in function of β for Case 1 of the linear model.
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Figure 12.5: Influence of β on the transformation of the naive CPES grid: (a)
ΓGtcp,Gncp and (b) ΘGtcp,Gncp , both in function of β for Case 1 of the linear model.

rather due to the relative small difference in parameter sensitivity which is

reflected by the low value of β, i.e. 1.58. Larger values for β in this case

would result in larger profit from using the proposed approach.

Figures 12.4(a) and 12.4(b) show ΓGts,Gns and ΘGts,Gns in function of β, re-

spectively. It is clear from these figures that not for every value of β a

result for Γ and Θ is available. This can be explained by the fact that

when the number of grid points of the transformed grid deviated more

than 5% (both higher and lower) from the total number of grid points of

the naive grid, this β was not taken into consideration. In both cases,

there exists a maximum around β = 1.58 which reconfirms the effective-

ness of the proposed procedure. Similar results are obtained when inves-

tigating the influence of β on the comparison between Gncp and Gtcp (see

Figures 12.5(a) and 12.5(b)).
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Figure 12.6: Contour plot of R(q) for Case 2 of the linear model with q∗1 = 0.82
and q∗2 = 0.39.

12.1.2. Case 2

The second case of the linear model addresses ellipsoidal contours with

axes that are not parallel to the search grid axes. The series of 11 inputs is

chosen equidistantly from the interval [0,1]. Figure 12.6 shows a possible

contour plot for this case.

The eigenvalues and corresponding normalized eigenvectors for this case

are given by λ1 = 27.97 and v1 = (−0.88,−0.48)⊺ and λ2 = 1.73 and v2 =(0.48,−0.88)⊺. As in the previous case, these eigenvalues and -vectors are

employed to attempt to improve search grid results. From the eigenvalues, a

value of β = 4.02 is obtained. The number of grid points for Gns, Gts, Gncp and

Gtcp is 81, 81, 80 and 80, respectively, and in both transformations the calcu-

lated β is used. Figures 12.7(a) and 12.7(b) and Figures 12.8(a) and 12.8(b)

illustrate how β and the eigenvectors are used in this case to transform Gns

into Gts and Gncp into Gtcp, respectively.

Given the numerical results in Table 12.2, it can be concluded that equally

good results are obtained with Gtcp and Gns. It is clear that transforming

Gns to Gts is not fruitful. The reason is that Gns resembles the (transformed)

close-packing grid better than its transformed counterpart, therefore nul-

lifying the effect of employing the information from H(R) to improve re-

sults. Still more, the largest gain comes from simply using Gns instead of

Gncp. For this improvement in performance, no extra calculations need to

be performed since it only depends on the choice of basic search grid. Nev-
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Figure 12.7: Transformation of (a) a square search grid Gns with 81 grid points
into (b) a transformed grid Gts with 81 grid points using β = 4.02 and rotation via
the normalized eigenvectors v1 and v2.
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Figure 12.8: Transformation of (a) a CPES search grid Gncp with 80 grid points
into (b) a transformed grid Gtcp with 80 grid points using β = 4.02 and rotation
via the normalized eigenvectors v1 and v2.
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G1 G2 ΓG1,G2 ΘG1,G2
Gts Gns 0.574 0.838

Gtcp Gncp 0.639 2.242

Gncp Gns 0.381 0.427

Gtcp Gts 0.499 1.163

Gtcp Gns 0.566 0.959

Table 12.2: Numerical results for Case 2 of the linear model.

ertheless, stretching and rotating Gncp also results in an equally good result

which comes, if the SA information is already available from the model

exploration, at no extra cost in terms of model evaluations.

12.2. Nonlinear models

In the remainder of this chapter, it will be investigated whether the con-

clusions drawn before uphold when FIM is only an approximation for H

and when the contour lines are not the same throughout the search space.

For this purpose, two well-known nonlinear models, the SIRD epidemic

model [197] and the Predator-Prey model [4], and the CA-based model for

oil migration (see Chapter 8) are used as an illustration.

12.2.1. SIRD epidemic model

The study of the transmission of communicable diseases through individuals

can be done using an epidemic model. In this section, the basic SIRD model

is employed [197], although many more (complex) variants of this epidemic

model exist. The change in function of time in the population of susceptible,

infected, dead and resistant people is described by:
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Figure 12.9: Evolution in time of the population during an epidemic (see (12.3))
with S(0) = 10,000,000, I(0) = 1000 and R(0) = D(0) = 0 and a = 0.05, b =
0.000001, c = 0.3 and w = 0.6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −a b I S ,

dI

dt
= a b I S − c I ,

dD

dt
= w c I ,

dR

dt
= (1 −w) c I ,

(12.3)

with S, I, D and R the number of susceptible, infected, dead and resistant

individuals, respectively, a [ individualcontact ] the probability of getting infected

upon contact with an infected individual, b [ contact
individual2day

] the interaction

probability of two individuals from the population, c [ 1
day

] the fraction per

day of infected persons that is no longer infected and w [-] the fraction of

individuals that dies in consequence of the infection. The solution to this

system of nonlinear differential equations with initial conditions S(0) =
10000000, I(0) = 1000 and R(0) = D(0) = 0 and a = 0.05, b = 0.000001,

c = 0.3 and w = 0.6 is shown in Figure 12.9.

For reasons of simplicity, hereafter only I will be used as model output

and b and w are assigned a constant value, i.e. 0.000001 and 0.6 respec-

tively, such that only two model parameters, a and c remain. After some
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Figure 12.10: Contour plot of R(a, c) for the SIRD epidemic model with a∗ =
0.052 and c∗ = 0.098.

model exploration, it can be concluded that plausible results for I are ob-

tained for combinations of a and c where a ∈ [0.02,0.1] and c ∈ [0.03,0.15].
The selected series of inputs contains 21 points, equidistantly chosen from

the interval [0,100]. A possible contour plot for the objective function is

depicted in Figure 12.10.

Constructing H(R) and FIM(R) as explained before with a∗ = 0.052 and

c∗ = 0.098 gives

H(R) = ⎛⎝ 3.202 × 1017 −1.337 × 1016

−1.337 × 1016 9.544 × 1015
⎞⎠,

FIM(R) = ⎛⎝ 3.202 × 1017 −1.337 × 1016

−1.337 × 1016 9.544 × 1015
⎞⎠.

Comparing both, it can be seen that although FIM(R) is constructed using

SA information and therefore is an approximation of H(R) that, to the ac-

curacy presented here, it is equal to H(R). Figures 12.11(a)–12.11(e) show
that the ellipsoidal contours have varying shapes and orientation across

the search space. Especially for large values of a in combination with small

values of c, e.g. Figure 12.11(c), the orientation of the ellipsoidal contours

is clearly different. Therefore, a subspace of the original search space is se-
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Figure 12.11: Contour plots of R(a, c) for the SIRD epidemic model with (a)
a∗ = c∗ = 0.03, (b) a∗ = 0.03 and c∗ = 0.15, (c) a∗ = 0.1 and c∗ = 0.03, (d) a∗ = 0.1
and c∗ = 0.15 and (e) a∗ = 0.065 and c∗ = 0.09.

lected wherein the ellipsoidal contours are more similar. Figures 12.12(a)–

12.12(e) show the contour plots for different couples (a∗, c∗) in the subspace

where a∗ ∈ [0.022,0.037] and c∗ ∈ [0.04,0.11].
FIM(R) is determined for 25 different couples (a∗, c∗) sampled randomly

from the subspace [0.022,0.037]×[0.04,0.11] after which an average FIM(R)

is calculated. For this average FIM(R), the eigenvalues and corresponding

normalized eigenvectors are given by λ1 = 1.684×1018 and λ2 = 4.017×1016
and v1 = (−0.998,0.061)⊺ and v2 = (−0.061,−0.998)⊺, respectively. From

λ1 and λ2 it follows that β = 6.48. The eigenvectors, together with Fig-

ures 12.12(a)–12.12(e), indicate that this case is similar to Case 1 of the

linear model. In what follows, the same experimental procedure as for

Case 1 of the linear model is followed after which the conclusions of both
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Figure 12.12: Contour plots of R(a, c) for the SIRD epidemic model with (a)
a∗ = 0.022 and c∗ = 0.04, (b) a∗ = 0.022 and c∗ = 0.11, (c) a∗ = 0.037 and c∗ = 0.04,
(d) a∗ = 0.037 and c∗ = 0.11 and (e) a∗ = 0.0295 and c∗ = 0.075.
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G1 G2 ΓG1,G2 ΘG1,G2
G#ts Gns 0.732 6.711

G#tcp Gncp 0.469 1.063

Gncp Gns 0.736 5.000

G#tcp G#ts 0.494 0.920

Table 12.3: Numerical results for the nonlinear SIRD epidemic model.

are compared in order to verify the effectiveness of the proposed approach.

The number of grid points for Gns, G#ts , Gncp and G#tcp is 120, 121, 120 and

120, respectively and in the transformation of Gncp to G#tcp, β = 6.55 is em-

ployed.

Table 12.3 confirms the conclusions found for Case 1 of the linear model,

indicating that the transformed grids outperform the naive grids. The

results in this case are more pronounced than for the linear model since β

is larger. Further, it is noticed that also here the choice of a CPES search

grid over a naive square grid greatly improves the results. Finally, it can

be seen that the results obtained with G#ts approximate the results obtained

with G#tcp in this specific case.

12.2.2. Predator-Prey model

The Predator-Prey equations are a pair of first-order, nonlinear, differential

equations that are often employed to describe the dynamics of biological

systems in which two species, one predator and one prey, interact [4]. The

evolution in time of these two species is described by:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dJ

dt
= g J − d J P ,

dP

dt
= −s P + e J P ,

(12.4)

with J the number of preys, P the number of predators, g the growth rate

of the preys in absence of predators, d the mortality rate of preys due to

predation, s the mortality rate of predators in absence of preys and e the

growth rate of predators due to predation of preys. Figure 12.13 shows the
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Figure 12.13: Evolution in time of the number of predators and preys (see (12.4))
with J(0) = 45, P (0) = 55, g = 0.4, d = 0.01, s = 0.3 and e = 0.005.

solution of System (12.4) for initial conditions J(0) = 45 and P (0) = 55 and

g = 0.4, d = 0.01, s = 0.3 and e = 0.005.
Like with the SIRD epidemic model, only one output is considered, in this

case J , and two model parameters. A constant value of 0.01 and 0.005 is

assigned to d and e, respectively, such that only g and s remain. After some

model exploration, it is clear that plausible results for J are obtained when

both g and s belong to [0.3,0.5]. The selected series of inputs contains 21

points, equidistantly chosen from the interval [0,100]. The contour plot

for the objective function pertaining to g∗ = 0.31 and s∗ = 0.47 is given in

Figure 12.14.

H(R) and FIM(R) are calculated with g∗ = 0.31 and s∗ = 0.47 as

H(R) = ⎛⎝ 8.255 × 107 4.880 × 107

4.880 × 107 3.226 × 107
⎞⎠,

FIM(R) = ⎛⎝ 8.253 × 107 4.877 × 107

4.877 × 107 3.225 × 107
⎞⎠.

It can be seen that although H(R) and FIM(R) are not the same to the ac-

curacy presented here, they are still very similar. Figures 12.15(a)–12.15(e)

show that the ellipsoidal contours again have varying shapes and orienta-

tion across the search space, but that this variation is acceptable within

the goals of this research, such that an average FIM(R) can be calculated

immediately.
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Figure 12.14: Contour plot of R(g, s) for the Predator-Prey model with g∗ = 0.31
and s∗ = 0.47.

FIM(R) corresponding to the search space is taken as the average FIM(R)

of 25 FIMs obtained using 25 different couples (g∗, s∗) randomly taken

from the search space. For this average FIM(R), the eigenvalues and

corresponding normalized eigenvectors are given by λ1 = 1.632 × 108 and

v1 = (−0.483,−0.220)⊺ and λ2 = 2.261 × 106 and v2 = (−0.220,0.483)⊺. Us-

ing λ1 and λ2, β can be calculated as 8.50. The eigenvectors, together

with Figures 12.15(a)–12.15(e), indicate that this case is similar to Case 2

of the linear model. It is verified whether the same conclusions as before

uphold for the nonlinear model. The number of grid points for Gns, G#ts , Gncp

and G#tcp is 100, 100, 99 and 101, respectively and in both transformations

β = 8.50 is employed.

The same conclusions can be inferred from Table 12.4 as from Table 12.2.

The biggest improvement can be obtained when switching from Gncp to Gns.

In this case, it is again apparent that simply using Gns is a good option, due

to its resemblance to a CPES search grid relatively seen to the ellipsoidal

contours such as the ones depicted in Figure 12.14. It can be seen that

transforming Gns to obtain G#ts does not lead to an improvement. Moreover,

in the case of the Predator-Prey model, Gns performs equally good as the

theoretically best grid, i.e. G#tcp.
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Figure 12.15: Contour plots of R(g, s) for the Predator-Prey model with (a)
g∗ = s∗ = 0.3, (b) g∗ = 0.3 and g∗ = 0.5, (c) g∗ = 0.5 and g∗ = 0.3, (d) g∗ = s∗ = 0.5
and (e) g∗ = s∗ = 0.4.
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G1 G2 ΓG1,G2 ΘG1,G2
G#ts Gns 0.572 0.737

G#tcp Gncp 0.643 1.739

Gncp Gns 0.453 0.387

G#tcp G#ts 0.519 0.963

G#tcp Gns 0.560 0.820

Table 12.4: Numerical results for the nonlinear Predator-Prey model.

12.2.3. Revisit of parameterization of oil migration model

Although very informative, the construction and study of the contour el-

lipses in practice may not always be desirable or attainable, because their

construction is too costly or because the function(s) underlying the model

are not known. In order to test the proposed approach under these cir-

cumstances, a more complex, nonlinear, gray-box model is parameterized

here. The model under study is the previously developed CA-based model

for oil migration in chocolate confectionery (see Chapter 8). The model

dynamics are determined by four parameters being Pt, Pd, ζ and ∆ t re-

spectively (see Table 8.1) and the simulated model output is the amount

of liquid fat present in different layers of the chocolate confectionery. The

objective function R for this case is the SAE between the simulated model

output and the experimental data at various points in time. In Chapter 8 a

global SA was performed as part of the model exploration. The information

gained from this SA for the four model parameters, is used to construct the

FIM:

FIM =

⎛⎜⎜⎜⎜⎜⎝

47.45 22.30 30.81 44.85

22.30 69.16 48.58 51.68

30.81 48.58 67.31 54.52

44.85 51.68 54.52 71.90

⎞⎟⎟⎟⎟⎟⎠
.

It is mentioned here that since the studied model is a gray-box model, the

Hessian H cannot be determined, meaning that there is no way to assure

that FIM is a good approximation of H for this specific case. Further,

since model evaluations with the CA-based model are time consuming, the

ellipsoidal contours across the search space are not checked. The eigenvalues

and -vectors of FIM(R) can be computed and used to transform a naive

square search grid Gns into an improved seach grid G#ts . No CPES search
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grid is used here, since its construction in more than two dimensions is not

trivial. It is also studied here whether the number of grid points in the

search space has an influence on the performance of the approach.

Six, seven and eight coordinate values respectively, are chosen equidistantly

according to each of the four dimensions in order to construct three dif-

ferent naive square search grids that consist out of a total of 1296 (G1
ns
),

2401 (G2
ns
) and 4096 (G3

ns
) grid points, respectively. Afterwards, these grids

are stretched and rotated using the information contained in the FIM as

such constructing three transformed search grids that consist out of a total

of 1282 (G#1
ts ), 2389 (G#2

ts ) and 4066 (G#3
ts ) grid points, respectively. As

mentioned earlier in this chapter, it is difficult to obtain exactly the same

number of search grid points for both the naive grid as for the transformed

grid. Therefore, a lower total number of search grid points is chosen for the

transformed search grids in order to be sure that a possible improvement in

fitness stems from the proposed approach and not from the higher number

of grid points in the search space.

Further, the simulations with the five best combinations of parameter values

for each of the six different search grids under study are repeated ten times

in order to assure that a better result obtained with a search grid is related

to how the grid is constructed and not to the model stochasticity. Table 12.5

shows the performance of the different search grids expressed through two

measures. A first measure is the best SAE, i.e. for this specific problem

the lowest SAE, out of the five best combinations of parameter values for

the different grids, averaged over the ten repetitions. The second measure

is the average SAE of the five best combinations of parameter values, also

averaged over the ten repetitions.

Table 12.5: Lowest average SAE from ten repetitions obtained with the five best
combinations of parameter values and the average SAE obtained with the five best
parameter combinations over ten repetitions.

G1
ns

G2
ns

G3
ns

G#1
ts G#2

ts G#3
ts

Lowest SAE 0.590 0.597 0.588 0.551 0.552 0.534

Average SAE 0.603 0.603 0.597 0.577 0.562 0.561

From Table 12.5 it is clear that the application of the proposed approach

entails an advantage in terms of the SAE. For the three different search grid

sizes the transformed grid, even with its lower total number of grid points,
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always outperforms the naive search grid in both the best found solution as

well as the average SAE. The best results are obtained with G#3
ts , although

this is mainly due to the larger number of search grid points and thus larger

coverage of the search space. Nevertheless, the reduction in SAE going from

G3
ns

to is G#3
ts is only marginally larger than the reduction in SAE for the

smaller search grid sizes. The latter implies that for the three studied grid

sizes going from a naive square search grid to a transformed search grid

has approximately the same effect on the SAE, as such demonstrating the

potential of the proposed approach.

12.3. Computational feasibility

Despite the potential improvement of the search grid employing the pro-

posed approach, caution is required. A first important point that is ad-

dressed here are edge effects. For the number of grid points used through-

out this chapter, edge effects do not play a significant role. Yet, when a

very low number of grid points is allowed or desired, the edge effects have

to be studied more carefully.

Secondly, it is pointed out that, though interesting for the visual assessment

of the problem, the construction of contour plots in different parts of the

search space demands a high number of model evaluations. In some cases,

when doing extensive model exploration or when the same model will be

employed for many different problem settings, these contour plots may be

constructed despite of their cost. However, more generally, given that the

goal of this paper is to get higher quality solutions for a limited number of

model evaluations, it is plain that the construction of these contour plots

will be computationally too costly as was the case for the CA-based model

for oil migration. The latter does entail that the user cannot evaluate

the shape of the contour lines and decide whether or not (s)he deems it

necessary to select a subspace of the search space where contour lines are

more similar. One possible way to circumvent this problem would be to

study the FIM at every point in the search space that is evaluated for global

SA. A judgement is then required on whether or not these FIMs deviate too

much from each other in order to proceed. If they are similar, the approach

described before can be adhered to. In the other case, a partitioning of the

search space, based on the similarity of the FIMs, with a separate search
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grid for each part can be considered.
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13 Conclusions

In this part of the dissertation, a method to construct a search grid when a

limited number of grid points is allowed or desired, was introduced. Making

use of SA information obtained during model exploration, the FIM is con-

structed. From this matrix, the eigenvalues and -vectors can be calculated

and can be used to transform a naive search grid into a more efficient one.

Through a series of computational experiments with a linear model as well

as two well-known nonlinear models, it was found that when dealing with

inverse problems with an objective function that gives rise to ellipsoidal

contours with axes parallel to the grid axes, that a CPES grid performs

better than a square grid. Furthermore, for both types of search grid there

is an improvement of the results by transforming the search grid according

to the proposed approach. For inverse problems with an objective function

that gives rise to ellipsoidal contours with axes nonparallel to the grid axes,

the best choice that can be made is either the improved CPES search grid

or the naive square search grid. However, when in practice the contour

plots are not constructed due to their computational cost and therefore it

is not known how the contour lines are orientated with regard to the grid

axes, the best choice that can be made is the improved CPES search grid.

Namely, the latter grid gives the best results regardless of the orientation

of the contour lines, while the naive square search grid only gives rise to

the best result in one specific case. Finally, a gray-box CA-based model

for oil migration was studied where the similarity of the ellipsoidal con-

tours across the search space and the similarity of FIM and H were not

investigated. Nevertheless, good results were obtained making use of the

developed approach.

Obviously, the approach presented here is just a first step in the complete

development of a standardized method to improve search grids. The issue

of multiple parameters needs to be tackled more thoroughly. It was already

suggested earlier that the approach is only useful when a limited number

of parameters needs to be optimized. An extension to more parameters

is necessary in order for the approach to be applicable in more complex

settings. The sensitivity of the different parameters can still be used in

this case to guide the parameter combinations to be evaluated, but visual
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assessment is hampered. Furthermore, creating a CPES search grid in

higher dimensions is not trivial. Finally, modelers should investigate the

computational feasability of the proposed approach for their research with

special attention given to edge effects and similarity of the FIMs in the

search space they consider.

186



PART IV

EPILOGUE
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14 General conclusions and guidelines

for good practice

Throughout this dissertation, various aspects of CA-based modeling for

chemical engineering have been discussed. This concluding chapter will use

the knowledge acquired in Parts II and III combined with the information

gathered from a literature survey to draw up a set of guidelines for good

practice for future modeling efforts in this field. The data for the survey

were acquired by querying the Web of Science [198] for articles in English

between 2000 and 2013 that dealt with CAs. From these results, a selection

was made by studying the title and abstract and selecting those articles

that fell into any of the following categories: chemistry, electrochemistry,

polymer chemistry, food chemistry and biochemistry. A total number of

111 articles was obtained and studied. Figure 14.1 indicates that there is

a growing interest in the use of CA-based models with a new maximum of

publications per year in 2013. Especially the fields of reactions in aqueous

environments [35, 36, 199, 200, 201, 202, 203, 204] and corrosion [159, 175,

181, 185, 205, 206, 207, 208] have received ample attention.

Nevertheless, as was already addressed in Section 3.4, there are some points

of attention when using CAs. A major point is that the modeling frame-

work for CAs is not as vast as for PDEs, for instance. To date, no general

framework for designing and testing CA-based models for real-world prob-

lems and validating them using experimental data has been established [80].

This is partly due to the skepticism in the scientific community about the

CA paradigm, but mainly because CA-based models are intrinsically diffi-

cult to validate. This is due to the absence of a direct link between model

parameters and real-world physical variables and the intricate translation of

a discrete time step to continuous time. Unfortunately, this lack of general

guidelines according to which results are reported often results in incom-

plete reports of research efforts, making it difficult or even impossible to

reproduce results. Nevertheless, in order to further spread the knowledge

on CA-based models, it is crucial for researchers to present their work in a

clear and understandable fashion. It is therefore the goal of this chapter not

only to discuss some of the difficulties encountered when working with CA-

based models and to point out some shortcomings, but moreover to provide
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Figure 14.1: Number of publications dealing with the use of CA-based models
in chemical engineering from 2000 till 2013.

some means to deal with them based on the information gathered from this

dissertation. In what follows, some of the most important modeling choices

when working with CA-based models are discussed and are linked to the

discrete nature of a CA. Researchers should be aware of the fact that each

point has to be approached rationally and should be communicated in a

research paper.

14.1. Discrete space

14.1.1. Dimensionality

It is clear from Figure 14.2 that most CA-based models make use of a

2D [114, 209, 210, 211, 212, 213, 214] tessellation. Further, it can also

be seen that 1D [215, 216, 217] and 3D [218, 219, 220] tessellations and

combinations of tessellations of different dimensions [10, 221] discussed in

the same article, exist.

A popular use of 1D CAs is the classification of proteins based on their

pseudo amino acid composition [216, 217]. Here, each of the amino acids

of the protein is coded in a binary way. Thereafter, this code is used to

generate a 2D image function according to some CA evolving rule [26].

From these 2D figures, the geometric invariant moments are derived and
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Figure 14.2: Dimension of the CA tessellation.

subsequently used in a jackknife cross-validated classification. Neverthe-

less, for (bio)chemical processes in general, the use of a 1D tessellation

is of limited interest. On the other hand, the choice of a 3D tessellation

may seem a natural one, since real-world applications also take place in a

3D space, but this choice should be made thoughtfully. The use of a 3D

tessellation not only renders the implementation more difficult, it strongly

extends computation times, which in practice is undesirable. Therefore, a

3D tessellation should only be adopted if the modeling objective at hand

demands for higher dimensionality. For example, Yu et al. [218] introduce a

3D CA-based model to simulate drug release from a multi-layer biodegrad-

able polymer microstructure, but only represent their results as a relative

drug release out of the mantle in function of time. In this case, like in

many other cases, a 2D tessellation suffices for the modeling purposes pre-

sented in the article. Amongst the 2D tessellations, the tessellation made

up out of squares is the most popular because of its straightforward im-

plementation. Nevertheless, in some cases a 2D tessellation made up out

of hexagonal cells [206, 211] is a more advantageous option. For instance,

Setny and Zacharias [200] and Mao et al. [222] use a hexagonal grid in or-

der to represent molecules more naturally and distinguish between different

enantiomers.

In this dissertation, mostly 2D tessellations made up out of squares were

employed (see Chapters 6, 7 and 8), because they suffice for the modeling

purposes at hand. Only in Chapter 9 where a CA-based modeling for

pitting corrosion was developed, a 3D tessellation was used. The latter is
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justified since both experimental data on the affected metal surface area as

the pit depth were used to parameterize the model.

14.1.2. Physical meaning of the tessellation

A second important aspect to consider regarding the space domain is that re-

searchers have to specify what the employed tessellation actually represents.

This could either be the complete physical system under study or just a

(small) part of it. If the entire system is being modeled [115, 216, 223, 224],

it has to be clear for the reader what each dimension of the tessellation

depicts. This is particularly true when no 3D tessellation is used. For in-

stance, Xiao et al. [216, 217] represent the complete amino acid sequence

of a protein by means of a 1D tessellation. A natural option when a 2D tes-

sellation is concerned, is that the tessellation represents a cross-section of

the system under study [115, 223, 224]. For example, Alopaeus et al. [224]

model liquid distribution in trickle bed reactors, where the 2D tessellation

depicts a cross-section (cut parallel to the fluid flow direction) of such a

reactor. Also in Chapter 8, the tessellation represented a cross-section of

the confectionery model systems from which the experimental data were

obtained.

Although in theory always possible, researchers should contemplate on the

necessity of modeling the complete physical system. When the modeling

goal does not demand it, modeling the entire system results in unnecessary

calculations and excessive computation times. This holds especially true

when the CA-based model deals with a well-mixed solution [225, 226, 227],

such that the processes that are occurring are the same in every part of

the system. In this case, a CA tessellation that only represents a part

of the studied system can be used for simulations and subsequent calcula-

tions [61, 178, 228, 229]. Afterwards, the results can be translated to those

for the whole system making use of a scaling factor that relates the tessel-

lation to the real-world system. For example, Sohi and Khoshandam [225]

and de Lacy Costello and Toth [226] study non-catalytic gas-solid reac-

tions and glider guns in the light-sensitive Belousov-Zhabotinsky medium,

respectively. In both cases the focus is on an elementary part of the pro-

cess and not on the outcome of the experiment for the entire system under

study, since the studied processes are the same everywhere. This was also

illustrated in Chapters 6 and 7.
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Figure 14.3: Types of boundary conditions used in studied publications.

14.1.3. Boundary conditions

Figure 14.3 shows the type(s) of boundary conditions adhered to in the

studied articles. It is evident from the large portion of articles that do

not mention the type of boundary condition used, that attention has to

be drawn to this matter. Albeit not absolutely necessary in order to un-

derstand a presented CA-based model, a choice on the boundaries always

has to be made when working with CA-based models and should therefore

be reported. Furthermore, this information is crucial in order to repro-

duce results. Namely, the use of different boundaries, besides affecting the

implementation, affects the simulated outcome.

For example, Laaksonen et al. [230] employed absorbing boundaries. In

their CA-based model, they study drug release from a polymeric matrix.

The interest of their study is in the amount of drug compounds that is

released from the matrix and not what is happening with these compounds

after release. Therefore, once these drug compounds reach the tessellation

boundary, they are absorbed. However, in most cases, researchers are in-

terested in the compounds (or other types of molecules) themselves and

absorbing boundaries give rise to undesired loss of mass in the system. For

this reason, periodic [231, 232, 233, 234] and fixed [235, 236] boundaries are

more popular, as is also illustrated in Figure 14.3. The latter two bound-

ary conditions were also adhered to in the case studies of Part II. From the

point of view of implementation, the use of periodic boundaries allows the
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modeler to use the same neighborhood function for every cell of the tessel-

lation, as such presenting an advantage. However, the choice between fixed

and periodic boundaries is also related to what the tessellation represents

(cf. supra).

In case the tessellation is a small part of a larger whole, periodic boundary

conditions are frequently used, because they simulate the presence of an

infinite/larger system (see Chapters 6 and 7). On the other hand, modeling

the physical boundaries of a system calls for fixed boundaries since usually

no movement or contact through these boundaries is possible. When a

tessellation is used to model a 2D cross-section of a system, a combination of

fixed and periodic boundaries [62, 65, 201] is often employed. For example,

the diffusion-limited aggregation and electrodeposition of particles in the

presence of leveling molecules is described by Ackland and Tweedie [62]

by means of a 2D CA-based model. Deposition occurs according to the

vertical axis. The top and bottom row of the 2D tessellation present fixed

boundaries, since they cannot be considered as neighboring rows through

periodic boundary conditions. Namely, the bottom row where deposited

particles reside is qualitatively different from the top row where particles are

in suspension. By contrast, the first and last column of the tessellation are

qualitatively similar and therefore, periodic boundaries along the horizontal

axis are employed (see Chapter 8).

14.2. Discrete state

14.2.1. Number of states

Despite the fact that the discrete nature of the state domain, together with

that of the space and time domain, is at the core of CA-based modeling,

Figure 14.4 demonstrates the incompleteness of a relatively large proportion

of the studied articles on this subject. These articles are incomplete because

either they do not mention the number of states and what the different

states represent or it is unclear from the article [235, 237]. Further, some

authors introduce a large number of states, making their model in practice

a coupled map lattice (CML) [180, 229] (see Table 2.1) or are in fact using

a CML-based model, but are incorrectly naming it a CA-based model [238,

239].
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Figure 14.4: Number of different, discrete CA states in the studied publications.

Figure 14.4 also shows that a large number of researchers is limiting them-

selves to just two discrete states [240, 241, 242, 243]. These binary states

frequently indicate the presence or absence of a compound, much like Con-

way’s Game of Life [24]. Nevertheless, for more complex processes two

states do not suffice. For that reason, the majority of researchers employs

three to ten discrete states [51, 244, 245, 246]. Although it is important

to assign a state to every significant component in the chemical process,

the introduction of too many different states for inactive components that

overcomplicate the modeling and the simulations has to be avoided.

In the different case studies of Part II the total number of discrete states

was always kept below ten. In Chapters 6, 7 and 9 three discrete states were

used and in Chapter 8, due to the complex composition of the confectionery

model systems, seven discrete states were introduced.

14.2.2. Initial state

Like the boundary conditions, the initial state of a CA-based model has

to be reported and well-argued to be able to reproduce published results.

Nevertheless, some of the studied articles neglect to do so [240, 247, 248].

First of all, the number of cells in each state has to be decided on. It is

logical that these numbers are derived from literature or experimental data

in order to simulate the chemical process at hand more realistically. In all

the discussed case studies of this dissertation, the experimental data were
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available which allowed for the determination of the number of cells in each

of the discrete states directly from these data.

Spatially seen, an even distribution of the different discrete states is, tech-

nically, the most straightforward initial condition, which explains its popu-

larity as initial condition in literature. However, this initial condition is not

easily obtained in the laboratory [23]. In practice, this initial condition only

holds true for well-mixed systems. This initial condition is also adhered to

throughout this dissertation since laboratory experiments often permit to

assume well-mixed systems. When not dealing with well-mixed systems, a

well-considered choice has to be made on how to distribute the different

discrete states over the tessellation. This can be done based on informa-

tion gathered from literature on how this distribution is for the real-world

phenomenon under study. Further, in some cases the discrete nature of

the tessellation allows to extract the initial configuration of the tessellation

directly from the experimental setup: satellite maps or tomographic images

can be translated into the initial state of the CA [249, 250].

14.2.3. Model scale

A final important issue concerning the state of a cell to take into account

when developing a model is the choice of the level of description, be it mi-

croscopic, mesoscopic or macroscopic. The vast majority of studied articles

introduces a microscopic or mesoscopic model, with about the same number

of articles describing a microscopic model as those describing a mesoscopic

model. Microscopic models mostly focus on processes taking place at the

atomic level, i.e. between different molecules [251, 252, 253, 254, 255]. For

example, Bullard [256] proposes a model to study the early-age hydration

of Ca3SiO5 and DeSoi et al. [257] developed a model to describe the chro-

matographic separation of compounds through HPLC. With microscopic

models, the state of the cells often represents an individual molecule. Ob-

viously, this limits the system space that can be studied without resulting

in excessively large tessellation sizes and computation times.

Therefore, when the goal is to study a chemical phenomenon on a larger

scale or even a complete system, while managing the computation time

and computer memory use, a microscopic description is not interesting.

Namely, the phenomena that are studied constitute rather scarce events on

this scale. For instance, Bartosik et al. [178] describe a model for pitting
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corrosion. With the size of the corrosion pits in the range of 10-100 nm,

the time and space scales of the phenomenon are far beyond the reach of

the present-day atomistic level computations and, therefore, microscopic

models are unfavorable for this modeling goal. On the other hand, as was

mentioned in Section 3.4, a macroscopic description with classical kinetic

equations, besides the fact that in most cases analytical solutions of the

resulting equations are not at hand as was mentioned before, is often unable

to capture the stochasticity of the underlying processes, causing that some

of the information, important to engineers, is not readily available [10,

74].

The mesoscopic approach is seen as a way to combine the macroscopic

phenomenology with the stochastic character of the processes originating

from the microscopic scale processes [75]. CAs are suited to construct

these mesoscopic models, where the goal is not to describe a specific sys-

tem, but rather to analyze how a combination of a small number of basic

processes, very well understood by researchers, might determine general

features [236, 238, 258, 259, 260, 261, 262]. The latter entails that cells are

not to be associated directly with the individual atoms or molecules, but

rather with a homogeneous grouping of the same type of atom or molecule.

This means that atomic size effects are not accounted for, which is a simple

approximation intended to capture the synoptic effects of the process at

hand [76, 77]. All developed CA-based models in this dissertation are of

the mesoscopic type.

One of the studied articles, the one from Sarkar and Abbasi [263], deals

with a macroscopic description of a process. Nevertheless, the subject of

the article is not an actual chemical process, but rather the consequences of

an accidental loss of confinement of a unit in a chemical company and the

subsequent chemical hazard spread. A CA is employed here to enable one

to take into account the influence of the local factors associated with each

part of the tessellation since the latter in this model represents the land area

surrounding the chemical company. This CA-based model is reminiscent of

CA-based models for epidemic spread [264, 265].
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Figure 14.5: Synchronicity of updating the transition function of a CA.

14.3. Discrete time and transition function

14.3.1. Synchronicity

When performing simulations with CAs, a decision has to be made on how

to apply the transition function Ψ. This can be done either synchronously

or asynchronously (see Section 3.3). Figure 14.5 shows that the majority

of studied articles updates the CA in a synchronous manner [266, 267, 268,

269, 270], as such adhering to the classical paradigm of CA, and a smaller

portion makes use of asynchronous updating [114, 271, 272, 273]. However,

more interesting is the fact that in more than 30 % of the articles no clear

indication can be found in what manner the CA was updated [274, 275, 276].

Nevertheless, this information is crucial in order to reproduce results, since

the choice not only has an influence on the implementation of the model

but also on the simulation results.

A majority of researchers opts for the synchronous updating in their work,

as it complies with the CA paradigm as conceived originally and it also

entails a more straightforward implementation compared to asynchronous

update methods. However, the choice for a given update method should be

motivated by the process one wants to study: if a discrete time step of the

CA corresponds to a relatively large time interval, expressed in physical

time units, it may be assumed that every cell in T ∗ will be updated during

each time step and synchronism is justified [54]. Yet, as the physical time

that is covered per time step becomes smaller, the number of events that
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occur during its elapse decreases and asynchronism becomes a more natural

option.

Throughout this dissertation, the choice for synchronous or asynchronous

updating was mainly motivated by the necessity to respect the law of mass

conservation on the one hand and the desire to keep calculation times un-

der control on the other hand. In Chapter 6 a block CA was employed

because it speeds up calculations, simplifies implementation, obeys mass

conservation laws and eliminates the need for boundary conditions and the

system under study was well-mixed. In Chapters 7 and 8 the transition

function was applied in an asynchronous manner in order to respect the

law of mass conservation. A block CA was not chosen to develop the mod-

els in these chapters, since the underlying phenomena were too complex for

the block CA paradigm. Finally, in Chapter 9, the modified synchronous

updating scheme as discussed in Section 3.3 was employed instead of an

asynchronous updating scheme. The latter offers for this specific 3D model

a great reduction in computation time which outweighs the issues with the

limited number of update conflicts.

14.3.2. Model parameters

Only a small proportion of researchers modeling (bio)chemical processes re-

frains from introducing model parameters into their CA-based model [243,

255]. Despite the fact that model parameters are present in the vast major-

ity of studied articles, the information concerning them is frequently incom-

plete. Figure 14.6 shows that a relative high number of researchers does

not report on the exact number of parameters they employ [231, 277, 278].

Furthermore, those who do discuss their model parameters are often un-

clear on the exact number of parameters used or what their role and/or

interpretation is [68, 270, 279]. Researchers should be highly mindful of

clearly discussing all model parameters and their importance, since they

are at the core of CA-based modeling of chemical processes. Normally,

model parameters have a physical relevance, i.e. can be interpreted in

terms of the studied process, though there are exceptions to this obser-

vation [213, 216, 217, 267].

Most researchers use one up to five parameters [254, 260, 280], which is a

reasonable number of parameters to parameterize using experimental data

and is also what was done in this dissertation. However, Figure 14.6 also
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Figure 14.6: Number of model parameters in the studied publications.

shows that a substantial number of researchers develop models that con-

tain six to ten parameters [178, 281, 282] or even more than ten parame-

ters [211, 251, 283]. The introduction of a high number of model parameters

allows to model more processes, but comes at a cost of tuning and param-

eterization.

Further, we want to draw attention to one specific process and its associated

model parameters since it is so important in spatio-temporal modeling,

namely, diffusion. In CA-based modeling, a choice has to be made on how

discrete cell dimensions and a discrete time step correspond to real physical

quantities. A few authors discuss the possibility to base this relationship

on the diffusion coefficient [232, 246, 262], which is a measure of the speed

of diffusion. When the diffusion coefficient is known, choosing a number of

seconds that corresponds to a time step ∆ t at the same time determines the

physical size of a cell ∆x and vice versa (see Chapter 7). However, when no

value is available for the diffusion coefficient under the circumstances that

are being studied, ∆x and ∆ t cannot be linked directly. In this case, ∆x

can be chosen (at random) from an acceptable range and ∆ t can be taken

as one of the model parameters. After parameterization of the CA-based

model, the optimized value of ∆ t can be used, together with the chosen

value of ∆x, to calculate an effective diffusion coefficient for that specific

case (see Chapters 8 and 9).
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14.3.3. Stochasticity

The last point of interest related to the transition function discussed in

this chapter is the model stochasticity. About three times as many arti-

cles describe CA-based models with a stochastic transition function (see

Definition 2) [284, 285, 286, 287, 288] than models with a deterministic

transition function [200, 235, 289, 290]. When it comes to (bio)chemical

processes, a stochastic transition function seems more logical since it cap-

tures the randomness of these processes in a natural manner. However, the

latter implies that simulations starting with the same parameter values and

initial condition, can result in different simulation results. This entails the

need for repeated simulations to be able to interpret the results correctly.

All CA-based models of Part II are stochastic models.

The stochasticity of the transition function is often incorporated in the

model parameters that therefore usually can be interpreted as a measure of

the reaction constants of the underlying (bio)chemical process [10, 115]. For

instance, in the CA-based corrosion model described by Córdoba-Torres et

al. [285], the transition function is stochastic and the model parameters are

derived from kinetic parameters of the different studied corrosion mecha-

nisms. The optimized parameter values are thereafter used to make pre-

dictions on the spatial statistical patterns on the metal surface. Besides

the interpretation as reaction constants, model parameters can further be

employed to manage the difference in time scale between different processes.

By attributing to process A a probability of occurrence that is only a third

of the probability of occurrence of process B, process A effectively proceeds

at a third of the speed of process B.

As seen from the different case studies of Part II, the stochasticity of the

developed models entails the necessity for repetition of the model evalua-

tions to account for the variation in the simulated results. Given the fact

that the model evaluations in this dissertation roughly range from 5 min

up to 1 day, depending on the employed combination of parameter values

(especially the value for ∆ t is of importance), attention should be spent on

the choice of the number of repetitions to perform. Selecting a high number

of repetitions, e.g. 100 repetitions, is a safe choice and is feasible when only

the simulated output for a limited number of combinations of parameter

values is required. Nevertheless, for the parameterisation performed in the

different case studies of Part II a high number of combinations of parameter
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Figure 14.7: Model validation of the studied publications.

values is tested. In this case, 100 repetitions of each combination would re-

sult in excessive calculation times. Therefore, a low number of repetitions,

e.g. between five and ten, should be chosen and simulated results analyzed.

Only when too much variation is observed between the results stemming

from the low number of repetitions, should the number of repetitions be

raised.

14.4. Validation

From the literature survey, it is clear that for a modeling paper in gen-

eral and one making use of a CA-based model specifically to get published,

calibration and/or validation of the developed model is strictly seen not es-

sential. However, this section stresses the importance of a sound validation

of the model. Validating a model increases the credibility of the devel-

oped model as well as gives an idea about the practicality of the model.

Figure 14.7 shows that more than half of the studied articles forgo model

validation of any sort [61, 208, 248, 287]. This implies that there is no way

of assuring that the simulated results with the CA-based model bear any

resemblance to the real-world phenomenon.

Among the validated models, the majority of researchers discusses a qual-

itative validation, i.e. a visual assertion of the resemblance of the simula-

tions and the studied process [69, 222, 267, 268]. For example, Zhao et
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al. [267] study the dendritic growth of NH4Br crystals with a CA-based

model. They pre-process real images taken with a CCD camera and visu-

ally compare these to simulated results to prove the validity of their binary

CA-based model. However, more interesting is the validation of a model us-

ing quantitative experimental data [10, 115, 213, 256]. For instance, Cao et

al. [213] developed a CA-based model to investigate the diffusion of chloride

ions in concrete. They had access to time series of chloride concentrations

in concrete and compared these results with their simulations as well as

with simulations obtained by making use of Fick’s second law of diffusion.

They saw an improvement by using their proposed model over the classi-

cal approach with Fick’s law. One step further is the use of experimental

data to optimize the values of the model parameters such that the simu-

lated results are as close as possible to the experimental data. For instance,

Lishchuk et al. [10] predict intergranular corrosion by means of a 3D CA-

based model. They parameterize their model making use of experimental

data on intergranular corrosion. The employed optimization algorithm in

this case was based on a combination of genetic algorithms and the Nelder

and Mead method.

All models in Part II were parameterized using experimental data, which

allowed for both a check of the model’s correctness and an interpretation

of the optimized parameters. In Part III of this dissertation, a method to

construct a search grid when a limited number of grid points is allowed

or desired making use of SA information, was introduced. The latter is

of great use when CA-based models for chemical engineering problems are

concerned.

14.5. Checklist for CA-based modeling

As was illustrated from the various examples, too many papers are lacking

in one or more of the critical points of information addressed in this chapter,

rendering them difficult or even impossible to implement just based on the

information present in the paper. For that reason, this chapter concludes

with a summary of the different critical points to take into consideration

in the form of a checklist that can be used to guide future modelers. Fig-

ure 14.8 illustrates the different points discussed in this chapter and the

most important considerations to take into account. Researchers should be
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Figure 14.8: Checklist with necessary points of information for CA modeling.

aware of each of these critical points, make thought-out choices concerning

them and report these choices in their paper. This will hopefully improve

the quality of research papers on CA-based modeling and help spread the

knowledge on these interesting models.
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Wiskundige modellen zijn een vertaling van een natuurlijk of artificieel sys-

teem naar een stel wiskundige vergelijkingen. Het gebruik van modellen

biedt een aantal voordelen zoals een tijdswinst ten opzichte van laborato-

riumexperimenten en de mogelijkheid tot het testen van hypotheses. Ver-

schillende problemen vereisen verschillende aanpakken en daardoor ook ver-

schillende modellen. In het domein van de (bio)chemie spelen voornamelijk

spatio-temporele processen, en daardoor ook spatio-temporele modellen,

een belangrijke rol. De meest gebruikte en ook klassieke manier voor het

modelleren van dergelijke processen is aan de hand van (partiële) diffe-

rentiaalvergelijkingen, die continu zijn in hun ruimte-, tijds- en toestands-

domein, wat geleid heeft tot een diepgaande kennis over dit soort verge-

lijkingen, alsook tot de beschikbaarheid van een uitgebreide set aan tools

voor het bestuderen van modellen die gebaseerd zijn op differentiaalverge-

lijkingen. Echter, (partiële) differentiaalvergelijkingen zijn niet het enige

beschikbare paradigma voor het modelleren van (bio)chemische processen.

Zo bestaan er o.a. coupled map lattices, agent-gebaseerde modellen en cel-

lulaire automaten. Deze andere paradigma’s worden de laatste jaren steeds

meer bestudeerd om een aantal problemen of tekortkomingen van model-

len gebaseerd op differentiaalvergelijkingen te overwinnen. Eén van deze

paradigma’s, dat tevens het onderwerp vormt van deze dissertatie, is de

cellulaire automaat (CA), die discreet is in ruimte, tijd en toestand.

Een CA is een verzameling van cellen die een tessellatie vormt waarbij

elke cel haar toestand aanpast op basis van een gegeven transitiefunctie

die gebruik maakt van de huidige toestand van de cel en die van zijn bu-

ren. Deze transitiefunctie wordt iteratief toegepast voor een voorafbepaald

aantal tijdstappen. Ondanks de groeiende interesse in CA-gebaseerde mo-

dellen is er nog steeds maar een beperkt aantal publicaties in het domein

van de (bio)chemie waarin dit type modellen gehanteerd wordt. Bovendien

is de rapportering ervan, wanneer deze modellen gebruikt worden, vaak on-

volledig. Dit is grotendeels te wijten aan het ontbreken van een algemeen

kader volgens hetwelk dergelijke modellen opgebouwd en gebruikt kunnen

worden. Het is daarom het doel van deze thesis om een eerste stap te zetten

in het ontwikkelen van een dergelijk kader.
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In Deel I van deze thesis wordt een formele definitie aangeleverd van een

CA, wordt dieper ingegaan op het onderscheid tussen synchroon en asyn-

chroon toepassen van de transitiefunctie en worden de voor- en nadelen van

CA’s besproken. Verder wordt in dit deel de keuze voor de Elementaire

Elementen methode, een variantiegebaseerde scanningmethode, als sensi-

tiviteitsanalysetechniek toegelicht voor de gevalstudies in deze thesis.

Deel II van de dissertatie probeert de voordelen van CA-gebaseerd modelle-

ren te benutten en de beperkingen ervan te overwinnen. Vier gevalstudies

worden in dit deel uitgebreid behandeld. Elk van de gevalstudies is ver-

schillend zowel in het proces dat gemodelleerd wordt als in de aspecten

van CA-gebaseerde modellering die onderzocht worden. Op deze manier

wordt zowel een overzicht gegegeven van de mogelijke toepassingsdomeinen,

alsook een meer gedetailleerde beschrijving van welke modelleerkeuzes kun-

nen gemaakt worden om bepaalde praktische limitaties van CA-gebaseerde

modellen aan te pakken. De vier gevalstudies die besproken worden zijn

reactiekinetiek, fotokatalyse, oliemigratie in chocolade en putcorrosie in

metaal.

Elk van de hoofdstukken in Deel II is op een gelijkaardige manier gestruc-

tureerd. In de eerste plaats worden het chemisch process dat het onderw-

erp van dat hoofdstuk vormt, alsook de eerdere modellen in dit veld verder

uitgediept. Vervolgens wordt de datacollectie besproken, waarna een groot

deel van het hoofdstuk gewijd wordt aan de ontwikkeling van het model

en de modelleerkeuzes die daarbij gemaakt moeten worden. Alle modellen

ontwikkeld in deze dissertatie zijn stochastische modellen, hetgeen inhoudt

dat de transitiefunctie gestuurd wordt door een aantal modelparameters die

verbonden zijn met reactieprobabiliteiten eigen aan het bestudeerde proces.

Daarom zal, eens de modellen ontwikkeld zijn, de vergaarde experimentele

data gebruikt worden om de parameterwaarden te bepalen die aanleiding

geven tot modelsimulaties die zich dicht mogelijk aanleunen bij de experi-

mentele data, ook parameterisatie genoemd. Elk hoofdstuk sluit tenslotte

af met een aantal conclusies en suggesties van verder onderzoek waarbij

aandacht besteed wordt aan de modelleerkeuzes die gemaakt werden in dat

hoofdstuk.

Uit de verschillende gevalstudies van Deel II is duidelijk dat een efficiënte pa-

rameterisatie van de verschillende CA-gebaseerde modellen geen eenvoudige

taak is. Daarom wordt in Deel III een verbeterd zoekgrid voor parameteri-
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satie voorgesteld gebruikmakend van de resultaten van een sensitiviteitsana-

lyse. Eerst wordt de theorie achter deze aanpak in detail besproken, waarna

een aantal computationele experimenten met een eenvoudig lineair model en

twee welgekende niet-lineaire modellen uitgevoerd worden om de validiteit

van de voorgestelde aanpak te onderzoeken. Met behulp van de resultaten

van een sensitiviteitsanalyse wordt de Fisher informatiematrix opgesteld

waarvan de eigenwaarden en -vectoren gebruikt worden om een näıef zoek-

grid om te vormen tot een meer doordacht zoekgrid. Het blijkt dat wanneer

het een parameterisatieprobleem betreft waarvan de doelfunctie aanleiding

geeft tot ellipsöıdale contouren met assen parallel aan de zoekgridassen, dat

een bolstapelrooster beter presteert dan een vierkant zoekgrid. Bovendien

kunnen voor beide zoekgridtypes betere resultaten bekomen worden door

ze om te vormen via de voorgestelde aanpak. Voor parameterisatieproble-

men met doelfuncties die aanleiding geven tot ellipsöıdale contouren die

niet parallel zijn aan de zoekgridassen, is opnieuw het getransformeerde

bolstapelrooster de beste keuze al benaderen de resultaten van het näıef

vierkant zoekgrid deze optimale resultaten. Tenslotte wordt ook de pa-

rameterisatie van het CA-gebaseerd model voor oliemigratie uit Deel II

herhaald waarbij tevens goede resultaten bekomen worden.

In het vierde en laatste deel van deze dissertatie worden een aantal con-

clusies meegegeven. Deze laatste zijn geschreven in de vorm van een check-

list (zie Figuur 14.9) die kan gevolgd worden wanneer men een CA-gebaseerd

model voor (bio)chemische processen wil ontwikkelen en is opgesteld door

een combinatie van de kennis opgedaan uit Delen II en III van deze disser-

tatie en een literatuuronderzoek omtrent bestaande CA-gebaseerde model-

len voor dergelijke toepassingen.
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DISCRETE RUIMTE
DISCRETE 

TOESTAND

DISCRETE TIJD
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Figure 14.9: Checklist met aandachtpunten voor CA-gebaseerde modellering van
(bio)chemische processen.
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ing metastable pits on austenitic stainless steel in situ at the open-

circuit corrosion potential, Electrochem. Commun. 6 (2004) 637–642.

222



Bibliography

[166] A. Turnbull, D. A. Horner, B. J. Connolly, Challenges in modelling

the evolution of stress corrosion cracks from pits, Eng. Fract. Mech.

76 (2009) 633–640.

[167] D. E. Williams, C. Westcott, M. Fleischmann, Studies of the initia-

tion of pitting corrosion on stainless steels, J. Electroanal. Chem. 180

(1984) 549–564.

[168] T. Okada, A theory of pertubation-initiated pitting, J. Electrochem.

Soc. 125 (1978) 1382–1388.

[169] B. G. Ateya, H. W. Pickering, Effects of ionic migration on the con-

centrations and mass-transfer rate in the diffusion layer of dissolving

metals, J. Appl. Electrochem. 11 (1981) 453–461.

[170] T. R. Beck, E. A. Grens, An electrochemical mass transport-kinetic

model for stress corrosion cracking of titanium, J. Electrochem. Soc.

116 (1969) 177–184.

[171] S. M. Sharland, C. P. Jackson, A. J. Driver, A finite-element model of

the propagation of corrosion crevices and pits, Corros. Sci. 29 (1989)

1149–1166.

[172] P. Smith, S. Roy, S. Swailes, S. Maxwell, D. Page, J. Lawson, A

model for the corrosion of steel subjected to synthetic produced water

containing sulfate, chloride and hydrogen sulfide, Chem. Eng. Sci. 66

(2011) 5775–5790.

[173] J. Cai, R. A. Cottis, S. B. Lyon, Phenomenological modelling of at-

mosperic corrosion using an artificial neural network, Corros. Sci. 41

(1999) 2001–2030.

[174] W. Zhang, S. Ruan, D. A. Wolfe, G. S. Frankel, Statistical model for

intergranular corrosion growth kinetics, Corros. Sci. 45 (2003) 353–

370.

[175] J. Stafiej, D. di Caprio, L. Bartosik, Corrosion-passivation processes

in a cellular automata based simulation study, J. Supercomput. 65

(2013) 697–709.

[176] I. G. Main, J. R. Henderson, P. G. Meredith, P. R. Sammonds, Self-

organized criticality and fluid-rock interactions in the brittle field,

Pure Appl. Geophys. 142 (1994) 529–543.

223



Bibliography

[177] S. Gobron, N. Chiba, 3D surface cellular automata and their applica-

tions, J. Visual. Comput. Animat. 10 (1999) 143–158.

[178] L. Bartosik, D. di Caprio, J. Stafiej, Cellular automata approach to

corrosion and passivity phenomena, Pure Appl. Chem. 85 (2013) 247–

256.
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