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ABSTRACT  

 

 

Evolutionary Algorithms (EA) consist of several heuristics which are able to solve 

optimisation tasks by imitating some aspects of natural evolution. Two widely-used 

EAs, namely Harmony Search (HS) and Imperialist Competitive Algorithm (ICA), are 

considered for improving single objective EA and Multi Objective EA (MOEA), 

respectively. HS is popular because of its speed and ICA has the ability for escaping 

local optima, which is an important criterion for a MOEA. In contrast, both algorithms 

have suffered some shortages. The HS algorithm could be trapped in local optima if its 

parameters are not tuned properly. This shortage causes low convergence rate and high 

computational time. In ICA, there is big obstacle that impedes ICA from becoming 

MOEA. ICA cannot be matched with crowded distance method which produces 

qualitative value for MOEAs, while ICA needs quantitative value to determine power of 

each solution. This research proposes a learnable EA, named learning automata 

harmony search (LAHS). The EA employs a learning automata (LA) based approach to 

ensure that HS parameters are learnable. This research also proposes a new MOEA 

based on ICA and Sigma method, named Sigma Imperialist Competitive Algorithm 

(SICA). Sigma method provides a mechanism to measure the solutions power based on 

their quantity value. The proposed LAHS and SICA algorithms are tested on well-

known single objective and multi objective benchmark, respectively. Both LAHS and 

MOICA show improvements in convergence rate and computational time in comparison 

to the well-known single EAs and MOEAs. 
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ABSTRAK 

 

 

Algoritma Berevolusi (EA) terdiri daripada beberapa heuristik yang boleh 

menyelesaikan tugas-tugas pengoptimuman dengan meniru beberapa aspek evolusi 

semula jadi. Dua EA yang digunakan secara meluas, iaitu Carian Harmoni (HS) dan 

Algoritma Persaingan Imperialis (ICA) telah dipertimbangkan masing-masing untuk 

mempertingkatkan objektif tunggal EA dan Objektif Pelbagai EA (MOEA). HS popular 

kerana kelajuannya dan ICA mempunyai keupayaan untuk meloloskan dari optima 

tempatan, yang merupakan satu kriteria penting bagi MOEA. Walau bagaimanapun, 

kedua-dua algoritma tersebut telah mengalami beberapa kekurangan. Algoritma HS 

mungkin terperangkap di optima tempatan jika parameternya tidak ditala dengan betul. 

Kekurangan ini menyebabkan kadar penumpuan yang rendah dan masa pengiraan yang 

tinggi. Dalam ICA, terdapat halangan besar yang menghalang ICA daripada menjadi 

MOEA. ICA tidak boleh dipadankan dengan kaedah jarak sesak yang menghasilkan 

nilai kualitatif untuk MOEA, manakala ICA memerlukan nilai kuantitatif untuk 

menentukan kuasa setiap penyelesaian. Kajian ini mencadangkan satu EA boleh belajar, 

yang dinamakan pembelajaran carian harmoni automata (LAHS). EA menggunakan 

pendekatan berasaskan automata pembelajaran (LA) untuk memastikan parameter HS 

ini boleh dipelajari. Kajian ini juga mencadangkan satu MOEA baru berdasarkan 

kepada ICA dan kaedah Sigma, yang dinamakan Algoritma Persaingan Imperialis 

Sigma (SICA). Kaedah Sigma menyediakan satu mekanisme untuk mengukur kuasa 

penyelesaian berdasarkan nilai kuantiti mereka. Algoritma LAHS dan SICA yang 

dicadangkan masing-masing diuji penanda aras pada objektif tunggal dan berbilang 

objektif yang terkenal. Kedua-dua LAHS dan SICA menunjukkan peningkatan dalam 

kadar penumpuan dan masa pengiraan berbanding dengan EA tunggal dan MOEA yang 

terkenal. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

Optimization is the process of seeking values of the variables that lead to an 

optimal value of the function that is to be optimized. Generally, when optimization is 

applied to a problem, it is desired to adjust the problem variables in order of finding the 

‘best’ configuration. A variety of engineering problems are categorized in optimization 

domain. Therefore, finding efficient, robust and practical methods for solving these 

methods has been of wide interest among researchers and engineers. Exhaustive search 

seems to be the simplest way of optimum finding where all possible solutions are tested to 

find the best one. On the contrary to its simplicity, this method is not practical due to its 

huge computational time that sometimes makes it even impossible. With the advent of 

genetic algorithms (GAs) in the late 1980’s (Goldberg et al., 1989), these methods have 

been successfully tried on optimization problems and proved to be efficient. Ever since, 

the evolutionary computation concept has been an active field of research and many 

studies have been attempted to develop new algorithms for improving accuracy, efficiency 

and computational time of the existing ones. The introduced Evolutionary Algorithms 

(EAs) are based on a natural process, for example swarm intelligence in Particle Swarm 

Optimization (PSO) (Kennedy et al., 1995) and Glow Worm Optimization (Krishnanand 

and Ghose, 2009), social-political evolution of countries in Imperialist Competitive 

Algorithm (ICA) (Atashpaz-Gargari and Lucas, 2007) and musical improvisation in 

Harmony Search (HS) algorithm (Geem et al., 2001). One of the significant problems in 

using these types of algorithms is their high dependency on their parameters.
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Fine tuning of the algorithm parameters could greatly affect the output results. 

Therefore, one of the main concerns of this thesis is to present a learning based approach 

to eliminate the parameter setting and enhance the performance of EAs. Learning 

automata introduced by Tsetlin (1973) is implemented in the evolution process of the EAs 

and controls the parameters based on its previous experience. The learning approach has 

been proved to significantly improve the success rate of particle swarm optimization in the 

previous studies (Hashemi and Meybodi, 2011).  

Most of the previous studies have been focused on single objective optimization 

while the majority of the real world optimization problems contain two or more 

conflicting objectives that should be considered simultaneously. It is a complicated task 

since usually no prior information of their exact interactions is available. For instance, in 

any product design, achieving a minimum production cost is often receives a great interest 

whilst a corporation may wish to achieve the highest possible quality as well. Obviously, 

these objectives could not be satisfied by a single solution. Therefore, considering a given 

set of constraints (for example, size limits of the product, legal requirements, and 

production time) different combination of these objectives could be achieved by adjusting 

the design variables.  

A curve (for two objectives) or surface (for more than two objectives) that includes 

solutions representing all optimal trade-off possibilities of the objectives is called Pareto 

front. Considering any solutions lying on Pareto front, no feasible solutions exists in the 

search space that improves one or more objectives without degrading at least one of the 

others simultaneously. Hence, any multi-objective algorithm should aim at tracing the 

Pareto front of these non-dominated solutions.                               

Multi-objective evolutionary algorithms (MOEAs) utilize evolutionary search 

techniques to deal with these problems. The evolutionary algorithms (EA) are suitable in 

Multi Objective Problems (MOPs) since a large number of variables and objectives are 

usually involved which make the optimization task significantly complex. Moreover, EAs 

are population based and could explore various parts of the Pareto front at the same time. 

GA have been utilized in many MOEAs including MOGA (Hakimi-Asiabar et al., 2009; 

Ko and Wang, 2011), non-dominated sorting genetic algorithm (NSGA) (Guria et al., 

2005), fast elitist non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2002; 

Jia et al., 2009; Ramesh et al., 2012) and etc. Numerical results from various studies have 

indicated that NSGA-II outperforms other GA based MOEAs (Deb et al., 2002). Owing to 

the promising results presented by Particle Swarm Optimization (PSO) in single objective 
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optimization problems (Altinoz and Yilmaz, 2012; Poli et al., 2007), various studies have 

tried to make use of swarm intelligence for developing MOEAs (Chen et al., 2011; Liu et 

al., 2007; Sundar and Singh, 2012). Utilizing PSO and fast non-dominated sorting, 

developed MOPSO (Coello Coello and Lechunga, 2000) that has proved its efficiency 

ever since (Ali et al.,2012; Hu et al., 2011; Moslemi and Zandieh, 2011).  

Hence, one of the primary concerns of this study is to develop a MOEA based on 

the newly introduced EAs to utilize their capabilities in the multi-objective domain. The 

new method uses fast non-dominated sorting and Sigma method for ranking. To 

demonstrate the performance of Sigma Imperialist Competitive Algorithm (SICA), it has 

been applied on various well-studied benchmark problem. The numerical results are 

compared with those obtained by NSGA-II and MOPSO. 

 

 

1.2 Background of the Study 

 

After the introduction of GA and its enormous success in optimization domain, 

researchers have been trying to develop more efficient EAs in terms of accuracy, 

efficiency and computational time. PSO was introduced in 1995 inspired by a flock of 

birds in search for food. Due to its simplicity and great performance, it became popular 

among researchers and engineers rapidly. However, PSO has its own particular drawback: 

its dependency on the proper selection of its parameters. PSO could easily get trapped in 

local optima if the parameters are not selected properly.  

Ever since, many studies have been focusing on improving particle swarm 

optimization. These attempts could be classified as.  

1. Parameters adjusting  in standard particle swarm optimization (Chatterjee and 

Siarry, 2006; Clerc and Kennedy, 2002; Shi and Eberhart, 1998). 

2. Designing different population topologies (Hu and Eberhart, 2002; Kennedy, 

1999; Kennedy and Mendes, 2002; Suganthan, 1999). 

3. Combining particle swarm optimization with other search techniques (Juang, 

2004; Zhang and Xie, 2003). 

4. Incorporating bio-inspired mechanisms into the basic particle swarm 

optimization (He et al., 2004; Løvbjerg et al., 2001; Xie et al., 2002). 



4 
 

 

5. Utilizing multi-population scheme instead of single population of the basic 

particle swarm optimization (Niu et al., 2005a; Niu et al., 2005b; van den Bergh 

and Engelbrecht, 2004). 

 

Despite the improvement these methods have brought to the original PSO, they 

have introduced new parameters in the algorithm that consequently increase the 

complexity of the model. Recently, Hashemi and Meybodi (2011), applied learning 

automata for parameters selecting. The proposed method does not add any new parameter, 

yet improves the performance of PSO.  

Learning automata, which have been employed successfully in many engineering 

applications, operate in an unknown stochastic environment and adaptively improve their 

performance through a learning process. Some of the applications of LA are: call 

admission control in cellular networks (Beigy and Meybodi, 2002, 2005), capacity 

assignment problems (Oommen et al., 2000), adaptation of back propagation parameter 

(Meybodi and Beigy, 2002), and determination of the number of hidden units for three 

layers neural networks (Beigy and Meybodi, 2009). 

HS algorithm was developed by Geem, inspired by the improvisation process of 

musicians (Geem et al., 2001). It has gained much attention in recent years because (a) it 

has fewer mathematical parameters compared to other meta-heuristics and (b) it is 

adaptable to a wide range of applications given that it can deal with both continuous and 

discrete variables without additional effort. Recently, the HS algorithm has been 

effectively used in a wide range of engineering applications (Cao and Wang, 2012; Geem, 

2006; Geem, 2007; Pan et al., 2011; Saka, 2009; Santos Coelho and de Andrade Bernert, 

2009; Vasebi et al., 2007). Nevertheless, similar to PSO, it has a serious drawback that is 

its sensitivity to the fine-tuning of its parameters. Therefore, different studies were focused 

on HS parameter setting. However, these methods were basically tested on low-

dimensional problems and were not rigorous enough in high-dimensional ones.  

Musical improvisation is a creative activity of immediate musical composition 

where performance should be combined with emotions as well as spontaneous responses. 

To enable spur-in-time responses, a learning automaton process should be implemented to 

immediately tune the HS parameters regarding to the harmony feedback employed in this 

variant of the HS. This learning-based adjustment mechanism not only solves the 

difficulties of parameter setting, but also enhances the local search abilities of the 

algorithm.  
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Imperialist competitive algorithm (ICA) was proposed in 2007 inspired by social-

political evolution of countries in an imperialistic competition. This evolutionary 

optimization algorithm  has been successfully utilized in many engineering applications 

such as control (Lucas et al., 2010), data clustering (Niknam et al., 2011), industrial 

engineering (Nazari-Shirkouhi et al., 2010) in recent years and has shown great 

performance in both convergence rate and achieving global optima. However, ICA 

performance could be further improved in MOPs cases.   

Owing to the promising results obtained by swarm intelligence based PSO, 

glowworm optimization algorithm (GSO) was proposed on the same basis (Krishnanand 

and Ghose, 2005). The behavior of ants, honeybee swarms, flocking of birds and fish 

schools demonstrate that even complicated goals could be achieved by simple interactions 

of individuals. In a swarm, the decision are not taken individually, hence it is suitable in 

multi-agent algorithms. GSO was inspired by the behavior of Glowworms which are a 

type of insects that have the ability to modify their light emission and use the 

bioluminescence glow for different purposes. In GSO, agents locally interact to exchange 

information. In addition, their movements are not deterministic.   

Although, most of the real-world optimization problems are multi-objective, it has 

not gained due attention comparing to single-objective ones. The application of EAs in 

MOPs was first presented in 1985 by Schaffer (1985) and these EAs were called multi-

objective evolutionary algorithms (MOEAs). However, the first notable EA developed in 

this domain was the Non-dominated Genetic algorithm (NSGA). The main 

disadvantageous of NSGA were reported over the years as follow.  

1- High computational complexity of non-dominated sorting 

2- Lack of elitism 

3- Need for specifying the sharing parameter        

As a result an improved version called fast non-dominated sorting genetic 

algorithm (NSGA-II) was proposed (Deb et al., 2002). The new algorithm has responded 

all the above-mentioned criticisms. Ever since, NSGA-II has been the main framework for 

most of the MOEAs where a selection operator based on Pareto domination and a 

reproduction operator are used iteratively. Among other successful EAs, PSO have been 

developed for MOPs. To develop a multi-objective PSO, MOPSO, there were two issues 

to be taken into account. First is how to find the best global and local best particles and the 

second is how to maintain the good points during the course of evolution. The latter is 
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achieved by usually creating a secondary population to keep the good individuals. For the 

former, different methods were employed that could be shown in Table 1.1. 

] 

Table 1.1: Various used methods for improving the optimization algorithms 

Authors Methods 

Janson, Merkle et al. 

2008 

Clustering the particles into groups and find the global 

best within each group by applying the weighted sum of 

all objectives 

Liu, Tan et al. 2008 
Selecting the global best particle by tournament niche 

method and updating the local best by Pareto dominance 

Tripathi, Bandyopadhyay 

et al. 2007  

Selecting the best particle from the non-dominated 

solutions using a roulette wheel selection where the 

density values are defined as fitness 

Wang, Wong et al. 2009 

Ranking all the particles by a simplification of Pareto 

dominance called preference order to identify the global 

best particle 

Rahimi-Vahed, 

Mirghorbani et al. 2007 

Selecting the global best from the non-dominated solution 

in the archive with highest crowded distance 

 

Other well-known EAs namely ICA algorithm and GSO have not been employed 

in multi-objective optimization domain. 

 

1.3 Problem Statement 

  

Optimization is the process of finding one or more solutions of a problem for 

achieving extreme values of one or more objectives. In artificial intelligence, 

an evolutionary algorithm is a subset of evolutionary computation, a generic population-

based heuristic optimization algorithm. It has been an active field of research as the real 

world optimization problems have become progressively more complex in recent years. 

There are two types of optimization problems that should be considered. First, single 

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Algorithm
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objective, is a type of optimization problem that focus on problems including one 

objective or numbers of objectives with the same direction. Second category is multi 

objective problems (MOPs) which have at least two conflicting objectives. Many new 

evolutionary based algorithms have been proposed to tackle this problem based on various 

evolution phenomena (Deb et al., 2002; Coello Coello and Lechunga., 2000). The new 

EAs have been tested on different benchmark problems and employed in real-world 

engineering problems. The results have indicated their advantageous over the conventional 

optimization algorithms. However, the capabilities of these new EAs in terms of 

convergence rate and computational time could be further improved.  

One of the well-design EA is HS algorithm where used to solve single objective 

optimization problem (Geem et al., 2001). One of the common drawbacks of the HS is 

that there always exists a possibility that the algorithm converges to a local optima 

solution instead of the global optima point (Mahdavi et al., 2007). The local-optima trap 

could deter the algorithm from finding the desired solutions especially in the problems that 

too many local optima solutions exist. The efficiency of an HS depends greatly on its 

ability to escape these so-called local traps and converge to the desired solution that 

mostly depends on the proper selection of the EAs parameters. The parameter setting of an 

HS is a cumbersome process and has to be repeated for any new problem, as the parameter 

setting is problem dependent. Implementing learning capabilities for parameter setting of 

the HS can help them adjust their parameters automatically considering the feedback they 

receive in the course of optimization. This enhancement not only eliminates the time-

consuming parameter setting of the HS, but also further improves the efficiency of the 

algorithm in terms of convergence rate.  

 On the other hand, most of the real world problems are categorized as multi-

objective problems where two or more conflicting objectives should be considered 

simultaneously. When an MOP is solved by traditional mathematical techniques, only a 

single solution is presented in a single run that makes the approach unsuitable for solving 

MOPs. On the contrary to the former, evolutionary computation paradigm can generate a 

set of solutions in a single run and hence be suitable in this field. Various multi-objective 

evolutionary algorithms have been successfully developed for solving MOPs. However, 

more efficient algorithms are still needed to be developed to overcome the drawback of 

the existing approaches in terms of computational time and convergence rate. The 

advantageous of the newly introduced single-objective EAs in terms of convergence rate 

and computational time could be used in the multi-objective optimization area by 

developing multi-objective evolutionary algorithm (MOEAs) based on them. Another 
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deficiency in current MOEAs is their disability to determine the quantitatively merit of 

each solution. Crowded distance which is used as the ranking method in MOEAs (Deb et 

al., 2002; Coello Coello and Lechunga., 2000), is just able to evaluate solution, 

quantitatively. This weakness causes many single objective evolutionary algorithms 

abdicate to become MOEA. Therefor the lack of method for measuring the quantitatively 

merit of solution is felt.    

The proposed algorithms are usually tested on the well-known benchmark 

problems. Although the benchmark problems are carefully designed and selected to 

incorporate different aspects and challenges of any optimization problem, real-world 

optimization problems can better examine the efficiency and applicability of a newly 

introduced algorithm.  

Hence, the research questions of this study can be stated as.  

1- How learning capability could improve the convergence rate and computational 

time of the existing evolutionary algorithms?  

2- How new ranking method could propose to measure the quantitatively merit of 

each solution? 

3- How more efficient multi-objective algorithms could be developed for tackling 

MOPs? 

 

 

1.4 Research Goal  

 

The main goal of this study is to improve the evolutionary algorithms both in 

single and multi-objective optimization. It is desired to make the HS in single-objective 

optimization more efficient and powerful by improving their convergence rate and time 

complexity. This goal will be satisfied when the HS algorithm equipped by LA. The LA 

tool can be applicable to tune HS parameters in order to avoid local optima, increase 

converge rate and decrease computational time.  Moreover, the study aims at developing 

more efficient and robust MOEA by making use of new ranking method that is employed 

for measuring quantitatively merit of each solution. This new ranking method potentially 

makes single objective imperialist competitive algorithm to become very powerful and 

useful MOEA.   
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1.5 Research Objective  

 

The main objectives of the study are as following. 

1- To propose a new single objective evolutionary algorithm, namely learning 

automata harmony search (LAHS), which is able to improve harmony search performance 

in terms of convergence rate and computational time.  

2- To propose new quantitatively ranking method namely Sigma method 

3- To develop new multi-objective evolutionary algorithms based on the Sigma 

method, namely Sigma Imperialist Competitive Algorithm (SICA). 

 

 

1.6 Research Scope 

 

1. This research is focused on evolutionary computation field. Other 

mathematical optimization tools are not to be explored. 

2. Only the well-established and well-known EAs being applied in different   

engineering applications are to be explored.  

3. MATLAB is used for programming.    

4. The algorithms are to be tested on a set of well-established benchmark 

problems and a limited number of engineering applications 

 

1.7 Significant of Study 

 

This research improves the convergence rate and computational time in both single 

objective and multi objective evolutionary algorithm. This study is applicable for scientists 

who want to solve real engineering problem in both single objective and multi objective 

problem. The results of this research assist scientists to have a single objective and multi 

objective evolutionary algorithm by reasonable convergence rate and computational time.  
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The outcome of this research can be used in industry and laboratories for solving 

real engineering problems, which can increase the performance of existing methods and 

decreasing the costs. 

 

 

1.8 Thesis Organization 

 

The rest of the thesis is organized as follows. A comprehensive exploration on the 

existing literature in the evolutionary algorithm is presented in Chapter 2. In this chapter, 

advantages and disadvantages of the existing HS algorithms and MOEAs algorithms are 

explained in details. Common steps to reach to proposed methods and normal criteria for 

evaluating the proposed methods are presented in Chapter 3. Chapter 4 is dedicated to 

explain the Learning Automata Harmony Search (LAHS) method and its relevant 

experiments. In this chapter first LAHS performance is measured when standard single 

objective function is considered as the test function and then LAHS ability to solve real 

engineering problem, electrical load forecasting, is tested. Chapter 5 introduces second 

proposed method, namely Sigma Imperialist Competitive Algorithm (SICA), then 

discusses the numerical results on various multi objective benchmark problems and 

coverage problem in wireless sensor network (WSN). Finally, the conclusion and future 

work of thesis is drawn in Chapter 6.  
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