4,095 research outputs found

    Local Tomography of Large Networks under the Low-Observability Regime

    Full text link
    This article studies the problem of reconstructing the topology of a network of interacting agents via observations of the state-evolution of the agents. We focus on the large-scale network setting with the additional constraint of partialpartial observations, where only a small fraction of the agents can be feasibly observed. The goal is to infer the underlying subnetwork of interactions and we refer to this problem as locallocal tomographytomography. In order to study the large-scale setting, we adopt a proper stochastic formulation where the unobserved part of the network is modeled as an Erd\"{o}s-R\'enyi random graph, while the observable subnetwork is left arbitrary. The main result of this work is establishing that, under this setting, local tomography is actually possible with high probability, provided that certain conditions on the network model are met (such as stability and symmetry of the network combination matrix). Remarkably, such conclusion is established under the lowlow-observabilityobservability regimeregime, where the cardinality of the observable subnetwork is fixed, while the size of the overall network scales to infinity.Comment: To appear in IEEE Transactions on Information Theor

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems

    Covariance Estimation: The GLM and Regularization Perspectives

    Get PDF
    Finding an unconstrained and statistically interpretable reparameterization of a covariance matrix is still an open problem in statistics. Its solution is of central importance in covariance estimation, particularly in the recent high-dimensional data environment where enforcing the positive-definiteness constraint could be computationally expensive. We provide a survey of the progress made in modeling covariance matrices from two relatively complementary perspectives: (1) generalized linear models (GLM) or parsimony and use of covariates in low dimensions, and (2) regularization or sparsity for high-dimensional data. An emerging, unifying and powerful trend in both perspectives is that of reducing a covariance estimation problem to that of estimating a sequence of regression problems. We point out several instances of the regression-based formulation. A notable case is in sparse estimation of a precision matrix or a Gaussian graphical model leading to the fast graphical LASSO algorithm. Some advantages and limitations of the regression-based Cholesky decomposition relative to the classical spectral (eigenvalue) and variance-correlation decompositions are highlighted. The former provides an unconstrained and statistically interpretable reparameterization, and guarantees the positive-definiteness of the estimated covariance matrix. It reduces the unintuitive task of covariance estimation to that of modeling a sequence of regressions at the cost of imposing an a priori order among the variables. Elementwise regularization of the sample covariance matrix such as banding, tapering and thresholding has desirable asymptotic properties and the sparse estimated covariance matrix is positive definite with probability tending to one for large samples and dimensions.Comment: Published in at http://dx.doi.org/10.1214/11-STS358 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Longitudinal LASSO: Jointly Learning Features and Temporal Contingency for Outcome Prediction

    Full text link
    Longitudinal analysis is important in many disciplines, such as the study of behavioral transitions in social science. Only very recently, feature selection has drawn adequate attention in the context of longitudinal modeling. Standard techniques, such as generalized estimating equations, have been modified to select features by imposing sparsity-inducing regularizers. However, they do not explicitly model how a dependent variable relies on features measured at proximal time points. Recent graphical Granger modeling can select features in lagged time points but ignores the temporal correlations within an individual's repeated measurements. We propose an approach to automatically and simultaneously determine both the relevant features and the relevant temporal points that impact the current outcome of the dependent variable. Meanwhile, the proposed model takes into account the non-{\em i.i.d} nature of the data by estimating the within-individual correlations. This approach decomposes model parameters into a summation of two components and imposes separate block-wise LASSO penalties to each component when building a linear model in terms of the past τ\tau measurements of features. One component is used to select features whereas the other is used to select temporal contingent points. An accelerated gradient descent algorithm is developed to efficiently solve the related optimization problem with detailed convergence analysis and asymptotic analysis. Computational results on both synthetic and real world problems demonstrate the superior performance of the proposed approach over existing techniques.Comment: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 201

    Sparse Multivariate Factor Regression

    Full text link
    We consider the problem of multivariate regression in a setting where the relevant predictors could be shared among different responses. We propose an algorithm which decomposes the coefficient matrix into the product of a long matrix and a wide matrix, with an elastic net penalty on the former and an 1\ell_1 penalty on the latter. The first matrix linearly transforms the predictors to a set of latent factors, and the second one regresses the responses on these factors. Our algorithm simultaneously performs dimension reduction and coefficient estimation and automatically estimates the number of latent factors from the data. Our formulation results in a non-convex optimization problem, which despite its flexibility to impose effective low-dimensional structure, is difficult, or even impossible, to solve exactly in a reasonable time. We specify an optimization algorithm based on alternating minimization with three different sets of updates to solve this non-convex problem and provide theoretical results on its convergence and optimality. Finally, we demonstrate the effectiveness of our algorithm via experiments on simulated and real data
    corecore