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Abstract. Finding an unconstrained and statistically interpretable re-
parameterization of a covariance matrix is still an open problem in
statistics. Its solution is of central importance in covariance estimation,
particularly in the recent high-dimensional data environment where
enforcing the positive-definiteness constraint could be computationally
expensive. We provide a survey of the progress made in modeling covari-
ance matrices from two relatively complementary perspectives: (1) gen-
eralized linear models (GLM) or parsimony and use of covariates in
low dimensions, and (2) regularization or sparsity for high-dimensional
data. An emerging, unifying and powerful trend in both perspectives is
that of reducing a covariance estimation problem to that of estimating
a sequence of regression problems. We point out several instances of
the regression-based formulation. A notable case is in sparse estima-
tion of a precision matrix or a Gaussian graphical model leading to
the fast graphical LASSO algorithm. Some advantages and limitations
of the regression-based Cholesky decomposition relative to the classical
spectral (eigenvalue) and variance-correlation decompositions are high-
lighted. The former provides an unconstrained and statistically inter-
pretable reparameterization, and guarantees the positive-definiteness
of the estimated covariance matrix. It reduces the unintuitive task of
covariance estimation to that of modeling a sequence of regressions at
the cost of imposing an a priori order among the variables. Element-
wise regularization of the sample covariance matrix such as banding,
tapering and thresholding has desirable asymptotic properties and the
sparse estimated covariance matrix is positive definite with probability
tending to one for large samples and dimensions.
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1. INTRODUCTION

The p× p covariance matrix Σ of a random vec-

tor Y = (y1, . . . , yp)
′ with as many as p(p+1)

2 con-
strained parameters plays a central role in virtu-
ally all of classical multivariate statistics (Ander-
son, 2003), time series analysis (Box, Jenkins and
Reinsel, 1994), spatial data analysis (Cressie, 1993),
variance components and longitudinal data analy-
sis (Searle, Casella and McCulloch, 1992; Diggle et
al., 2002), and in the modern and rapidly growing
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2 M. POURAHMADI

area of statistical and machine learning dealing with
massive and high-dimensional data (Hastie, Tibshi-
rani and Friedman, 2009). It is generally recognized
that the two major challenges in covariance estima-
tion are the positive-definiteness constraint and the
high-dimensionality where the number of parame-
ters grows quadratically in p. In this survey, we point
out that these challenges become manageable, for
example, by reducing covariance estimation to that
of solving a series of (penalized) least squares regres-
sion problems.
Nowadays, in microarray data, spectroscopy, finan-

ce, climate studies and abundance data in commu-
nity ecology it is common to have situations where
p ≫ n. Here the use of a sample covariance ma-
trix is problematic (Stein, 1956), particularly when
its inverse is needed as, for example, in classifica-
tion procedures (Anderson, 2003, Chapter 6), multi-
variate linear regression (Warton, 2008; Witten and
Tibshirani, 2009), portfolio selection (Ledoit, Santa-
Clara and Wolf, 2003) and Gaussian graphical mod-
els (Wong, Carter and Kohn, 2003; Meinshausen and
Bühlmann, 2006; Yuan and Lin, 2007). In these sit-
uations and others, it is desirable to find alternative
covariance estimators that are more accurate and
better-conditioned than the sample covariance ma-
trix.
It was noted rather early by Stein (1956, 1975)

that the sample covariance matrix S = 1
n

∑n
i=1 YiY

′
i ,

based on a sample of size n from a mean zero normal
population with the covariance matrix Σ, though
unbiased and positive definite, is a poor estimator
when p

n is large (Johnstone, 2001). It distorts the
eigenstructure of Σ, in the sense that the largest
(smallest) sample eigenvalue will be biased upward
(downward). Since then many improved estimators
have been proposed by shrinking the eigenvalues
of S toward a central value (Haff, 1980, 1991; Lin
and Perlman, 1985; Dey and Srinivasan, 1985; Yang
and Berger, 1994; Ledoit and Wolf, 2004). These
have been derived from a decision-theoretic perspec-
tive or by specifying an appropriate prior for the co-
variance matrix. The Stein’s family of shrinkage esti-
mators leaving intact the eigenvectors of the sample
covariance matrix are neither sparse nor parsimo-
nious. However, lately the search for sparsity and
parsimony has led to either shrinking the matrix S
itself toward certain targets like diagonal and au-
toregressive structures as in Daniels and Kass (1999,
2001), or shrinking its eigenvectors as in Hoff (2009)
and Johnstone and Lu (2009).

In many applications the need for the precision
matrix Σ−1 is stronger than that for Σ itself. Though
the former can be computed from the latter in O(p3)
operations, this could be computationally expen-
sive and should be avoided when p is large. The
regression-based approach of Meinshausen and Bühl-
mann (2006) provides a sparse estimate of the preci-
sion matrix or a Gaussian graphical model by fitting
separate LASSO regression to each variable, using
the others as predictors. This simple idea has in-
spired several direct and improved sparse estimators
of Σ−1 using a penalized likelihood approach with
a LASSO penalty on its off-diagonal terms (Yuan
and Lin, 2007; Banerjee, El Ghaoui and d’Aspremont,
2008; Friedman, Hastie and Tibshirani, 2008; Roth-
man et al., 2008; Rocha, Zhao and Yu, 2008; Peng et
al., 2009). Friedman, Hastie and Tibshirani (2008)
graphical LASSO is the fastest available algorithm
to date. Surprisingly, such a sparse covariance esti-
mator is guaranteed to be positive definite (Baner-
jee, El Ghaoui and d’Aspremont, 2008).
A remarkable unifying regression-based theme has

emerged from research on covariance estimation in
the last decade or so. Some notable examples are as
follows: (i) formulating principal component analy-
sis (PCA) as regression optimization problems (Jong
and Kotz, 1999; Zou, Hastie and Tibshirani, 2006),
sparse loadings are then estimated by imposing the
lasso constraint on the regression coefficients, (ii)
regression-based derivation and interpretation of the
modified Cholesky decomposition of a covariance
matrix and its inverse (Pourahmadi, 1999, 2001, Sec-
tion 3.5; Bilmes, 2000; Huang et al., 2006; Rothman,
Levina and Zhu, 2010), (iii) the regression approach
of Meinshausen and Bühlmann (2006) to the Gaus-
sian graphical models, (iv) the graphical LASSO al-
gorithm of Friedman, Hastie and Tibshirani (2008,
2010) and (v) the iteratively reweighted penalized
likelihood of Fan, Feng and Wu (2009) where non-
concave penalties such as the smoothly clipped ab-
solute deviation (SCAD) are imposed on the entries
of the precision matrix. The problem of sparse es-
timation of the precision matrix is then recast as
a sequence of penalized likelihood problems with
a weighted LASSO penalty and solved using the
graphical LASSO algorithm of Friedman, Hastie and
Tibshirani (2008).
Among these approaches it seems only (ii) has the

expressed goal of providing unconstrained and sta-
tistically interpretable regression parameters for the
covariance (precision) matrix. Unfortunately, how-
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ever, unlike the others which work for unordered
variables and provide permutation-invariant covari-
ance estimators, (ii) and a few other alternatives
to the sample covariance matrix proposed in recent
years give rise to covariance estimators which are
sensitive to the order among the variables in Y .
These approaches are suitable for time series and
longitudinal data which have a natural (time) order
among the variables in Y , and assume that variables
far apart in the ordering are less correlated. For ex-
ample, regularizing a covariance matrix by taper-
ing (Furrer and Bengtsson, 2007), banding (Bickel
and Levina, 2004, 2008a; Wu and Pourahmadi, 2003,
2009) and generally those based on the Cholesky de-
composition of the covariance matrix or its inverse
(Pourahmadi, 1999, 2000; Rothman, Levina and Zhu,
2010) do impose an order among the components
of Y and are not permutation-invariant. The idea of
thresholding individual entries of S has been used in
the estimation of large covariance matrices by Bickel
and Levina (2008b), El Karoui (2008a, 2008b) and
Rothman, Levina and Zhu (2009). Such estimators
are permutation-invariant with desirable asymptotic
properties.
It should be noted that the recent surge of interest

in regression-based approaches to sparsity in high-
dimensional data bodes well with the long history
of interest in parsimony and using covariates when
modeling covariance matrices of low-dimensional da-
ta (Anderson, 1973). For example, longitudinal data
collected from expensive clinical trials and biologi-
cal experiments may have about n= 30 subjects and
p≤ 10 measurements per subject. Parsimonious and
accurate modeling of the covariance structure is im-
portant in these application areas (Cannon et al.,
2001; Carroll, 2003; Fitzmaurice et al., 2009). How-
ever, the area of data-based covariance modeling is
woefully underdeveloped. At present, a practitioner
has the option of picking a structured covariance
matrix from a long menu, where at one extreme the
choice is σ2Ip (independence) and at the other the

unstructured covariance matrix with p(p+1)
2 param-

eters (Zimmerman and Núñez-Antón, 2001, 2010).
Of course, it is desirable to bridge the gap between
these two extremes and develop a bona fide GLM
methodology and a data-based framework for mod-
eling covariance matrices. Attempts to develop such
methods going beyond the traditional linear covari-
ance models (Anderson, 1973) have been made in
recent years by Chiu, Leonard and Tsui (1996) and
Pourahmadi (1999, 2000); Pan and MacKenzie

(2003); Lin and Wang (2009); Leng, Zhang and Pan
(2010); Lin (2011) using the spectral and Cholesky
decompositions of covariance matrices, respectively.
Given the complex nature of the positive-definite-

ness constraint, in developing a GLM methodolgy it
is plausible to factorize Σ into two or more compo-
nents capturing the “variance” through a diagonal
matrix and the “dependence” through a matrix with
p(p−1)

2 functionally unrelated entries. A decomposi-
tion is ideal for the GLM purposes, if its “depen-
dence” component is an unconstrained and statis-
tically interpretable matrix. The three most com-
monly used decompositions in increasing order of
adherence to the GLM principles are the variance-
correlation, spectral and Cholesky decompositions
where their “dependence” components are correla-
tion, orthogonal and lower triangular matrices, re-
spectively. While the entries of the first two ma-
trices are always constrained, those of the last are
unconstrained. Interestingly, these three decomposi-
tions are subsumed (Zimmerman and Núñez-Antón,
2001, page 59) by a decomposition from the class of
factor/mixed models (Anderson, 2003):

Σ = ZBZ ′ +W.(1)

Here, the matrix Z is p× q with q standing for the
number of latent factors, B and W are q × q and
p × p unknown preferably diagonal matrices. The
representation (1) is valid only when each of the p
variables are well-approximated as linear combina-
tions of the same latent factors plus an independent
error. In principle, this may occur when q is large,
and adding W to the reduced rank decomposition
ensures the positive-definiteness of Σ. Technical dif-
ficulties with the use of (1) can be resolved to various
extents by choosing the components of the quadru-
ple (q,W,B,Z) close to the ideal values of q = p,
W = 0, B diagonal and Z sparse or structured.
The outline of the paper is as follows. Section 2

covers some preliminaries on the GLM for covari-
ance matrices, the three standard decompositions
of a covariance matrix, a regression-based decom-
position of the precision matrix useful in Gaussian
graphical models, a review of covariance estimation
from the GLM perspective and its evolution through
linear/inverse, log and hybrid link functions. Steinian
shrinkage, regularization (banding, tapering and
thresholding), penalized likelihood estimation and
improvement of the sample covariance matrix for
high-dimensional data are discussed in Section 3.
Some prior distributions on the parameters of the
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factors of the three decompositions and their roles
in the Bayesian inference are reviewed in Section 4.
Section 5 concludes the paper.
This survey emphasizes the importance of regres-

sion-based idea and hence the need for unconstrained
reparameterization in both the GLM- and regulariza-
tion-type approaches to covariance estimation for
low- and high-dimensional data. As such, it has a rel-
atively narrow focus; important topics like robust-
ness, use of random-effects models, nonparametric
and semi-parametric methods in covariance estima-
tion are not discussed. It is hoped to serve as a guide
or a blueprint for further research in this active and
growing area of current interest in statistics.

2. THE GLM AND MATRIX

DECOMPOSITIONS

In this section the importance of the GLM, the
role of the three matrix decompositions in remov-
ing the positive-definiteness constraint on a covari-
ance matrix, the connection between reparameteriz-
ing the precision matrix and the Gaussian graphical
models, along with linear, log-linear and generalized
linear models for covariance matrices are reviewed.

2.1 Positive-Definiteness and the GLM

A major stumbling block in covariance estimation,
particularly when using covariates, is the notorious
positive-definiteness constraint. Since a covariance
matrix defined by Σ =E(Y −µ)(Y −µ)′, is a mean-
like parameter, it is natural to exploit the idea of
GLM to develop a systematic, data-based statisti-
cal model-fitting procedure for covariance matrices.
However, unlike the mean vector where a link func-
tion acts elementwise, for covariance matrices el-

ementwise transformations are not enough, as the
positive-definiteness is a simultaneous constraint on
all its entries. More global transformations engag-
ing possibly all entries of a covariance matrix are
needed to remove the constraint.
Thus, the GLM approach to covariance estima-

tion hinges on finding link functions that induce un-
constrained and statistically interpretable reparam-
eterization. Not surprisingly, most common and suc-
cessful modeling approaches decompose a covariance
matrix into its “variance” and “dependence” compo-
nents, and write regression models using covariates
for the logarithm of the “variances.” However, writ-
ing such regression models for the entries of the “de-
pendence” component is still a challenging problem
because these are often constrained. In the next sec-
tion examples of unconstrained parameterizations

of a covariance matrix are given which involve the
variance-correlation, spectral and Cholesky decom-
positions.

2.2 The Matrix Decompositions

In this section we present the roles of the variance-
correlation, spectral and Cholesky decompositions
in potentially removing the positive-definiteness con-
straint on a covariance matrix, and paving the way
for using covariates to reduce its high number of pa-
rameters.

2.2.1 The variance-correlation decomposition The
simple decomposition Σ =DRD, where D is the di-
agonal matrix of standard deviations and R= (ρij)
is the correlation matrix of Y, has a strong practi-
cal appeal since both factors are easily interpreted
in terms of the original variables. It allows one to
estimate D and R separately, which is important in
situations where one factor is more important than
the other (Lin and Perlman, 1985; Liang and Zeger,
1986; Barnard, McCulloch and Meng 2000).
Note that while the logarithm of the diagonal en-

tries of D are unconstrained, the correlation ma-
trix R must be positive definite with the additional
constraint that all its diagonal entries are equal to 1.
Thus, it is inconvenient to work with it in the frame-
work of GLM and to reduce its large number of pa-
rameters. In the literature of longitudinal data anal-
ysis (Liang and Zeger, 1986; Diggle et al., 2002; Zim-
merman and Núñez-Antón, 2010) and other applica-
tion areas dealing with correlated data, in the inter-
est of expediency, parsimony and ensuring positive-
definiteness structured correlation matrices with
a few parameters are preferred. Fan, Huang and
Li (2007) have studied a semiparametric model for
a covariance structure by estimating the marginal
variances via kernel smoothing and used specific pa-
rametric models for the correlation matrix such as
the ARMA(1,1).

2.2.2 Decomposition of the precision matrix: Gaus-

sian graphical models Recall that the marginal (pair-
wise) dependence among the entries of a random
vector is captured by the off-diagonal entries of Σ
or the entries of the correlation matrix R = (ρij).
However, the conditional dependencies can be found
in the off-diagonal entries of the precision matrix
Σ−1 = (σij). More precisely, for Y a mean zero nor-
mal random vector with a positive-definite covari-
ance matrix, if the ijth component of the precision
matrix is zero, then the variables yi and yj are con-
ditionally independent, given the other variables.
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Conditional independence structure in Y is often
shown as a graphical model with the nodes corre-
sponding to variables and the absence of edges in-
dicating conditional independence (Anderson, 2003,
Chapter 15).
In this section we give several regression interpre-

tations of the entries of the variance-correlation de-
composition of the precision matrix:

Σ−1 = (σij) = D̃R̃D̃.

Most of these are motivated by the recent surge of
activities in sparse estimation of Σ−1 in the context
of Gaussian graphical models sparked by the ap-
proach in Meinshausen and Bühlmann (2006) based
on solving p separate LASSO regression problems.
We show that the entries of (R̃, D̃) have direct sta-
tistical interpretations in terms of the partial corre-
lations, and variance of predicting a variable given
the rest. More precisely, standard regression calcula-
tions show that the partial correlation coefficient be-
tween yi and yj after removing the linear effect of the

p− 2 remaining variables is given by ρ̃ij =− σij√
σiiσjj

,

and that d̃2ii, the partial variance of yi after remov-
ing the linear effect of the remaining p−1 variables,
is given by 1

σii .
For this and other regression-based techniques re-

viewed in this survey, it is instructive to partition
a random vector Y into two components (Y ′

1 , Y
′
2)

′ of
dimensions p1 and p2. Similarly, its covariance and
precision matrices will be partitioned conformally as

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

, Σ−1 =

(

Σ11 Σ12

Σ21 Σ22

)

.

Some useful relationships among the blocks of Σ
and Σ−1 are obtained by considering the linear least-
squares regression (prediction) of Y2 based on Y1.
Let the p2 × p1 matrix Φ2|1 be the regression coeffi-
cients matrix and the vector of regression residuals
be denoted by Y2·1 = Y2 − Φ2|1Y1. Recall that Φ2|1
and the corresponding prediction error covariance
matrix can be found by requiring that the vector of
residuals Y2·1 be uncorrelated with Y1. Thus,

Φ2|1 =Σ21Σ
−1
11 =−(Σ22)−1Σ21(2)

and

Cov(Y2·1) = Σ22 −Σ21Σ
−1
11 Σ12

(3)
= Σ22·1 = (Σ22)−1.

Certain special choices of Y2 corresponding to p2 =
1,2 are helpful in connecting Φ2|1,Σ22·1 directly to

the entries of the precision matrix Σ−1, as we discuss
below.
First, when p2 = 1, Y2 = yi, for a fixed i, and Y1 =

(y1, . . . , yi−1, yi+1, . . . , yp)
′ = Y−(i), then Σ22·1 is a sca-

lar, called the partial variance of yi given the rest.
Let ỹi be the linear least-squares predictor of yi
based on the rest Y−(i), and ε̃i = yi− ỹi, d̃

2
i =Var(ε̃i)

be its prediction error and prediction error variance,
respectively. Then,

yi =
∑

j 6=i

βijyj + ε̃i,(4)

and it follows immediately from (2) and (3) that the
regression coefficients of yi on Y−(i), are given by

βi,j =−σij

σii
, j 6= i,(5)

and

d̃2i =Var(yi|yj , j 6= i) =
1

σii
, i= 1, . . . , p.(6)

This shows that σij , the (i, j) entry of the precision
matrix, is, up to a scalar, the regression coefficient of
variable j in the multiple regression of variable i on
the rest. As such, each βi,j is an unconstrained real
number, note that βj,j = 0 and βi,j is not symmetric
in (i, j).
Writing (5) in matrix form gives another useful

factorization of the precision matrix:

Σ−1 = D̃2(Ip − B̃),(7)

where D̃ is a diagonal matrix with d̃j as its jth di-

agonal entry, and B̃ is a p × p matrix with zeros
along its diagonal and βj,k in the (j, k)th position.
Now, it is evident from (7) that the sparsity pat-
terns of Σ−1 and B̃ are the same, and, hence, the
former can be inferred from the latter using the re-
gression setup (4). This is the key conceptual tool
behind the approach of Meinshausen and Bühlmann
(2006). Note that the left-hand side of (7) is a sym-
metric matrix while the right-hand side is not neces-
sarily so. Thus, one must impose the following sym-
metry constraint (Rocha, Zhao and Yu 2008; Fried-
man, Hastie and Tibshirani, 2010) for j, k = 1, . . . , p:

d2kβjk = d2jβkj.(8)

As another important example, take p2 = 2, Y2 =
(yi, yj), i 6= j and Y1 = Y−(ij) comprising the remain-
ing p−2 variables. Then, it follows from (3) that the
covariance matrix between yi, yj , after eliminating
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the linear effects of the other p− 2 components, is
given by

Σ22·1 =

(

σii σij

σij σjj

)−1

=∆−1

(

σjj −σij

−σij σii

)

,

where ∆ = σiiσjj − (σij)2. The correlation coeffi-
cient in Σ22·1 is, indeed, the partial correlation coef-

ficient between yi and yj :

ρ̃ij =− σij

√
σiiσij

,(9)

as announced earlier. Moreover, from (5) and (9) it
follows that

βij = ρ̃ij

√

σjj

σii
.(10)

This representation which shows that Σ−1 and R̃
share the same sparsity pattern is the basis for the
Peng, Zhou and Zhu (2009) SPACE algorithm which
imposes a LASSO penalty on the off-diagonal en-
tries of the matrix of partial correlations R̃; see also
Friedman, Hastie and Tibshirani (2010).

2.2.3 The spectral decomposition The spectral de-
composition of a covariance matrix given by

Σ = PΛP ′ =
p
∑

i=1

λieie
′
i,(11)

where Λ is a diagonal matrix of eigenvalues and P
the orthogonal matrix of normalized eigenvectors
with the ei as its ith column, is familiar from the lit-
erature of principal component analysis (Anderson,
2003; Flury, 1988). The entries of Λ and P have
interpretations as variances and coefficients of the
principal components. The matrix P being orthogo-
nal is constrained, so that it is inconvenient to work
with it in the framework of GLM or to use covariates
to reduce its high number of parameters.
In spite of the severe constraint on the orthogo-

nal matrix, the spectral decomposition is the source
of a new unconstrained reparameterization due to
Leonard and Hsu (1992) and Chiu, Leonard and
Tsui (1996). They observed that the logarithm of
a covariance matrix Σ defined by

logΣ = P logΛP ′ =
p
∑

i=1

(logλi)eie
′
i(12)

is an unconstrained symmetric matrix. However,
a drawback of this transformation (link function)
seems to be the lack of statistical interpretability

of the entries of logΣ (Brown, Le and Zidek, 1994;
Liechty, Liechty and Müller, 2004). From (11) and
(12) it is evident that the entries of Σ and logΣ are
similar functions of the entries of P and Λ, except
that in (12) λi is replaced by logλi. Can this “small”
substitution be the reason for the “big” difference
in the statistical interpretability of the entries of log
of a covariance matrix and the matrix itself? This
case is interesting as it points out to a sort of trade-
off that exists between the requirements of uncon-
strained reparameterization of covariance matrices
and statistical interpretability of the new parame-
ters.

2.2.4 The Cholesky decompositions The standard
Cholesky decomposition of a positive-definite ma-
trix encountered in some optimization techniques,
software packages and matrix computation (Golub
and Van Loan, 1989) is of the form

Σ=CC ′,(13)

where C = (cij) is a unique lower-triangular matrix
with positive diagonal entries. Statistical interpreta-
tion of the entries of C is difficult in its present form
(Pinheiro and Bates, 1996). However, reducing C to
unit lower-triangular matrices through multiplica-
tion by the inverse of D = diag(c11, . . . , cpp) makes
the task of statistical interpretation of the diagonal
entries of C and the ensuing unit lower-triangular
matrix much easier.
For example, using basic matrix multiplication,

(13) can be rewritten as

Σ =CD−1DDD−1C ′ =LD2L′,(14)

where L = CD−1 is obtained from C by dividing
the entries of its ith column by cii. This is usually
called the modified Cholesky decomposition of Σ; it
can also be written in the forms

TΣT ′ =D2, Σ−1 = T ′D−2T,(15)

where T = L−1. Note that the second identity is,
in fact, the modified Cholesky decomposition of the
precision matrix Σ−1, and the first identity in (15)
looks a lot like the spectral decomposition, in that Σ
is diagonalized by a lower triangular matrix. How-
ever, we show that unlike the constrained entries
of the orthogonal matrix of the spectral decomposi-
tion, the nonredundant entries of T = L−1 are un-
constrained and statistically meaningful. Further-
more, the argument makes it clear that the parame-
ters in the factors of the Cholesky decomposition are
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dependent on the order in which the variables ap-
pear in the random vector Y . Wagaman and Levina
(2009) have proposed an Isomap method for discov-
ering an order among the variables based on their
correlations. This could lead to block-diagonal or
banded correlation structures which may help to fix
a reasonable order before applying the Cholesky de-
composition; see Section 5.
As in Section 2.2.2, we use the idea of regression

to show that T andD can be constructed directly by
regressing a variable yt on its predecessors. In what
follows, it is assumed that Y is a random vector
with mean zero and a positive-definite covariance
matrix Σ. Let ŷt be the linear least-squares predictor
of yt based on its predecessors yt−1, . . . , y1, and εt =
yt − ŷt be its prediction error with variance σ2

t =
Var(εt). Then, there are unique scalars φtj so that

yt =

t−1
∑

j=1

φtjyj + εt, t= 1, . . . , p.(16)

Next, we show how to compute the regression coeffi-
cients φtj using the covariance matrix. For a fixed t,
2≤ t≤ p, set φt = (φt1, . . . , φt,t−1)

′ and let Σt be the
(t− 1)× (t− 1) leading principal minor of Σ and σ̃t
be the column vector composed of the first t− 1 en-
tries of the tth column of Σ. Then, from (2) and (3)
with Y1 = (y1, . . . , yt−1)

′, Y2 = yt it follows that

φt =Σ−1
t σ̃t, σ2

t = σtt − σ̃′
tΣ

−1
t σ̃t.(17)

Let ε= (ε1, . . . , εp)
′ be the vector of successive un-

correlated prediction errors with Cov(ε) = diag(σ2
1 ,

. . . , σ2
p) =D2. Then, (16) can be rewritten in matrix

form as ε= TY , where T is the following unit lower
triangular matrix:

T =













1
−φ21 1
−φ31 −φ32 1
...

. . .

−φn1 −φn2 · · · −φn,n−1 1













.(18)

Now, computing Cov(ε) = Cov(TY ) = TΣT ′ gives
the modified Cholesky decomposition (15).
Since the φij ’s in (17) are simply the regression

coefficients computed from an unstructured covari-
ance matrix, these coefficients along with logσ2

t are
unconstrained (Pourahmadi, 1999, 2000). From (16)
it is evident that the regression or the orthogonal-
ization process reduces the task of modeling a co-
variance matrix to that of a sequence of p varying-
coefficient and varying-order regression models.

Thus, one can bring the familiar regression analysis
machinery to handle the unintuitive task of model-
ing covariance matrices (Smith and Kohn, 2002; Wu
and Pourahmadi, 2003; Huang et al., 2006, Huang,
Liu and Liu, 2007; Bickel and Levina, 2008a; Roth-
man, Levina and Zhu, 2009). An important conse-

quence of (15) is that for any estimate (T̂ , D̂2) of
the Cholesky factors, the estimated precision matrix
Σ̂−1 = T̂ ′D̂−2T̂ is guaranteed to be positive definite.
An alternative form of the Cholesky decomposi-

tion (14) due to Chen and Dunson (2003), also ob-
tained from (13), is

Σ =DL̃L̃′D,

where L̃=D−1C is obtained from C by dividing the
entries of its ith row by cii. This form has proved
useful for joint variable selection for fixed and ran-
dom effects in the linear mixed-effects models, and
when the focus is on modeling the correlation ma-
trix; see Bondell, Krishna and Ghosh (2010) and
Pourahmadi (2007a).
Some early and implicit examples of the use of the

Cholesky decomposition in the literature of statis-
tics include Bartlett’s (1933) decomposition of a sam-
ple covariance matrix, Wright’s (1934) path analy-
sis, Roy’s (1958) step-down procedures and Wold’s
(1960) causal chain models which assume the ex-
istence of an a priori order among the p variables
of interest. Some of the more explicit uses are in
Kalman (1960) for filtering of state-space models
and the Gaussian graphical models (Wermuth, 1980).
For other uses of Cholesky decomposition in multi-
variate quality control and related areas see Pourah-
madi (2007b).

2.3 GLM for Covariance Matrices

2.3.1 Linear covariance models The origin of lin-
ear models for covariance matrices can be traced
to the work of Yule (1927) and Gabriel (1962) and
the implicit parameterization of a multivariate nor-
mal distribution in terms of the entries of either Σ
or its inverse. However, Dempster (1972) was the
first to recognize the entries of Σ−1 = (σij) as the
canonical parameters of the exponential family of
normal distributions. He proposed to select or esti-
mate a covariance matrix efficiently and sparsely by
identifying zeros in its inverse, and referred to the
procedure as covariance selection models. It fits the
framework of linear covariance models defined next.
Motivated by the simple and linear structure of

covariance matrices of some time series and variance
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component models, Anderson (1973) introduced the
class of linear covariance models (LCM):

Σ±1 = α1U1 + · · ·+αqUq,(19)

where Ui’s are some known symmetric basis matri-
ces and αi’s are unknown parameters; they must be
restricted so that the matrix is positive definite. It is
usually assumed that there is at least a set of coeffi-
cients where Σ±1 is positive definite. The model (19)
is rather general, indeed, for q = p2 any covariance
matrix admits the representation

Σ= (σij) =

p
∑

i=1

p
∑

j=1

σijUij ,(20)

where Uij is a p× p matrix with one on the (i, j)th
position and zero elsewhere.
Replacing Σ by S in the left-hand side of (19), it

can be viewed as a collection of p(p+1)
2 linear regres-

sion models. The same regression models viewpoint
holds with the precision matrix on the left-hand
side. The class of linear covariance models is om-
nipresent when dealing with covariance matrices. It
includes virtually any estimation method that acts
elementwise on a covariance matrix such as tapering,
banding, thresholding, covariance selections models,
penalized likelihood with LASSO penalty on the en-
tries of the precision matrix, etc.; see (20).
A major drawback of (19) and (20) is the con-

straint on the coefficients which could make the esti-
mation and other statistical problems difficult (An-
derson, 1973). Szatrowski (1980) gives necessary and
sufficient conditions for the existence of explicit max-
imum likelihood estimates, and the convergence of
the iterative procedure in one iteration from any
positive-definite starting point.
A good review of the MLE procedures for the

model (19) and their applications to the problem
of testing homogeneity of the covariance matrices
of several dependent multivariate normals is pre-
sented in Jiang, Sarkar and Hsuan (1999). They de-
rive a likelihood ratio test, and show how to com-
pute the MLE of Σ, in both the restricted (null)
and unrestricted (alternative) parameter spaces us-
ing SAS PROC MIXED software. They also provide
the code and the implementation is explained using
several examples.
The notion of covariance regression introduced by

Hoff and Niu (2009) is also in the spirit of (19), but
unlike the LCM the covariance matrix is quadratic
in the covariates, and positive-definiteness is guar-
anteed through the special construction.

2.3.2 Log-linear covariance models A plausible
way to remove the constraint on αi’s in (19) is to
work with the logarithm of a covariance matrix. The
key fact needed here is that for a general covariance
matrix with the spectral decomposition Σ = PΛP ′,
its matricial logarithm defined by logΣ = P logΛP ′

is a symmetric matrix with unconstrained entries
taking values in (−∞,∞).
This idea has been pursued by Leonard and Hsu

(1992) and Chiu, Leonard and Tsui (1996) who in-
troduced the log-linear covariance models for Σ as

logΣ = α1U1 + · · ·+αqUq,(21)

where Ui’s are known matrices as before and the αi’s
are now unconstrained. However, since logΣ is a high-
ly nonlinear operation on Σ, the αi’s lack statistical
interpretation (Brown, Le and Zidek, 1994; Liechty,
Liechty and Müller, 2004). Fortunately, for Σ diago-
nal since logΣ = diag(logσ11, . . . , logσpp) is also di-
agonal, it can be seen that (21) amounts to log-linear
models for heterogeneous variances which have a long
history in econometrics and other areas; see Carroll
and Ruppert (1988) and references therein.
Maximum likelihood estimation procedures for the

parameters in (21) and their asymptotic properties
are studied in Chiu, Leonard and Tsui (1996) along
with the analysis of two real data sets. Given the
flexibility of the log-linear models, one would ex-
pect them to be used widely in practice, however,
this does not seem to be the case. An interesting
application to spatial autoregressive (SAR) models
and some of its computational advantages are dis-
cussed in LeSage and Pace (2007).

2.3.3 GLM via the Cholesky decomposition In this
section the constraint and lack of interpretation
of αi’s in (19) and (21) are resolved simultaneously
by relying on the Cholesky decomposition of a co-
variance matrix described in Section 2.2.4. A bona
fide GLM for the precision matrix in terms of co-
variates is introduced and its maximum likelihood
estimation (MLE) is discussed. An important conse-
quence of the approach based on the modified Cho-
lesky decomposition is that for any estimate of the
Cholesky factors, the estimated precision matrix
Σ̂−1 = T̂ ′D̂−2T̂ is guaranteed to be positive definite.
Recall that for an unstructured covariance ma-

trix Σ, the nonredundant entries of its components
(T, logD2) in (15) are unconstrained. Thus, follow-
ing the GLM’s tradition, one may write parame-
teric models for them using covariates (Pourahmadi,
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1999; Pan and MacKenzie, 2003; Zimmerman and
Núñez-Antón, 2010). We consider the following para-
metric models for φtj and logσ2

t , for t = 1, . . . , p;
j = 1, . . . , t− 1,

logσ2
t = z′tλ, φtj = z′tjγ.(22)

Here, zt, ztj are q × 1 and d × 1 vectors of known
covariates, λ= (λ1, . . . , λq)

′ and γ = (γ1, . . . , γd)
′ are

parameters related to the innovation variances and
dependence in Y , respectively (Pourahmadi, 1999).
The most common covariates used in the analysis
of several real longitudinal data sets (Pourahmadi,
1999; Pourahmadi and Daniels, 2002; Pan and Mac-
Kenzie, 2003; Lin and Wang, 2009; Leng, Zhang and
Pan, 2010) are in terms of powers of times and lags

zt = (1, t, t2, . . . , td−1)′,

ztj = (1, t− j, (t− j)2, . . . , (t− j)p−1)′.

A truly remarkable feature of (22) is its flexibil-
ity in reducing the potentially high-dimensional and
constrained parameters of Σ or the precision matrix
to q + d unconstrained parameters λ and γ. Fur-
thermore, one can rely on graphical tools such as
the regressogram or AIC to identify models such
as (22) for the data; for more details see Pourah-
madi (1999, 2001) and Pan and MacKenzie (2003).
Liang and Zeger (1986) employ such parametrized
models for covariance matrices in the context of the
popular generalized estimating equations for longi-
tudinal data.
Computing the MLE of the parameters is rela-

tively simple due to the special form of the loglikeli-
hood function for a sample Y1, . . . , Yn from a normal
population with mean zero and the common covari-
ance Σ parameterized as in (22). Note that, except
for a constant, we have

− 2l(λ,γ) =

n
∑

i=1

(log |Σ|+ Y ′
iΣ

−1Yi)

= n log |D2|+ n trΣ−1S

= n log |D2|+ n trD−2TST ′(23)

= n log |D2|
+ n trD−2(Ip −B)S(Ip −B)′,

where S = 1
n

∑n
i=1 YiY

′
i , B = Ip − T and the last

three equalities are obtained by replacing for Σ−1

from (15) and some basic matrix operations involv-
ing trace of a matrix. Since (23) is quadratic inB, for
a given D2 the MLE of B or φtj ’s has a closed form,

the same is true of the MLE of D2 for a given B
(Pourahmadi, 2000; Huang et al., 2006; Huang, Liu
and Liu, 2007). This simplicity in computing the
MLE of the saturated (unstructured) model for (T,
D) is important when comparing the computational
aspects of Cholesky-based estimation of the preci-
sion matrix with the Rocha, Zhao and Yu (2008)
SPLICE algorithm; see Section 3.4.
An algorithm for computing the MLE of the pa-

rameters (γ,λ) using the iterative Newton–Raphson
algorithm with Fisher scoring is given in Pourah-
madi (2000) along with the asymptotic properties of
the estimators. An unexpected finding is the asymp-
totic orthogonality of the MLE of the parameters λ
and γ, in the sense that their Fisher information
matrix is block-diagonal; see Pourahmadi (2007a)
and references therein. When the assumption of nor-
mality is questionable like when the data exhibit
thick tails, then a multivariate t-distribution might
be a reasonable alternative; see Lin andWang (2009)
and Lin (2011).

3. REGULARIZATION OF THE SAMPLE

COVARIANCE MATRIX

This section is devoted to high-dimensional data
where the sample covariance matrix is known to
be a poor estimator, and not even invertible when
p ≫ n. We review some alternative and improved
estimators obtained by regularizing the sample co-
variance matrix in various ways. After presenting
a few loss functions in Section 3.1, we review in Sec-
tions 3.2 and 3.3 shrinkage estimators obtained by
minimizing certain risk functions. An early and in-
spiring example is the Stein’s family of shrinkage
estimators that shrinks the eigenvalues of the sam-
ple covariance matrix toward a central value. Pe-
nalized normal likelihood estimators with a LASSO
penalty on the precision matrix are reviewed in Sec-
tion 3.4 with a focus on the graphical LASSO al-
gorithm. Regularization methods which act elemen-
twise on the sample covariance matrix such as ta-
pering, banding and thresholding are discussed in
Section 3.5. Some conditions for consistency of such
estimators are also reviewed.

3.1 Some Loss and Risk Functions

Regularized estimators are usually obtained by
minimizing suitable norms, risks or objective func-
tions. For covariance matrix estimation the Frobe-
nius and operator (spectral) norms are quite nat-
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ural and have proved useful in establishing theo-
retical properties of covariance estimators. For ex-
ample, consistency in operator norm guarantees the
consistency of the eigenstructure used in principal
component analysis (Johnstone and Lu, 2009) and
other related methods in multivariate statistics; see
Section 3.5.
The two commonly used loss functions when n > p

are

L1(Σ̂,Σ) = tr(Σ̂Σ−1)− log |Σ̂Σ−1| − p,

L2(Σ̂,Σ) = tr(Σ̂Σ−1 − I)2,

where Σ̂ = Σ̂(S) is an arbitrary estimator. The cor-
responding risk functions are

Ri(Σ̂,Σ) =EΣLi(Σ̂,Σ), i= 1,2.

An estimator Σ̂ is considered better than S if its risk
function is smaller than that of S. The loss func-
tion L1 was advocated by Stein (1956) and is usu-
ally called the entropy loss or the Kullback–Liebler
divergence of two multivariate normal densities cor-
responding to the two covariance matrices. The sec-
ond, called a quadratic loss function, is essentially
the Euclidean or the Frobenius norm of its matrix
argument which involves squaring the difference be-
tween aspects of the estimator and the target. Con-
sequently, it penalizes overestimates more than un-
derestimates, and “smaller” estimates are more fa-
vored under L2 than under L1. For example, among
all scalar multiples aS of the sample covariance ma-
trix, it is known (Haff, 1980) that S is optimal un-
der L1, while the smaller estimator nS

n+p+1 is optimal
under L2.
Following the lead of Muirhead and Leung (1987),

Ledoit and Wolf (2004) have used a slight modifica-
tion of the Frobenius norm as the loss function

L3(Σ̂,Σ) = p−1‖Σ̂−Σ‖2 = p−1 tr(Σ̂−Σ)2.

Note that though dividing by the dimension p is
not standard, it has the advantage that norm of the
identity matrix is one, regardless of the size of p.
Also, the loss L3 does not involve matrix inversion
which is ideal with regard to computational cost for
the “small n, large p” case. The heuristics behind
this loss function are the same as those for L2. How-
ever, it has an additional and attractive feature that
the optimal covariance estimator under L3 turns
out to be the penalized normal likelihood estima-
tor with trΣ−1 as the penaly (Warton, 2008; Yuan
and Huang, 2009). Since the penalty function be-
comes large when Σ gets closer to singularity, such
a penalty forces the covariance estimators to be non-
singular and better conditioned.

3.2 Shrinking the Spectrum and the Correlation

Matrix

In this section we present one of the earliest im-
provements of S obtained by shrinking only its eigen-
values. Having observed that the sample covariance
matrix systematically distorts the eigenstructure
of Σ, particularly when p

n is large, Stein (1956, 1975)
initiated the task of improving it. He considered or-
thogonally invariant estimators of the form

Σ̂ = Σ̂(S) = PΦ(λ)P ′,

where λ= (λ1, . . . , λp)
′, λ1 > · · ·> λp > 0, are the or-

dered eigenvalues of S, and P is the orthogonal ma-
trix whose jth column is the normalized eigenvector
of S corresponding to λj , and Φ(λ)= diag(ϕ1, . . . , ϕp)
is a diagonal matrix where ϕj = ϕj(λ) estimates the
jth largest eigenvalue of Σ. For example, the choice
of ϕj = λj corresponds to the usual unbiased estima-
tor S, where it is known that λ1 and λp have upward
and downward biases, respectively. Stein’s method
chooses Φ(λ) so as to counteract the biases of the
eigenvalues of S by shrinking them toward some cen-
tral values. For the L1 risk, his modified estimators

of the eigenvalues of Σ are ϕj =
nλj

αj
, where

αj = αj(λ) = n− p+ 1+ 2λj

∑

i 6=j

1

λj − λi
.

Note that the ϕj ’s will differ the most from λj when
some or all of the λj ’s are nearly equal and n

p is not
small. Since some of the ϕj ’s could be negative and
may not even satisfy the order restriction, Stein has
suggested an isotonizing procedure to obtain modi-
fied estimators satisfying the above constraints; for
more details on this procedure see Lin and Perlman
(1985).
Lin and Perlman (1985) have applied the James–

Stein shrinkage estimators (James and Stein, 1961)
to the sample correlation in order to improve it for
large p. They shrink the Fisher z-transform of the in-
dividual correlation coefficients (and the logarithm
of the variances) toward a common target value.

3.3 Ledoit–Wolf Shrinkage Estimator

To ensure nonsingularity of the estimated covari-
ance matrix in the “n small, p large” case, Ledoit
and Wolf (2004) present a shrinkage estimator that
is asymptotically the optimal convex linear combi-
nation of the sample covariance matrix and the iden-
tity matrix with respect to L3.
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One can motivate such an estimator by recall-
ing that the sample covariance matrix S is unbi-
ased for Σ, but unstable with considerable risk when
p≫ n. By contrast, a structured covariance matrix
estimator like the identity matrix has very little es-
timation error, but can be severely biased when the
structure is misspecified. A natural compromise be-
tween these two extremes is a linear combination of
them, giving a simple shrinkage or ridge candidate
of the form

Σ̂ = α1I +α2S.

Now, one may choose α1 and α2 to optimize certain
criterion (Ledoit and Wolf, 2004).
Using the Frobenius norm or minimizing the risk

corresponding to the loss function L3, Ledoit and
Wolf (2004) showed that the optimal choices of α1

and α2 depend only on the following four-dimensio-
nal aspects of the true (but unknown) covariance
matrix Σ:

µ= tr(Σ)/p, α2 = ‖Σ− µI‖2,
β2 = E‖S −Σ‖2, δ2 =E‖S − µI‖2.

Consistent estimators of these low-dimensional pa-
rameters are provided by Ledoit and Wolf (2004), so

that substitution in Σ̂ results in a positive-definite
estimator of Σ. Through extensive simulation stud-
ies they establish the superiority of this estimator
to the sample covariance matrix and the empirical
Bayes estimator (Haff, 1980), among others.
Warton (2008) taking α2 = 1 showed that such

ridge estimators can be obtained using the penal-
ized normal likelihood where the penalty term is
proportional to trΣ−1. Evidently, such a penalty
ensures that the estimator is a nonsingular matrix.
He suggests using the cross-validation of the likeli-
hood function for estimation of the ridge and the
penalty parameters, and extends the approach to
the ridge estimation of the correlation matrix. His
method of estimation leads to the definition of suit-
able test statistics for the parameters in multivariate
linear regression in high-dimensional situations. The
power properties of the test statistic are studied and
compared with the principal components and gen-
eralized inverse test statistics used in dealing with
high dimensionality.

3.4 The Penalized Likelihood Approach

In this section we review various regularization
methods based on penalizing the normal likelihood.
These methods differ mostly on the LASSO penalty

imposed on certain segments of the precision ma-
trix. For example, Huang et al. (2006), Banerjee,
El Ghaoui and d’Aspremont (2008), Friedman, Has-
tie and Tibshirani (2008), Rothman et al. (2008)
and Warton (2008), respectively, impose penalty on
the Cholesky factor, all the entries, off-diagonal en-
tries and the diagonal entries of the precision ma-
trix. These can be viewed as methods for solving
Dempster’s (1972) covariance selection problem of
inducing sparsity in the precision matrix. However,
Warton’s (2008) penalty leads to the Ledoit–Wolf
estimator where neither Σ nor its inverse is sparse.
Motivated by the success of the LASSO estima-

tors in the context of linear regression with a large
number of covariates (Tibshirani, 1996), and in view
of (19) and (20), it is plausible to induce sparsity in
the precision matrix estimate by adding to the nor-
mal loglikelihood (23) a penalty on the entries of the
precision matrix Σ−1 or its Cholesky factor (Huang
et al., 2006)

− 2l+
∑

i<j

pλij
(σij),(24)

where σij is the (i, j)th entry of the precision ma-
trix and λij is the corresponding tuning parame-
ter. Note that the LASSO penalty corresponds to
pλ(|x|) = λ|x|. Such an approach will inherit many
desirable computational and statistical properties
of LASSO and its many improved variants (Efron
et al., 2004; Rocha, Zhao and Yu, 2008; Fan and Lv,
2010, Section 3.5).
Some early attempts at inducing sparsity in the

precision matrix are Bilmes (2000), Smith and Kohn
(2002), Wu and Pourahmadi (2003) and Levina,
Rothman and Zhu (2008) who, for a fixed order
of the variables in Y, use a parametrization of the
precision matrix in terms of the modified Cholesky
decomposition (15). Covariance selection priors and
AIC were used to promote sparsity in T . Huang
et al. (2006) proposed a covariance selection esti-
mator by adding to the normal loglikelihood the
LASSO penalty on the off-diagonal entries of T, and
cross-validation was used to select a common regu-
larization parameter; see also Huang, Liu and Liu
(2007) and Levina, Rothman and Zhu (2008) for
some improvements. Bickel and Levina (2008a) pro-
vide conditions ensuring consistency in the operator
norm for the precision matrix estimates based on
banded Cholesky factors.
Chang and Tsay (2010) extend the Huang et al.

(2006) setup using an equi-angular penalty which
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imposes different penalty on each row of T and the
penalties are inversely proportional to the prediction
variance σ2

t of the tth regression. Extensive simu-
lations were used to compare the performance of
their method with others, including the sample co-
variance matrix, banding (Bickel and Levina, 2008a)
and the L1-penalized normal loglikelihood (Huang
et al., 2006). Contrary to the banding method, the
method of Huang et al. and the equi-angular method
worked reasonably well for six covariance matrices,
with the equi-angular method outperforming the oth-
ers. Since the modified Cholesky decomposition is
not permutation-invariant, they also use a random
permutation of the variables before estimation to
study the sensitivity to permutation of each method.
They conclude that permuting the variables intro-
duces some difficulties for each estimation method,
except the sample covariance matrix, but the equi-
angular method remains the best, with the banding
method having the worst sensitivity to permutation.
They also compare these methods by applying them
to a portfolio selection problem with p= 80 series of
actual daily stock returns.
Two disadvantages of imposing sparsity on the fac-

tor T are that its sparsity does not necessarily imply
sparsity of the precision matrix, and the sparsity
structure in T could be sensitive to the order of the
random variables within Y . Some alternative meth-
ods which tackle these issues penalize the precision
matrix directly. For example, Banerjee, El Ghaoui
and d’Aspremont (2008), Yuan and Lin (2007) and
Friedman, Hastie and Tibshirani (2008) consider an
estimate defined by the normal loglikelihood penali-
zed by the L1-norm of the entries of Σ−1. These me-
thods produce sparse, permutation-invariant estima-
tors of the precision matrix, though some are com-
putationally expensive. Yuan and Lin (2007) used
the max-det algorithm to compute the estimator
while imposing the positive-definiteness constraint;
this seems to have limited their numerical results to
p≤ 10 (Rothman et al. 2008, page 496).
To date, the fastest available algorithm is the gra-

phical lasso (glasso), proposed by Friedman, Hastie
and Tibshirani (2008). It relies on the equivalence
of the Banerjee, El Ghaoui and d’Aspremont (2008)
blockwise interior point procedure and recursively
solving and updating a series of LASSO regression
problems using the coordinate descent algorithm for
LASSO. Fortunately, the sparse covariance estima-
tor from the graphical LASSO is guaranteed to be po-
sitive definite. This important property follows from

a result due to Banerjee, El Ghaoui and d’Aspremont
(2008) showing that if the iterative procedure is ini-
tialized with a positive-definite matrix, then the sub-
sequent iterates remain positive definite.
The sparse pseudo-likelihood inverse covariance

estimation (SPLICE) algorithm of Rocha, Zhao and
Yu (2008) and the SPACE (Sparse PArtial Correla-
tion Estimation) algorithm of Peng et al. (2009) also
impose sparsity constraints directly on the precision
matrix, but with slightly different regression-based
reparameterizations of Σ−1; see (7) and (9). They
are designed to improve several shortcomings of the
approach of Meinshausen and Bühlmann (2006), in-
cluding its lack of symmetry for neighborhood se-
lection in Gaussian graphical models. While Mein-
shausen and Bühlmann (2006) use p separate lin-
ear regressions to estimate the neighborhood of one
node at a time, Rocha et al. and Peng et al. propose
merging all p linear regressions into a single least
squares problem where the observations associated
to each regression are weighted according to their
conditional variances.
To appreciate the need for using approximate or

pseudo-likelihood, it is instructive to note that un-
like the sequence of prediction errors in (16), the ε̃j ’s

from Section 2.2.2 are correlated so that D̃2 is not
really the covariance matrix of the vector of regres-
sion errors ε̃= (ε̃1, . . . , ε̃p)

′. The use of its true and
full covariance matrix in the normal loglikelihood
would increase the computational cost at the estima-
tion stage. This problem is circumvented in Rocha,
Zhao and Yu (2008) and Friedman, Hastie and Tib-
shirani (2010) by using a pseudo-likelihood function
which in the normal case amounts to pretending
that the Cov(ε̃) is D̃2. To this pseudo-loglikelihood
function, they add the symmetry constraints (8) and
a weighted LASSO penalty on the off-diagonal en-
tries to promote sparsity. A drawback of the SPLICE
and SPACE algorithms is that they do not enforce
the positive-definiteness constraint, hence, the re-
sulting covariance estimators are not guaranteed to
be positive definite.
The sparsistency and rates of convergence for spar-

se covariance and precision matrix estimation us-
ing the penalized likelihood with nonconvex penalty
functions have been studied in Lam and Fan (2009).
Sparsistency refers to the property that all zero en-
tries are actually estimated as zero with probability
tending to one. In a given situation, sparsity might
be present in the covariance matrix, its inverse or
Cholesky factor. They develop a unified framework
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to study these three sparsity problems with a general
penalty function and show that the rates of conver-
gence for these problems under the Frobenius norm
are of the order (s log pn )1/2, where s= sn is the num-
ber of nonzero elements, p = pn is the size of the
covariance matrix and n is the sample size. This re-
veals that the contribution of high-dimensionality is
merely of a logarithmic factor.

3.5 Elementwise Shrinkage

In this section we review a few alternative estima-
tors like banding, tapering and thresholding which
are based on the elementwise shrinkage of the sam-
ple covariance matrix. These covariance estimators
require a minimal amount of computation, except in
the cross-validation for selecting the tuning param-
eter which is computationally comparable to that
for the penalized likelihood method. However, due
to their emphasis on elementwise transformations,
such estimators are not guaranteed to be positive
definite.

3.5.1 Banding and tapering the sample covariance

matrix Many entries of the sample covariance ma-
trix S = (sij) could be small or unstable in the
“n small, p large” case. The most extreme case of
this occurs in time series analysis where one has to
work with only a single (long) realization (n = 1).
The requirement of stationarity reduces the number
of distinct entries of the p× p covariance matrix Σ
from p(p + 1)/2 to just p, which is still large. The
moving average (MA) and autoregressive (AR) mod-
els which further reduce the number of parameters
are the prototypes of banding a covariance/precision
matrix (Bickel and Levina, 2004; Wu and Pourah-
madi, 2009; McMurry and Politis, 2010).
Given the sample covariance matrix S = (sij) and

any integer k, 0 ≤ k < p, its k-banded (Bickel and
Levina, 2008a) version defined by

Bk(S) = [sij1(|i− j| ≤ k)]

can serve as an estimator for Σ. This kind of regular-
ization is ideal when the indices have been arranged
so that

|i− j|> k =⇒ σij = 0.

This occurs, for example, if y1, y2, . . . , form a finite
inhomogenous moving average process

yt =

k
∑

j=1

θt,t−jεj ,

and εj ’s are i.i.d. with mean 0 and finite variances.

Banding is a special case of tapering which repla-
ces S by S ∗R, where (∗) denotes the Schur (coordi-
nate-wise) matrix multiplication and R = (rij) is
a positive-definite symmetric matrix (Furrer and
Bengtsson, 2007). It is known that the Schur prod-
uct of two positive-definite matrices is also positive
definite. Banding corresponds to using R = rij =
(1(|i− j| ≤ k), which is not a positive-definite ma-
trix. The idea of banding has also been used on the
lower triangular matrix of the Cholesky decomposi-
tion of Σ−1 by Wu and Pourahmadi (2003), Huang
et al. (2006) and Bickel and Levina (2008a). While
Furrer and Bengtsson (2007) have used tapering as
a regularization technique for the ensemble Kalman
filter, Kaufman, Schervish and Nychka (2008) use it
for purely computational purposes in the likelihood-
based estimation of the parameters of a structured
covariance function for large spatial data sets.
Asymptotic analysis of banding is possible when n,

p and k are large. Bickel and Levina [(2008a), Theo-
rems 1 and 2] have shown that, for normal data, the
banded estimator is consistent in the operator norm
(spectral norm), uniformly over a class of approx-

imately “bandable” matrices, as long as log p
n → 0.

They obtain explicit rate of convergence which de-
pends on how fast k→∞; see also Cai, Zhang and
Zhou (2010). The consistency in operator norm guar-
antees the consistency of principal component anal-
ysis (Johnstone and Lu, 2009) and other related
methods in multivariate statistics when n is small
and p is large. Cai, Zhang and Zhou (2010) pro-
pose a tapering procedure for the covariance matrix
estimation and derive the optimal rate of conver-
gence for estimation under the operator norm. They
also carry out a simulation study to compare the fi-
nite sample performance of their proposed estima-
tor with that of the banding estimator introduced
in Bickel and Levina (2008a). The simulation shows
that their proposed estimator has good numerical
performance, and nearly uniformly outperforms the
banding estimator.

3.5.2 Thresholding the sample covariance matrix

When both n and p are large, it is plausible that
many elements of the population covariance matrix
are equal to 0, and, hence, Σ is sparse. How does
one develop an estimator other than S to cope with
this situation? The concept of thresholding origi-
nally developed in nonparametric function estima-
tion has been used in the estimation of large co-
variance matrices by Bickel and Levina (2008b), El
Karoui (2008a, 2008b) and Rothman, Levina and
Zhu (2009).
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For a sample covariance matrix S = (sij) the thres-
holding operator Ts for s≥ 0 is defined by

Ts(S) = [sij1(|sij | ≥ s)].

Thus, thresholding S at s amounts to replacing by
zero all entries with absolute value less than s. Its
biggest advantage is its simplicity, as it carries no ma-
jor computational burden compared to its competi-
tors like the penalized likelihood with the LASSO
penalty (Huang et al., 2006; Rothman et al., 2008;
Friedman, Hastie and Tibshirani, 2008). A potential
disadvantage is the loss of positive-definiteness as in
banding. However, just as in banding, Bickel and
Levina (2008b) have established the consistency of
the threshold estimator in the operator norm, uni-
formly over the class of matrices that satisfy a no-
tion of sparsity, provided that log p

n → 0. An imme-
diate consequence of the consistency result is that
a threshold estimator will be positive definite with
probability tending to one for large samples and di-
mensions.

4. BAYESIAN MODELING OF COVARIANCES

Heuristically, there is an implicit equivalence be-
tween regularization and Bayesian estimation in sta-
tistics. This can be seen by suitable exponentiation
of the penalty term in (24) and viewing it as a prior
on the parameter space, or conversely by viewing
a prior as a means of imposing constraints on the
parameters.
Traditionally, in Bayesian approaches to inference

for Σ the Jefferys’ improper prior and the conju-
gate inverse Wishart (IW) priors are used. For some
reviews of the earlier work in this direction, see Lin
and Perlman (1985) and Brown, Le and Zidek (1994).
However, the success of Bayesian computation and
Markov Chain Monte Carlo (MCMC) in the late
1980s did open up the possibility of using more flexi-
ble and elaborate nonconjugate priors for covariance
matrices; see Leonard and Hsu (1992), Yang and
Berger (1994), Daniels and Kass (1999) and Hoff
(2009). We present a brief review of the progress
in Bayesian covariance estimation in a somewhat
chronological order starting with priors put on the
components of the spectral decomposition.

4.1 Priors on the Spectral Decomposition

Starting with the remarkable work of Stein (1956,
1975), efforts to improve estimation of a covariance
matrix have been confined mostly to shrinking the
eigenvalues of the sample covariance matrix toward

a common value (Dey and Srinivasan, 1985; Lin and
Perlman, 1985; Haff, 1991; Yang and Berger, 1994;
Daniels and Kass, 1999; Hoff, 2009). Such covariance
estimators have been shown to have lower risk than
the sample covariance matrix. Intuitively, shrinking
the eigenvectors is expected to further improve or
reduce the estimation risk (Daniels and Kass, 1999,
2001; Johnstone and Lu, 2009).
There are three broad classes of priors that are

based on unconstrained parameterizations of a co-
variance matrix using its spectral decomposition.
These have the goal of shrinking some functions of
the off-diagonal entries of Σ or the corresponding
correlation matrix toward a common value like zero.
Consequently, estimation of the p(p−1)

2 dependence
parameters is reduced to that of estimating a few
parameters.
Perhaps, the first breakthrough with the GLM

principles in mind is the log matrix prior due to
Leonard and Hsu (1992) which is based on the ma-
tricial logarithm defined in Section 2.2.3. Thus, for-
mally a multivariate normal prior with a large num-
ber of hyperparameters is introduced. They show
the flexibility of this class of priors for the covari-
ance matrix of a multivariate normal distribution,
yielding much more general hierarchical and empiri-
cal Bayes smoothing and inference, when compared
with a conjugate analysis involving an IW prior. The
prior is not conditionally conjugate, and according
to Brown, Le and Zidek (1994), its major drawback
is the lack of statistical interpretability of the entries
of logΣ and their complicated relations to those of Σ
as seen in Section 2.2.3. Consequently, prior elicita-
tion from experts and substantive knowledge cannot
be used effectively in arriving at priors for the en-
tries of logΣ and their hyperparameters; see Liechty,
Liechty and Müller [(2004), page 2] for a discussion
on the lack of intuition and relationship between
log-eigenvalues and correlations.
The reference (noninformative) prior for a covari-

ance matrix in Yang and Berger (1994) is of the form

p(Σ) = c

[

|Σ|
∏

i<j

(λi − λj)

]−1

,

where λ1 > λ2 > · · ·>λp are the ordered eigenvalues
of Σ and c is a constant. Yang and Berger [(1994),
page 1199] note that compared to the Jeffreys prior,
the reference prior puts considerably more mass near
the region of equality of the eigenvalues. Therefore,
it is intuitively plausible that the reference prior
would produce a covariance estimator with better
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eigenstructure shrinkage. Furthermore, they point
out that the reference priors for Σ−1 and the eigen-
values of the covariance matrix are the same as p(Σ).
Expression for the Bayes estimator of the covari-
ance matrix using this prior involves computation
of high-dimensional posterior expectations; the com-
putation is done using the hit-and-run sampler in
a Markov chain Monte Carlo setup. An alternative
noninformative reference prior for Σ (and the pre-
cision matrix) which allows for closed-form poste-
rior estimation is given in Rajaratnam, Massam and
Carvalho (2008).
It is known (Daniels, 2005) that the Yang and

Berger’s (1994) reference prior implies a uniform
prior on the orthogonal matrix P and flat improper
priors on the logoarithm of the eigenvalues of the co-
variance matrix. The shrinkage priors of Daniels and
Kass (1999) also rely on the spectral decomposition
of the covariance matrix, but are designed to shrink
the eigenvectors by reparametrizing the orthogonal

matrix in terms of p(p−1)
2 Givens angles (Golub and

Van Loan, 1989) θ between pairs of the columns of
the orthogonal matrix P . Since θ is restricted to lie
in the interval (−π/2, π/2), a logit transform will
make it unconstrained so as to conform to the GLM
principles. They put a a mean-zero normal prior on
the logit tranformation of the Givens angles. The
statistical relevance and interpretation of the Givens
angles are not well understood at this time. The lo-
cal parametrization of orthogonal matrices in Boik
(2002) could shed some light on the problem of in-
terpretation of the new parameters. The idea of in-
troducing matrix Bingham distributions as priors on
the group of orthogonal matrices (Hoff, 2009) could
also be useful in shrinking the eigenvectors of the
sample covariance matrix.
Using simulation experiments, Yang and Berger

(1994) compared the performance of their reference
prior Bayes covariance estimator to the covariance
estimators of Stein (1975) and Haff (1991) and found
it to be quite competitive based on the risks corre-
sponding to the loss functions Li, i = 1,2. Daniels
and Kass (1999), also using simulations, compared
the performance of their shrinkage estimator to sev-
eral other Bayes estimators of covariance matrices,
using only the risk corresponding to the L1 loss func-
tion. It turns out that the Bayes estimators from
the Yang and Berger’s (1994) reference prior do as
well as those from the Givens-angle prior for some
nondiagonal and ill-conditioned matrices, but suf-
fers when the true matrix is diagonal and poorly
conditioned.

4.2 The Generalized Inverse Wishart Priors

The use of Cholesky decomposition of a covari-
ance matrix or the regression dissection of the asso-
ciated random vector has a long history and can be
traced at least to the work of Bartlett (1933); see Liu
(1993). It is shown by Brown, Le and Zidek (1994)
that a regression dissection of the inverse Wishart
(IW) distribution reveals some of its noteworthy fea-
tures, making it possible to define flexible general-
ized inverted Wishart (GIW) priors for general co-
variance matrices.
These priors are constructed by first partitioning

a multivariate normal random vector Y with mean
zero and covariance matrix Σ into k ≤ p subvectors:
Y = (Z1, . . . ,Zk)

′, and writing its joint density as
the product of a sequence of conditionals:

f(y) = f(z1)f(z2|z1) · · ·f(zk|zk−1, . . . , z1).

Now, in each conditional distribution one places nor-
mal prior distributions on the regression coefficients
and inverse Wishart on the prediction variances.
The hyperparameters can be structured so as to
maintain the conjugacey of the resulting priors. It
is known (Daniels and Pourahmadi, 2002; Rajarat-
nam, Massam and Carvalho, 2008) that such priors
offer considerable flexibility, as there are many pa-
rameters to control the variability in contrast to the
one parameter for IW.
These ideas and techniques have been further re-

fined in Garthwaite and Al-Awadi (2001) in prior
distribution elicitation from experts, and extended
to longitudinal and panel data setup in Daniels and
Pourahmadi (2002) and Smith and Kohn (2002).
The GIW prior was further refined in Daniels and
Pourahmadi (2002) using the finest partition of Y ,
that is, using k = p. In this case all restrictions on
the hyperparameters are removed from the normal
and inverse Wishart (gamma) distributions and the
prior remains conditionally conjugate, in the sense
that the full-conditional of the regression coefficients
is normal given the prediction variances, and the full-
conditional of prediction variances is inverse gamma
given the regression coefficients. For a review of cer-
tain advantages of this approach in the context of
longitudinal data and some examples of analysis of
such data, see Daniels (2005) and Daniels and Hogan
(2008).

4.3 Priors on Correlation Matrices

One of the first uses of variance-correlation decom-
position in Bayesian covariance estimation seems to
be due to Barnard, McCulloch and Meng (2000),
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who, using p(Σ) = p(D,R) = p(D)p(R|D), introdu-
ced independent priors for the standard deviations
in D and the correlations in R.
Specifically, they used log normal priors on vari-

ances independently of a prior on the whole ma-
trix R. The latter is capable of inducing uniform
(−1,1) priors on the entries ρij of the correlation ma-
trix R; see Liu and Daniels (2006). This is done by
first deriving the marginal distribution of R when Σ
has a standard IW distribution, W−1

p (I, ν), ν ≥ p,
with the density

fp(Σ|ν) = c|Σ|−(1/2)(ν+p+1) exp(−1
2 trΣ

−1).

It turns out that

fp(R|ν) = c|R|(1/2)(ν−1)(p−1)−1
p
∏

i=1

|Rii|−ν/2,

where Rii is the principal submatrix of R, obtained
by deleting its ith row and column. Then, using the
marginalization property of the IW (i.e., a principal
submatrix of an IW is still an IW), the marginal
distribution of each ρij , i 6= j, is obtained as

f(ρij|ν) = c(1− ρ2ij)
(ν−p−1)/2, |ρij | ≤ 1.

The latter can be viewed as a Beta (ν−p+1
2 , ν−p+1

2 )
on (−1,1), which is uniform when ν = p+ 1. More-
over, by choosing p≤ ν < p+1 or ν > p+1, one can
control the tail of f(ρij|ν), that is, making it heavier
or lighter than the uniform. Thus, the above family
of priors for R is indexed by a single “tuning” pa-
rameter ν.
Liechty, Liechty and Müller (2004) note that few

existing probability models and parameterizations
for covariance matrices allow for easy interpreta-
tion and prior elicitation. They propose priors in
which correlations are grouped based on similarities
among the correlations or based on groups of vari-
ables. A good example of this situation is in financial
time series where it is often known that returns of
stocks in the same industries are more closely related
than others.

4.4 Reparameterization via Partial

Autocorrelations

In this section we present yet another unconstrai-
ned and statistically interpretable reparameteriza-
tion of Σ, but now using the notion of partial auto-
correlation function (PACF) from time series anal-
ysis (Box, Jenkins and Reinsel, 1994; Pourahmadi,
2001, Chapter 7). As expected, this approach, just
like the Cholesky decomposition, requires an a priori
order among the random variables in Y . It is moti-
vated by and tries to mimic the phenomenal success

of the PACF of a stationary time series in model
formulation (Box, Jenkins and Reinsel, 1994) and
removing the positive-definiteness constraint on the
autocorrelation function (Ramsey, 1974). We note
that reparameterizing the stationarity-invertibility
domain of ARMAmodels by Jones (1980) had a pro-
found impact on algorithms for computing the MLE
of the ARMA coefficients and guaranteeing that the
estimates are in the feasible region.
Starting with the variance-correlation decompo-

sition, we focus on reparameterizing the correlation
matrix R= (ρij) in terms of entries of a simpler sym-
metric matrix Π = (πij), where πii = 1 and for i < j,
πij is the partial autocorrelation between yi and yj
adjusted for the intervening (not the remaining)
variables. More precisely, πi,i+1 = ρi,i+1, i = 1, . . . ,
p − 1, are the lag-1 correlations and for j − i≥ 2,
πij = ρij|i+1,...,j−1 in the notation of Anderson (2003),
page 41. Note that, unlike R, and the matrix of full
partial correlations (ρij) constructed from Σ−1 in
Section 2.2.2, Π has a much simpler structure in that
its entries are free to vary in the interval (−1,1).
If needed, using the Fisher z-transform Π can be
mapped to the matrix Π̃ where its off-diagonal en-
tries take values in the entire real line (−∞,+∞).
Compared to the long history of using the PACF

in time series analysis (Quenouille, 1949), research
on establishing a one-to-one correspondence between
a general covariance matrix and (D,Π) has a rather
short history. An early work in the Bayesian context
is due to Eaves and Chang (1992), followed by Zim-
merman (2000) and Pourahmadi [(1999, 2001), pa-
ge 102] for longitudinal data, Dégerine and Lambert-
Lacroix (2003) for the nonstationary time series,
and Kurowicka and Cooke (2003) and Joe (2006) for
a general random vector. The fundamental determi-
nantal identity,

|Σ|=
(

p
∏

i=1

σii

)

p
∏

i=2

i−j
∏

j=1

(1− π2
ij),(25)

has been redicovered recently by Dégerine and Lam-
bert-Lacroix (2003), Kurowicka and Cooke (2003)
and Joe (2006), but its origin can be traced to a no-
table and somewhat neglected paper of Yule (1907),
equation (25).
The identity (25) plays a central role in Joe’s (2006)

method of generating random correlation matrices
whose distributions are independent of the order of

variables in Y . It is used in Daniels and Pourahmadi
(2009) to introduce priors for the Bayesian analysis
of correlation matrices. These papers employ inde-
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pendent linearly transformed Beta priors on (−1,1)
for the partial autocorrelations πij . However, Jones
(1987) seems to be the first to use such Beta priors
in simulating data from “typical” ARMA models.

5. CONCLUSIONS

We have reviewed progress in covariance estima-
tion for low- and high-dimensional data, from the
narrow perspectives of the GLM and regularization
or parsimony and sparsity. Recent appearance of
many regression-based techniques and the use of
LASSO-type penalties show that covariance estima-
tion can benefit greatly from mimicking/using the
conceptual and computational tools of regression ana-
lysis. Fortunately, mostly due to the computational-
algorithmic advances centered around LASSO, the
high-dimensionality challenge in covariance estima-
tion has been become manageable, however, the posi-
tive-definiteness challenge still remains. Its removal
could not only further reduce the computational cost
due to high-dimensionality, but is also crucial for par-
simony and writing simple, interpretable models us-
ing covariates. Among the three matrix decomposi-
tions, the spectral and Cholesky decompositions are
the most helpful in removing the positive-definiteness
constraint. These along with some recent covariance
estimation algorithms enforcing the positive-defini-
teness suggest that there are trade-offs among the
requirements of unconstrained parameterization, sta-
tistical interpretability and the computational cost.
In summary, the problem of removing the positive-

definiteness constraint remains open, in the sense
that, as yet, no unconstrained and statistically in-

terpretable reparameterization exists for a general
covariance matrix without imposing an order on the
variables.
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