109,573 research outputs found

    Knowledge modelling with the open source tool myCBR

    Get PDF
    Building knowledge intensive Case-Based Reasoning applications requires tools that support this on-going process between domain experts and knowledge engineers. In this paper we will introduce how the open source tool myCBR 3 allows for flexible knowledge elicitation and formalisation form CBR and non CBR experts. We detail on myCBR 3 's versatile approach to similarity modelling and will give an overview of the Knowledge Engineering workbench, providing the tools for the modelling process. We underline our presentation with three case studies of knowledge modelling for technical diagnosis and recommendation systems using myCBR 3

    Integrating case-based reasoning and hypermedia documentation: an application for the diagnosis of a welding robot at Odense steel shipyard

    No full text
    Reliable and effective maintenance support is a vital consideration for the management within today's manufacturing environment. This paper discusses the development of a maintenance system for the world's largest robot welding facility. The development system combines a case-based reasoning approach for diagnosis with context information, as electronic on-line manuals, linked using open hypermedia technology. The work discussed in this paper delivers not only a maintenance system for the robot stations under consideration, but also a design framework for developing maintenance systems for other similar applications

    Intelligent Diagnosis Systems

    Get PDF
    This paper examines and compares several different approaches to design of intelligent systems for diagnosis applications. These include expert systems (or knowledge based systems), truth (or reason) maintenance systems, case based reasoning systems, and inductive approaches like decision trees, neural networks (or connectionist systems), and statistical pattern classification systems. Each of these approaches is demonstrated through the design of a system for a simple automobile fault diagnosis task. The paper also discusses the domain characteristics that influence the choice of a specific technique (or combination of techniques) for a given application

    COLOR HISTOGRAM BASED MEDICAL IMAGE RETRIEVAL SYSTEM

    Get PDF
    This paper aims to focus on the feature extraction, selection and database creation of brain images for image retrieval which will aid for computer assisted diagnosis. The impact of content-based access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. But, our concept of image retrieval in medical applications aims at a general structure for semantic content analysis that is suitable for numerous applications in case-based reasoning. By using the features, the database created for comparison. The color histogram is used to measure the similarity between the stored database image and the query image. The image which is more similar to the query image is retrieved as the resultant image. If the quer

    A Review of Diagnostic Techniques for ISHM Applications

    Get PDF
    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between automated and human-performed tasks is a vital concern

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    A Textual Case-Based Mobile Phone Diagnosis Support System

    Get PDF
    Java Cases and Ontology Libraries Integration for Building Reasoning Infrastructures (jCOLIBRI) is a framework which makes the development of Textual Case-Based Reasoning (CBR) applications easier by providing the preprocessing of text methods, textual similarity methods and appropriate representation for textual cases which are the major techniques needed in any CBR systems. In this paper, a Mobile Phone Diagnosis Support System is presented as an extension to jCOLIBRI which accepts a problem and reasons with cases to provide a solution related to a new given problem. Experimental evaluation using some set of problems shows that the developed system predicts the solution that is relatively closer to the user given mobile phone problem. The solution also provide the user valuable advise on how to go about solving the new problem

    Telemedicine framework using case-based reasoning with evidences

    Get PDF
    Telemedicine is the medical practice of information exchanged from one location to another through electronic communications to improve the delivery of health care services. This research article describes a telemedicine framework with knowledge engineering using taxonomic reasoning of ontology modeling and semantic similarity. In addition to being a precious support in the procedure of medical decision-making, this framework can be used to strengthen significant collaborations and traceability that are important for the development of official deployment of telemedicine applications. Adequate mechanisms for information management with traceability of the reasoning process are also essential in the fields of epidemiology and public health. In this paper we enrich the case-based reasoning process by taking into account former evidence-based knowledge. We use the regular four steps approach and implement an additional (iii) step: (i) establish diagnosis, (ii) retrieve treatment, (iii) apply evidence, (iv) adaptation, (v) retain. Each step is performed using tools from knowledge engineering and information processing (natural language processing, ontology, indexation, algorithm, etc.). The case representation is done by the taxonomy component of a medical ontology model. The proposed approach is illustrated with an example from the oncology domain. Medical ontology allows a good and efficient modeling of the patient and his treatment. We are pointing up the role of evidences and specialist's opinions in effectiveness and safety of care

    An Efficient Model-based Diagnosis Engine for Hybrid Systems Using Structural Model Decomposition

    Get PDF
    Complex hybrid systems are present in a large range of engineering applications, like mechanical systems, electrical circuits, or embedded computation systems. The behavior of these systems is made up of continuous and discrete event dynamics that increase the difficulties for accurate and timely online fault diagnosis. The Hybrid Diagnosis Engine (HyDE) offers flexibility to the diagnosis application designer to choose the modeling paradigm and the reasoning algorithms. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. However, HyDE faces some problems regarding performance in terms of complexity and time. Our focus in this paper is on developing efficient model-based methodologies for online fault diagnosis in complex hybrid systems. To do this, we propose a diagnosis framework where structural model decomposition is integrated within the HyDE diagnosis framework to reduce the computational complexity associated with the fault diagnosis of hybrid systems. As a case study, we apply our approach to a diagnostic testbed, the Advanced Diagnostics and Prognostics Testbed (ADAPT), using real data
    corecore