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Abstract 

System diagnosis is an integral part of any Integrated System Health Management 
application. Diagnostic applications make use of system information from the design 
phase, such as safety and mission assurance analysis, failure modes and effects analysis, 
hazards analysis, functional models, fault propagation models, and testability analysis. In 
modern process control and equipment monitoring systems, topological and analytic , 
models of the nominal system, derived from design documents, are also employed for 
fault isolation and identification. Depending on the complexity of the monitored signals 
from the physical system, diagnostic applications may involve straightforward trending 
and feature extraction techniques to retrieve the parameters of importance from the sensor 
streams. They also may involve very complex analysis routines, such as signal 
processing, learning or classification methods to derive the parameters of importance to 
diagnosis. The process that is used to diagnose anomalous conditions from monitored 
system signals varies widely across the different approaches to system diagnosis. Rule- 
based expert systems, case-based reasoning systems, model-based reasoning systems, 
learning systems, and probabilistic reasoning systems are examples of the many diverse 
approaches ta diagnostic reasoaing. 

Many engineering disciplines have specific approaches to modeling, monitoring and 
diagnosing anomalous conditions. Therefore, there is no “one-size-fits-all” approach to 
building diagnostic and health monitoring capabilities for a system. For instance, the 
conventionai approaches to diagnosing faiiures in rotorcraft applications are very 
different from those used in communications systems. Further, online and offline 
automated diagnostic applications are ‘integrated into an operations framework with flight 
crews, flight controllers and maintenance teams. While the emphasis of this paper is 
automation of health management functions, striking the correct balance between 
automated and human-performed tasks is a vital concern. 
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1.0 Introduction 

System diagnosis is an integral part of any Integrated System Health Management 
(ISHM) application. During system operation, indications of correct or incorrect 
functioning of a system may be available. Diagnosis is the process of inferring the cause 
of any abnormal or unexpected behavior. In complex applications, the symptoms of 
incorrect (or correct) behavior may be directly observable or they may need to be inferred 
from other variables that are observable during system operation. Monitoring is a term 
that is used to denote observing system behavior. The capability for monitoring a system 
is a key prerequisite to diagnosing problems in the system. Therefore, monitoring 
requirements will be included in the descriptions of various diagnosis techniques in this 
paper. 

Diagnostic applications make use of system information from the design phase, such as 
safety and mission assurance analysis, failure modes and effects analysis, hazards 
analysis, functional models, fault propagation models, and testability analysis. Also of 
benefit to diagnostic system developers is information on the expected system behavior 
from operations concepts, which may define multiple operating modes and scenarios for 
important use cases. In process control and equipment diagnosis applications, topological 
and analytic models of the nominal system derived from design documents form the core 
for model-based diagnosis. Depending on the complexity of the monitored signals from 
the physical system, diagnostic applications may involve straightforward trending and 
feature extraction techniques to retrieve the parameters of importance from the sensor 
streams, or they may involve very complex analysis routines, such as signal processing, 
learning or classification methods. The process that is used to go from monitored system 
signals to the diagnosis of anomalous conditions varies widely across the different 
approaches to system diagnosis. Rule-based expert systems, case-based reasoning 
systems, model-based reasoning systems, learning systems, and probabilistic reasoning 
systems are examples of the many diverse approaches to diagnostic reasoning. 

Diverse disciplines have developed diagnostic approaches using methods relevant to their 
fields of expertise. For example, once the discipline of systems engineering was 
established, failure modes and effects analysis and fault tree analysis were commonly 
used during the design of complex systems such as aircraft and nuclear power plants. 
Both of these analyses summarize the paths through which failures may propagate in a 
system, and, consequently, diagnostic dependency models that integrate information from 
these types of analyses have been employed for a variety of applications. The utility of 
these methods was recognized by the design community first and was then used by the 
operations community in the development of on-line monitoring systems. The control 
systems community developed quantitative model-based methods employing residuals 
for fault detection and isolation. Residuals are generated by comparing the sensed 
measurements to the predicted output of a mathematical model that is represented either 
in the state space or the input-output formulation. The computer science community has 
developed rule-based methods, which originated from expert systems development, that 
were initially aimed at medical diagnosis, and qualitative model-based methods that rely 
on dependency tracking, constraint analysis and qualitative simulations of the dynamics 



of system behavior. In model-based methods, abstracted forms of observed behavior are 
compared to behaviors generated by the qualitative models, and differences are traced by 
logical inferences and constraint analysis methods to derive the set of potential failure 
candidates. 

Rather than elaborate on the details of specific diagnosis techniques, this paper presents a 
survey of diagnosis techniques and explains how the different techniques apply in a 
general framework. In present-day systems, automated diagnostic applications are 
integrated into an operations framework with system operators, system supervisors and 
maintenance teams. While the emphasis of this paper is on automation for health 
management functions, striking a correct balance between automated and human- 
performed tasks is of vital concern in defining the ISHM architecture. This is especially 
true for complex, safety-critical systems that can operate in a variety of different modes 
and in a number of different environments. Special consideration will be given to 
techniques that have been used in ISHM applications; however, additional techniques 
will be summarized with references provided for further investigation by the reader. 

The chailenges for applying diagnostic reasoning technology include determining the best 
combination of methods for a given system under the constraints of computational 
resources available, time-to-criticality of the failure behavior, cost of developing the 
automated system, and the costs of maintaining the automated system over the lifetime of 
the application. 

2.0 General Diagnosis Problem 

The complete diagnosis task can be described in three steps that are common to all 
approaches. Figure 1 illustrates these steps: observation, comparison and diagnosis. The 
operation of a physical plant is observed using instrumentation appropriate for that 
application. Sensors commonly found in thermal, electrical, mechanical and fluid 
systems measure physical characteristics such as temperature, pressure, displacement, 
strain and vibration. Observations in computer networks include data rates, message 
retries and physical variables such as voltage, current, and temperature. There is great 
diversity in sensing instrumentation across system domains. Selecting the best 
instrumentation suite for complex systems that span multiple physical domains is itself a 
difficult optimization task. Once the physical sensors'have been selected and placed at 
optimal points in 'the system,' the data acquisition and analysis task can occur during 
system operation. 

The processing of the data and determination of key parameters of interest, extracted 
from the measured signals, are part of the second step in Figure 1. In this step the 
observed system state or output is compared to the expected state or output. This step is 
the fault detection task, Le., the determination of abnormal behavior. The algorithmi used 
for this comparison range from very simple trending against redline values (known 
limits) of critical parameters to complex comparisons of measurements to e-xpected 

' This is often determined by factors, such as observability and diagnosability on one hand, and cost and 
reliability of the measurement on the other. 



values predicted using high-fidelity simulations or state estimators. Measured signals. 
often can be noisy and sensors are imperfect; but sophisticated signal processing 
techniques and statistical testing routines can be employed to keep the false alarm rates to 
acceptable levels. Neural net diagnosis algorithms use a learned model of the behavior of 
the system which can be compared against actual behavior observed through sensors. 

Many of these comparisons result in knowledge that the system is operating in an 
abnormal way, and the cause(s) of the off-nominal behavior can be determined by 
diagnosis algorithms. In several approaches, the detection of off-nominal conditions is 
tightly integrated with the isolation of the root cause ofthe problem. In some 
approaches, the detection of abnormal conditions triggers the fault isolation system. In 
the following sections, a variety of diagnostic techniques are described and the 
interactions between these steps are clarified. 

OBSERVATION 

Figure 1. General process for diagnosis. 

3.0 Fault Propagation and Impact 

A key element of fault diagnosis is the understanding of how faults propagate through a 
system. In complex engineering applications, systems can be composed of many 
components and subsystems, and the way these elements interact will affect the way 
failures propagate within subsystems and across subsystem boundaries. Numerous 
analyses performed during system design are useful in the eariy stages of the design of 
the diagnostic system [l-3,671. Failure modes and effects analysis (MEA) is a bottom- 
up approach that traces the effects of critical component failures though the system. 
Fault tree analysis is a top-down approach in which undesirable events are studied to 
determine all possible causes of that event. In practical applications, it is not feasible to 
analyze a complex system exhaustively with either technique; therefore, a combination of 
the top-down and bottom-up analyses is generally advocated. Another useful technique 
uses directed graphs to analyze component dependencies. The directed graph can be 
developed from the schematic diagram or functional model, and then failure modes 
included to the desired level of detail [4]. The nodes represent components or functions, 
depending on the use of schematics or functional diagrams respectively. The arcs 
represent the paths of failure propagation through the system. 



All failure propagation models can be analyzed to various levels of detail. The desirable 
level of detail can depend on when in the lifecycle the analysis is performed (models 
constructed during the early design phases can be at high levels, with more details added 
as the system designs are firmed up), the available instrumentation (limited visibility into 
component health can limit the dependency models to higher levels of functionality rather 
than specific component configurations), and operational requirements (the system needs 
to be modeled to the line replaceable unit only for applications in which repair or 
switchover to redundant backup systems is possible). The flexibility to determine the 
level of modeling detail enhances the usefulness of these techniques. The models can be 
built with specific purposes in mind, thus saving much time and effort because extensive, 
detailed analyses are not required. In most cases, if more detail is needed at a later stage, 
the higher level models can be expanded in the specific areas where more detail is 
necessary. 

Figure 2 (a) shows a segment of a directed graph modeled with a graphical analysis tool 
called FEAT [5]. This tool provided the capability of coloring the nodes and arcs in the 
graph to indicate the paths of failure propagation. Red circles indicated that that single 
event could cause the selected failure, magenta circles indicated that a pair of events 
represented by the circles needed to happen to result in the selected failure which is 
shown in green. The results could also be mapped back to a schematic diagram as shown 
in Figure 2 (b). This was very useful for communicating the results of the analysis to 
other design team members or project management. In general, diagnostic approaches in 
this category employ discrete-event diagnosis models and logical dependency tracking 
methods to isolate faults (root causes), given observed discrepancies (events) [6-71. 

Figure 2(a). Digraph model showing fault propagation. 



Figure 2(b). Fault propagation results shown on schematic diagram. 

4.0 Diagnosis Techniques 

This section briefly reviews rule-based expert systems, case-based reasoning systems, 
model-based reasoning systems, learning systems and probabilistic regsoning systems as 
representative examples of the many diverse approaches to diagnostic reasoning. 

4.1 Rule-based Expert Systems 

Rule-based expert systems have wide application for diagnostic tasks where expertise and 
experience are available but deep understanding of the physical properties of the system 
is either unavailable or too costly to obtain. The procedures that a troubleshooting expert 
performs can be broken down into multiple steps and encoded into “rules.” A rule 
describes the action(s) that should be taken if a symptom is observed, for instance. A set 
of rules can be incorporated into a rule-based expert system, which can then be used to 
generate diagnostic solutions. 

Two primary reasoning methods may be employed for generating the diagnosis results. If 
the starting point is a hypothesis, a backward-chaining algorithm collects or verifies 
evidence that supports the hypothesis. If the supporting evidence is verified, then the 
hypothesis is reported as the diagnostic result. In forward chaining, illustrated in Figure 3, 
the process examines rules to see which ones match the observed evidence. If only one 
rule matches, the process is simple. However, if more than one rule matches, a conflict 
set is established and is examined using a pre-defined strategy that assigns priority to the 
applicable rules. Rules with higher priority are applied first to obtain diagnostic 
conclusions. A chain of rule firings establishes the diagnostic candidate that is consistent 
with the observed evidence given the rule set is correct and there are sufficient 
observations. 

The advantages of rule-based systems [SI include an increase in the availability and the 
reusability of expertise at reduced cost, increased safety if the expertise must be used in 



hazardous environments, increased reliability for decision making when the expert . 
system is used as a back-up or tie-breaker in conjunction with human experts, fast 
response, steady response when a human expert may not be at the peak of performance 
due to stress or fatigue, and consistent performance across years of operation when 
human experts may come and go on a project. There is also usually a built-in explanation 
facility, so that the human operator can understand how the expert system arrived at its 
conclusion. 

A challenging element of this technique is the domain knowledge acquisition step in 
which the domain expert’s understanding of the system and its operation is translated into 
modular, concise rules, often called the knowledge engineering task [9-121. There are 
established procedures and recornmendations for soliciting the knowledge of a domain 
expert or group of experts, and also for managing the large amounts of information that 
may result from the knowledge acquisition process. The algorithms that attempt to match 
the current state of the system with rules that pertain to that state are called production 
systems. Challenges for the production system include resolving conflicts, such as the 
order in which the rules are matched, and providing supervision over the timing of the 
rule matching while tracking the current state of the system. Other challenges include 
determining the completeness, consistency and correctness of the derived rule base for 
complex systems, and also maintaining the accuracy of a large rule-base over the lifetime 
of the system. However, for situations in which the diagnosis of failure events in a 
system is a well-known, stable process and expertise exists, a rule-based expert system 
may be a good candidate for automating the diagnostic process. 

One of the earliest applications of expert systems for diagnosis was MYCIN, developed 
to diagnose blood infections [13]. MYCIN contained about 450 rules and incorporated a 
calculus of uncertainty called certainty factors. It was a backward-chaining system. 
Giarratano and Riley describe the development of the CLIPS ‘(C Language Integrated 
Production System) originally from NASA Johnson Space Center [SI. Many small 
systems exist, which are developed for very specific purposes and which contain on the 
order of several hundred rules. Many troubleshooting tasks fall into this category. 

Wor?&g Memory (Data) 

Rule Memory (Program) 

Figure 3. Forward-chaining expert system approach. [14] 



4.2 Case-based Reasoning Systems 

Case-based Reasoning Systems [ 15- 181 exploit knowledge about solutions developed for 
past problems to solve current problems. Like rule-based systems, past experience with 
normal and abnormal behavior of a system are essential to building effective case-based 
diagnosis systems. In addition, case-based reasoning systems include a learning 
component which makes possible adaptation of a past solution to fit other, similar 
situations. This technique is well suited for poorly understood problem areas for which 
structured data are available to characterize operating scenarios. A case-based reasoning 
system consists of a case library containing features that describe the problem, outcomes, 
solutions, methods used and an assessment of their efficacy. A coding mechanism is 
used to index the case information so that the cases can be organized into meaningful 
structures, such as clusters, enabling efficient retrieval. 

The case-based reasoning architecture entails four basic steps in a cycle shown in Figure 
4 [19]: 

(1) Retrieval - given a new, indexed problem, retrieve the best past cases from memory. 

(2) Reuse - find the difference between the past and current case and transfer or modify 
the old solution to conform to the new situation, resulting in a proposed solution. 

(3) Revise - determine whether the proposed solution is successful and give a confirmed 
solution. If the solution fails, explain the failure, learn how to avoid repeating it, and 
repair the solution; if the solution succeeds, go to step 4. 

(4) Retain - incorporate the new solution into the existing knowledge. 

An extensive use of case-based reasoning is in remote diagnosis on locomotives to 
quickly identify failures that have occurred or are about to occur and that may result in a 
locomotive stranded on the tracks due to equipment failure. A vast amount of historical 
fault logs and repair history of locomotives is available. A condition-based reasoning 
system was developed for this area, and has been in continuous use since 1995 [20]. Gas 
turbine diagnostics are performed at General Electric using this technique as well. When 
a turbine trips, the condition-based reasoning system is used to automate the data review, 
hypothesis generation and hypothesis confirmation tasks in the trouble-shooting process, 
and assist the user when it does not have confidence in a single cause [21]. Other 
applications are discussed in [22-241. Case-based systems may work well when the 
diagnosis task is performed in conjunction with a huma perator. When unusual 
situations occur, the system may make suggestions, but the operator uses these as a guide 
and runs additional tests to verify the correctness of the proposed diagnostic hypothesis. 
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Figure 4. The Retrieve-Reuse-Revise-Retain process [ 19 1. 

4.3 Learning Systems 

Learning systems are data-driven approaches that are derived directly from routinely- 
monitored system operating data (e.g., calibration, power, vibration, temperature, 
pressure, oil debris, currents or voltages). They rely on the assumption that the statistical 
characteristics of the data are stable unless a malfunctioning event occurs in the system. 
That is, the common cause variations are entirely due to uncertainties and random noise, 
whereas special cause variations (e.g., due to faults) account for data variations not 
attributed to common cause. The strength of data-driven techniques is their ability to 
transform the high-dimensional noisy data into lower-dimensional information for 
detection and &agnostic decisions. The data-driven methods provide the ability to handle 
highly collinear data of high dimensionality, substantially reduce the dimensionality of 
the monitoring problem, and compress the data for archiving purposes. In addition to 
providing monitoring methods of their own, data-driven approaches facilitate model 
building via identification of dynamic relationships among data elements. The main 

quantity and quality of system operational data. 
drawback of &+a-d~>fsE qjproz&es is their eeicacy is dqyE&;;t on ~ \ e  

The engineering processes needed to relate system malfunctioning events using a data- 
driven diagnosis approach typically involve the following steps. 



1. Determine the High-Impact Malfunctions: From historical data, understand the 
nature of real and potential faults, their location, their characteristic symptoms, 
and their severity (measured in terms of safety, mission criticality and cost). 

2. Data Selection, Transformation, De-noising and Preparation: Data cleaning 
and preprocessing (e.g., data normalization and de-noising) and data reduction 
and representation (e.g., finding dominant directions, clustering of data, 
recognizing events independent of scale) constitute 50-75% of the effort in 
building data-driven diagnosis models. When the data set is noisy and includes 
more variables than necessary, methods for selecting data records for initial data 
exploration and model building (based, for example, on empirical statistics and 
correlations) are important. Data transformation techniques include component 
scaling, histogram equalization and sample-by-sample nonlinearities. De-noising 
is typically performed by lowpass, highpass, bandpass, and bandstop filters, both 
windowed finite impulse response (FIR) and any of Butterworth, Chebychev, or 
elliptic infinite impulse response (IIR) filters. These may be run efficiently on a 
block of data subsequent to their design. The data selection, normalization and 
filtering steps culminate in a data preparation phase that covers all activities to 
construct the final data sets for classification and model building. 

3. Data Processing Techniques: The data-driven classification approaches are 
numerous and are selected based on competitive evaluation and possibly 
cooperative fusion. These procedures have to be carefully tuned to minimize false 
alarms while improving their classification capability. The procedures should 
have the capability to detect trends and degradation and assess the severity of a 
failure for early warning. Among the myriad of learning-based techniques, 
principal component analysis (PCA), partial least squares (PLS) and support 
vector machines (SVM) provide consistently accurate diagnosis across a range of 
applications, including chillers, automotive and text categorization tasks [32-371. 

4. Testing and Validation: Testing and vali'dation of models is perhaps the most 
important step in ensuring the quality and robustness of the models on live data. 
These methods test models using leave-one-out, N-fold cross validation (train on 
(N-1) sets and test on one set in a round-robin fashion) or bootstrap techniques. 
This process is repeated to adapt the models as the data accumulate over time. 

5. Fusion: A diagnostic system has the potential for higher diagnostic accuracy if it 
is capable of fusing results from multiple diverse classifiers to estimate fault 
severity and to evaluate the health of the integrated system. 

The data processing techniques for diagnosis can be broadly divided into four major 
categories: 

Multiv-e Statistical methods 

Classical least squares regression techniques are inappropriate for handling noisy and 
highly correlated data, since the least squares problem will invariably be ill-conditioned, 
resulting in poor predictions. The techniques of principal components analysis (PCA), 
and partial least squares (PLS) surmount these problems by projecting the multivariate 
data onto a space of as few as two or three dimensions. 



PCA is a multivariate statistical modeling technique that finds the directions of 
significant variability in the data matrix by forming combinations of existing variables to 
orthogonal principal components (PCs). The data matrix is created with replicated 
samples of data (batches) as rows and monitored variables as columns. When the data 
contain dynamic information, the current variables will depend on the past values. 
Therefore, in a multi-way PCA (MPCA), the data are arranged in a three-dimensional 
array (a tensor) of batches by variables by time. Then, the data are centered and scaled, a 
multi-way PCA is performed on the tensor, and the first Y scaled right singular vectors 
(that explain 90% or more of the variability in the data) are selected as the loading 
vectors. When new data are received, the Y score vectors (principal components) in a 
lower-dimensional space are formed by computing the inner product of the data with 
each of the loading vectors. Hotelling’s T 2  (sum of squares of the scores), which 
measures the variations in the score space, has a c2 distribution. The T 2  statistic can be 
interpreted as measuring the normal variations of system operation and the violation of a 
threshold on T 2  would indicate that the system has malfunctioned. Similarly, the sum of 
squares of residuals Q measures the random variations of the nominal system behavior. A 
violation of the threshold on the Q statistic would indicate that the random noise has 
significantly changed. These two statistics, along with their respective thresholds, yield 
a cylindrical in-control region for normal system operation. 

. 

PLS (also known as projection to latent squares) and multi-way PLS are similar to the 
projection techniques of PCA and MPCA. PLS reduces the dimensionality of the input 
and output spaces to find the latent vectors for the input and output spaces which are most 
highly correlated, i.e., those that not only explain the variation in the input, but the 
variation which is most predictive of the output. In the context of diagnosis, PLS builds 
regression models between the monitored variables and the fault classes. 

Signal Analysis Methods 

Many measured signals exhibit oscillations that have either harmonic or stochastic 
nature or both. Signal analysis methods include a wide menu of spectral and statistical 
manipulation primitives such as filters, harmonic analyzers, auto and cross-correlation 
functions, fast Fourier transform (FFT), multi-resolution decomposition ((‘wavelets”), 

These methods are used in the data preparation phase or as data processing modules when 
coupled with statistical hypothesis testing methods (e.g., cumulative sum, generalized 
likelihood ratio test (GLR). 

root mean square (Rh4S) valiies, time syiichroimis averzge residue (TSAR) a d  k=&- UI ruSi3. . 

M-achine Learning 

Machine learning techniques include nonlinear regression, support vector 
machines (SVM), probabilistic neural networks, decision trees, single and multi-layer 
perceptrons, radial basis functions, k-means clustering, learning vector quantization, 
Bayesian networks, hidden Markov models, instance-based classifiers, self-organizing 
feature maps and fuzzy logic. We will briefly describe only SVM because it has been 
found to perform consistently well across a range of applications. 



Support vector machines (SVM), as a supervised statistical learning theory, has gained 
popularity in recent years for classification and regression because of its four distinct 
advantages. First, SVM is a universal learner with proper selection of the kernel 
function. Second, it has the ability to learn with a small amount of training data, even 
when the number of features (terms) is large. Third, SVM is well suited for sparse 
computations. Finally, most categorization problems are linearly separable in a higher- 
dimensional space. The SVM has been successfully employed in a variety of 
applications, such as pattern recognition, multiple regression, nonlinear model fitting and 
text categorization. 

The essential idea of SVM classification is to transform the input data to a high- 
dimensional feature space and find an optimal hyperplane that maximizes the margin 
between the classes. The group of examples that lie closest to the separating hyperplane 
is referred to as support vectors. For SVM regression, the input is first mapped onto high- 
dimensional feature space using nonlinear mapping (the kernel function), and then a 
linear regression is performed in this feature space. 

The block diagram for designing a representative fault detection and isolation (FDI) 
scheme using a learning system approach is shown in Figure 5. We arranged the FDI 
scheme as a three step process: fault detection, fault isolation using statistical and 
machine learning techniques and fault severity estimation using MPLS. 

Chaos Engineering 

Recently, chaos engineering has found a number of applications in home appliances (e.g. 
oil fan heaters, air-conditioners, dish washing dryers and washing machines) and in tap 
water quality prediction. The key idea in the context of fault diagnosis is that there is a 
distinct trajectory of features associated with a fault E3 11 and that it can be inferred frQm 
sensed observations. 

4.4 Model-based Reasoning 

Model-based reasoning is a broad category that describes the use of a wide variety of 
engineering models as the foundation €or the knowledge and the techniques appiied for 
diagnosis. In parallel developments, with the advent of powerful embedded processors, 
different communities have found value in analytic state-based models, input-output 
transfer function models, fault propagation models and quantitative, physics-based 
models to develop online automated diagnostic software for dynamic systems [43]. 
Researchers in the computer science community for Model-Based Diagnosis (MBD) 
employed a model of the system configuration and behavior of the system for the 
diagnosis task [38-391. In process control communities, state equations and transfer 
function representations serve as the system model [40,44]. Practical systems 
engineering approaches have employed fault-propagation graphs as the system model for 
diagnostic reasoning [41,45,46]. In all of these cases, the sensed state of the system is 
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Figure 5. Block diagram of a Data-driven FDI scheme 

compared to what is expected (the monitoring and fault detection task) and a discrepancy 
implies the occurrence of an anomalous condition. 

In the computer science or Artificial Intelligence approaches to diagnosis, the diagnosis 
algorithm reasons about the differences between predictions (made by a functional model 
of the system) and observations (obtained from the actual system). Figure 6 illustrates the 
approach. Comparing the predicted and actual behavior may result in discrepancies that 
imply the occurrence of faults (malfunctioning events). The detected discrepancies are 
analyzed in the context of the system model to generate fault hypotheses and refine them 
as more information becomes available [47], as shown in the diagram. Discrepancies are 

constraints that define system behavior, and relaxation of the constraints implicates faulty 
cnqonents [38,3?,48], and (ii) logical malysis of Boolean constraints and analysis of 
the inconsistencies in the constraints produce fault hypotheses. These approaches, 
developed by the AI Diagnosis (DX) community, are termed consistency-based 
approaches to diagnosis. Most work on qualitative fault diagnosis applies to static 
systems (e.g., combinational circuits) or systems in steady state. There is some work on 
qualitative fault diagnosis of dynamic systems based on analysis of fault signatures 
[49,50,5 11. 

f analyzed in one of two ways: (i) discrepancies are interpreted as a violation of the 
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Figure 6. Consistency-based approach in model-based reasoning. 

Fault detection may also result from comparing the system measurements with models of 
the system that describe its behavior under abnormal conditions. Detections in this case 
are the result of matching observations to predicted behavior in the presence of faults 
(fault observers). Limit checks are a simple example of this type of detection. Once the 
presence of a fault is identified, simple reasoning algorithms isolate the fault to the root 
cause. The fault observers are constructed such that simple logical analysis of the 
outcomes of a set of observers uniquely identifies the root cause or the diagnostic 
hypothesis. In the systems engineering approach, models of expected fault propagation 
paths, also called causal models, are used to determine the cause of anomalous behavior 
[7]. The interrogation of the fault propagation graph is very efficient. This representation 
also enables explanation of the reasoning process that is close to human reasoning 1521. 
In this technique, the complexity of nominal and abnormal system behavior is 
represented in the monitoring (detection) algorithms. 

The process control community has developed approaches based on dynamic quantitative 
models typically represented as a set of differential equations or a set of input-output 
transfer functions. These are typically nominal models of system behavior, and when 
measured behavior is analyzed with various filters, precise numerical vectors called 
residuals are produced (see Figure 7). Residuals are numerical fault indicators in this 
process. Early work on residuai generation and anaiysis methods included the use of a 
bank of Kalman filters (called “matched filters”). The innovation (i.e., the prediction 
error) of the Kalman filter was used as a fault detection residual (mean = 0, if no fault; 
mean # 0 if there is a fault). A bank of filters (one for each potential fault candidate) was 
used for fault isolation [53,54]. Further advances in observer-based fault analysis 
included the design of “unknown input” observers, where the fault residuals were 
decoupled from inaccuracies in the model and a limited number of input disturbances to 
the system [55,56,57,58]. This decoupling made fault isolation techniques more robust, 
sensitive and precise. 

In general, most of the observer-based techniques apply well to linear dynamic systems, 
but they do not extend as easily to non-linear systems with complex behaviors. Recently, 



there has been work on the design and implementation of nonlinear observers (e.g., . 
Garcia and Frank [59]). A number of approaches have adopted hybrid methods for 
diagnosis (see for example, the techniques discussed in the last section). They combine 
analytic, neural, fuzzy, statistical, and spectral methods for fault detection and isolation. 
Other innovative approaches involve combining statistical fault detection and symbol 
generation with qualitative fault signature methods and quantitative parameter estimation 
methods to obtain precise diagnostic results, while avoiding the computational 
complexity of most analytic methods [50,60]. 

Command 
InDuts 

Observed Signals 

1 Residuals 

Nominal Signals 

Figure 7. Generation of residuals. 

Recently, there have been efforts to compare and combine the consistency-based 
approaches developed by the DX community with approaches based on engineering 
disciplines, such as control theory and statistical decision making, used by the Fault 
Detection, Isolation and Recovery (FDIR) community. In recent years, there have been 
joint conferences and workshops as well as publications that aim to bridge the gap 
between the languages and approaches used by these two communities. Interestingly, 
these activities have been called the BRIDGE community. An excellent source of 
information about recent work in this area is the special issue of IEEE Systems, Man, and 
Cybernetics, Part B in October 2004 [61]. 

Model-based reasoning applications include diagnostics and troubleshooting in the 
electrical power industry [62], spacecraft such as Deep Space 1 and Earth Observing 1 
[63-641, and International Space Station [65,66]. 

5.0 Automation considerations for diagnostic systems 

Determining the diagnostic and control functions to be automated requires understanding 
of the effects that the automation will have on operations occurring years in the future. 
Functions must either make the system safer by performing functions faster, more 
reliabIy or more accurately than crews can, or they must maintain a safety level at a 
significantly lower cost, in order to warrant inclusion in the design. Determining the cost 
of future operations, with varying levels of automation, is a complex but necessary task 
for achieving affordable, reliable, safe and effectiye ISHM programs. Safety and cost 



models will provide the basis for deciding if functions are automated or manual, on-board 
or off-board, or real-time or off-line. 

Selecting the right method for health state determination and automation is a complex 
decision. First, the design organization needs a process for deciding what to automate. 
Then, the method for performing the automation can be selected. The decision should be 
to automate a diagnostic function if: 

the automated system can provide valuable information that could not be obtained at 
all, or quickly enough to be useful, without the automated system; 

* the automated system offers significant improvements in the quality of information 
over human-performed diagnostic activities, such as increased accuracy or 
consistency; or 
the automated system can perform the diagnostic function at a lower cost than 
human-performed diagnosis. 

* 

Much of the activity of flight crews and supporting teams involve managing the health of 
the vehicle by monitoring data, watching for off-nominal indications, diagnosing the 
cause of abnormalities, and mitigating the effects of failures. Maintenance and launch 
preparation organizations spend much of their time either looking for indications of 
failure or proving that no off-nominal conditions are present. Any automated system 
should be designed and built with full understanding of the benefits to the program to be 
provided by the automated diagnostic system. 

Diagnostics designed to improve safety and mission assurance should be able to 
demonstrate their degree of improvements. Analysis of the benefits of the diagnostic 
system must be integrated with the hazard analysis, Probabilistic Risk Assessment (PRA) 
and other safety metrics to show a quantifiable improvement in the assessments. Crew 
monitoring and procedural training is inadequate for failures that occur with little or no 
warning and result in catastrophic consequences, such as a high-speed turbopump 
disintegration resulting in a launch vehicle expiosion. Automated failure detection and 
initiation of crew escape systems for some failures is necessary for crew safety for certain 
types of failures. Figure 8 shows a conceptual matrix for determining if detection and 
response must be automated or if manual or collaborative responses are sufficient for 
assuring the safety of the crew. 

Space vehicle maintenance and launch preparation operations are complex, lengthy and 
expensive. Much of the activity involves testing to assure that the vehicle and support 
systems are in fully nominal conditions and ready to launch. These activities involve both 
detecting failures on the ground and verifying that there are no failures or incipient 
conditions that could pose flight hazards. Automation of these detection and verification 
activities holds significant promise for reducing costs and shortening the launch flow 
timelines, as well as improving the quality of the results of diagnostic and verification 
procedures and testing. However, it is not always clear how automation will sect the 
overall cost of operations, either by reducing the size of the workforce, shortening the 
launch flow timeline, increasing the flight rate possible within the system or improving 
the mission assurance probabilities. These questions involve very complex analysis of 



!Catastrophic Severe Marginal None 

Figure 8 Conceptual matrix for automation decision-making. 

operations, and determining the impact that a particular diagnostic or automation 
application will have on program cost and reliability figures of merit have proven elusive. 
Operations and cost analysis, preferably using program-level modeling and simulation to 
determine the,high-value targets for automation in the launch flow, is necessary for 
making correct decisions on which health management functions to automate. A major 
consideration is the cost of building and maintaining the automated system, compared to 
the cost of training and supporting the human teams and providing them with the tools 
needed to perform the diagnostic functions. 

Similar analyses are warranted for flight operations to determine how automated 
diagnostics can affect the cost of setting up and supporting the flight control team and 
training the flight crew. The Mission Control Center (MCC), Mission Evaluation Room 
(MER), contractor facilities and the organizations that maintain the facilities, build the 
toolstand support operations constitute a large workforce. Flight crew training involves 
extensive drilling in recognizing emergency conditions and executing emergency 
procedures, often exacerbated by the complex and sometimes confusing information 
presented to the crew. Determining how much automated diagnostics, automated decision 
support tools; procedure management applications and related systems can impact these 
operations organizations is a necessary element of the systems engineering related to 
health management. 

The technologies available to the spacecraft that will implement the Vision for Space 
Exploration are far advanced from what previous programs had to work with, as 
described throughout the preceding sections. These applications can be costly to design, 
implement and test, and are themselves subject to failure. Careful systems engineering 



must accompany the use of these technologies to assure that their deployment improves 
crew safety, mission assurance or cost reductions. 

6.0 Summary and Conclusions 

Automated diagnostic applications have been implemented with a wide variety of 
techniques and in many diverse domains, as surveyed in this paper. As automation 
becomes more widespread, the importance of verification and validation of both 
hardware and software components becomes increasingly important. This paper has 
focused on the algorithms. Verification methods are discussed in a companion paper in 
this Forum. 

The reliability of diagnoses is highly dependent on the accuracy of the sensed 
measurements and sensor and instrumentation issues are addressed in another companion 
paper. As applications become more complex to meet the requirements of increasing 
autonomy, system level information fusion techniques will need to fuse diagnostic 
information from a variety of sources. Information fusion techniques are addressed in a 
third companion paper. Diagnostic algorithms are at the heart of every health 
management application, and selecting the most appropriate techniques to perform 
diagnostic reasoning can be quite challenging. The challenge for the future is developing 
generic diagnostic architectures that can use a variety of techniques and which can scale 
to cover critical events for an entire system. 

7.0 Acknowledgements 

The authors appreciate the many helpful comments from the Forum reviewers and from 
Lee Brownston and Peter Robinson, members of the RNA group at NASA Ames. We 
would like to thank Prof. George Vachtsevanos for his list of references and example 
applications used in the case-based reasoning section. 

8.0 References 

1. 

2. 

3. 

4. 

5. 

6. 

Henley, Ernest J. and Kumamoto, Hiromitsu, Desiging for Reliability and Safety 
Control, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985. 
Vesely, W.E., et al, “Fault Tree Handbook, NUREG-0492, 
htt~://~~~.nrc.~~v/readinrr-rm/doc-collections/nure_es/staffisr0492/, 198 1. 
Tumer, I.Y. and R.B. Stone, Mapping Function to Failure During High-Risk 
Component Development. Research in Engineering Design, 2903.14: p. 25-33. 
Sacks, Ivan J., “Digraph Matrix Analysis,” IEEE Transactions on Reliability, vol. 
R-34, no. 5, pp 437-446, December, 1985. 
Stevenson, Robert W., Miller, James G., Austin, Michael E., “Failure 
Environment Analysis Tool (FEAT) Development Status,” AiAA Computing in 
Aerospace VIII Conference, AIAA 9 1-3 803 , Baltimore, MD , 199 1. 
Kirby, S., et al, “Real-time Automated Failure Analysis for On-orbit Operations.” 
Proceedings of Applications of Artificial Intelligence 1993, SPIE Proceedings 
Volume 1963, Orlando, FL. 

, 



7. Deb, Somnath, Pattipati, Krishna, and Shrestha, R., “QSI’s Integrated Diagnostics 
Toolset,” Proc. IEEE Autotestcon 1997, Anaheim, CA, pp. 408-42 1. 

8. Giarratano, Joseph C. and Riley, Gary D., Expert Svstems: Principles and 
P r o g r a m m ,  Fourth Edition, PWS Publishing Company, Boston MA,.2004. 

9. Jackson, Peter, Introduction to Expert Systems, Third Edition, Addison Wesley, 
1998. 

10. Brachman, Ronald and Levesque, Hector, Knowledge Representation and 
Reasoning (The Moran Kaufmann Series in Artificial Intelligence), Morgan 
Kaufmann, 2004. 

11. Patterson, Dan W., Introduction to Artificial Intelligence and Expert Systems, 
Prentice Hall, 1990. 

12. Edmunds, Robert A., The Prentice Hall Guide to Expert Systems, Prentice Hall 
Trade, 1988. 

13. Buchanan, B.G. and Shortliffe, E.H., editors, Rule-based Expert Systems: The 
MYCIN Experiments of the Stanford Heuristic Programming Project, Addison- 
Wesley, 1984. 

Media, Inc., 2005. 

Methodological Variations, and System Approaches, AI- Communications, 7 (i), 

16. Winston, P. H.: Artificial Intelligence, 3rd ed., Addison-Wesley Publishing Co., 

17. Stefik, M.: Introduction to Knowledge Systems, Morgan Kaufmann Publishers 

18. Kolodner, J. L.: Case-Based Reasoning, San Mateo, CA, Morgan Kaufmann 

19. Berenji, Hamid, Wang, Yan, Jamshidi, Mo, Vachtsevanos, George, and 

14. Jones, M. Tim, AI Application Programming, Second Edition, Charles River 

15. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, 

pp. 39-59. 1993. 

1993 

San Francisco, CA, 1995. 

Publishers, Inc 1993. 

Vengerov, David, “Gated Experts Neural Networks for Prognostics,” Technical 
report 11s-05-01, May 20,2005. 

20. Varma, A. and Roddy, N., “ICARUS: A Case-Based System for Locomotive 
Diagnostics,” Engineering Applications of Artificial Intelligence Journal, 1999. 

21. Devaney, Mark and Cheetham, Bill, “Case-Based Reasoning for Gas Turbine 
Diagnostics,” AAAI 2005. 

22. Lehane, M., Dube, F., Halasz, M., Orchard, R., Wylie, R., Zaluski, M., Integrated 
Diagnostic System (IDS) for Aircraft Fleet Maintenance, Proceedings of the AAAZ 
’98 Workshop: Case-based Reasoning Integrations, Technical Report WS-98-15. 
Madison, Wisconsin, USA. July 27, 1998. pp. 91-95. NRC 43577. 

Architecture for Fleet Vehicles Using Dynamic Case Based Reasoning, appearing 
in IEEE Autotestcon 2005. 

Dissertation: The University of New Brunswick (1997): 
http:l/di ~italcommons. hil.unb.caldissertations/AAIMq23785/. 

New York, 2000. 

23. saxen2, A, WE, E., vachtsPvmos, G.: IIItegrFited Diagnosis and Prognosis 

24. Cookson R. L.:An evaluation of case-based reasoning for fault diagnosis, PhD 

25. Duda, R.O., Hart, P.E., and Stork, D., Pattern classiJication, John Wiley & Sons, 



26. Bishop, C.M., Neural Networks for Pattern Recognition, Clarendon Press, 

27. Cherkassky, V., and Mulier, F., LearningJ).om data, concepts, theory and 

28. Breiman, L., Friedman, J.H., Olshen, RA., and Stone, C.J., Classfication and 

29. Quinlan, J.R., C4.5: Programs for Machine Learning, San Mateo, CA: Morgan 

30. Jordan, M.I., (Ed.)., Learning in Graphical Models, The MIT Press, 1999. 
3 1. Iokibe, T., ” Industrial Applications of Chaos Engineering,” 

32. Namburu, S.M., H. Tu, J. Luo and K.R. Pattipati, “Experiments on Supervised 

. 

Oxford, 1997. 

methods, John Wiley & Sons, New York, 1998. 

Regression Trees, Wadsworth, California, 1984. 

Kaufmann, 1993. 

htt~:i//www.riccx.com/e/pap~r~1997.8.pdf 

Learning Algorithms for Text Categorization,” IEEE Aerospace Conference, Big 
Sky, Montana, March 2005. 

Hine, A., “Fault Diagnosis in W A C  Chillers,” IEEE Instrumentation & 
Measurement Magazine, Vol. 8, No. 3, pp. 24-32, August 2005. 

34. Luo, J., Tu, F.,. Azam, M., Pattipati, K.R., Willett, P., Qiao, L., and Kawamoto, 
M., “Intelligent Model-based Diagnostics for Vehicle Health Management,” 
SPIE Aerosense, Vol. 5 107, Track: Signal and Image Processing, System 
Diagnosis and Prognosis: Security and Condition Monitoring Issues 111, Orlando, 
FL, April 2003. 

35. J. Luo, K.R. Pattipati, L. Qiao, and S. Chigusa, “Agent-based Real-time Fault 
Diagnosis,” 2005 IEEE Aerospace Conference, Big Sky, Montana, March 2005. 

36. Bronson, R.J., Depold, H., Rajamani,R., Deb, S., Morrison, M., and Pattipati, 
K.R., “Optimal Data Normalization for Engine Health Monitoring,” Proceedings 
of GT 2005: ASME Turbo Expo 2005, Reno-Tahoe, Nevada, June 6-9 2005. 

37. Morrison, William, Pattipati, Krishna, Morrison, John, Hoffhan, Richard, and 
Slade, James, “Intelligent Self-Evolving Prognostic Fusion,” Interim Progress 
Report, NASA Contract NNA05AC24C, 2005. 

38. Hamscher, W., Console, L., and De Kleer, J,, Readings in model-based diagnosis, 
Morgan Kaufmann Publishers, San Mateo, CA, 1992. 

39. Reiter, R., “A theory of diagnosis from First Principles, Artificial Intelligence, 
vol. 32, no. 1, pp. 57-96, 1987. 

40. Korbicz, Jozef, Koscielny, Jan M., Kowalczuk, Zdzisiaw, and Cholewa, 
Wojciech, Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer 
2004 

41. Deb, S., Pattipati, K., Raghavan, V., Shakeri, M., and Shrestha, R., “Multi-signal 
flow graphs: a novel approach for system testability analysis and fault diagnosis,” 
IEEE Aerospace and Electronics Systems Magazine, vol. 10, no. 5, pp. 14-25, 
1995. 

42. Gentil Sylviane, Montmain, Jacky, and Combastel, Christophe, “Combining FDI 
and AI Approaches Within Causal-Model-Based Diagnosis,” IEEE Trans. On 
Systems, Man, and Cybernectics-Part B: Cybernetics, vol. 34, no. 5, p. 2207- 
2221, October 2004 

33. Choi, K., Namburu, S.M., Azam, M.S., Luo, J., Pattipati, K.R., and Patterson- 



43. Patton, R., P. Frank, and R. Clark, Fault Diagnosis in Dynamic Systems: Theory 
and Applications, Prentice Hall, Inc., Hertfordshire, UK, 1989. 

44. Himmelblau, D.M., Fault Detection and Diagnosis in Chemical and 
Petrochemical processes, Elsevier, Amsterdam, The Netherlands, 1978. 

45. Kramer, M.A. and B. L. Palowitch Jr, “A rule-based approach to fault diagnosis 
using the signed directed graph,” AZChE Journal, vol. 33, no. 7 , pp. 1067 - 1078, 

46. Padalkar S., Sztipanovits J., Karsai G., Miyasaka N., Okuda K.: Real-Time Fault 
Diagnostics, ZEEE Expert, 6,3,  pp. 75-85, 1991. 

47. Williams, B.C. and P.P. Nayak, “A Model-based Approach to Reactive Self- 
Configuring Systems,” Workshop on Logic-Based Artificial Intelligence, 
Washington, DC, June 14-16,1999. 

Intelligence, vol. 32, pp. 97--130, 1987. 

Ninth Nat‘l Con,  Artificial Intelligence, MIT Press, Cambridge, Mass., pp. 817- 
823,1991. 

50. Mosterman, P.J. and G. Biswas, “Diagnosis of Continuous Valued Systems in 
Transient Operating Regions,” IEEE Trans. on Systems, Man and Cybernetics, 
vol. 29, no. 6, pp. 554-565, Nov. 1999. 

Qualitative Model-Based Diagnosis,” ZEEE Expert: Zntelligent Systems and Their 
Applications, vol. 12, no. 3, pp. 22-31, May 1997. 

withincausal-Model-based Diagnosis,” ZEEE Transactions on Systems, Man abnd 
Cybernetics, Part B, vol. 34, no. 5, pp. 2207-2221, Oct. 2004. 

London, 1998. 

2001. 

knowledge-based redundancy - a survey and some new results,” Automatica 
(Journal of ZFAC), vo1.26 no.3, pp.459-474, May. 1990 

Robustness and Applications,” Control Engineering Practice, vol. 5, pp. 671-682, 
1997. 

Engineering Practice, vol. 5, pp. 653-661., 1997. 

48. deKleer, J. and B.C. Williams, “Diagnosing multiple faults,” Artificial 

49. Rose, P. and M.A. Kramer, “Qualitative Analysis of Causal Feedback,” Proc. 

5 1. Trave-Massuyes and R. Milne, “Gas-Turbine Condition Monitoring Using 

52. Gentil, S., J. Montmain, and C. Combastel, “Combining FDI and AI Approaches 

53. Mangoubi, R.S., Robust Estimation and Failure Detection, Springer Verlag, 

54. Gustafsson, F., Adaptive Filterinp and Change Detection, John Wiley and Sons, 

55. Frank, P.M., “Fault diagnosis in dynamic systems using analytical and 

56. R.J. Patton and J. Chen, “Observer-based Fault Detection and Isolation: 
, 

57. Gertler, J., “Fault Detection and Isolation using Parity Relations,” Control 

58. Isermann, R. and P. Balle,”Trends in the Application of Model-based Fault 
Detection and DiagnGsis Gf Techcical Pmcesses,” Ce?md E.zgi,<ee?-iT?g P T Q C f k P ,  

V O ~ .  5, pp. 709-719, 1997. 
59. Garcia, E.A. and P.M. Frank, “Deterministic Nonlinear Observer-based 

Approaches to Fault Diagnosis: A Survey,” Control Engineering Practice, vol. 5, 
pp. 663-670, 1997. 

60. Patton, R J; Chen, J; Nielsen, S B., “Model-based methods for fault diagnosis: 
some guide-lines,” Transactions of the Institute of Measurement and Control, vol. 
17,no._2, pp. 73-83. 1995 

c 



61. Biswas, G., M.O. Cordier, J. Lunze, L. Trave-Massuyes, and M. Staroswiecki, 
“Diagnosis of Complex Systems: Bridging the Gap between the FDI and DX 
communities,” Guest Editorial, special issue of IEEE Trans. on Systems, Man, 
and Cybernetics, Part B, vol. 34, no. 5, pp. 2139-2142, Oct. 2004. 

Dependency Model Based Approach for Identifying and Evaluating Power 
Quality Problems, “ IEEE Trans. On Power Delivery, vol 19, no. 3, pp. 1154- 
1 166, July 2004. 

63. Muscettola, N., Nayak, P.,Pell, B.,and Williams, B., “Remote Agent: To Boldly 
Go Where No AI System Has Gone Before,” ArtiJicial Intelligence, vol. 100, 
1997. 

64. Hayden, Sandra C., Sweet, Adam J., and Christa, Scott E., “Livingstone Model- 
Based Diagnosis of Earth Observing One, AIAA-2004-6225, AIM I”‘ Intelligent 
Systems Technical Conference, Chicago, IL, Sept. 20-22,2004. 

65. Aaseng, Gordon, Cavanaugh, Kevin, and Deb, Somnath, “An Intelligent Remote 
Monitoring Solution for the International Space Station, IEEE Aerospace, 2003. 

66. Robinson, P., Shirley, M., Fletcher, D., Alena, R., Duncavage, D., Lee, C., 
“Applying Model-Based Reasoning to the FDIR of the Command & Data 
Handling Subsystem of the International Space Station,” iSAZRAS 2003. 

67. Hutcheson, R. and I.Y. Tumer. Function-based design of a spacecraftpower 
system diagnostics testbed. in ASME International Mechanical Engineering 
Congress and Exposition (IMECE). 2005. Orlando, FL. 

62. Azam, Mohammad, Tu, Fang, Pattipati, Krishna, and Karanam, Rajaiah, “A 



n 
u 
0 

d) 

VI 

m 

Y 
u‘ 
G 

m 













c .- 
E 

I cn cn 
0 0 


