8 research outputs found

    Bridging IoT infrastructure and cloud application using cellular-based internet gateway device

    Get PDF
    An Internet of Things (IoT) middleware can solve interoperability problem among “things” in IoT infrastructure by collecting data. However, the sensor nodes’ data that is collected by the middleware cannot be directly delivered to cloud applications since the sensor nodes and the middleware are located in intranet. A solution to this problem is an Internet Gateway Device (IGD) that retrieves data from the middleware in intranet then forwards them to cloud applications in the internet. In this study, an IGD based on cellular network is proposed to provide wide-coverage internet connectivity. Two test scenarios were conducted to measure delay and throughput between the IGD and the cloud application; using data from DHT22 sensor and image sensor respectively. The results of the first test scenario using DHT22 sensor show that the average delay is under 5 seconds and the maximum throughput is 120 bps, while the second one using image sensor concludes that the average delay is 595 seconds and the maximum throughput is 909 bps

    Enabling a lightweight Edge Gateway-as-a-Service for the Internet of Things

    Get PDF
    International audienceSince its introduction, the Internet of Things (IoT) has changed several aspects of our lives, leading to the commercialization of different heterogeneous devices. In order to bridge the gap among these heterogeneous devices, in some of the most common IoT use cases -e.g., smart home, smart buildings, etc.-the presence of a gateway as an enabler of interoperability is required. In this paper, we introduce the concept of a Gateway-as- a-Service (GaaS), a lightweight device that can be shared between different users thanks to the use of virtualization techniques.Performance has been evaluated on real hardware and results demonstrate the lightweight characteristics of the proposal

    A blockchain-based distributed paradigm to secure localization services

    Get PDF
    In recent decades, modern societies are experiencing an increasing adoption of interconnected smart devices. This revolution involves not only canonical devices such as smartphones and tablets, but also simple objects like light bulbs. Named the Internet of Things (IoT), this ever-growing scenario offers enormous opportunities in many areas of modern society, especially if joined by other emerging technologies such as, for example, the blockchain. Indeed, the latter allows users to certify transactions publicly, without relying on central authorities or intermediaries. This work aims to exploit the scenario above by proposing a novel blockchain-based distributed paradigm to secure localization services, here named the Internet of Entities (IoE). It represents a mechanism for the reliable localization of people and things, and it exploits the increasing number of existing wireless devices and blockchain-based distributed ledger technologies. Moreover, unlike most of the canonical localization approaches, it is strongly oriented towards the protection of the users’ privacy. Finally, its implementation requires minimal efforts since it employs the existing infrastructures and devices, thus giving life to a new and wide data environment, exploitable in many domains, such as e-health, smart cities, and smart mobility

    LEGIoT: a Lightweight Edge Gateway for the Internet of Things

    Get PDF
    International audienceThe stringent latency together with the higher bandwidth requirements of current Internet of Things (IoT) applications, are leading to the definition of new network-infrastructures, such as Multi-access Edge Computing (MEC). This emerging paradigm encompasses the execution of many network tasks at the edge and in particular on constrained gateways that have also to deal with the plethora of disparate technologies available in the IoT landscape. To cope with these issues, we introduce a Lightweight Edge Gateway for the Internet of Things (LEGIoT) architecture. It relies on the modular characteristic of microservices and the flexibility of lightweight virtualization technologies to guarantee an extensible and flexible solution. In particular, by combining the implementation of specific frameworks and the benefits of container-based virtualization, our proposal enhances the suitability of edge gateways towards a wide variety of IoT protocols/applications (for both downlink and uplink) enabling an optimized resource management and taking into account requirements such as energy efficiency, multi-tenancy, and interoperability. LEGIoT is designed to be hardware agnostic and its implementation has been tested within a real sensor network. Achieved results demonstrate its scalability and suitability to host different applications meant to provide a wide range of IoT services

    Recent advances in information-centric networking based internet of things (ICN-IoT)

    Get PDF
    Information-Centric Networking (ICN) is being realized as a promising approach to accomplish the shortcomings of current IP-address based networking. ICN models are based on naming the content to get rid of address-space scarcity, accessing the content via name-based-routing, caching the content at intermediate nodes to provide reliable, efficient data delivery and self-certifying contents to ensure better security. Obvious benefits of ICN in terms of fast and efficient data delivery and improved reliability raises ICN as highly promising networking model for Internet of Things (IoTs) like environments. IoT aims to connect anyone and/or anything at any time by any path on any place. From last decade, IoTs attracts both industry and research communities. IoTs is an emerging research field and still in its infancy. Thus, this paper presents the potential of ICN for IoTs by providing state-of-the-art literature survey. We discuss briefly the feasibility of ICN features and their models (and architectures) in the context of IoT. Subsequently, we present a comprehensive survey on ICN based caching, naming, security and mobility approaches for IoTs with appropriate classification. Furthermore, we present operating systems (OS) and simulation tools for ICN-IoT. Finally, we provide important research challenges and issues faced by ICN for IoTs

    Decentralized Control and Adaptation in Distributed Applications via Web and Semantic Web Technologies

    Get PDF
    The presented work provides an approach and an implementation for enabling decentralized control in distributed applications composed of heterogeneous components by benefiting from the interoperability provided by the Web stack and relying on semantic technologies for enabling data integration. In particular, the concept of Smart Components enables adaptability at runtime through an adaptation layer and is complemented by a reference architecture as well as a prototypical implementation
    corecore