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for the Internet of Things
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*Ericsson Research, Jorvas, Finland - Inria Lille - Nord Europe, France

Abstract—Since its introduction, the Internet of Things (IoT)
has changed several aspects of our lives, leading to the commer-
cialization of different heterogeneous devices. In order to bridge
the gap among these heterogeneous devices, in some of the most
common IoT use cases -e.g., smart home, smart buildings, etc.-
the presence of a gateway as an enabler of interoperability is
required. In this paper, we introduce the concept of a Gateway-as-
a-Service (GaaS), a lightweight device that can be shared between
different users thanks to the use of virtualization techniques.
Performance has been evaluated on real hardware and results
demonstrate the lightweight characteristics of the proposal.

Keywords—Internet of Things, Edge Computing, Virtualization,
Gateway, Container.
[. INTRODUCTION

The Internet of Things (IoT) is signing an important revo-
lution in all the aspects of our lives, i.e., health, transportation,
work, and so on and so forth. The tremendous interest behind
the IoT has led to the development and commercialization
of different types of devices -billions are already deployed,
and the number will reach 50 billion by 2020 according
to [1]-. These objects are often designed in order to better
suit specific application needs; therefore by using various
technologies in terms of hardware and network protocols. As
a result, nowadays, we have a proliferation of heterogeneous
things and standards that has brought to a fragmented and
complex landscape. To bridge this gap, an interesting and
promising approach is to apply semantic technologies -already
well spread in the Web- as an enabler of interoperability among
heterogeneous devices [2].

In some IoT contexts -such as smart home, smart buildings,
smart farms, and so on and so forth- the interoperability among
disparate devices can be achieved at the gateway. In [3] we
proposed the architecture of a gateway capable to manage,
on one hand, semantic-like things and, on the other hand,
to act as an end-point for the presentation of data to users.
In this paper, we introduce the concept of Gateway-as-a-
Service (GaaS), as an efficient and lightweight device, which
can be shared between different users. Thanks to emerging
lightweight virtualization techniques, indeed, it is possible to
provide high versatility and customizability to the platform.
The proposal has been implemented on real hardware, and
validated through an extensive performance evaluation.

The remainder of the paper is organized as follows. Sec-
tion II explores related work. In Section III, we introduce
the main characteristics of our Gateway-as-a-Service, while
Section IV focuses on the performance evaluation and in
particular the impact of using virtualization technologies in
our solution. Section V concludes the paper.

This work is partially supported by CPER DATA, the FP7 VITAL
project, the CAPES-COFECUB CROMO project, and by the FP7 Marie Curie
METRICS project.

II. RELATED WORK

In this section, we discuss related work linked to our pro-
posal; we first analyze initiatives regarding the interoperability
in the Internet of Things; then, we focus on the literature
proposing solutions in which virtualization technologies are
employed at the network edge.

As stated by Desai et al. in [4], a scalable IoT architecture
should be independent from messaging protocol standards,
while also providing integration and translation between var-
ious popular messaging protocols. Recently, semantic tech-
niques started to became popular also in the IoT context [2],
as an enabler of the interoperability among disparate devices.
Authors in [4] describe a semantic IoT architecture where the
gateway, located between physical level sensors and cloud-
base services, provides translation between widely used CoAP,
MQTT, and XMPP protocols; however authors do not focus
on the interactions of the gateway with external users. Wu et
al. in [5] propose the concept of Gateway-as-a-Service as a
device that provides distributed cloud services for intelligent
IoT applications based on the Web of Things (WoT). However,
this solution does not consider the heterogeneity of different
devices.

Bukhary et al. in [6] evaluate Docker container technology
as a platform for Edge Computing. In this work, Docker
has been evaluated in terms of deployment and termina-
tion, resource and service management, fault tolerance and
caching. Authors’ conclusions are that Docker represents a
good solution to be employed in edge computing contexts.
In our previous work [3], we include lightweight virtualization
technologies in the design of a gateway for the Cloud of Things
(IoT). In this work, the aforementioned idea is enhanced by
introducing new features and an extensive performance evalua-
tion. In [7], the design of an IoT gateway that can be efficiently
employed also in an edge computing architecture has been
proposed. In particular, that study shows how to efficiently
and flexibly use Docker containers in order to customize the
IoT platform, by offering data processing services. Container
technologies are also used in a Capillary Network scenario [8],
where Docker containers allow to package, deploy, and execute
different functionality at the capillary gateway.

The aforementioned proposals strengthen our vision to-
wards the implementation of an efficient and lightweight
gateway for the Internet of Things. Thanks to the use of
virtualization techniques, the gateway can be shared among
different users and customized according to the use case needs.

III. GATEWAY-AS-A-SERVICE

The architecture of our Lightweight Edge Gateway-as-
a-Service is depicted in Figure 1. The platform has been
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designed to meet specific requirements: (i) interoperability; (i)
high energy-efficiency; (iii) fast allocation and flexibility in
managing different services; (iv) isolation; (v) backup capabil-
ities; (vi) multitenancy. In the following subsections, each key
component is described in detail.
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Fig. 1: Gateway Architecture.

A. Hardware and Operating System

ARM architecture is constantly becoming more widespread
by virtue of its low-power characteristics and costs [9]. The
Single Board Computer family Raspberry Pi (RPi) takes ad-
vantage of these features, and it became popular, over the last
few years, thanks to the different purposes of use; the RPi finds
room also in the IoT context, especially for providing gateway
functionality [3].

In this paper, we selected the last two generations of the
Raspberry Pi', the Raspberry Pi 2 (RPi2) model B> and the
Raspberry Pi 3 (RPi3) model B3, that has been released in
February 2016. The main hardware characteristics of the two
boards are summarized in Table I.

TABLE I: Raspberry Pi 2 and Raspberry Pi 3 features.

Raspberry Pi 2 model B | Raspberry Pi 3 model B

Chipset Broadcom BCM2836 Broadcom BCM2837
CPU Quad-Core @900MHz Quad-Core @1.2GHz
Memory 1GB LP-DDR2 400MHz 1GB LP-DDR2 900MHz
GPU Broadcom VideoCore IV Broadcom VideoCore IV
Ethernet 10/100 Mb/s 10/100 Mb/s

Flash Storage

MicroSD

MicroSD

Connectivity USB

4USB 2.0 Host

4USB 2.0 Host

OS

Linux, Windows 10

Linux, Windows 10

Price

$35

$35

As base Operating System, we use the image provided by
Hypriot* running Raspbian Jessie with Linux kernel 4.4.10.
Both RPis use 16 GB (Transcend Premium 400x Class 10
UHS-I microSDHCTM) memory card as storage device.

Uhttps://www.raspberrypi.org/
Zhttps://www.raspberrypi.org/products/raspberry- pi-2-model-b
3https://www.raspberrypi.org/products/raspberry- pi-3-model-b
“http://blog.hypriot.com

B. Container Virtualization Technology

According to some of the requirements listed at the begin-
ning of this section, introducing lightweight virtualization tech-
nologies allows a system that benefits of interesting features
such as: (i) fast building process, instantiation, and initializa-
tion of containers; (ii) high density of application/services due
to the small container image; (iii) isolation between different
instances. This is mainly due to the lightweight characteristics
of container technologies if compared to alternative solutions
such as hypervisor-based virtualization. The main difference
between these two technologies are widely discussed in [10].
In our implementation, we use Docker® containers for execut-
ing the different instances. Docker introduces an underlying
container engine, together with a functional API that allows
easily building, management, and removal of a virtualized
application. Docker version 1.11.0 has been used.

C. Application Components

As can be observed in Figure 1, from the application
point of view, our architecture is characterized by three main
components: (i) a web server that exposes services to the
Internet -we chose WildFly®, an application server written in
Java, which runs on multiple platforms; (ii) a search server in
which all sensor data is stored -in our design we use Elas-
ticsearch’, which provides a distributed search engine with
an HTTP web interface and schema-free JSON documents;
(iii) an orchestrator that ensures and manages communication
paths between all containers. These three main components are
virtualized by means of Docker containers; ensuring therefore
an isolated environment together with many other benefits that
will be clearer from the analysis of the different interactions
that the gateway can perform with the rest of the network.
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Fig. 2: The gateway can be shared between different tenants.

Ensuring isolation at the gateway allows also a multi-
tenant platform that can be shared between different users
(Fig.2). This characteristic turns out to be particularly useful
in contexts in which the gateway has to keep the peculiarity
of being a vendor-independent platform.

Finally, the flexibility given by the use of containers
enlarges the potentialities of our platform in terms of backup
functionality and capacity of storing the network status at given
times.

Shttps://www.docker.io/
Ohttp://wildfly.org
"https://www.elastic.co



Another main feature introduced in our gateway design is
the On-demand activation of Docker containers, by means of a
socket-activation framework. Figure 3 shows a practical use of
this component. A remote user forwards the socket activation
connection, which then goes through the proxy for activating
the web server container. After the activation, the container
can receive traffic from the sensors through the proxy. The
example refers, in particular, to the activation of the web
server container but it can be extended to the rest of the other

containers.
/ Gateway \
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1 Socket activation / \
connection 1
1
I
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15 Proxy Web Server
* activation

______
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Fig. 3: Container activation through socket/proxy connection.

The implementation of the socket-activation framework
allows a dynamic allocation of services in the gateway that
can bring several benefits, for example in terms of energy
efficiency. Indeed, the container instances can be dynamically
allocated only when required, without being constantly active.

A subset of possible interactions that our gateway can keep
with other network entities such as Remote Users and Sensors
are detailed below.

For example, we want to analyze the simple case of a
sensor that transmits its updated parameters to the gateway
(Fig. 4a). We assume that the database container was pre-
viously activated by a remote user, and that the database
containing the latest update data is stored within a cover
Docker image. When the gateway receives updated information
from the sensor, a Docker container is launched -via the
socket/proxy activation- and the new values are stored into
the database. Once this transaction is completed, the updated
Docker image is saved locally in the gateway. The second
interaction (Fig. 4b) can be considered consequently to the
first. In this case a remote user aims to access data stored in
the database. In this scenario, the user can easily download the
latest updated Docker image -which is stored on the gateway-
and then have access to data -this case is marked with 1 in
the Figure 4b-. However, data can be read directly on the
gateway from the Database Docker image. The last interaction
(Fig. 4c) describes the case in which the gateway acts as a
interface between remote users and sensors. In this case, we
can consider the scenario of a user that wants to know the
temperature measured in the “Room 105”. In this particular
case, thanks to the semantic annotation, the gateway knows the
best node that can provide the information, then it forwards
the request to the specific node.

IV. PERFORMANCE EVALUATION

The validation of our proposal covers two different aspects.
First, we evaluate how a Raspberry Pi reacts -in terms of

performance- to specific workloads generated by applications
running within Docker containers. This is done with the aim
to understand the impact of introducing virtualization on the
aforementioned hardware. Then, we present a first performance
evaluation of our gateway platform while performing specific
tasks.

A. General Performance

To challenge specific hardware segments, in both the RPi2
and RPi3, we use software tools capable to generate different
types of workloads. In order to estimate the overhead produced
by the presence of a single or multiple containers running,
we test CPU, Memory, Disk I/O, and Network I/O perfor-
mance. The native performance -i.e. running the benchmark
tool without including any virtualization layer- is used as a
reference for comparison. Considering that in our gateway
multiple functions are virtualized, by means of containers,
our objective is to test the performance when concurrent
(virtualized) instances are running.

We test CPU performance with sysbench®. It executes
a stress test designed to challenge the CPU by calculating
prime numbers. The performance metric is the execution
time (measured in seconds) -a lower execution time implies
better performance-. Figure 5a shows the results coming from
this test when up to four concurrent instances -native and
virtualized- are running. We can mainly observe that the
container engine introduces a negligible impact on the CPU
performance in each single case. From the power consumption
perspective, we can notice that the consumption of RPi3 is
slightly higher compared to RPi2.

We use the Unix command mbw’ to test the Memory
I/O performance. The benchmark tool determines the available
memory bandwidth by copying large arrays of data in memory,
and performing three different tests (memcpy, dumb, and
mcblock). Similarly to the previous case, native and container
performance can be considered comparable (Figure 5b). RPi3
performance are approximately a third higher compared to
the RPi2, at the expense of a minimal increase in the power
consumption.

The benchmark tool fio'” has been used in order to evaluate
the Disk I/O performance. In particular, the test consists in
performing sequential read/write operations against a 6GB
file stored on the MicroSD card. Figure Sc shows sequential
read and write performance averaged over 60 seconds using
a typical 1 MB I/O block size. Docker introduces negligible
overhead during the sequential read test. Both Raspberry Pi
boards introduce a relevant overhead during the sequential
write test almost 50% for RPi2 and 37% for RPi3.

For the Network I/O analysis (Fig. 5d), we want to
quantify the power consumption of the two Raspberry Pi
boards, when the same amount of traffic -90 Mb/s of UDP
traffic in our example- is sent/received. More in detail, this
test aims to identify any power consumption increase due
to the virtualization layer, both when the gateway acts as a
server (receiving network traffic), and as a client (sending

8http://manpages.ubuntu.com/manpages/wily/en/man1/sysbench.1.html
9http://manpages.ubuntu.com/manpages/wily/en/man1/mbw. 1 .html
1Ohttp:/Nlinux.die.net/man/1/fio
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Fig. 4: Gateway interactions with remote users and sensors.
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Fig. 5: General Performance Evaluation.

network traffic). From the results, we can observe that the
power consumption of the Docker case slightly differs from
the native execution. This implies that the power overhead
generated by the Virtual Network Interface Card (virtual NIC)
-when handling UDP traffic- is extremely low.

B. Gateway Performance

After demonstrating that running multiple Docker contain-
ers on top of a Single Board Computer does not impact the
performance, in this second part of performance evaluation,
we want to test our gateway in order to assess which board is
more performing -by considering also the power consumption
trade-off- while performing the same tasks. We assume that

the Database, the Orchestrator, and the Web Server containers
have been created -but not initialized- by a remote user.

The experiment conducted can be described as follows:
in a first stage, the containers are booted up through the
socket/proxy activation; a later phase characterized by the
interaction sensors-gateway, in which a sensor sends data
packets -13 bytes- every 60 seconds -according to ETSI spec-
ifications [11]-. As sensor platform, we used Maxfor nodes.
These nodes embed a MSP430 as CPU and Texas Instruments
CC2420'"! as radio frequency module; they are also equipped
with temperature and light sensors.

http://www.ti.com/product/CC2420
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Fig. 6: Gateway performance.

The nodes use Contiki-OS'? as operating system and in par-
ticular we flashed their firmware with CACHACA (Confident-
based Adaptable Connected objects discovery to HArmonize
smart City Applications) a ranking mechanism that we pro-
posed in [12]. By running this algorithm, sensor nodes can
evaluate and classify neighbors and the services that they offer
(e.g., temperature, light, humidity, etc). CACHACA is based on
a rule-based fuzzy inference system and the use of physical
parameters -such as the Received Signal Strength Indication
(RSSI)- in order to rank neighborhood and services.

The overall duration of the test is one hour and two
minutes, where the first two minutes are used to create and
initialize the containers. In this span of time, different per-
formance metrics have been stored; the Raspberry Pi power
consumption, and the resources -CPU, Memory- employed by
each running container, thanks to the docker stats command.

Figure 6 shows the outcome of this evaluation. In Figure 6a
the CPU resource usage of each single container is shown. It
can be observed that the total amount of employed CPU re-
sources does not exceed 10%. The web server is the component
that produces the higher CPU utilization (approximately 5%).
Raspberry Pi3 is the board that shows optimized performance
compared to Raspberry Pi2. From the Memory performance
perspective (Fig. 6b), we can mainly notice a relevant resource
usage optimization in the RPi3 for each component container,
which is then reflected in the overall percentage. Again, the
web server is the container more greedy in terms of resources.
In both cases analyzed previously, the Orchestrator is the
container that requires less resources. Another clear aspect
coming from this evaluation is the better efficiency of RPi3
compared to RPi2. However, in the comparison RPi2/RPi3 the
trade-off between power consumption and performance has to
be considered. In Figure 6c¢, the average power consumption
of the two devices under test is depicted. The better RPi3
performance are achieved at the expense of a slight higher
power consumption -approximately 12% higher-.

V. CONCLUSION

In this paper, we introduced a lightweight Edge Gateway-
as-a-Service and its architecture. Through the use of con-
tainer vitrualization technologies we satisfied many platform
requirements. Our proposal has been validated by means of a
wide performance evaluation. The main insights coming from

2http://www.contiki-os.org

the validation are two-fold: (i) we have demonstrated that
employing virtualization technologies on top of constrained
devices has an almost negligible impact in terms of perfor-
mance; (ii) the low resource usage of our gateway confirms the
lightweight characteristics of our design, revealing promising
results in terms of scalability and energy efficiency. The GaaS
described in this paper is targeted for being employed in
different IoT contexts -such as, smart home, buildings, farms,
etc.- thanks also to the use of semantic technologies that enable
interoberability among heterogeneous devices.
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