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Abstract

The stringent latency together with the higher bandwidth requirements of
current Internet of Things (IoT) applications, are leading to the definition of
new network-infrastructures, such as Multi-access Edge Computing (MEC).
This emerging paradigm encompasses the execution of many network tasks
at the edge and in particular on constrained gateways that have also to deal
with the plethora of disparate technologies available in the IoT landscape.

To cope with these issues, we introduce a Lightweight Edge Gateway
for the Internet of Things (LEGIoT) architecture. It relies on the modular
characteristic of microservices and the flexibility of lightweight virtualization
technologies to guarantee an extensible and flexible solution. In particular,
by combining the implementation of specific frameworks and the benefits
of container-based virtualization, our proposal enhances the suitability of
edge gateways towards a wide variety of IoT protocols/applications (for both
downlink and uplink) enabling an optimized resource management and tak-
ing into account requirements such as energy efficiency, multi-tenancy, and
interoperability.

LEGIoT is designed to be hardware agnostic and its implementation has
been tested within a real sensor network. Achieved results demonstrate its
scalability and suitability to host different applications meant to provide a
wide range of IoT services.
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1. Introduction

Thanks to its ability to connect all the objects around us to the Internet
with minimum human intervention, the Internet of Things (IoT) is lead-
ing a revolution in different domains of our everyday life (e.g., healthcare,
transportation, agriculture, vehicles, etc.) [1]. On the other hand, these
tremendous potentialities push on the proliferation and evolution of differ-
ent technologies, from ubiquitous and pervasive computing, to embedded
devices, communication standards, sensor networks, Internet protocols, and
applications [2]. As a result, the IoT landscape is currently fragmented, i.e.,
characterized by different devices and protocols, while their integration is
marked as crucial for the development of newer, exhaustive, and accurate
use-cases [3, 4, 5]. Beside heterogeneity, scalability is another limiting factor
for current IoT deployments, with a number between 26 and 50 billion of
devices expected to be connected to the Internet by 2020 [6].

To cope with these issues, industry players together with the research
community have constantly sought new solutions for supporting efficient de-
ployments. For example, over the last years, Cloud has played a crucial role
to enhance and extend IoT networks capabilities. Computation offloading,
service management, data storage, monitoring systems, and offline analysis
of large amounts of data represent only a limited subset of all the operations
that traditional sensor networks have outsourced to the cloud. However, IoT
cloud-based architectures are currently facing several challenges on meeting
the increasing demand of high performance. In particular, relying only on
cloud infrastructures can become a bottleneck — in terms of both latency
and bandwidth requirements — for applications requiring real-time opera-
tions and mission critical communications.

In this respect, the Multi-access Edge Computing paradigm (MEC) [7]
defines an emerging network infrastructure with the objective to deliver low-
latency, bandwidth-efficient, and resilient end-user services. It is worth clari-
fying that this approach does not intended to replace cloud-based infrastruc-
tures, but rather, it aims to increase computation, networking, and storage
resources at the network edge, by means of intermediate layers placed be-
tween end-user devices and Cloud. As result, it is important to design the
efficient entities placed at the network edge, which act as interface between
cloud services and IoT devices. The use of middleware in this context has

2



already been widely demonstrated. In particular, Cloud-to-sensors bridging
functionalities are normally executed by IoT gateways that, in most cases,
are designed to provide only connectivity, routing-forwarding functionalities,
and other minor features.

Research Challenges. We have afore-discussed how the requirements
for emerging edge-oriented architectures are pushing network infrastructure
designers towards directions where IoT edge gateways are required to embed
more complex functionalities, encompassing the capacity to handle a variety
of services. Clearly, the heterogeneity of the different instances and applica-
tions generates further challenges. From an architectural point of view, IoT
edge gateways have to be designed to:

(i) bridge different networking technologies by interacting with multiple
cloud-based services and heterogeneous sensor devices;

(ii) ensure a high flexibility while integrating newer applications and at the
same time preserving services’ isolation;

(iii) exploit a common resource abstraction that also guarantee to use the
same gateway software on top of different hardware platforms;

(iv) ensure a virtuous trade-off between design requirements, specific per-
formance targets, and applications manageability.

Contributions. With the objective to tackle the challenges introduced
by emerging Edge-IoT scenarios, and in order to cope with the limitations of
current IoT gateways implementations, in this paper we propose LEGIoT: a
Lightweight Edge Gateway for the Internet of Things architecture.

LEGIoT is characterized by two different modules: the Northbound in
charge of the communication with the Internet and the Southbound that
manages the exchanges with sensors. All the components of LEGIoT, are
virtualized by means of Docker1 containers, which introduce fast building
process, instantiation, high density of application/services, and isolation be-
tween the different instances. The high flexibility introduced by our design
enables an easy integration and support towards the deployments of new
services, which are continuously proposed in the IoT landscape. Moreover,
thanks to its isolation features, LEGIoT is well suited for multi-tenant sce-
narios, such as smart buildings. Tenants can indeed deploy and run their
own applications/services without interfering with the rest of the system.

1https://www.docker.io
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LEGIoT aims to be the first IoT edge-gateway architecture capable to
simultaneously achieve:

(i) interoperability, thanks to the implemented orchestrator module, differ-
ent heterogeneous sensor networks can be abstracted and managed;

(ii) high energy-efficiency by implementing different mechanisms for the
allocation/deallocation of service;

(iii) flexibility in managing different services, thanks to the implementation
of a bridging interface that allows a straightforward communication
between downlink and uplink protocols;

(iv) fast allocation, service isolation, backup capabilities, and multi-tenancy,
by exploiting the benefits derived on the use of lightweight virtualization
technologies.

LEGIoT is implemented on real hardware, using four of the most popular
IoT Single-Board Computers (SBC). To study its performance while inter-
acting with real sensor nodes, we use one of the FIT IoT-lab site2. Achieved
results demonstrate an efficient level of adaptability on top of all the devices
under test. Scalability has been largely proved, as well as the suitability to
host different applications i.e., provide a wide range of services such as data
processing, data aggregation, data compression etc.

To summarize, in this work we propose a microservice-based Lightweight
Edge Gateway for the IoT. It relies on a layered architecture and on the
versatility given by emerging virtualization technologies for tackling the re-
search challenges previously mentioned. To the best of our knowledge, this is
the very first contribution that brings at once: (i) a real implementation of
a microservice-based gateway, (ii) a cross-cutting interoperability spanning
for the entire IoT infrastructure, (iii) an exhaustive performance evaluation,
carried out by means of a testbed implementation, in which we demonstrate
lightweightness and feasibility of our deployment.

The remainder of the paper is organized as follows. In Section 2 we
introduce the main characteristics of the LEGIoT architecture, the software,
and the enabling technologies. In Section 3 we focus on the performance
evaluation and in particular on the impact of virtualization technologies.
Section 4 summarizes the main takeaways for both empirical and qualitative

2https://www.iot-lab.info
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analysis under which LEGIoT is evaluated. Section 5 explores Related Works
and it highlights the main advantages of our solution. Finally, Section 6
concludes the paper, giving possible future research directions.

2. The LEGIoT architecture

In current IoT deployments the presence of a gateway, as interface be-
tween sensor domain and backbone network, is essential [8]. However, in the
solutions available in literature [3, 4, 5], gateways functionalities are often
limited to traffic forwarding and protocol conversion.

In this work, the key idea is to exploit emerging software solutions and
architectural principles, in order to enhance basic gateway features and to
build a modular and flexible architecture. By merging the modularity char-
acteristic of microservices and the flexibility given by container virtualization
technologies, we build a highly customizable gateway, capable to fulfill the
strict requirements of current IoT applications/scenarios [9].

Microservices enable the concept of modular independence among dif-
ferent services, which can work as standalone entities and/or interact with
other components. This approach can be implemented via containers; such
technologies indeed, introduce APIs that allow an efficient management of
heterogeneous applications in a very flexible a versatile way.

Main drivers for the design and implementation of LEGIoT are: (i) in-
teroperability; (ii) high energy-efficiency; (iii) fast allocation and flexibility
in managing different services; (iv) isolation; (v) backup capabilities; (vi)
multi-tenancy. Figure 1 shows in details the LEGIoT architecture. In order
to be compliant with edge computing scenarios, LEGIoT can interact with a
heterogeneous set of IoT devices, and with remote end-users acting for exam-
ple, behind different cloud service providers. In the following subsections, we
provide detailed information about the technological choices and the design
of LEGIoT components.

2.1. Enabling Technologies

Hardware platforms. ARM architectures are constantly becoming
more widespread thanks to their low-power characteristics and contained
costs [10]. In the last few years, we have witnessed an increasing proliferation
of different Single-Board Computers (SBC) as enabling hardware technology
in a wide range of IoT use-cases [11, 12, 13, 14]. To characterize performance
and suitability of our LEGIoT — on top of hardware with different features
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Figure 1: The LEGIoT architecture.

— in this work, we consider different SBCs. This will also help to identify
possible weaknesses and performance upper-bounds of the evaluated devices.
In particular, we include four devices belonging to two of the most common
SBC families: Raspberry Pi and Odroid. To have a fair comparison, we
choose two boards for each manufacturer: Raspberry Pi 2 (RPi2), Raspberry

6



Pi 3 (RPi3), Odroid C1+ (OC1+), and Odroid C2 (OC2). The main fea-
tures of these devices are summarized in Table 1. RPi2 and OC1+ on one
side, and RPi3 and OC2 on the other, represent the subset to be compared
as they have similar specifications.

Table 1: Single-Board Computer data sheet.

RPi2 RPi3 OC1+ OC2

CPU Quad Core @
900 MHZ

Quad Core @
1.2 GHz

Quad Core @
1.5 GHz

Quad Core @
2 GHz

Memory 1 GB DDR2 1 GB DDR2 1 GB DDR3 2 GB DDR3
Ethernet 10/100 Mb/s 10/100 Mb/s 10/100/1000

Mb/s
10/100/1000
Mb/s

USB 2.0 2.0 2.0 2.0

Underlying software components. As stated in [11], lightweight vir-
tualization technologies enable a system that benefits of features such as: (i)
fast building process, instantiation, and initialization of containers; (ii) high
density of application/services due to the small container image; (iii) isola-
tion between different instances. This is mainly due to the lightweight char-
acteristics of container technologies if compared to alternative solutions such
as hypervisor-based virtualization — the differences between these two ap-
proaches are widely discussed in [15]. In our implementation, we use Docker3

(version 1.11.0) containers for executing the different instances. Docker in-
troduces an underlying container engine, together with a functional API that
allows to easily build, manage, and remove virtualized applications. With
the Odroid platforms we use Ubuntu version 14.04 (for OC1+) and Ubuntu
version 16.04 (for OC2) as Operating System (OS), while for the Raspberry
Pi boards we use the image provided by Hypriot4, which is characterized by a
lightweight environment specifically optimized for an optimal use of Docker.
In the choice of base boards OS, we specifically target stable releases. All the
SBCs use 16GB Transcend Premium 400x Class 10 UHS-I microSDHC Mem-
ory Card as storage device. It is worth highlighting that unlike Raspberry Pi,
the Odroid boards provide integrated support for embedded MultiMediaCard

3https://www.docker.io/
4https://blog.hypriot.com/
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eMMC cards. This alternative storage solution offers superior performance
in terms of read/write speed, in the order of hundreds of MB per seconds.

LEGIoT Application services. On top of the hardware and software
runtime environment elements, we have a modular application layer that has
the role to interface — by guaranteeing the requirement of interoperabil-
ity — sensor network and end-user. In particular, as shown in Figure 2,
our architecture defines two different modules, the Northbound (in charge of
the communication with the Internet) and the Southbound (in charge of the
communication with sensors).

All the components shown within Northbound and Southbound modules
are virtualized by means of Docker containers ensuring the deployment of
different services within an isolated environment. Moreover, due to the inde-
pendence between software modules, virtualization brings other benefits e.g.,
software upgrading is simplified. Containers can be easily removed and/or
replaced by updated protocols/applications versions, without impacting the
overall gateway functionalities. Also, reliability can benefit from this archi-
tecture as it is easier to monitor all the running components, and identify in
real-time the current status of the running services — e.g., potential software
failure, software restart and update, etc. More generally, the high flexibility
introduced by our design enables an easy integration of new services brought
by the constant evolution of the IoT landscape.

The Southbound module is responsible for the interaction with sensors
and it is characterized by three main components: (i) a webserver that ex-
poses services to the Bridging Interface — we use WildFly5, an application
server written in Java, which runs on multiple platforms; (ii) a search server
in which all sensor data is stored — we use Elasticsearch6, which provides
a distributed search engine with an HTTP web interface and schema-free
JSON documents; (iii) an orchestrator that ensures and manages commu-
nication paths between all containers and it guarantees interoperability be-
tween different sensor domains according to the VITAL7 specifications [1].
The orchestrator is fully implemented in Python language.

The Northbound module provides all the necessary features for interfacing
and serving the gateway with remote enduser requests. In particular, it

5http://wildfly.org
6https://www.elastic.co
7http://vital-iot.eu
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makes available a set of protocols that can be used according to specific use-
cases, needs and, requirements. CoAP, MQTT, and HTTP are example of
widely used protocols to establish a communication between the gateway and
remote end-users. It worths clarifying that some components, e.g., CoAP and
MQTT, can be used to interact with both network sides, sensors and end-
users. In our implementation, we use libcoap8, Mosquitto9, and Apache HTTP
server 10 for instantiating CoAP, MQTT, and HTTP respectively. An easy
integration of alternative and proprietary protocols is provided by the use of
containers. The gateway can, indeed, download from remote registries the
Docker images of a specific application without impacting the functionalities
of the running applications.

The Bridging interface works as middleware between the functionalities
of Southbound and Northbound modules. This interface forwards data ag-
gregated — stored in the database container — from sensor nodes to a server
by using one (or more) of the available protocols.

(a) Northbound module.

(b) Southbound module.

Figure 2: On-demand container activation for the LEGIoT.

In order to meet the energy-efficiency requirement, we implement a frame-
work that allows the on-demand activation of Docker containers to be run.

8https://libcoap.net/
9https://mosquitto.org/

10https://httpd.apache.org/
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In particular, we use systemd-socket-proxyd — a small TCP and Unix do-
main socket proxy that provides socket activation support for services that
do not natively support socket activation. In the socket-activation frame-
work, a socket is listening on a given port that is eventually served by the
proxy/container combination. As soon as the socket receives the first con-
nection, the systemd activates the proxy service, which starts the container.
The proxy is also used to forward the traffic between the container and the
network. Figure 2 shows a practical use of this component for both the North-
bound and Southbound modules. Referring first to the Northbound module,
a Remote end-user — for example, through a cloud service provider — ping
the socket endpoint (1), which activates the proxy service (2); the latter will
start the CoAP server container (3). After the activation, the container be-
comes accessible from the Remote end-user, who may retrieve the data from
the CoAP server itself. The process afore-discussed is similar to the one of
the Southbound module. The main difference lies in the fact that the socket
activation is here automatically instantiated by a timer. Such property takes
account of the periodic data transmission of IoT sensors. Therefore, it makes
sense to activate the containers only when needed. Clearly, if the gateway
needs to interact with event-based sensors, the socket-proxy mechanism can
be activated through a probe signal sent by the sensor itself — similarly at
the Northbound module. The example refers to the activation of two spe-
cific containers but it can be extended to all other applications stored in the
gateway.

One of the main benefits introduced by this mechanism is the possibility
to lower the power consumed by the gateway and, at the same time, to allow
a better hardware resources usage. This might be needed in scenarios where,
for example, sensors and/or remote end-users do not frequently interact with
the gateway and remain silent over long periods. In these cases, it is possible
to minimize the resources employed by the containers and dedicate them to
other applications.

2.2. Use-case

The architecture proposed in this paper may be crucial for many Internet
of Things applications. In this context indeed, having processing capabilities
closer to the edge of the network (where things are deployed) results to be
more efficient — in terms of latency and bandwidth — than sending all data
to Clouds. Moreover, thanks to its isolation features, LEGIoT ends to well
suit multi-tenant scenarios, such as smart buildings.
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According to [16], intelligent buildings can be defined as systems that
permit their intercommunication and which allow communication between
the buildings themselves and the individual tenants. Transducers and sensors
are available to measure most building related parameters and in any given
situation, there may be particular needs driving their specific use.

Figure 3: Smart Building architecture.

In Figure 3, we illustrate a possible smart building architecture. Sensors
deployed to sense the physical environment may use different technologies
(e.g., Wi-Fi, IEEE 802.15.4, Bluetooth, RFID, Visible Light Communication,
etc.) to communicate with the LEGIoT. Once the communication is estab-
lished, data observed by a sensor can be used by different tenants for their
own application (e.g., heating, fire safety, waste management, etc.) without
interfering with the rest of the system. For example, let us suppose that a
company that provides water services wants to deploy its own application
for collecting metering information; thanks to the isolation properties, this
application will not alter the rest of the system.
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3. Performance Evaluation

3.1. Experimental Setup

Sensor Network. In order to evaluate the performance of our Gateway
in a real environment, we ran experimentations on the FIT IoT-lab testbed11,
a large scale infrastructure facility, spread across six different sites in France,
which features almost 3000 wireless sensors nodes. The FIT IoT-lab site
of Lille has been used for our performance evaluation; it is deployed over a
225 m2 area, and it features hundreds of M3 open nodes — Table 2 summa-
rizes the main features of these devices.

Figure 4: FIT-IoT-Lab.

The sensor nodes use Contiki-OS12 as Operating System and in particular
we flashed their firmware with eCACHACA, an extended version of the rank-
ing mechanism CACHACA (Confident-based Adaptable Connected objects
discovery to HArmonize smart City Applications) that we previously pro-
posed in [17]. By running this algorithm, sensor nodes can evaluate and clas-
sify their neighborhood and the available services (e.g., temperature, light,
humidity, etc.); each node indeed, advertises itself and the physical phenom-
ena that it can observe. CACHACA is based on a rule-based fuzzy inference
system and it uses parameters such as the Received Signal Strength Indica-
tion and the Timestamp — of the last frame received from a neighbor —

11https://www.iot-lab.info
12http://www.contiki-os.org
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to rank nodes and services. The evaluation and all the functionalities of
CACHACA are out of the scope for this work; we use the algorithm in order
to establish the communication between sensor nodes and the gateway. Each
sensor indeed, will send data packets to the gateway every 60 seconds —
according to the ETSI specification [18] for Smart Cities.

Table 2: M3 data sheet.

Parameter Specification

MCU ARM Cortex M3, 32 bits,
72 Mhz, 64 kB RAM

Radio Communication 802.15.4 PHY standard, 2.4 Ghz
Power 3, 7 V LiPo battery, 650 mAh

Sensors Light, Pressure and Temperature

LEGIoT. Our gateway architecture is implemented by using the most
popular IoT SBC allowing a better assessment of the strengths and weak-
nesses of the different devices. In particular, we use four different SBCs
(Figure 5): Raspberry Pi 2, Raspberry Pi 3, Odroid C1+, and Odroid C2.

(a) (b) (c) (d)

Figure 5: Single-Board Computers under test: (a) RPi2, (b) RPi3, (c) OC1+, (d) OC2.

Remote Server. The Northbound module evaluation is performed us-
ing a general-purpose laptop that features an Intel Core 2 Duo PC running
Linux 3.13.0 with an Intel 82567LM Gigabit Ethernet card. The laptop is
directly connected to the Network Interface Card of the SBC under test. In
our scenario the laptop represents an end-user that can remotely access and
manage the different LEGIoT functionalities.

Testbed configuration. Figure 6 shows the overall testbed setup for
both the Southbound interface and Northbound interface performance evalua-
tion. LEGIoT interacts with the FIT IoT-Lab sensors through IEEE 802.15.4
radio. On the Northbound interface, LEGIoT is connected (via Ethernet)
with a general purpose server.
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Figure 6: Testbed setup.

3.2. Experimentation Results

The validation of our proposal covers two different aspects. First, we
evaluate the performance of the Southbound interface for each Single-Board
Computer under test. In particular, we aim to understand how an increas-
ing number of sensors affects the gateway performance. Then, we estimate
the performance of the Northbound interface, by considering different uplink
applications.

3.2.1. Southbound Interface performance

In this first evaluation, we are interested in the evaluation of the CPU,
RAM, and Power Consumption of each SBC when they are stressed with
different numbers of sensors. This analysis shows how hardware resources
of LEGIoT are used in IoT scenario. The operations carried out by the
Southbound module in this specific test involve all the virtualized services
belonging to it — orchestrator, database, webserver. The sensors transmit
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data to the sink connected via USB to the gateway. Once data is received,
the Orchestrator ensures the storage in the Database and the availability on
the webserver.

Figure 7a shows the average CPU usage when the number of connected
sensor nodes increases. We can observe that an increasing number of con-
nected sensors does not produce a linear increase in the CPU usage in all the
SBCs under test. In the comparison between the 32-bit boards, RPi2 shows
a higher outflow of resources. This result is somehow expected as the OC1+
features a CPU with a higher frequency clock compared to the RPi2. In any
case, by considering the scenario in which 100 nodes are connected to the
gateway, the CPU usage difference is slightly above the 2%. RPi3 and OC2+
— the 64-bit boards under evaluation — show similar performance. Overall,
OC1+ shows the best scalability performance also compared to the more
powerful OC2. The reason for this result is clarified by Figure 7b, which
shows the CPU usage as a function of time — we only show the 75-node
case, as it is consistent with the remaining cases. This analysis shows how
the different devices treat, from the CPU usage perspective, the reception of
data generated by sensors. We can observe that the trend is common to all
devices; however, during the first interaction between the gateway and the
sensors, OC2 generates a higher CPU usage compared with the remaining
boards. These peaks result in a higher average of CPU usage, as mentioned
before. Moreover, OC2 performs the Southbound module operations in a
shorter time. This means that OC2 introduces a performance trade-off, as it
generates higher CPU usage by shortening the speed of instances execution
— due to the higher OC2 CPU clock speed. In addition, all cases inves-
tigated show the presence of peaks only during the first iterations between
the gateway and the sensors. This can be explained by the fact that sensors
running eCACHACA use a random time for scheduling transmission — on
average, each node transmit over a period of 1 minute within an offset of 10
seconds. Such feature can also be observed by the remaining interactions,
where a more time-spread CPU usage can be identified.

The RAM memory usage analysis defines if the gateway has to deal with
memory intensive applications and how the increasing number of devices af-
fects the memory performance. This estimation represents a relevant aspect
because it suggests if the gateway could host further memory-intensive ap-
plications, intended to specific functionalities requested by a tenant and not
covered by this work — e.g., data compression applications [19]. Figure 8a
depicts the RAM SBCs memory usage in function of the number of sensor
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Figure 7: CPU resource utilization evaluation: (a) average CPU usage; (b) instantaneous
CPU usage.

nodes — the result is normalized since the devices feature different RAM ca-
pacities. Two main insights can be drawn from this result. First, the overall
usage of RAM barely overcomes the 30%, regardless the SBC considered and
the number of sensors connected. Second, contrarily to what found during
the CPU analysis, OC1+ introduces a slightly higher memory usage than
other hardware under test.

Similarly to the previous analysis, we also want to identify usage peaks
and other performance peculiarities for the RAM; then, we consider the light-
est and heaviest workloads—25 and 100 nodes. Figure 8b shows a flat trend
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for the entire duration of the test, despite of the sensors connected to the
gateway. This implies that the main contribution to the RAM usage is given
by the application running in the Southbound module, and not by the com-
munication with sensors. In fact, the figure shows an evident memory usage
increase (respect to the RAM usage in idle state) after that all containers
start receiving and processing data — approximately after 20 seconds from
the beginning of the test. Finally, the plot also shows how the management
of a higher number of sensors produces an almost negligible RAM variation.

To have a better overview on the overall performance of the system, we
also evaluate the system load, a parameter that indicates the overall amount
of computational work that a system performs, by including all the processes
or threads waiting on I/O, networking, database, etc. [20]. It is usually
expressed using three different values, averaging the past one, five, and fifteen
minutes of system operation — in our experiments, we only consider the 1-
minute system load. The upper-bound for the system load strictly depends
on the number of CPU cores of the system under test. A system load equal
to four represents the upper-bound in a system with four CPU cores — like
in the RPi — after which the performance starts deteriorating.

We refer to the case of 100 nodes and, in line with what was observed in
the CPU and RAM performance, the average system load shows (Figure 9)
a high scalability for LEGIoT, as it is never higher than one and far from
the upper-bound of four.

Considering the performance of the Southbound module as a whole, we
can state that our design has an efficient level of adaptability on top of all
the devices under test. Scalability is largely proved, as well as the suitability
to host different applications meant to provide a wider range of services such
as data processing, data aggregation, data compression etc.

The last part of the Southbound module performance evaluation cov-
ers a further aspect related to the gateway requirements, i.e., the energy
consumption. In particular, we want to understand how much power is con-
sumed by the different boards when running the different southbound module
tasks. In general, this evaluation can be useful in contexts in which several
gateways are deployed in the same network. Network architects can effi-
ciently design more complex networks, estimating the total amount of power
consumed by a set of gateways, without neglecting the aspect of power con-
sumption/performance trade-off. Furthermore, energy efficiency analysis can
help the deployment of systems where several SBCs are combined to realize
low-power clusters — often installed at the edge of the network — that aim
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Figure 8: RAM Memory resource usage evaluation: (a) average RAM usage; (b) instan-
taneous RAM usage.

to replace ordinary server machines for a better energy efficiency/monetary
cost trade-off as demonstrated in [21, 22].

We measure the power consumption of the SBCs by means of a voltage
meter — USB-1608FS-Plus with 16 bits resolution. The power consumption
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Figure 9: System Load.

is measured interrupting the power lines of the device and inserting a mea-
surement shunt in the 5 V line. This allows, through indirect calculation, to
quantify the power consumption with a marginal measurement error [23].

Figure 10a shows the average power consumption of LEGIoT in function
of the number of connected sensors. Consistently to the discussion of pre-
vious results, it is not possible to find a general rule to describe the power
consumption trend. We observe that a growing number of sensors connected
does not produced a relevant power consumption increase for all the devices
under analysis. This trend is clearly confirmed in Figure 10b that shows the
maximum power dissipated by the different SBCs. The lack of a clear trend
in the power consumption can be explained by the fact that sensors randomly
interact with the gateway after the first transmission.

Figure 10c depicts the instantaneous power consumption of the boards
that produces on average lowest (RPi2) and highest (RPi3) dissipation (for
the cases of 25 and 100 nodes). This comparison clearly highlights the dif-
ference between the two devices as well as the higher power density in the
comparison between 25 and 100 nodes.
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Figure 10: Power Consumption analysis: (a) average; (b) maximum; (c) instantaneous.

3.2.2. Northbound Interface performance

Once stored in the database container, data sensed needs to be available
to remote end-users through the Internet. As already mentioned, several
protocols can be used for establishing the connection between the gateway
and remote end-users. While the system design can accommodate a wide
variety of protocols, in the evaluation we make available three of the most
popular application layer protocols: CoAP [24], HTTP, and MQTT [25].
The Northbound module performance evaluation aims to define how these
protocols impact the gateway performance. Similarly to the Southbound
analysis, we consider a growing number of remote users connected at the
gateway. We fix the number of requests executed by each client to 40000.
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As explained in our experimental setup, the role of end-user is played by a
laptop directly connected to the different boards under test, through LAN
cable. We are not interested in evaluating parameters like Transactions per
second and Request per second ; we focus at the performance of the gateway
itself.

During this evaluation, the application layer protocols (i.e., MQTT, CoAP,
HTTP) are executed one by one. For instance, when CoAP server is under
analysis, its container is the only one to run in the Northbound module. This
allows the specific characterization of the performance for each of the services
in different hardware platforms.
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Figure 11: SBCs’ resource usage during CoAP uplink transmission.

Figure 11 shows the result for the CoAP evaluation, from the CPU and
memory RAM usage perspective. What stands out most is the lightweight
impact of the protocol on the gateway performance. The CPU resource usage
is approximately 30% in the case of 10 clients connected at the gateway. The
only outlier is OC2 that shows a more efficient result when compared to
the other boards — and for all the analyzed sub-cases. Another interesting
aspect that can be observed is that the CPU usage shows a relevant increase
in the step between one and five clients. However, a similar increase is not
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observable when the number of connected clients further double — with the
exception of OC2 that in any case shows better resource usage optimization.
Also the RAM memory usage has a flat trend, similar to what observed for
the Southbound module analysis. We also notice how the Odroid boards
consume double memory resources compared to Raspberry Pi boards. This
is mainly due to the quantity of memory that the devices employ when in
idle state — the specific value varies from board to board and highly depends
on the software environment.
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Figure 12: SBCs’ resource usage during HTTP uplink transmission.

Figure 12 reports the HTTP test results. From the RAM memory us-
age perspective, we can notice a slight increase compared to CoAP. CPU
usage shows instead different aspects although the performance trend, as a
function of the users connected, roughly follows the CoAP case. It appears
indeed how the management of HTTP requests has a bigger impact on the
gateway performance. This result depends on all the intrinsic differences in
the CoAP and HTTP protocol design. Raspberry Pi boards show a lower
CPU usage compared to the Odroid, which is an unexpected result. Further
investigations highlight that this behavior is due to the higher number of
software interrupts (roughly 30%) that occurs on Odroid boards, showing
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the sub-optimal capacity of these devices in the HTTP server utilization.
This aspect will require however mored investigation, as well as the need to
test alternative HTTP software solutions.
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Figure 13: SBCs’ resource usage during MQTT uplink transmission.

MQTT evaluation is shown in Figure 13; the similarities with the CoAP
case are evident, showing therefore the high suitability and efficiency of this
protocol on managing uplink communications.

3.2.3. Application performance characterization

In this subsection we want to characterize the impact that different gate-
way application components have on the performance. This assessment be-
comes crucial for understanding if our orchestrator implementation — which
ensures interoperability among heterogeneous sensor networks and manage
the communication paths in the Southbound module — owns the desired
characteristic of lightweightness. Database and webserver rely on existing
software, therefore the orchestrator behavior represents the sole criterion for
assessing such requirement. Indeed, whatever is the performance impact
of database and webserver, future and more optimized LEGIoT implemen-
tations can benefit from the flexibility given by the containers. The same
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applies for the Northbound module, for which we do not provide a similar
analysis. For the sake of completeness, the orchestrator is implemented in
Python language, and it features approximately three hundred lines of codes.
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Figure 14: Southbound module applications performance characterization.

Figure 14 shows the outcome of the applications performance character-
ization. We only report the results of a specific case — RPi3 receiving data
from one hundred sensors — as other results comply with this specific case.
As regards to the CPU resource usage, it can be observed that the webserver
is the component that produces the higher CPU utilization (approximately
5%). Coherently, from the RAM performance perspective, we can notice
again how the webserver is the application more greedy in terms of mem-
ory resources. The Orchestrator is the container that requires less resources.
This outcome shows an essential feature of the LEGIoT implementation, i.e.,
we are able to equip the gateway of a fundamental application with a minimal
and almost negligible performance impact. For future and more optimized
implementations, flexibility given by the use of containers will allow to easily
replace database and webserver components, which show the higher impact
in the Southbound module performance.
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4. Empirical and Qualitative discussions

In this section we summarize the main takeaways for both empirical and
qualitative analysis under which LEGIoT is evaluated.

4.1. Empirical analysis

Our proposal has been validated by means of a wide performance evalu-
ation. The main goal this study is to show the performance impact of our
implementation and its suitability on different hardware platforms. In par-
ticular, we evaluated LEGIoT on a set of well-known SBC. Furthermore, we
took advantage of the FIT IoT-LAB testbed, in order to emulate a real and
concrete use-case. We connected a large number of sensors to our gateway
and executed a real-time performance evaluation.

To estimate the resources used by the physical node, we refer to the Vol-
ume metric introduced by Wood et al. in [26]. This metric considers that a
physical node (in our case the gateway) can be loaded along one or more of
three dimensions — CPU, network, and memory. The volume expresses how
much the system is (over)-loaded along multiple dimensions in a combined
way and it can be used to fairly estimate all resources used by each com-
ponent. Equation 1 defines this metric; cpu stands for the normalized CPU
usage, mem for memory, and net for network. The higher the utilization of
a resource, the greater the volume. As a consequence, if multiple resources
are heavily utilized, this will result in a higher volume.

V ol =
1

1 − cpu
× 1

1 −mem
× 1

1 − net
(1)

However, one of the main requirements of our gateway implementation is
the energy efficiency. Therefore, it makes sense to redefine the Volume metric
by taking into account also the trade-off between resource used and power
consumed while executing different tasks. This led us to define Gateway Per-
formance Efficiency Factor (GPEF), which is characterized by Equation 2:

GPEF =
1

1 − cpu
× 1

1 −mem
× 1

1 − net
× PowerConsumption (2)

Before discussing the results, it is worth mentioning that in our experi-
ments, GPEF networking attribute is set to 1 for all cases, as the amount of
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Figure 15: Southbound module GPEF characterization.

network traffic handled by LEGIoT is the same for each test, regardless of
the SBC used.

Considering the underlying-hardware differences of each platform, in this
last analysis we define the most suitable device to current LEGIoT imple-
mentation. By leveraging a hardware independent metric, we also detect po-
tential weakness of the software implementation when operating on a given
platform.

The results for the Southbound module (Figure 15) show that there is
no one size fits all rule for the GPEF of the analyzed nodes. Raspberry Pi
boards get the best over the Odroid boards, although within a limited range.

GPEF Northbound module evaluation shows a different trend that highly
depends on the uplink application protocol (Figure 16). RPi2 is again the
most efficient board, while OC2 outperforms RPi3. For the HTTP protocol,
coherently with what has been found in Section 3, Odroid boards present a
GPEF worse than Raspberry Pi.

In the GPEF evaluation — where Raspberry Pi boards perform better
than Odroid ones — we are considering a relatively lightweight workload,
i.e., sensing operations. As shown in [27], it exists a strong dependency
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Figure 16: Northbound module GPEF characterization for the case of five clients connected
to the gateway.

between edge-node performance and executed tasks. In fact, if we consider
a more complex workload (e.g., video analytics) [28], GPEF evaluation may
be completely different. Therefore, in heterogeneous scenarios where edge-
computing devices can provide a wide range of services, Odroid boards could
be more suitable.

4.2. Qualitative analysis

Interoperability. The IoT landscape is highly fragmented in terms of
hardware capabilities / constraints, network protocols, and application re-
quirements. To deal with this challenge, in our architecture we propose
an orchestrator that guarantees interoperability between different sensor do-
mains. Sensor data is indeed stored into LEGIoT according to the VITAL
ontology [1], which relies on Linked Data standards (i.e., RDF, JSON-LD,
and ontologies). In particular, VITAL combines several ontologies and it
uses Semantic Sensor Network (SSN) [29] to describe sensors, including their
accuracy and capabilities, observations, methods for sensing, concepts for
operating and survival ranges, and deployments. Once stored, data can be
accessed by all the authorized users to build their own applications, with-

27



out interfering with other tenants, and without the need to develop specific
communication protocols.

High energy-efficiency. Our claim of energy-efficiency is based on the
implementation, integration, and use of the Socket-Proxy (S/P) container
activation introduced in Section 2.1. Although the performance evaluation
presented in Section 3 has been performed without enabling such mecha-
nism, here we present the result of a further empirical assessment. In this
evaluation, sensors from the FIT-IoT lab platform were transmitting data,
on average, every minute. This implies that between two consecutive sens-
ing operations, all the active containers can be temporarily paused through
the S/P framework and consequently lowering LEGIoT resource usage and
power consumption. To prove this, we have set the S/P container activation
to freeze running applications for 35 seconds between two sensing operations
— we included a guard interval for avoiding the risk of overlapping with the
upcoming sensing operation.

Figure 17: Energy Efficiency evaluation. In this evaluation, we consider the RPi2 when
receiving data from 100 sensors.

Figure 17 shows how the LEGIoT power consumption is lowered of ap-
proximately 0.5 Watts during the 35 seconds time frame. Taking into con-
sideration this energy efficiency gain, it is reasonable to expect that in envi-
ronments where gateways operate twenty-four hours a day and seven days a

28



week, the use of such mechanism can have a remarkable impact.
Fast services allocation. The containers activation time of SBCs, when

managing a workload that gradually becomes more complex, has been ex-
haustively evaluated in [28] by using the same set of boards presented in
this paper. Container activation time remains below 2000 milliseconds in
most of the analyzed cases. This represents a significant result if we consider
the reduced hardware capabilities of SBCs when compared to more powerful
devices, in which instead the containers activation time stands around the
hundred of milliseconds. According to [30], activation time can be further
reduced through alternative container-engine configurations.

Easy management of different services. As evidenced by this work,
the main benefit that clearly emerges from employing container technologies
for LEGIoT implementation is the possibility of avoiding the strict depen-
dency on a given technology or use-case. Applications designed to manage
and use extremely different technologies can be deployed on containers. In
addition, equipping LEGIoT of newer services becomes easier as the only
operation to be performed is configuration and instantiation. This allows to
avoid all the complex re-programmability operations and updating processes
needed in order to preserve the software life-cycle management.

Isolation and Multi-Tenancy. Level of security isolation guaranteed
in applications developed within containers has led in the past to a lively
debate especially in the open-source community13. Although first versions
of Docker were lacking of a satisfactory level of security, the latest released
versions include several security enhancements to cope with these issues14. A
tangible proof of this is the release of the Docker Security Benchmark, which
has been developed together with the Center for Internet Security. This tool
allows to test the penetration of your application deployment environment
towards a wide variety of known security issues15.

A direct consequence of the isolation, ensured by Docker itself, is the
possibility to make LEGIoT a multi-tenant platform. This means that the
gateway can be shared between different users. This characteristic turns
out to be particularly useful in contexts in which the gateway keeps the
peculiarity of being a vendor-independent platform (as shown in Section 2.2),

13https://zeltser.com/security-risks-and-benefits-of-docker-application/
14https://blog.docker.com/2016/02/docker-engine-1-10-security/
15https://www.cisecurity.org/cis-benchmarks/
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where different tenants can benefit of the same hardware platform, but still
apply their own policies in the application management.

Moreover, it is important to remark that to store and distribute Docker
images — containing all the applications code and dependencies — there
are public/private registries. This latter feature can allow network designer
to place private registries either at the gateway or in the cloud. For all
the communications registry to Docker client, the Transport Layer Security
(TLS) protocol can be enabled making secure communication over HTTPS.
TLS ensures authenticity of the registry end-point, encryption of the traffic
to/from registry, and a certificate-based client-server authentication. It is
possible to install a Certificate Authority (CA) root certificate for the registry
and setting the client TLS certificate for verification [31]. The combination
of these features makes LEGIoT secure and then capable to strongly ensure
isolation and multi-tenancy.

Backup capabilities and Ease application updating. A Docker con-
tainer is a runnable instance of a Docker image. Docker images are stored
in specific private/public registries that, in LEGIoT context, can be set up
both locally and in a cloud-service. When a container is created/executed,
the configuration setup of the dockerized application is specified together
with any other dependency (e.g., libraries). While running a container from
an image, Docker uses an overlay file-system (UnionFS) to add a read-write
layer on top of the image. UnionFS allows Docker to store images as a se-
ries of layers; the different stored layers are cached during the build process,
speeding up the building process and saving disk space.

When a new container is created, a new writable layer on top of the
underlying layers is added. All changes made to the running container —
such as writing new files, modifying existing one, and/or deleting — are
written into a thin writable container layer. Therefore, the major difference
between a container and an image is this top writable layer. All writes
to the container that add new or modify existing data are stored in this
writable layer. When the container is deleted, the writable layer is also
deleted. The underlying image remains unchanged. Since each container has
its own writable container layer and all changes are there stored, multiple
containers can share access to the same underlying image and yet have their
own data state.

In LEGIoT, the advantages brought by Docker in the efficient manage-
ment of the file-system are multiple. First, LEGIoT can benefit of easier
backup capabilities. For example, if one of the LEGIoTs tenants wants to
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monitor its managed sensors at a given period time after a trigger event, it
can activate a database container and start storing the sensed data specifi-
cally for that period of time. The execution of such container will not inter-
fere with a parallel database container, which was already executing the same
task. Similarly, if a system failure happens in the sensor network, the tenant
has also the possibility to backup running database container and flesh out
the story up to the failure moment.

The second advantage is given by the possibility to execute easy up-
date operations on the stored images. For instance, referring specifically to
the CoAP container, new under test protocol functionalities can be verified,
without interfering with already working version. This can be easily done by
running a CoAP container from the stored CoAP image, and integrating the
new functionality in the running container. The implemented changes can be
committed under a new image without contrasting with the one previously
stored. The new image is built on top of the older one, optimizing also the
disk space usage. This mechanism allows to easily integrate and test new
protocol functionalities. Furthermore, the whole platform can benefit of an
optimized software life-cycle management, since platforms upgrade turns out
to be extremely easy.

5. Related Work

In this Section we survey the most related works available in literature. In
particular, we summarize LEGIoT competitors into three different categories:
IoT gateways, Virtualization at the Edge of the Network, and Microservices-
based IoT gateways. For each of these solutions, we consider the following
key features:

• Real-Testbed implementation. It provides information about the exis-
tence of real prototypes of the proposed architectures.

• Scalability. As consequence of a real-testbed implementation, we want
to evaluate scalability and its trend in function of the number of sensors
that can be simultaneously connected to the gateway.

• Interoperability Downlink/Uplink. It shows the ability of the gateway
to interact with different technologies and to easily update/merge new
applications.
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• Gateway Energy-efficiency optimization. In nowadays IoT gateways,
this may be considered as key feature. It is then important to see how
related works deal with this challenge.

• Isolation and Multi-tenancy. These are strictly interconnected proper-
ties that are becoming essential in recent use-cases.

Table 3 shows the fulfillment of the above requirements.
IoT Gateways. Current literature presents several proposal of network

architectures in which the presence of a gateway is required as interface be-
tween backbone and sensor network. A set of requirements and common
features that an IoT gateway must include is listed in [32] by Chen et al. In
particular, a gateway has to act as a proxy, which interconnects the sensor
domain with the backbone network. The outlined features are: (i) multiple
interfaces, needed to avoid possible mismatch between the technology em-
ployed by the sensors to connect with the IoT gateway, and the rest of the
network with the IoT gateway as well; (ii) protocol conversion, in order to
address the issue explained before; (iii) manageability, which refers to the
needs of the gateway to be managed by external servers, and to the ability
of it to control, configure and operate with the sensors. LEGIoT is capable
to meet all of the aforementioned properties.

Authors in [33] introduce an IoT architecture in which a device called
“Wireless Gateway” provides functionality of backbone between M2M (Machine-
to-Machine) devices and remote peers (i.e., client) over the Internet. More in
detail, the wireless gateway is characterized by two different interfaces; the
north interface that provides discovery functionality to the mobile clients,
and enables clients to detect M2M devices and to retrieve data from them.
The south interface — which is a collection of REST (Representational State
Transfer) web services — delivers management and storage functionality just
for the M2M devices. This architecture represents a good starting point,
however it results limited in the number of interfaces and manageability.
Moreover, even though authors provide a comprehensive description of the
architecture, details regarding the hardware used for the prototype are com-
pletely missing. The authors claim a device “scalable to handle huge amount
of traffic as it is based on RESTful paradigm and SenML”. However, a per-
formance evaluation that proves the statement is missing.

In [34], authors propose a smart IoT gateway that has three important
benefits: it can communicate with different networks, it has flexible protocol

32



to translate different sensor data into a uniform format, and it has uni-
fied external interfaces. This architecture results similar to LEGIoT, how-
ever, thanks to lightweight virtualization techniques, in our proposal, we
can achieve better performance in terms of isolation, multi-tenancy, energy-
efficiency, and backup capabilities. Authors claims better scalability than
other solutions. However, they do not include any empirical characterization
that allows to fully demonstrate the requirement. The proposed gateway
does not include any mechanisms for flexible applications’ allocation, which
would consequently bring benefits in terms of energy efficiency. Further-
more, implementation of security policies are, also in this case, left to future
implementations.

In [35], authors propose a gateway and Semantic Web enabled IoT ar-
chitecture to provide interoperability between systems, which utilizes estab-
lished communication and data standards. The Semantic gateway as Service
(SGS) allows translation between messaging protocols such as XMPP, CoAP
and MQTT via a multi-protocol proxy architecture. The interoperability
properties as well as the multi-protocol architecture are concepts similar to
our proposal, however we offer properties that are becoming crucial in IoT
scenarios, such as flexibility, isolation, etc. Our solution indeed, is not pro-
tocols dependent, different standards can run on top of it without effecting
the rest of the system. Authors released software implementation but there
are no instructions on the type of hardware suitable. Gateway scalability
evaluation is not performed and authors do not include any mechanisms for
flexible applications’ allocation, which would consequently bring benefits in
terms of energy efficiency.

Finally, in [36] authors propose a Distributed Internet-like Architecture
for Things (DIAT). This architecture satisfies most of the requirements met
by LEGIoT, by exploiting a layered architecture that provides various levels
of abstraction. Compared to our solution, DIAT features a complex ar-
chitecture suitable more for IoT Platform-as-a-Service (PaaS) [37] and IoT
middleware [38] solutions. That is, adaptability of DIAT on low-power edge
nodes such as SBCs may be questionable. An empirical evaluation that fully
test scalability is missing.

Virtualization at the Edge of the Network. Current literature
presents several proposals of solutions in which virtualization technologies
are employed at the network edge and/or on top of low-power nodes such as
Single-Board Computers (SBCs).

Container technologies are also used in a Capillary Network scenario [8],
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Table 3: Comparison with alternative proposals.

Gateway feature LEGIoT [33] [36] [34] [35] [8]
Scalability Yes No Not evaluated Not evaluated No Partially

Real-Testbed implementation Yes Yes Yes Yes No Yes
Interoperability Downlink — Uplink Yes — Yes Limited — Limited Yes — Yes Yes — Yes Yes — Yes Limited — Yes

Energy-efficiency Yes Not evaluated Not evaluated No No Partially
Isolation and Multi-Tenancy Yes No Yes No No Yes

where they serve for packaging, deployment, and execution of software both
in cloud and in more constrained environments (i.e., local Capillary gate-
ways). The dual purpose of this latter entity is to provide connectivity
between short-range and cellular networks, and to make available different
software components for local device management and instantiation of dis-
tributed cloud processes. Scalability test has not been performed in this
case.

In [39], Imsail et al. evaluate Docker containers as enabling technology for
the deployment of an Edge Computing platform. The conclusion is that —
after evaluating: (i) deployment and termination of services; (ii) resources &
services management; (iii) fault tolerance; (iv) caching capabilities — Docker
represents a good solution to be employed in edge computing contexts.

Following these hints, in [11], we included lightweight virtualization tech-
nologies in the design of an IoT gateway. We employed virtualized software
in order to provide a dense deployment of services at the gateway level. Par-
ticularly interesting is the analysis of the possible interactions between IoT
sensors and the gateway. Such analysis suggests how the dynamic allocation
of services, by means of containers, brings several benefits from the gateway
performance perspective.

In [19], we proposed the design of an IoT gateway that can be efficiently
employed also in edge computing architectures. In that study, we have shown
how to efficiently and flexibly use Docker containers in order to customize an
IoT platform, which offers several virtualized services that range from: (i)
Device Management capabilities; (ii) Software Defined Networking (SDN)
support; (iii) Orchestration and Data Management capabilities.

Microservices-based IoT gateways. The Agile project16 proposes
an architecture for gateways embracing the microservices-based concepts.
Design guidelines17 are the same that brought us to design and implement

16http://agile-iot.eu/
17http://github.com/Agile-IoT/Architecture/blob/master/README.md
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LEGIoT. However, according to project documentation18 and project publi-
cations19, Agile gateway has not been fully prototyped yet — the project has
started in the second half of 2016 and it will last three years. In these terms,
LEGIoT can be considered as a precursor implementation of future AGILE
releases. From the architectural point of view, Agile does not include any
mechanism to enhance energy efficiency and, so far, its implementation has
been designed in order to be tested only on top of Raspberry Pi boards. Ag-
ile project has also planned to test gateway performance through the use of
FIT IoT-lab platform. A direct comparison with LEGIoT could be therefore
feasible in the near future.

6. Conclusions

In this paper, we introduce LEGIoT: a Lightweight Edge Gateway for the
Internet of Things. We have shown how, by means of container-virtualization
technologies, is possible to satisfy important gateway requirements that are
crucial aspects in the evolving IoT/Edge landscape. Our proposal shows
flexibility — given by the use of emerging technologies — and newer archi-
tectural paradigms, allowing to deliver an efficient IoT services provisioning.
Furthermore, we have demonstrated how our approach can be very efficient
on keeping gateway’s lifecycle easily upgradable, and reactive at the intro-
duction of new IoT protocols and services.
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