11 research outputs found

    The Effective Transmission and Processing of Mobile Multimedia

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Situation-aware Edge Computing

    Get PDF
    Future wireless networks must cope with an increasing amount of data that needs to be transmitted to or from mobile devices. Furthermore, novel applications, e.g., augmented reality games or autonomous driving, require low latency and high bandwidth at the same time. To address these challenges, the paradigm of edge computing has been proposed. It brings computing closer to the users and takes advantage of the capabilities of telecommunication infrastructures, e.g., cellular base stations or wireless access points, but also of end user devices such as smartphones, wearables, and embedded systems. However, edge computing introduces its own challenges, e.g., economic and business-related questions or device mobility. Being aware of the current situation, i.e., the domain-specific interpretation of environmental information, makes it possible to develop approaches targeting these challenges. In this thesis, the novel concept of situation-aware edge computing is presented. It is divided into three areas: situation-aware infrastructure edge computing, situation-aware device edge computing, and situation-aware embedded edge computing. Therefore, the concepts of situation and situation-awareness are introduced. Furthermore, challenges are identified for each area, and corresponding solutions are presented. In the area of situation-aware infrastructure edge computing, economic and business-related challenges are addressed, since companies offering services and infrastructure edge computing facilities have to find agreements regarding the prices for allowing others to use them. In the area of situation-aware device edge computing, the main challenge is to find suitable nodes that can execute a service and to predict a node’s connection in the near future. Finally, to enable situation-aware embedded edge computing, two novel programming and data analysis approaches are presented that allow programmers to develop situation-aware applications. To show the feasibility, applicability, and importance of situation-aware edge computing, two case studies are presented. The first case study shows how situation-aware edge computing can provide services for emergency response applications, while the second case study presents an approach where network transitions can be implemented in a situation-aware manner

    C-RAM: Breaking Mobile Device Memory Barriers Using the Cloud

    Get PDF
    Mobile applications are constrained by the available memory of mobile devices. We present C-RAM, a system that uses cloud-based memory to extend the memory of mobile devices. It splits application state and its associated computation between a mobile device and a cloud node to allow applications to consume more memory, while minimising the performance impact. C-RAM thus enables developers to realise new applications or port legacy desktop applications with a large memory footprint to mobile platforms without explicitly designing them to account for memory limitations. To handle network failures with partitioned application state, C-RAM uses a new snapshot-based fault tolerance mechanism in which changes to remote memory objects are periodically backed up to the device. After failure, or when network usage exceeds a given limit, the device rolls back execution to continue from the last snapshot. C-RAM supports local execution with an application state that exceeds the available device memory through a user-level virtual memory: objects are loaded on-demand from snapshots in flash memory. Our C-RAM prototype supports Objective-C applications on the unmodified iOS platform. With C-RAM, applications can consume 10× more memory than the device capacity, with a negligible impact on application performance. In some cases, C-RAM even achieves a significant speed-up in execution time (up to 9.7×)

    Leverage viral growth inherent in mobile peer-to-peer telematics to strategic advantage

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2004.Includes bibliographical references (p. 136-139).Telematics, defined as the vehicle features and services made available through a wireless connection to data or other resources not onboard the vehicle, provides one of the most promising areas of innovation and value creation in the automobile market today. However, up to now the US market has only experienced successful telematics businesses in the quazi-insurance field of Safety and Security. In contrast, Consumer Telematics, defined as the confluence of consumer electronics and vehicle telematics, presents a much more exciting market opportunity. In spite of this, inadequate bandwidth, poor usability, fragmented standards and excessive cost have together created sufficient barriers so as to deter any automakers from entering the market. In this thesis, we argue that the viral growth inherent in Wi-Fi class mobile peer-to-peer (mP2P) telematics presents an opportunity for an automotive OEM with significant marketshare to transcend these barriers, and thus capture significant value from this up-to-now elusive market. To do so, we analyze the proposed business through the filters of technology, value chain, applications and market dynamics in order to craft a comprehensive strategy for entering the market and insuring sustained return through its maturation. The technology analysis both presents the potential benefits and limitations of mP2P as well as likely competitors and substitutes. It suggests that mP2P has a sustainable cost and bandwidth advantage over other architectures. Our examination of the Telematics value chain indicates that the wireless connectivity and IP backhaul segments of the chain are predisposed towards commodization and thus should be outsourced in a manner that retains flexibility to switch carriers and even technologies as the market(cont.) evolves. By segmenting the most promising applications according to their connectivity demands, we plot out how service offerings should evolve in concert with the quality of wireless connectivity and market adoption. Finally, analyzing the market dynamics indicates the critical mass threshold where customer willingness-to-pay exceeds the cost, and thus the trade-offs between investment and strategy necessary for success. We conclude that this critical mass where viral growth ensues exists at only 3-5% market penetration, a target easily achieved by an Automotive OEM with dominant marketshare such as General Motors. The proposed strategy resulting from this analysis endeavors to ensure sustained return by embracing an evolving business model. While initial value is captured through vehicle differentiation, it then shifts to primarily service revenue. Eventually, if the business is successful in garnering widespread adoption, value would eventually be principally derived through hardware licensing and operating system revenue. In the end, the key to success for the OEM is to set aside its traditional ways of doing business in order to leverage the complementary market forces that drive viral growth. Without this, this business is daunting and risky ...by Erik C. Bue.S.M.M.B.A

    Improved Performance of Secured VoIP Via Enhanced Blowfish Encryption Algorithm

    Get PDF
    Both the development and the integration of efficient network, open source technology, and Voice over Internet Protocol (VoIP) applications have been increasingly important and gained quick popularity due to new rapidly emerging IP-based network technology. Nonetheless, security and privacy concerns have emerged as issues that need to be addressed. The privacy process ensures that encryption and decryption methods protect the data from being alternate and intercept, a privacy VoIP call will contribute to private and confidential conversation purposes such as telebanking, telepsychiatry, health, safety issues and many more. Hence, this study had quantified VoIP performance and voice quality under security implementation with the technique of IPSec and the enhancement of the Blowfish encryption algorithm. In fact, the primary objective of this study is to improve the performance of Blowfish encryption algorithm. The proposed algorithm was tested with varying network topologies and a variety of audio codecs, which contributed to the impact upon VoIP network. A network testbed with seven experiments and network configurations had been set up in two labs to determine its effects on network performance. Besides, an experimental work using OPNET simulations under 54 experiments of network scenarios were compared with the network testbed for validation and verification purposes. Next, an enhanced Blowfish algorithm for VoIP services had been designed and executed throughout this research. From the stance of VoIP session and services performance, the redesign of the Blowfish algorithm displayed several significant effects that improved both the performance of VoIP network and the quality of voice. This finding indicates some available opportunities that could enhance encrypted algorithm, data privacy, and integrity; where the balance between Quality of Services (QoS) and security techniques can be applied to boost network throughput, performance, and voice quality of existing VoIP services. With that, this study had executed and contributed to a threefold aspect, which refers to the redesign of the Blowfish algorithm that could minimize computational resources. In addition, the VoIP network performance was analysed and compared in terms of end-to-end delay, jitter, packet loss, and finally, sought improvement for voice quality in VoIP services, as well as the effect of the designed enhanced Blowfish algorithm upon voice quality, which had been quantified by using a variety of voice codecs

    Cognitive radio adaptive rendezvous protocols to establish network services for a disaster response

    Get PDF
    Disasters are catastrophic events that cause great damage or loss of life. In disasters, communication services might be disrupted due to damage to the existing network infrastructure. Temporary systems are required for victims and first responders, but installing them requires information about the radio environment and available spectrum. A cognitive radio (CR) can be used to provide a flexible and rapidly deployable temporary system due to its sensing, learning and decision-making capabilities. This thesis initially examines the potential of CR technology for disaster response networks (DRN) and shows that they are ideally suited to fulfill the requirements of a DRN. A software defined radio based prototype for multiple base transceiver stations based cellular network is proposed and developed. It is demonstrated that system can support a large number of simultaneous calls with sufficient call quality, but only when the background interference is low. It is concluded that to provide call quality with acceptable latency and packet losses, the spectrum should be used dynamically for backhaul connectivity. The deployment challenges for such a system in a disaster include the discovery of the available spectrum, existing networks, and neighbours. Furthermore, to set up a network and to establish network services, initially CR nodes are required to establish a rendezvous. However, this can be challenging due to unknown spectrum information, primary radio (PR) activity, nodes, and topology. The existing rendezvous strategies do not fulfill the DRN requirements and their time to rendezvous (TTR) is long. Therefore, we propose an extended modular clock algorithm (EMCA) which is a multiuser blind rendezvous protocol, considers the DRN requirements and has short TTR. For unknown nodes and topologies, a general framework for self-organizing multihop cooperative fully blind rendezvous protocol is also proposed, which works in different phases, can terminate when sufficient nodes are discovered, and is capable of disseminating the information of nodes which enter or leave a network. A synchronization mechanism is presented for periodic update of rendezvous information. An information exchange mechanism is also proposed which expedites the rendezvous process. In both single and multihop networks, EMCA provides up to 80% improvement in terms of TTR over the existing blind rendezvous strategies while considering the PR activity. A simple Random strategy, while being poorer than EMCA, is also shown to outperform existing strategies on average. To achieve adaptability in the presence of unknown PR activity, different CR operating policies are proposed which avoid the channels detected with PR activity to reduce the harmful interference, provide free channels to reduce the TTR, and can work with any rendezvous strategy. These policies are evaluated over different PR activities and shown to reduce the TTR and harmful interference significantly over the basic Listen before Talk approach. A proactive policy, which prefers to return to channels with recent lower PR activity, is shown to be best, and to improve the performance of all studied rendezvous strategies
    corecore