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ABSTRACT 

Both the development and the integration of efficient network, open source technology, 

and Voice over Internet Protocol (VoIP) applications have been increasingly important 

and gained quick popularity due to new rapidly emerging IP-based network technology. 

Nonetheless, security and privacy concerns have emerged as issues that need to be 

addressed. The privacy process ensures that encryption and decryption methods protect 

the data from being alternate and intercept, a privacy VoIP call will contribute to private 

and confidential conversation purposes such as telebanking, telepsychiatry, health, safety 

issues and many more. Hence, this study had quantified VoIP performance and voice 

quality under security implementation with the technique of IPSec and the enhancement 

of the Blowfish encryption algorithm. In fact, the primary objective of this study is to 

improve the performance of Blowfish encryption algorithm. The proposed algorithm was 

tested with varying network topologies and a variety of audio codecs, which contributed 

to the impact upon VoIP network. 

A network testbed with seven experiments and network configurations had been set up 

in two labs to determine its effects on network performance. Besides, an experimental 

work using OPNET simulations under 54 experiments of network scenarios were 

compared with the network testbed for validation and verification purposes. Next, an 

enhanced Blowfish algorithm for VoIP services had been designed and executed 

throughout this research. From the stance of VoIP session and services performance, the 

redesign of the Blowfish algorithm displayed several significant effects that improved 

both the performance of VoIP network and the quality of voice. This finding indicates 

some available opportunities that could enhance encrypted algorithm, data privacy, and 

integrity; where the balance between Quality of Services (QoS) and security techniques 

can be applied to boost network throughput, performance, and voice quality of existing 

VoIP services. With that, this study had executed and contributed to a threefold aspect, 

which refers to the redesign of the Blowfish algorithm that could minimize computational 

resources. In addition, the VoIP network performance was analysed and compared in 

terms of end-to-end delay, jitter, packet loss, and finally, sought improvement for voice 

quality in VoIP services, as well as the effect of the designed enhanced Blowfish 

algorithm upon voice quality, which had been quantified by using a variety of voice 

codecs.    
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Since the success of voice transmission initiated by Alexander Graham Bell, who 

also invented the very first functional telephone [1], investigations related to 

communication technologies have never halted, but have continued into this modern 21st 

century era. In the past telephony times, voice transmission implied guaranteed services 

provided by dedicated communication media, known as circuits. In parallel with the 

existence of Circuit-Switched (CS) telephony systems, another concept of voice 

transmission emerged - Voice over Internet Protocol (VoIP). VoIP functions by 

converting human voice into a stream of digital data that is packetized into Internet 

Protocol (IP) packets and sent over the network to the other end[s] of the call [2]. 

Furthermore, VoIP technology has introduced newly-integrated and cost-efficient 

services, along with intricacies [3]. This new technology can substantially increase traffic 

load, yet it can lead to technical problems if not addressed at the installation, operational 

and maintenance stage. One possible but costly solution is to set up an entirely new data 

network dedicated to VoIP. A more sensible approach, however, is to combine the data 

network with the VoIP service that demands a monitoring system if customer satisfaction 

is made priority.  

At present times, VoIP services are being used widely in voice communication 

and as such, many studies pertaining to VoIP have focused on VoIP security, for example, 

the implementation of encryption and steganography as some methods to secure the 

communication between both parties in VoIP communication [4]. In addition, the 

illustration presented in Figure 1 displays a VoIP communication, where customers are 

connected via secured VoIP technologies; which represents a secure VoIP call from a 

sender to a connected receiver, along with additional encryption techniques by using 

IPSec so as to offer protection against intruders, to ascertain information (conversation) 

privacy, and to ensure the integrity of data transmission between both parties. 

Furthermore, the combination of security, privacy, and encryption portrayed in Figure 1 
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has an impact upon VoIP voice quality and performance, in terms of increment in end-

to-end delay and packet loss, as well as lower network throughput. Therefore, as a 

network administrator, it is essential to manage and to control the performance of a 

network convergence before allocating the required resources. Thus, a variety of 

empirical, network topology and scenarios with in-depth investigations upon encryption 

algorithm and voice codecs analyses should offer a solution to the issues mentioned 

above.  

As VoIP services growing day-by-day, security and privacy are turning out to be 

the most crucial and important aspect of it. Hence, secure voice conversation is needed 

to prevent any unauthorized recipient and intruder from retrieving and eavesdropping the 

original data. The encryption algorithm can be used along with IP Security (IPSec) to 

secure and privately convert voice data into unreadable form. Lots of encryption 

algorithms are available to be used with VoIP services, commonly Data Encryption 

Standard (DES), Triples DES (3DES), Advanced Encryption Standard (AES), Blowfish, 

RC2 and RC6 are vital in securing data and sensitive information. Nonetheless, these will 

consume and utilize a significant amount of computing resources such as processing time, 

memory, and power consumption.  DES and 3DES encryptions are no longer secured as 

they are already obsolete and vulnerable to cryptanalysis and linear cryptanalysis attacks.    

Additionally, the network design and experiments devised in this study were 

designed to test VoIP services under varying network topologies and voice codecs. 

Hence, the main purpose of this research is to investigate the performances of enhanced 

Blowfish algorithm and VoIP, as well as the quality of voice through the use of various 

voice codecs. Explicitly, this research studied the feasibility of implementing VoIP with 

enhanced Blowfish algorithm as the proposed security aspect. As such, VoIP 

performance had been tested to determine both the advantages and disadvantages of 

implementing the enhanced Blowfish algorithm. 

 

 

 

 

 



18 

 

 

 

With the advent of VoIP, issues regarding Quality of Service (QoS) have become 

limelight among VoIP users [5], thus generating several solutions to overcome these 

irking issues [6]. In fact, the QoS refers to the requirement that guarantees good customer 

experience, as well as advanced feature to prioritize internet traffic. In line with that, the 

International Union of Telecommunications (ITU) suggested the Mean Opinion Score 

(MOS) [7] that offers terminology and the procedure to validate voice quality perception 

via assessment carried out upon a large number of customers. However, a more viable 

approach refers to the application of several widely used communication parameters to 

develop a mathematical model, especially to predict the call quality of VoIP [8]. For 

instance, if parameters, such as delay and packet losses, are employed, prediction of voice 

quality can be computed by using the E-model [9][10]. This model is useful for 

transmission planner to ascertain satisfaction among users concerning end-to-end 

transmission performance, consequently becoming apparent that phone quality 

estimation is indeed feasible and appears to be a significant aspect when designing more 

efficient network architectures [11][12]. This is also one of the main reasons for the QoS 

to emerge as an essential subject area in the last decade as ‘customers are always right’. 

Furthermore, as managing VoIP in networks with QoS is already a challenge [13], 

the emergence of a secure network, while making it more attractive to customers, has 

increased the intricacy in allocating resources that can guarantee good quality [14]. 

Figure 1: VoIP IPSec tunnel transmission [180] 
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Simultaneously, customer awareness of these security issues related to VoIP services has 

brought down the expectations of a good quality VoIP experience. Hence, this fact creates 

an opportunity for network administrators to use VoIP applications and services to offer 

users with greater insurance of security and privacy. With that, voice quality, particularly 

in this study, had been weighed in to improve the implementation of VoIP com-

munications with secured VoIP services and networks through the use of enhanced 

Blowfish encryption algorithms. Furthermore, the MOS was employed to validate the 

voice quality of VoIP over heterogeneous networks, which has been projected to be a key 

feature for future network design. 

1.2 PROBLEM STATEMENT 

The implementation of network security parameters by using Internet Protocol 

Security (IPSec)  is a solution that secures VoIP services [15], although IPSec has been 

presumed to have a drawback and impact on VoIP performance. Besides, due to 

additional packet overheads, authentication, integrity check, encryption, and extra central 

processing unit (CPU) processing involved in the lengthy process, the application of 

encryption contributes to transmission delay and packet size overhead on VoIP [16]. 

These are also associated to the processing time required to encrypt/decrypt bits or blocks 

of data, as well as the increase in packet size due to the block size of the encryption 

algorithm [17].  

 This delay levied can be determined by the operation method applied in the 

encryption algorithms. As security and efficiency have become conflicting requirements, 

the introduction of a complex security layer that can guarantee packet content 

confidentiality, integrity, and authentication can slow down packet transmission [18]. 

Thus, the need for shorter computation time to encrypt and decrypt data would result in 

a higher throughput value, as well as the lower end-to-end delay, jitter, and the lowest 

packet loss rates [19].  

Precise, acceptable voice quality and secured VoIP services are crucial for 

consumer, thus indicating that equity between VoIP security, performance, and voice 

quality need to be attained [20]. These VoIP applications and services are time-sensitive 

and vulnerable to network level attack, including protocol level attack. Therefore, several 

security mechanisms, such as IPSec, are necessary to offer a secured VoIP environment. 

Besides, the company’s IT manager or network operator would gain benefit from the 
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efficient encryption algorithm, which can provide adequate security and better voice 

quality, even under limited bandwidth or limited resources provided by company and 

Internet service provider (ISP). Moreover, to date, countless voice activation operations 

and applications can be programmed and transferred over the Internet, in which end users 

and those visually-impaired could also reap benefits from this; whereby the application 

can be operated without consuming much bandwidth or compromising security during 

voice transmission and transaction. 

1.3 AIM AND OBJECTIVES  

Therefore, this research aims to propose a novel and improved encryption 

algorithm that could maintain security requirements, in line with the standard of Blowfish 

encryption algorithm. Moreover, the performance of the encryption algorithm had been 

improved by reducing execution time and by increasing throughput. This research also 

executed the enhanced encryption algorithm in VoIP network architecture with various 

voice codecs to present a set of choices to ascertain better voice quality and VoIP services.  

Hence, to achieve the aim, a few objectives had been listed, as follows:- 

i. To study, search and evaluate the literature related to existing encryption 

algorithm network testbed/ network simulator and voice codecs that can 

be implemented to VoIP services.  

 

ii. To analyze and synthesize the information gathered in that literature by 

identifying gaps in current knowledge.  

 

iii. To design and to develop an enhanced encryption/decryption algorithm 

based on an existing block cipher algorithm (known as Blowfish 

algorithm) that minimizes computational resources (i.e. execution time 

and throughput) without violating security requirement. 

 

iv. To design secure enhanced encryption algorithms based on standard 

Blowfish algorithm without sacrificing the privacy of users during 

data/voice transmission, besides maintaining the existing security level. 

The proposed algorithm should contribute to better end-to-end bandwidth 

utilization and reduction of transmission delay. 
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v. To improve the performance of a VoIP network regarding the end-to-end 

delay, jitter, and packet loss by using the enhanced Blowfish encryption 

algorithm. This performance had been assessed by using various network 

topologies and designs.  

 

vi. To improve the aspect of voice quality in VoIP services and to quantify 

the effect of the enhanced Blowfish algorithm upon voice quality by using 

varied voice codecs.  

 

1.4 CONTRIBUTION 

This research highlights three contributions: -  

i. The improvement and the redesign of an encryption/decryption algorithm 

based on an existing block cipher algorithm (known as Blowfish 

algorithm) that could minimize computational resources to remain secure 

data, voice, and video transmissions, almost as good as the standard 

Blowfish algorithm.  

 

ii. Demonstrate that the enhanced Blowfish encryption algorithms perform 

better than the standard version in terms of end-to-end delay, jitter, and 

packet loss of VoIP network performance. 

 

iii. Improve the voice quality in VoIP services and quantified the effect of the 

developed encryption/decryption algorithm upon voice quality by using 

various voice codecs. 

 

1.5 THESIS OUTLINE 

Chapter 2 presents the background and the literature review associated to the 

investigated research topic. An overview on VoIP is presented, along with VoIP Protocol, 

VoIP security issues, VoIP quality measurement and parameter, Internet Protocol 

Security (IPSec), voice codecs, as well as reviews of prior studies related to this research. 
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Besides, a review of the solutions developed by other researchers aimed at enhancing the 

performance of VoIP and voice quality is presented towards the end of the chapter. 

Chapter 3 presents the research methodology employed in this study; which is 

embedded in the discussion on methods used in designing encryption algorithm, as well 

as implementation of the algorithm on selected network design by assessing network 

performance, VoIP call quality, and experimental setup, together with the usage of 

various voice codecs. 

Chapter 4 describes in detail how the research was carried out, the stages involved 

in this research, including the design of the enhanced Blowfish algorithm, the simulation 

tests using C++ programming language, the network testbed set up in computer labs 

involving VoIP softphone clients, and the open source software/operating system. In 

addition, different types of network topology and network parameters were also deployed 

by using the OPNET simulator, along with various voice codecs. For each deployment 

scenario, a complete set of simulation results had been used to validate the accuracy and 

the usefulness of the developed enhanced Blowfish encryption. 

Chapter 5 presents the results and the solutions proposed in the context of 

enhancing Blowfish encryption algorithm deployment, VoIP performance evaluation 

without encryption, with standard Blowfish algorithm encryption, as well as the enhanced 

Blowfish algorithm encryption. As such, varies types of voice codecs had been tested by 

using network testbed and OPNET simulation with both results validated and compared. 

Moreover, both encryption algorithms security aspects were also measured with the 

avalanche effect and correlation coefficient.   

Lastly, Chapter 6 concludes this thesis with a summary of the solutions proposed 

and research limitations, followed by a discussion pertaining to potential future work. 
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CHAPTER 2  

BACKGROUND 

 

This chapter introduces and provides a general overview of VoIP protocols, VoIP 

traffic metrics, as well as service and voice qualities in the VoIP system. Meanwhile, 

Section 2.2 presents issues related to VoIP traffic metrics, follow by Section 2.3 focused 

on VoIP security, along with several possible solutions, whereas Section 2.4 depicts an 

insight of utilised audio codecs. Next, Section 2.5 discusses some methods of assessing 

voice quality, while Section 2.6 offers an extensive overview of prior studies carried out 

by other researchers. Lastly, this chapter ends with a conclusion in Section 2.7. 

 

2.1 VOICE OVER INTERNET PROTOCOL (VOIP) 

The VoIP, which is also known as Internet telephony or Internet Protocol (IP) telephony, 

is a concept that refers to voice transmission over Packet-Switched Networks (PSNs), 

such as the Internet. On the other hand, the typical telephony is carried over Circuit-

Switched Networks (CSNs), for instance, the Public Switched Telephone Network 

(PSTN). 

The VoIP incorporates a VoIP-enabled device or a VoIP computer program that runs 

on a Personal Computer (PC) or a mobile phone. The signal of the acoustic voice is 

captured by a microphone and transferred to a voice codec, where at the sender’s side, 

has the role of sampling the raw analogue audio signal and transforming it into a digital 

stream of data, which is next sent to be encapsulated as payload into IP packets. 

Meanwhile, at the receiver’s side, the function of the codec is reversed; in which the 

payload embedded into the IP packets is extracted and combined into a digital stream of 

data that is converted into analogue signal and later, transferred to a speaker. 

In fact, VoIP is among the oldest applications designed for PSNs. The first mention 

of transporting voice over PSNs was performed via Network Voice Protocol (NVP) in 

1973 by the Advanced Research Projects Agency (ARPA)  [21]. Interestingly, the idea 

of VoIP preceded the protocols that have made VoIP possible at this present time, such 

as User Datagram Protocol (UDP) (1980)  [22], IPv4 (1981) [23], H.323 (1996) [24], 
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Real-Time Transport Protocol (RTP) (1996) [25] and Session Initiation Protocol (SIP) 

(1999) [26], 

From the stance of a service provider, VoIP evolution has involved a minimum of 

three stages: 

I. Business solutions: initially, VoIP functioned as a solution for companies to 

decrease maintenance cost for networking infrastructure by eliminating 

PSTN-like internal network only by using data infrastructure for both data and 

voice communications. In fact, the connection with PSTN has been carried 

out by VoIP Private Branch Exchange (PBX). As such, VoIP is confined to 

the boundaries of the company's physical network. 

II. Closed service domain: Skype [27][28] is the pioneer that offers VoIP services 

over the Internet, and chooses to apply a distributed system based on peer-to-

peer protocol. Moreover, Skype offers free Skype-to-Skype calls for the large 

public. However, in order to place a call with a phone number in the PSTN, a 

fee is applied. With that, users are not limited by the boundaries of a network, 

but by the domain of the service provider. 

III. Federated VoIP: typically, an Internet domain provides access to webpages or 

hosts e-mail addresses. Meanwhile, federated VoIP adds to its functionalities, 

for example, VoIP. E-mail alike, federated VoIP demands a dedicated server 

that is addressable on that particular domain. In addition, the protocols used 

by the federated VoIP are also employed to offer communication services, 

such as video chat, conferencing, text chat, and shared desktop. While the first 

two mentioned solutions are somehow limited by either the network or the 

domain, this federated solution addresses limitations by enabling a plethora 

of inter-domain communication services. 

 

2.1.1 VOIP PROTOCOLS 

International Organization for Standardization (ISO), Institute of Electrical and Electronics 

Engineers (IEEE) and Internet Engineering Task Force (IETF) assigned most of VoIP 

standard protocols for Internet communications and International Telecommunication 

Union- Telecommunication Standardization Sector (ITU-T) handles telecommunications 
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protocols and standard format for PSTN. Voice transportation via PSNs involves 

technologies that range from signal processing to time-sensitive packet transport 

protocols. Several key aspects and protocols of such technologies applied in this 

particular study are elaborated in the following: 

 

A) VoIP Transport Protocols 

The following depicts how the captured voice samples are combined into voice 

frames and transported over PSNs. 

Transmission Control Protocol (TCP) [29] appears to be the most widespread transport 

protocol used in PSNs. In fact, one of the primary features of TCP is the guaranteed 

delivery by using receipt acknowledgement reports sent by the destination party of a 

transmission, and later, back to the sender. If a packet is lost at transmission, it is re-

transmitted, thus guaranteeing data integrity. Meanwhile, another essential feature of 

TCP is the algorithm employed to hinder network congestion by dynamically adjusting 

the transmission throughput. Such TCP features can eventually lead to relatively large 

transmission delays, which is undesired for real-time applications, such as VoIP. 

Other than that, UDP [30] is another widespread transport protocol employed in 

applications, where timely delivery of data is made priority, more than integrity. Hence, 

lost packets are not re-transmitted and the destination of these packets does not send any 

receipt acknowledgement. Commonly, VoIP and Internet Protocol Television (IPTV) fall 

in the category of applications that apply UDP as the transport protocol. 

Meanwhile, Real-Time Transport Protocol (RTP) [31] refers to the protocol used to 

uniquely identify a media stream. The RTP headers are attached to media packets that 

contain sequencing information so as to help the destination application rebuild the data 

stream. 

Next, Real-Time Control Transport Protocol (RTCP) [31] denotes the sister protocol of 

RTP. This RTCP gives statistics and control data about the associated RTP flow. Its 

statistics incorporates several aspects, such as, packet count, lost packet count, Round 

Trip Time (RTT), and jitter. These data can be used by real-time applications for the 

media stream parameters to adapt to the network conditions. Such adaptation may include 

audio codec change or content transmission rate. 
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This E-Model employed the RTP headers extracted from VoIP packets in MOS 

calculation. A complete description of the MOS calculation process is given in Section 

2.4. 

B) VoIP QoS Protocols 

The delivery of demanding applications, for instance, VoIP and video conferencing 

displayed in Table 3, has to satisfy expectations. Hence, the primary objective of QoS 

protocols is to ascertain that the specified traffic metrics are maintained within the 

acceptable boundaries [32]. 

Besides, the IETF has been mainly involved in developing protocols to provide 

guaranteed QoS levels, as given in the following: 

 Resource ReSerVation Protocol (RSVP) [33][34] reflects a protocol 

applied to carry the reservation request initiated by an application to guarantee 

resources. The request is carried along the path within the network and each node 

attempts to meet the request specification. In fact, RSVP has been employed by 

some QoS control architectures, for instance, Integrated Service (IntServ), 

Differentiated Services (DiffServ), and Multiprotocol Label Switching (MPLS). 

 IntServ [35] refers to an IETF standard that is designed to offer a fine-

grained and flow-based QoS traffic control within a network. Besides, IntServ is 

defined as a set of functions used by network nodes to manage per-flow traffic in 

a coordinated manner. 

 DiffServ [36] is another IETF protocol designed to offer QoS guarantees 

per-packet. With that, the Differentiated Services Code Point (DSCP) field of the 

IP header is applied to segregate the traffic into various categories. In fact, each 

node along the path prioritizes packets that belong to certain classes over others 

so as to minimize the delay for time- sensitive applications, such as that in VoIP. 

 MPLS [37][38] is an IETF standard that mimic the behaviour of CSNs in 

PSNs. MPLS works by attaching labels to packets interpreted by routers as QoS 

requirements, which can be translated into opting a shorter routing path for time-

sensitive applications. 
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However, the need to guarantee some QoS may not affect a well-organised network 

scheme within LAN. The high speed connection of an Ethernet interface in PC makes 

voice communication just as effective as it is with analogue phones. However, in order 

to guarantee a similar level of QoS over the Internet, allocation of resources that may not 

belong to the end users may be required; inducing additional protocols to address the 

issue. With that, two approaches are available at this stage. 

The initial option offers QoS with protocols that work within the IP layer with two 

available alternatives: Integrated Services (IntServ) [35] and Differentiated Services 

(DiffServ) [36]. IntServ is a model that guarantees the QoS between the end nodes. Hence, 

in order to cope with this task, every single hop in the network must satisfy the demands 

of the session initiation host, or else, the communication would not start. IntServ was 

originally developed by Cisco System and its corresponding signalling protocol is 

Resource Reservation Protocol (RSVP) [33]. This protocol is a signalling system that 

reserves its resources for both multicast and unicast communications, along with a 

request-response method. As for the DiffServ model, QoS is defined by classifying the 

traffic and adopting the varied priorities. Hence, it is more scalable than IntServ as each 

router decides the priority linked to the data. However, in real case scenarios, DiffServ 

may not be as effective as it portrays. If a company agrees to use DiffServ with an ISP, it 

cannot be guaranteed that all data would indeed pass these ISP routers. Thus, crossing 

varying ISPs cannot guarantee that the priorities have been accomplished from the source 

to the destination, thus compromising the desirable QoS. 

Next, the second option to provide QoS is within the second layer found in the OSI model, 

with three available options: Frame Relay (FR) [39], Asynchronous Transfer Mode 

(ATM) [40], and Multi-protocol Label Switching (MPLS) [41]. The FR and MPLS 

technologies are based on creating virtual circuits on the network and guaranteeing a 

minimum bandwidth. Meanwhile, the ATM differs from the rest because it offers a 

different way to organize the network traffic, depending on the requirements. If a 

parallelism is demanded, IntServ is equivalent to FR and MPLS at a higher layer, while 

DiffServ is an ATM/MPLS service above the IP layers. Although these solutions are 

accessible, they are often costly or simply not feasible. Subsequently, the VoIP traffic is 

often routed on the Best Effort basis without weighing in network resource allocation. 

Thus, constraints of PSNs must be considered to determine the quality of performance 
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exerted by VoIP communications, as depicted in the following subsection with both 

subjective and objective methods to assess VoIP calls. 

. 

C) VoIP Signaling Protocols 

VoIP signalling protocol is a major part in the VoIP communication as it enables 

VoIP system to make the connection and call sessions between endpoint. As part of the 

VoIP infrastructures, signalling protocol enables components in the VoIP system to work 

together and to exchange information between network systems by providing the location 

of the endpoint before a session can be established, monitoring and releasing the 

connections, and controlling the system operations.  

 In recent years, H.323 and Session Initiation Protocol (SIP) are known to be the 

most commonly used protocols in the VoIP systems [42]. Most research has focused on 

H.323 and SIP due to its free and open source implementations. Nonetheless, there are 

also other related signalling protocols such as Inter-Asterisk exchange protocol (IAX), 

MegaCo/H.238 and Media Gateway Control Protocol (MGCP) which is also used in the 

VoIP signalling protocol.  

SIP, one of the protocols standardised by IETF, is designed to support the 

bidirectional communication sessions, including VoIP setup. It is a text-based peer to 

peer protocol similar in some ways to the Hypertext Transfer Protocol (HTTP)[43]. It 

serves five functions to the VoIP system [44] : 

i. Session setup, which referred to the session parameter for both ends of the 

communications. 

ii. Session management that can provide the flexible and unnoticeable impact to 

users to manage and change a session. 

iii. The location of users, it can determine user locations by a registration process. 

iv. User’s availability is a method to determine whether or not a user would be 

willing to answer a request to communicate. 

v. User’s capabilities refer to the various methods and standards of 

telecommunication devices and the compatibility between the 

communications and the user’s capabilities.   

Figure 2 shows the architecture and protocol stack of SIP.  
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In SIP architecture, there are several entities: SIP terminal, proxy server, redirect server 

and location server. The redirect server’s function is to receive a request from the SIP 

terminal as well as to inform the caller about the next hop server while the proxy server 

acts as both client and server through receiving a request or making requests on behalf of 

other clients. Location server or registrar server contains the locations database as well 

as user preferences. 

There are several types of SIP messages for call establishment: INVITE, ACK, BYE, 

CANCEL, REGISTER and OPTIONS as shown in Table 1. 

Table 1: SIP Messages [45] 

SIP Request Type Function 

INVITE Session establishment request 

ACK Acknowledgement of receiving INVITE message 

OPTIONS Capabilities of the server is being queried 

BYE Client asks server to terminate the call 

Figure 2: SIP architecture overview 
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2.2 VOIP TRAFFIC METRICS 

The basic traffic metrics used by many Quality of Service (QoS) protocols are as follows: 

 Bandwidth refers to the amount of traffic (measured in bits) that traverses 

a point of the network within a given period of time (measured in seconds), hence 

measured in bits per second (bps). 

 One-way-delay is the measure of end-to-end packet delay [46], which is 

comprised of a number of delay factors that occur at each node involved in the 

packet delivered. 

 Processing delay refers to the time required by the network equipment to 

process the headers of the packet, as well as to determine the next required packet 

action, for instance, the next hop. Besides, another delay due to processing occurs 

upon packet reception at the physical layer when the received packet is examined 

to detect transmission errors. 

 Transmission delay is the time needed for a sending source to push all the 

bits of a packet onto the transmission medium, which is strongly linked to the 

data-rate. 

 Propagation delay reflects the time spent by the bits in a packet to traverse 

to the propagation medium, such as copper wires, optical fibre or ether. 

 Queueing delay is the time spent by a packet at the outgoing queue of a 

node waiting for the availability of a transmission medium. 

 Jitter refers to the variation of a packet delay between a particular set of 

packets that belongs to the same packet stream [47], in which the variation can 

take place due to changes that affect the network, for example, alternative routing 

or congestion. 

 Packet loss reflects the proportion of packets sent by the source, but not 

received at the destination and it is typically measured as a percentage of the 

number of packets lost over the total number of packets sent [48]. One main cause 

of packet loss is queue overflow that occurs when the outgoing queue is full at 

the time of packet arrival. Packet loss can also happen in wireless environments, 

where the propagation medium may suffer from poor transmission conditions 

primarily due to channel interference. 
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Latency is defined as the delay of voice data when crossing an IP network excluding any 

processing or queuing. This parameter refers to a measure of the propagation of data 

delay through wires. 

Queuing and processing refer to the delay related to the processing in the router/switches 

that read the IP destination to route the packets to their next hop. At times, as the 

propagation delay can be assumed as zero, the concept latency is employed to express the 

delay of the propagation, inclusive of delay due to queuing and processing. 

Delay happens when packets of voice data take more time than expected to reach their 

destination. The packets might arrive late or probably not arrive at all, which is 

considered as packet loss. This delay, also called latency, causes some disruption in voice 

quality. High QoS should be considered for voice data as this is relatively less tolerant 

toward voice delay, latency and packet loss to ensure it does not make a huge impact so 

the voice data transmission and conversation can be acceptable. 

Furthermore, by assuming latency as the summation of both delays, it is vital to 

distinguish the two latencies in voice communication; one per voice direction. Meanwhile, 

round trip latency is the summation of two-way latency. Table 2 displays the ITU 

Recommendation G.114 [49], which indicates that the range of round trip latency is 

acceptable when it is below 150 ms for most applications. Relatively, the range between 

150 and 400 ms is acceptable for administrators who are aware of the connectivity being 

used. Nonetheless, 400 ms is unacceptable. Likewise, varied latency ranges can cause 

echo and talker overlap. If the round trip latency exceeds 50 ms, the echo from one of the 

speakers may be heard in the communication, suggesting the installation of an echo 

canceller in the vocoder. Meanwhile, the talker overlap is considered when the one-way 

delay exceeds 250 ms. 

Table 2: ITU recommended values for VoIP quality 

Delay < 150ms > 150ms < 300ms > 300ms 

Jitter < 20ms > 20ms < 50ms > 50ms 

Packet Loss < 1% 1% < 5% > 5% 

Performance Excellent Good Poor 
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In fact, packet loss occurs mainly due to two reasons: i) a glitch in the physical layer due 

to numerous corrupted bits, hence forcing the receiver to reject message, and ii) the finite 

memory space at the routers that eventually cannot allocate more space for incoming 

packets, thus failing to deliver information to its destination. 

On the other hand, jitter refers to the variation of delay in packets that reach their 

destinations. Such variation in inter-packets arrival rate makes a conversation unbearable. 

This issue is commonly solved by introducing a buffering system to decrease its 

undesired effect. 

In fact, all these traffic metrics-bandwidth, one-way-delay, jitter, and packet loss have 

been defined by the Internet Engineering Task Force (IETF), which refers to an 

organization that develops and promotes the Internet standards. 

Several viable applications enabled by PSN and some related requirements for the metrics 

mentioned above are presented in Table 3. Hence, one can observe that VoIP imposes the 

strictest requirements in terms of one-way-delay, jitter, and packet loss, but not for the 

low VoIP bandwidth requirements, as depicted in Table 3. Meanwhile, a streaming traffic 

type implies nil rate control, regardless of the network state, while an elastic traffic type 

adapts its rate to match the network condition. In precise, the two traffic types are 

characterized by UDP and respectively, TCP type of traffic. 

 

Table 3: QoS requirements per application (Low, Medium, High) [50] 

Application Bandwidth Delay Jitter Loss Type 

VoIP Low High High High Streaming 

Video Conference High High High Med Streaming 

Streaming VoD High Med Med Med Streaming 

Streaming Audio Low Med Med Med Streaming 

E-Mail Low Low Low High Elastic 

File Transfer Med Low Low High Elastic 
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2.3  VOIP SECURITY ISSUES 

With the popularity of VoIP networks deployments [51], issues related to security and 

privacy aspects have emerged significant [52]. As such, three main components need to 

be addressed which  are; authentication, privacy, and integrity [53]. The authentication 

process verifies if its user is true. Meanwhile, the process of integrity validates and checks 

if the data and contents are true while being transposed between the sender and the 

receiver. Lastly, the privacy process ensures that the data are protected by using 

encryption and decryption methods from being alternate and intercept [54] [55]. 

 

2.3.1 VOIP SECURITY THREATS 

The operations of circuit-switches, for example, traditional telephone system, can unable 

cases of eavesdrop and other security issues. Figure 3 illustrates the taxonomy of probable 

security threats related to voice traffic on converged networks, such as packet-switches 

communication network. 

 

 

 

Figure 3: VoIP security threats [181] 
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Hence, the most frequent VoIP deployments (end-users, applications, and services) 

against security threats and vulnerabilities are summarized in the following:  

 

1) Social threats: Misrepresentation of authority, identity, contents, and right is 

mostly aimed against humans for theft of service, unwanted contact, phishing, 

and spam [56]. 

 

2) Eavesdropping, modification threats, and interception: An intruder who 

eavesdrops [57] can capture the entire data steam and/or signalling between 

the participants and end users of VoIP in an unlawful manner and without 

authorization [53]. The data can be read and modified before sending to the 

VoIP network unless they have been encrypted [58]. 

 

3) Denial of services (DoS) threats: The DoS is contemplated as interruption of 

a service [59]. This potential attack denies users access to VoIP service that 

can exploit flaws in a call setup or in the service implementation. Besides, it 

may involve direct attack to the Domain Name Server (DNS) and the Session 

Initiate Protocol (SIP) server [43][60]. 

 

4) Service abuse threats: This threat usually comes from an employee/customer 

of an ISP/third party that uses VoIP services [61][62]. For instance, when the 

traffic is artificially increased, the charges for billing can be maximized or 

vice versa [42]. Other than that, one’s personal details could be compromised 

and capitalized on by various forms of account thefts and stolen identities [63]. 

 

5) Physical access threats: Unauthorized and inappropriate physical access to 

VoIP devices or equipment is considered as physical access threats [64]. The 

intruder may gain unauthorized access to any physical layer of the network.  
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6) Interruption of services threats: A case of inaccessibility of VoIP services 

derives from non-intentional problems [65], such as loss of power due to 

weather and by nature [66]. The performance is compromised because of 

resource limitation and degraded call quality. 

 

2.3.2 INTERNET PROTOCOL SECURITY (IPSEC) 

The IPSec refers to a protocol suite that secures Internet Protocol (IP) communications 

by encrypting and authenticating each IP packet of a data stream [67]. This IPSec includes 

protocols that establish authentication between agents at the beginning of the session and 

negotiations of cryptographic keys to be applied during the session [68]. The process of 

cryptographic keys negotiations allows two parties to remotely establish a shared secret 

over an insecure channel. Each key negotiation begins by agreement of both parties on a 

shared policy that states which security parameters will be used to protect key 

negotiations. Moreover, IPSec can be used to protect the flow of data between a pair of 

hosts (e.g. computer users or servers), between a pair of security gateways (e.g. routers 

or firewalls), or between a security gateway and a host [64]. As part of open standards 

framework [69] ,the IPSec consists of some related protocols to perform various purposes 

[70][71]: 

 Internet key exchanges (IKE and IKEv2) are used to configure security 

association (SA), where the SA handles protocols and algorithms negotiation, 

besides generating both authentication and encryption keys to be used by 

IPsec [72][73]. 

 Authentication Header (AH) offers data origin authentication and 

connectionless integrity for IP datagram and provides replay attacks 

protection [74]. 

 Encapsulating security payload (ESP) gives data origin authentication, 

confidentiality, anti-replay service (a form of partial sequence integrity), 

connectionless integrity, and confidentiality for limited traffic flow [75]. 
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Figure 4 illustrates IPSec architecture:  

 

 

 

 

 

 

 

 

The implementation of IPSec is programmed by using a security policy as a rule 

that processes varying datagram when received by a device. By using the security 

strategies, especially after bypassing AH and ESP, every particular packet is decided by 

the IPSec if it should be executed. The security policy in a device is stored in the security 

policy database (SPD) that provides general guidelines for security implementation and 

links to specific tasks [76]. One fundamental aspect of IPSec is the security association 

(SA), which is a relationship of a particular kind of secure connection between one device 

and another. Being a security mechanism that is used to secure communication between 

two devices, it serves as a “contract” that permits the transmission to be established. 

Besides, the security association database (SAD) contains all the information regarding 

the device’s inbound and outbound traffic [77]. 

Furthermore, the tool that forms SAs is identified as Internet key exchange (IKE), 

which reflects a safe and automatic way to deal with the details for the SA to be set up. 

Besides, IKE is a hybrid procedure that uses part Oakley and part SKEME linked to 

ISAKMP so as to attain an authorized keying material to be applied with ISAKMP, and 

for other security associations, such as AH and ESP, for IETF IPsec DOI. Meanwhile, 

the IKE daemon uses UDP port 500. The procedure comprises of two phases: the first 

phase is for authentication, while the second phase is for the key exchange [78]. In 

addition, ISAKMP offers a framework for verification and key exchange but does not 

define them. In fact, it is created to be the main exchange independent that supports a 

variety of key exchanges. Besides, Oakley and SKEME function as tools that form 

authenticated key exchange. The process consists of information payloads that carry 

Figure 4: IPSec interrelationships [80] 
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payloads construction, as well as the order in the process and usage. Meanwhile, IKE is 

a series of key exchanges known as "modes" [72]. In the authentication phase, two modes 

are accessible, which are main and aggressive modes. Although these modes are faster, 

they do not provide identity security for the negotiating parties. Besides, this mode may 

be defenceless against DoS attacks. Authentication phase is the medium where the two 

ISAKMP peers develop a protected and real channel for communication, which is known 

as Security Association (ISAKMP SA) [79]. Next, a quick mode that establishes the 

IPSec SA [A] can be found in the key exchange phase. 

The negotiation of security associations, on behalf of services such as IPsec or any 

other service that needs key material, and/or parameter negotiation, is embedded in key 

exchange phase, which consists of IKE implementations support associated to the 

following attribute values [80]: 

 Data encryption standard (DES) in cipher block chaining (CBC) mode with 

weak and semi-weak key-checks. 

 Message digest 5 (MD5) and secure hash algorithm (SHA). 

 Authentication via pre-shared keys. 

 Modular Exponential (MODP) over default Diffie-Hellman (DH) group 

number one. 

A format protocol offers data validation, integrity, and non-repudiation, but it does not 

offer data privacy, which is known as AH [74]. AH can add security to communication 

scream, encrypt non-volatile fields of the IP header, and create a message digest value at 

the initiation of the packet. In fact, the creation of message digest value and the encrypted 

AH header can be inserted between data portion of the packet and the original IP header 

by using data portion of the packet, as well as one-way hash of the IP header. Figure 5 

illustrates the construction and the interpretation of an AH packet. 
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The aspects of AH field [74] are given in the following: 

 Next header - identifies the type of the next payload after the Authentication 

Header. 

 Payload length - specifies the length of AH in 32-bit words (4-byte units), 

minus "2". 

 Reserved – 16-bit field is reserved for future use, the sender must set “zero” 

as values and it should be ignored by the recipient. 

 Security parameter index (SPI) - an arbitrary 32-bit value that, in combination 

with the destination IP address and security protocol, uniquely identifies the 

SA for this datagram. 

 Sequence number - contains a monotonically increasing counter value, which 

is mandatory and is always present even if the receiver does not elect to enable 

the anti-replay service for a specific SA. 

 Authentication data - a variable-length field containing an Integrity Check 

Value (ICV) computed over ESP packet minus authentication data. 

Figure 5: IPSec AH packet diagram [74] 
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ESP denotes a format protocol that runs data privacy via encryption [75]. Replay attack 

protection, on the other hand, is provided by ESP and over the use of a hash, it can give 

data origin verification and integrity. ESP can add safety to the communication stream 

via encryption of data payload in transport mode or via encryption and encapsulation of 

the entire IP packet when in tunnel mode. For instance, DES, 3DES, and AES are 

symmetric encryption algorithms, while MD5 HMAC and SHA1 HMAC are for data 

authentication and integrity that can be used and supported by ESP. Compared to AH, 

ESP does not protect IP packet header. Moreover, ESP runs directly on top of IP by using 

IP protocol number 50. Figure 6 illustrates how an ESP packet is constructed and 

interpreted: 

 

 

The aspects of ESP Field [75] are listed in the following: 

 Security Association identifier - a pseudo-random value that identifies the 

security association for this datagram. 

 Sequence number - contains a monotonically-increasing counter value, which 

is mandatory and is always present even if the receiver does not elect to enable 

the anti-replay service for a specific SA. 

 Payload data - a variable-length field containing data described by the Next 

Header field. 

 Padding C - padding for encryption. 

 Pad length - indicates the number of pad bytes that immediately precedes it. 

Figure 6: IPSec ESP packet diagram [75] 
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 Next header - identifies the type of data contained in the payload data field, 

e.g., an extension header in IPv6 or an upper layer protocol identifier. 

 Authentication data - a variable-length field containing an Integrity check 

value (ICV) computed over the ESP packet minus the authentication data. 

IPSec can be run either in tunnel mode or transport mode. Each mode has a particular 

use, and thus, care should be taken to ensure that a suitable mode is opted. The tunnel 

mode is most commonly used between gateways, or at an end-station to a gateway, 

whereby the gateway serves as a proxy for the hosts behind it [81]. Meanwhile, the 

transport mode is applied between end-stations or between an end-station and a gateway, 

if the gateway functions as a host, such as an encrypted Telnet session from a workstation 

to a router, where the router is the actual destination [82]. 

2.3.3 VOIP ENCRYPTION AND ALGORITHM 

Beyond doubt, as illustrated in Figure 7, security appears to be a concern when using the 

public Internet, especially in providing privacy, integrity, and security during data and 

voice communications. As for the VoIP network infrastructure, the VoIP traffic in an 

application requires security and as such, IPSec is a strategy that secures the VoIP 

network [83]. In fact, a study by [84] examined VoIP attacks and proposed security 

considerations, as well as methods to minimize security risk, based on some algorithms 

proposed in VoIP encryption [85] [86]. The most frequently used symmetric key 

encryption algorithms to secure VoIP services and communications are block cipher 

encryption, such as AES, 3DES, DES, and Blowfish [87]. Moreover, prior studies that 

investigated network employed the 3DES encryption method although it is still under 

evaluation [81]. The 3DES was developed in 1998 to substitute the DES [88] for it gives 

stronger encryption by using 2168 possible combinations via three round messages. As 

such, more security was discovered upon using 48 rounds in its computation and a key 

length of 168 bits, in comparison to the previous DES encryption algorithm [89]. Figure 

8 illustrates a functional diagram that increases the level of security with 3DES 

encryption, which also adds to the average processing time. For instance, 3DES and AES 

encryption algorithms had been applied to evaluate the voice quality in wireless LAN 

[89] [90]. Similarly, the 3DES algorithm was implemented an IPSec experiment [91], 

whereby IPSec performance using various encryption algorithms, including 3DES, had 

been compared with Windows 7, wireless network access, and IPv4/IPv6 protocol. Other 
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than that, two popular encryption methods, DES and Blowfish, have been studied [92], 

which displayed that the Blowfish algorithm resulted in faster execution time 

(encrypt/decrypt) and proved to be more secure than the DES algorithm.  

  

 

 

 

 

 

 

Figure 7: VoIP security challenges and threats 
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Figure 8: 3DES encryption functional [182] 
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2.3.4 BLOWFISH ENCRYPTION ALGORITHM 

Developed by Bruce Schneier in December 1993, Blowfish algorithm appears to be an 

alternative to the existing encryption algorithms due to its powerful encryption that offers 

both suitability and security [93]. As this algorithm is unpatented and does not require 

any license, it has grown popular among the open source community [94]. Blowfish is a 

symmetric-key block cipher with an F-function design; the key length varies between 32 

bits and 448 bits; and the block size is 64 bits, hence making it suitable for both domestic 

and exportable applications. 

A 16-round Feistel cipher and large substitution boxes (S-boxes) are used. These S-boxes, 

generally, depend on the key. These Feistel ciphers are symmetrical structures found in 

block ciphers. In fact, they are iterated ciphers with an internal function known as round 

function [95]. Horst Feistel initially described them during his work on the cipher Lucifer 

at IBM [96]. Lucifer refers to a predecessor to the Data Encryption Standard (DES). One 

advantage of the Feistel network is the similarity shared between encryption and 

decryption, thus making both circuitry and code smaller [92]. Meanwhile, other ciphers 

that use the Feistel network are IDEA, RC5, and Skipjack [97].  

The implementation of the Blowfish cryptosystem is comprised of two parts: a subkey/S-

Box generation phase, and an encryption phase [98]. Since its introduction by Bruce 

Schneier in 1993, some researchers have analyzed the cryptosystem for its security 

features and have attempted to crack the system. Some popular cryptanalysis techniques 

used to crack are substitutions/permutations linear, differential cryptanalysis, avalanche 

effect, and correlation coefficient [99].  

Moreover, the Blowfish algorithm is one of the best four popular encryption algorithms 

(DES, 3DES, and AES) [100][101][102], which had been compared by encrypting input 

files with varied contents and sizes [103]. The findings showed that Blowfish emerged as 

the fastest algorithm (execution time for encryption and decryption), with memory 

required for implementation and throughput [104]. However, since performance appear 

to be the primary aspect examined in this research, inevitable trade-off issues were noted 

between performance and security, as highlighted by many researchers [103][105][106].  
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The action of Blowfish algorithm is illustrated in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Blowfish Feistel structure [109] 
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Each line represents 32 bits. The algorithm uses an 18-entry P-array and four 256-entry 

S-boxes, which contain subkeys. The S-boxes take 8-bit inputs and give 32-bit outputs. 

In each round, only one entry of P-array is used. After the last round, each half of the data 

block is XORed with one of the two remaining P-entries [92]. Besides, Figure 10 portrays 

the function of the Blowfish Feistel. 

 

 

The 32-bit input is split into four 8-bit quarters and each quarter serves as input to the S-

boxes. Meanwhile, the outputs are added into modulo 232 and XORed to produce 32-bit 

final outputs. 

Initially, the algorithm starts with key initialization step. A key schedule refers to an 

algorithm that calculates the subkey for each round with the key [107]. Furthermore, the 

key schedule of the Blowfish begins with initialization of P-array and S-boxes with values 

acquired from the pi hexadecimal digits that contain no obvious pattern. Next, the key is 

byte-by-byte XORed with all the P-entries in sequence. Moreover, an all-zero 64-bit 

block is encrypted with the algorithm. P1 and P2 are replaced with the resultant cipher 

text, which is then encrypted again using new subkeys, whereas P3 and P4 are replaced 

with new cipher text. This process continues substituting the entire P-array and S-box 

Figure 10: Blowfish Feistel function [92] 
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entries. In total, it takes 521 encryptions to calculate all the subkeys. During the subkey 

generation process, the subkeys change slightly with every pair of generated subkeys in 

order to protect against any attack that may exploit the fixed and known subkeys [108]. 

The data encryption is considered done when all the subkeys are calculated. The action 

of Blowfish Algorithm [108] is illustrated in Figure 11 below. 

 

Divide X into two 32-bit halves: XL and XR  

For i = 1 to 16; 

XL = XL  Pi 

 XR = F(XL)  XR  

Swap XL and XR 

Swap XL and XR (Undo the last swap) 

XR = XR  P17  

XL = XL P18  

Concatenate XLand XR 

Divide XL into four eight-bit quarters: a, b. c and 6  

F(XL) = ((Sl[a] + S2[b])  S3[c])+ S4[d] 

Figure 11: Operation of Blowfish Algorithm  

 

First, the 64-bit block input is divided into two 32-bit halves. Several exclusive-OR and 

Feistel function operations are performed at each round with one P-array entry per round 

for 16 rounds. After 16 rounds, each half of the data block is XORed with two remaining 

unused P entries. The 32-bit half data blocks are then concatenated to gain the cipher text, 

except if P1, P2…. P18 are used in the reverse order, where the decryption is exactly 

similar to the encryption. 

Besides, many implementations support key-sizes up to 576 bits because, during 

initialization, the key bytes are XORed with all 576 bits of the P-array. However, the key 

size is limited to 448 bits so as to ascertain that every bit of every subkey is dependent 
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on every bit of the key, as the last four values of the P-array do not have any impact upon 

every bit of the cipher text [109]. 

2.4  VOIP AUDIO CODECS 

Human speech represents changes that occur in the local air pressure that surrounds the 

atmosphere. In all voice transmissions, these changes are captured by a microphone and 

transformed into analogue electrical signal [110]. Any analogue signal has, in theory, 

infinite bandwidth, however, in practice; bandwidth is limited by using filters. In fact, 

most information in human speech can be found within the range of 100Hz to 4000Hz 

band [111]. Signal sampling, hence, is required to transform an analogue signal into one 

that is digital. In the signal theory, the Nyquist rate [112] specified that the minimum 

sampling rate required to avoid aliasing should be equal or bigger than twice the 

bandwidth of a band-limited signal. Hence, for human speech, the common sampling rate 

is 8000Hz. 

As for VoIP, the conversion between analogue and digital domains is performed by 

COders/DECoders (Codecs), as shown in Figure 12 [113]. A large variety of codecs that 

exist with the main variances between them are compression level, bandwidth efficiency, 

and speech quality. These features demand additional processing time at either the coder 

or the decoder side so that more complex codecs can increase the mouth-to-ear delay of 

the audio signal [114]. Nevertheless, this amount of time delay is insignificant for human 

perception. Thus, the extra time needed for processing is called look-ahead delay. 

Codecs, which serve as algorithms, are used in VoIP systems to enable voice signals to 

be carried over IP networks. Codecs variations differ in complexity, voice quality, and 

bandwidth consumption, in which the categories of codecs can be in a narrow band, 

wideband, or multimode. Typically, more bandwidth is allocated to codecs to gain better 

voice quality [115].  

Furthermore, the concepts of frame and look-ahead delay are present in complex codecs 

that apply compression. Additionally, Table 4 shows the most known audio codecs 

employed in VoIP. In fact, many VoIP codecs sample the audio signal at 8000Hz, except 

for Adaptive Multi-Rate Wide-Band (AMR-WB) that samples at 16000Hz; while the 

AMR-WB is considered to be a high definition codec for its high sampling rate [116]. 

Table 4 also depicts that the bitrate of the codecs can range from 4.75kbps for Adaptive 

Multi-Rate Narrow-Band (AMR-NB), which is very small, to 64kbps for G.711. Hence, 
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a frame is composed of multiple samples that are transformed by a compression algorithm 

into a smaller number of bytes needed to encode the digital data. The frame size in Table 

4 refers to the time duration of the audio signal included in one frame. Thus, G.711 and 

G.726 are codecs that do not use compression. Therefore, the frame concept does not 

really apply, and the corresponding frame size values reflect the amount of time captured 

in one sample period. As G.711 and G.726 use no compression, there is no look-ahead 

delay. The far-most right column displays the maximum achievable VoIP call quality that 

is graded with Mean Opinion Score (MOS) scale.  

Table 4: Comparison of VoIP codecs [117] 

Codec 
Sampling 

(kHz) 

Bitrate 

(kbps) 

Frame size 

+ look-ahead 

(ms) 

MOS 

AMR-NB 8 4.75 ... 12.2 20 + 5.0 4.14 

AMR-WB 16 6.6 ... 23.85 20 + 5.0 4.30 

G.711 (PCM) 8 64 0.125 + 0.0 4.30 

G.723.1 8 5.3, 6.3 30 + 7.5 3.65 

G.726 8 16 ... 40 0.125 + 0.0 3.85 

G.729 8 8 10 + 5.0 3.92 

GSM FR 8 13 20 + 2.5 3.50 

GSM EFR 8 12.2 20 + 2.5 3.80 

iLBC 8 15.2 20 + 5.0 4.14 

      

Figure 12: VoIP codecs overview  
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In this research, three codecs had been applied and tested, which consisted of G.711, 

G.729, and AMR-NB, as described in the following: 

 

1. G.711 Pulse Code Modulation (PCM) [118] is probably one of the most well-

known codecs employed in many audio applications, and it is the main codec 

applied in PSTN. No compression is used, and its data rate is constant during 

audio transmission.  

2. One of the most popular codecs that use compression is G.729 [119]. The 

bandwidth used by G.729 is smaller than the bandwidth used by G.711. However, 

due to inter-frame dependencies introduced by the encoding algorithm, G.729 and 

similar codecs are prone to packet loss. 

3. The Adaptive Multi-Rate (AMR or AMR-NB or GSM-AMR) appears to be 

among the most widely used Global System for Mobile communication (GSM) 

audio codec and used in audio compression format optimised for speech coding. 

It has been adopted from 3rd Generation Partnership Project (3GPP) in the year 

1998 and used for both GSM and circuit switches Universal Mobile 

Telecommunications System (UMTS)/ Wideband Code Division Multiple Access 

(WCDMA) voice calls. The AMR speech codec consists of a variety of multi-rate 

narrowband speech codecs that encode narrowband (200–3400 Hz) signals at 

variable bit rates that range from 4.75 to 12.2 kbit/s with toll quality speech 

starting at 7.4 kbit/s.   

 

As voice codecs can enhance bandwidth efficiency by employing Voice Activity 

Detection (VAD) algorithms [120], VAD is an algorithm used by codec to determine if 

the microphone captures the actual speech or merely background noise. When a VAD 

algorithm detects background noise, the codec will output very small-sized packets to 

inform the other party to play background noise, thus reducing the usage of network 

bandwidth during silent periods. 
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2.5  VOIP VOICE QUALITY ASSESSMENT 

An established call can be measured using voice quality assessment via objective 

and subjective methods [121], which is further elaborated in the next section, which 

includes call quality using Mean Opinion Score (MOS) and E-Model. In addition, Figure 

13, as adapted from [122], presents the measurement of call quality between user #1 and 

user #2 with the relation of the network QoS, whereby good QoS within a network results 

in satisfying and good call quality [123].  

Moreover, voice quality assessment is made up of both objective factors, including 

hardware, software, and network conditions, such as delay, jitter, and packet loss. 

Meanwhile, the subjective factor includes user expectation and conversation effort. As 

for the VoIP network, voice quality can be measured by using both measurements. 

However, subjective assessment has limitations, where the objective measurement has 

detailed quantitative measure in terms of network QoS, such as delay, jitter, packet loss, 

and MOS [124]. 

 

 

 

Figure 13: Call and voice quality assessment 
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2.5.1 MEAN OPINION SCORE (MOS) 

The International Telecommunication Union-Telecommunication 

Standardization Sector (ITU-T) report P.800 [125] introduced a scoring system to 

examine the quality of a speech transmitted via telephone lines. The score ranges from 1 

to 5, as presented in Table 5. Traditionally, when human test subjects involved in grading 

the quality of a speech using this scale, the result is reflected in Mean Opinion Score 

(MOS). 

 

The three varying methods available to determine the MOS of a voice call are given 

below: 

 Subjective (S): human subjects are involved in grading the quality of speech; 

 Objective (O): excludes humans from assessing the speech, but uses an objective 

model to predict speech quality based on the variances between the original and the 

received speech signal; 

 Estimative (E): uses a model that considers communication transmission factors, 

while dismissing both original and received signals. 

The accuracy of Subjective MOS scores is as high as human assessment by 

averaging the scores reported by all participants. The major limitation in this case, 

however, is the scarcity of human subjects. Besides, the process has high cost and 

Table 5: MOS scale for subjective assessment [126] 

Quality MOS Impairment 

Excellent 5 Imperceptible 

Good 4 Perceptible but not annoying 

Fair 3 Slightly annoying 

Poor 2 Annoying 

Bad 1 Very annoying 
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obviously cannot be performed in real time. Thus, both objective and estimative methods 

had been developed[127]. 

The most popular model for objective speech assessment is the Perceptual 

Evaluation of Speech Quality (PESQ) [128]. A reference audio sample is injected into a 

telephone network, and the output is recorded. Next, the PESQ methodology compares 

the reference and the recorded output, whereby the results of the comparison are directly 

linked to the quality of the transmission. Similar to the subjective assessment, the 

objective assessment also cannot be used in real-time. Moreover, these two methods do 

not capture the influence of network parameters, such as delay, jitter, and loss, on speech 

quality. As abovementioned, VoIP quality is correlated with the traffic metrics depicted 

above. Hence, a different method has to be used in order to assess the quality of VoIP. 

 

2.5.2 E-MODEL 

The most popular estimative model is based on transmission parameters, which 

is the E-Model (ITU-T G.107). The E-Model algorithm is an ITU-T standardized 

computational model for subjective call quality assessment [129]. Moreover, it has been 

widely accepted as an accurate tool to plan transmission network. Furthermore, the E-

Model operates under the assumption that perceived quality impairments are additive 

[127]. Combining both codec and network impairments results in the Transmission 

Rating Factor (R) (Equation 1). 

 

R = Ro — Is — Id — Ie_eff + A   (1) 

 

Equation (1) is comprised of the following elements: 

• Ro represents the signal-to-noise ratio obtained by considering both circuit and 

room noise; 

• Is refers to the combination of all impairments that occur more or less 

simultaneously with the voice signal, such as quantization or loudness level; 

• Id represents the impairments caused by the delay of voice signals, such as talker 

echo, listener echo, and absolute signal delay (mouth to ear delay); 
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• Ie_eff denotes the impairments caused by low bit-rate codecs and packet loss; 

• A is the advantage factor and represents a user's willingness to accept lower call 

quality in exchange for the advantage of access. 

 

Meanwhile, Equation (2) weighs in many traditional telephony parameters that 

cannot be measured in VoIP calls, such as Ro and Is. In fact, one of the first studies on 

E-Model with emphasis on voice transmitted over PSNs had been carried out by [130], 

where Clark et al., made numerous observations regarding E-Model parameters, which 

can be assumed by using the default values specified by [129]. As such, the variance 

between Ro — Is takes in the effective value of 94, while Equation (2) takes the following 

form: 

 

R = 94 - Id - Ie_eff + A    (2) 

 

The E-Model is used with the receipt of every VoIP packet. In fact, the accuracy is 

low for R values obtained from the first that arrive in VoIP packets. This is influenced by 

the low measurement accuracy of packet loss and jitter, which function as metrics based 

on the link between the consecutive packets [11]. 

As such, the OPNET implementation of the E-Model used in the simulations had 

been carried out in this work. The remaining terms in Equation (2) are detailed below: 

 

1. A 

The advantage factor A is the only additive parameter in the formula of E-Model. 

A represents a user's willingness to accept lower call quality to compensate for being able 

to place calls in unusual circumstances, for example, being in a remote geographical area. 

Moreover, based on the information found in E-Model [129], Table 6 displays the 

maximum values A can take, depending on the call use-case. Further details on the 

evolvement of A values, based on the technological progress in telecommunications, are 

presented in [131]. 
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2. Id  

Id is related to the impairments caused by the delay between the time when the 

sound is injected within the communications system, as well as the time it reaches the 

end-point, where it is played. In the telephone systems, this delay is commonly known as 

mouth-to-ear delay. 

Apart from the network delay described in Section 2.2, two more delays exist in 

VoIP calls: 

 Coding/Packetization delay - delay introduced at the source of the VoIP 

packets by the codec, as it represents the time needed to perform the conversion 

from analogue signal to digital, the look-ahead delay, and the time needed to 

compose the VoIP packet. 

 Decoding/Jitter Buffer Delay - delay introduced at the destination of the 

VoIP packets by the decoder to decompose the VoIP packets, as well as to extract 

and decode the payload into audio samples. Eventually, the waiting time is 

imposed by the de-jitter buffer, which acts as a queue for audio samples with the 

aim of reducing the influence of network delay variation on the playout quality. 

The ITU-T recommends a total mouth-to-ear delay below 150ms [129], primarily 

to preserve interactivity in a duplex phone call. Besides, values higher than 150ms would 

begin degrading the quality of the call, hence making interactivity impossible for values 

above 400ms. 

 

 

Table 6: Recommended values for the advantage factor 

A Type of Communication System 

0 Wired connections (e.g. PSTN) 

5 Low speed mobility (e.g. indoors) 

10 High speed mobility (e.g. vehicle) 

20 Remote areas (e.g. multi-hop satellite connection) 
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3. Ie-eff 

Ie_eff reflects the effect of packet loss on voice quality for several lower rate 

codecs that introduce inter-packet dependencies, where the effect of the packet loss is 

exacerbated. In E-Model, this is denoted with Ie. Typical values of Ie for three of the most 

used codecs are 0 for G.711, 11 for G.729, and 5 for AMR-NB [132]. Furthermore, some 

codecs have a feature called Packet Loss Concealment (PLC), which is an interpolation 

process used to reconstruct lost packets by using past and later audio contents artificially. 

In E-Model, this codec feature is captured by packet loss robustness (Bpl) factor. Several 

typical values for Bpl for three of the most used codecs are 4.3 (without PLC) or 25.1 

(with PLC) for G.711, 19 for G.729, and 10 for AMR- NB. 

Finally, the le_eff can be calculated as given in Equation (3), which refers to the 

combination of Ie, Bpl, and percentage of packet loss (Ppl) [129]. 

4. R to MOS 

R is the evaluation of the transmission on a scale from 0 (poor quality) to 100 (excellent 

quality). Based on the involvement of the subjects in the actual speech, three situations 

are possible: 

 listening-only (L), when the subjects assess the speech emitted from the speaker; 

 talking (T), when the subjects grade the talking side only, which for example, can 

be influenced by the echo signal; 

 and conversational (C), when subjects are involved in an active conversation. 

Hence, in order to obtain the MOS for the Estimated Conversational speech Quality 

(MOSCQE), a conversion formula is provided in [129] which converts R values to MOS 

(Equation 4): 

 1           if R < 0, 

 1 + 0.035 x R + 7 x 10 -6 x R(R - 60) (100 - R) if 0 < R < 100, 

4.5      if R > 100.          (4) 

MOSC Q E    

 
{ 
 

 
= 
 

Ie_eff = Ie + (95 — Ie) x 

Ppl 
Ppl + Bpl (3) 
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The conversion from R to MOS is also given in Table 7, where the quality categories 

are divided into steps of 10 on the R scale within the range of 50 to 90 (lower limit). 

 

       Meanwhile, Figure 14 displays the influence of the delay on the MOS for three of 

the most used codecs for VoIP. Besides, one can note that the lower the rate of codec, the 

lower the MOS is (see Table 4). 

      Next, Figure 15 depicts the influence of the packet delay variation or jitter upon MOS 

for the same three codecs. The same order between the codecs is maintained as in Figure 

14. 

            On top of that, Figure 16 presents the influence of packet loss upon MOS for the 

same three codecs, but with a difference, where G.711 can be used with its PLC feature 

either enabled or disabled. Here, the trend changes, when compared to the trend exhibited 

for delay and jitter. In precise, G.729 performs better than AMR and G.711 without PLC 

(Bpl =4.3), with the fact that G.729 is a very low rate codec. Nonetheless, G.711 with 

PLC (Bpl =25.1) outperforms the other codecs when its PLC feature is enabled. The 

results of MOS versus packet loss rate for different codecs are shown in Figure 16.  It can 

be seen that with 0% packet loss, all the voice codecs reach the higher voice quality, the 

increment of packet loss starting from 2 to 4% clearly affect the voice quality and leads 

to the overlapping curves for all codecs. G.711(Bpl = 25.1) has the best packet loss 

robustness feature in all the codecs compared while G.711 (Bpl = 4.3) has the lowest 

quality no matter with or without packet loss.    

 

 

Table 7: R to MOSCQE correspondence for estimative assessment 

R-value 

(lower limit) 

MOS 

(lower limit) 

User 

Satisfaction 

90 4.34 Very satisfied 

80 4.03 Satisfied 

70 3.60 Some users dissatisfied 

60 3.10 Many users dissatisfied 

50 2.58 Nearly all users dissatisfied 
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2.6 REVISITING PREVIOUS WORK 

This section presents several past studies related to this research.   

2.6.1 VOIP QOS AND VOIP SECURITY 

VoIP QoS and VoIP security studies have further inspired other research areas. 

Interesting research regarding the impact of security and encryption on VoIP QoS in [19] 

[133][134] involved the implementation of various types of encryption algorithms. As 

the security implementation can directly influence VoIP QoS, the researchers have 

further investigated the end-to-end security with and without encryption algorithms, 

including DES, 3DES, AES, and Blowfish algorithms. The results of the network testbed 

indicated that the impact upon the overall performance of VoIP relied on the bandwidth 

available and encryption used, where the implementation of encryption algorithms may 

degrade the voice quality even with adequate network bandwidth.  

With that, the blowfish encryption algorithm presents an acceptable level of security that 

is rapid and provides the least latency, jitter, as well as an efficient algorithm, to minimize 

lost packets ratios and less impact on voice quality. Through OpenVPN and Linux 

software programs, lab tests of various call setup had been carried out with and without 

encryption algorithms [135][86]. The evaluation used MOS as a method to determine 
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Figure 16: MOS vs Packet loss per codec 
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user satisfaction, while the combination of using varying network scenarios present 

various network issues. Both variety and varied scenarios, including variously available 

bandwidth, number of calls, and types of encryption algorithms, had been tested in this 

research, along with the evaluation of MOS measurements that was recorded as well. 

OpenVPN is a popular open source software program for IPSec implementation, while 

the encryption algorithms imposed in this research were AES, Blowfish, and 3DES. The 

results showed that the Blowfish algorithm displayed superior performance effectively 

with higher MOS values.  

Other than that, a VPN cryptography had been developed and designed for VoIP services, 

where the experiment embedded varying network topologies, different types of 

encryption algorithms, such as DES, AES, and Blowfish, along with Linux open source 

operating system [136]. The results exhibited that the encryption algorithm was able to 

impose security for VoIP services, in which the MOS values recorded for Blowfish 

encryption algorithm had been higher among the rest. Besides, implementing VoIP 

without any security mechanism may be exposed to many risks and privacy intrusion. As 

such, the use of Blowfish encryption algorithm was proposed to encrypt the audio 

communication between the VoIP [87]. In fact, the study was conducted in a lab with two 

softphones using G.711 voice codec, while the results were based on three performance 

parameters, which are: network delay, jitter, and packet loss. The findings obtained from 

the research displayed that increment in network latency generated excellent quality for 

voice, while increment in jitter led resulted in acceptable voice quality, and for packet 

loss, no remarkable change was noted, when compared to VoIP without encryption. 

In addition, the design of prototype VoIP network and the virtual modelling using 

OPNET simulation were examined by looking into the effects of security mechanisms 

upon network performance [137][138]. Both effects and performance analyses of 

different types of VoIP security mechanisms implemented by using OPNET simulation 

was also studied [52][139][140][64]. The research was conducted and designed by using 

OPNET simulator, as well as network QoS results, including delay, jitter, packet loss, 

and MOS values. 

Besides, a number of studies had been involved in OPNET simulation software program 

[141], where the selection of suitable voice codecs relied on the network QoS of VoIP in 

varied networks. Furthermore, in order to determine the most effective and efficient 

results for network QoS, various simulations had been carried out by using G.711, 
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G.729A, G.723.1, and GSM-FR codecs using wired and wireless network designs. For 

instance, various codecs had been investigated, including G.711, G729, and G.723, 

whereby the simulation was run on OPNET Modeler 14.5. The findings showed that the 

best network performance could be achieved via trade-off between codec bandwidth 

requirements and desired quality [142].   

In addition, application of apt voice codecs could contribute to better voice quality, while 

MOS results depended on available network bandwidth and network congestion. 

Meanwhile, as the VPN is presumed to have a negative impact on VoIP performance, 

OPNET simulation was employed to simulate the behaviour of VoIP that ran over IP 

VPN tunnel [43]. Moreover, this study used several scenarios, in which the performance 

of VoIP call had been compared for end-to-end delay, jitter, and call setup time for 

varying network configurations. As a result, the findings displayed that the combination 

of network design and VPN influenced end-to-end delay and network jitter.  

Other than that, the thesis generated by Amna [143] regarding securing VoIP 

performance measurement presented the instruments for securing VoIP calls, the 

measurement of network QoS, and voice quality with varied VoIP services, which also 

embedded the implementation of security layer. The findings portrayed that the 

relationships between VoIP performance, VoIP security, VoIP services type, and the 

implementation of security had little impact upon VoIP voice quality and network QoS. 

Research conducted by [144] defined a lots of potential Caller ID spoofing attack, 

researcher proposed and design end-to-end detection of Caller ID mechanism to secure 

VoIP calls.  

 

2.6.2 VOICE CODECS AND VOICE QUALITY MEASUREMENT 

A study looked into the role of several selected voice codecs to evaluate the performance 

of IPSec secured VoIP [124]. In fact, the impact of IPSec from past studies exhibited 

degradation in voice quality under limited bandwidth, where the researcher offered 

quantitative justification that the impact of IPSec on VOIP in terms of packet loss, delay, 

jitter, and voice quality of MOS values can be reduced by applying suitable voice codecs. 

As such, G.711 and Speex codecs were tested with apt codec, where the overhead linked 

with IPSec could be minimal and desirable voice quality may be attained with relatively 

higher MOS values. Moreover, the usage of various voice codecs and the effects of 
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cryptography on perceived QoS for VoIP streams with G.711, G.723, and G.729 had been 

investigated [145], in which MOS values and E-Model were employed as measurement 

methods to encrypt VoIP transmission. The findings showed that the IPSec encryption of 

VoIP was strongly related to the payload sizes, the choice of codecs, and the types of 

encryption algorithms. Meanwhile, Daengsi [146] ran an experimental design using 

G.722, G.711, G.729, and G.723.1 voice codecs, whereby the VoIP testbed system 

recorded the voice quality and the quality of varied types of voice codecs were compared 

in MOS values, which resulted in the proposal of E2-Model (enhancement of the E-Model 

in Thai language). Furthermore, the impact of IPSec on a VoIP network in terms of packet 

loss, jitter, and MOS percentages were determined and the results portrayed that the 

selection of suitable voice codec can offer better voice quality, reduce the amount of 

network overhead, and increase bandwidth utilization [124].  

 

2.6.3 ENHANCES BLOWFISH ENCRYPTION ALGORITHM 

A study by Riza [147] pertaining to the implementation of standard Blowfish algorithm 

in C++ programming language, the code in C++ tested for the performance evaluation 

under various types of data had been examined. In fact, the study had been related to 

algorithm encryption/decryption time processing, throughput, security strength, and 

cryptanalysis.  

Meanwhile, a security analysis of Blowfish algorithm by [148], analyzed the randomness 

of the Blowfish algorithm output, where the implementation of algorithm employed both 

C++ programming language and MATLAB programming to perform cryptanalysis in 

terms of avalanche effect and correlation coefficient. The findings displayed that the 

Blowfish algorithm generated good avalanche text from the second round and a good 

non-linear correlation between plaintext and cipher text. 

The modified Blowfish encryption algorithm through a new method to generate S-Boxes 

and P-arrays was initiated by [149]. The modified algorithm was applied on speech 

coding algorithm G.729, where the method decreased time complexity in generating S-

box and P-arrays. Moreover, the implementation of the modified Blowfish algorithm was 

tested by using MATLAB, in which the output was analyzed by using avalanche effect. 

In addition, the security measurement exhibited that the modified Blowfish offered a 
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similar level of security with the original Blowfish algorithm. However, the modified 

Blowfish highlighted an advantage with less computational overhead in key generation. 

In another study, the “F” function of Blowfish algorithm was modified by mixing XOR 

[150]. Later, four cases based on encryption quality, correlation coefficient analysis, key 

sensitivity test, and size of data file after encryption had been looked into. Data images 

were applied in this research and the results showed that the modified Blowfish algorithm 

was more secured and compact, when compared to the original Blowfish algorithm. The 

performance analysis of Blowfish and its modified version by [151] evaluated the 

algorithms via encryption quality, key sensitivity, histogram, and correlation coefficient 

analysis, in which the encryption had been tested using several digital images, exhibited 

that the modified version of Blowfish algorithm did not violate any security requirement. 

Research by [102][152][101] also discussed about the need of light weight cryptography 

and their design differences with normal block cipher, the comparison in term of energy, 

changing data types such as text or document, power consumption, changing packet size, 

and changing key size show blowfish algorithm has a better performance than RC2, DES, 

3DES and AES. 

2.7 SUMMARY 

This chapter highlights an overview on the works done in the field of VoIP services and 

application. 

As such, several key topics have been discussed in this chapter, an overview of VoIP 

related to transport protocols, traffic metrics, QoS, security issues, and other related 

methods to assess voice quality. 

Furthermore, the history of VoIP highlighted this Internet application as a topic with high 

interest in the area of communications, with the emphasis on Quality of Service aspects, 

which could affect the quality of VoIP call. In fact, an entire section is dedicated for 

measuring VoIP call quality. The presented security issues related to encryption and 

IPSec are some factors that can influence the quality of VoIP call. 

Moreover, in this chapter, VoIP audio codecs technologies have been discussed, as they 

are being used for both users and service providers at present time. Voice quality 

assessment implemented by using MOS with a range of 1 to 5 rating score is depicted in 

this chapter as well. 
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Several prior studies are also reviewed so as to suggest ideas for implementation in this 

particular research in terms of methodology, tools, experimental runs, and procedures.  

The concepts presented in this chapter should enhance one’s understanding concerning 

the methodology presented in Chapter 3.  
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CHAPTER 3 

METHODOLOGY 

 

This chapter discusses the methodology applied in this research to gather relevant data in 

accordance to research objectives, so as to answer the research questions outlined in 

Chapter I. Section 3.1 explain the process involved in experimental and preparation. 

Section 3.2 explain about encryption algorithm enhancement design. Section 3.3 and 3.4 

describe network testbed design and network simulation tool used in order to implement 

the research experimental design test scenarios and method for analysis. In this chapter, 

the aspects of research design, experimental tests on bed network design, OPNET 

simulation setup, as well as verification and validation analyses, are elaborated. 

3.1 EXPERIMENTAL AND PREPARATION 

The methodology of the study is illustrated in Figure 17 on page 66. The initial stage 

began by designing the enhanced version of Blowfish algorithm, where C++ 

programming was implemented in this research design, similar to that in prior studies 

[153] [147]. Next, some procedures and simulation activities were performed with C++ 

and MATLAB programming language in order to evaluate the performance of the 

algorithm. After that, a security analysis was carried out to compare the results of the 

algorithms based on some parameters, which are the speed of algorithms to 

encrypt/decrypt (execution time), metrics that scheduled algorithms for optimisation 

(throughput), as well as cryptanalysis using avalanche effect and correlation coefficient. 

On top of that, the simulation of design embedded varying data packet sizes and types of 

data (audio, video, and text). Furthermore, the real network (testbed) was set up in the 

University of Liverpool, UK labs, and MARA College in Malaysia by using specified 

devices, including gateway router and Internet connections that were provided by Internet 

Services Provider (ISP). In this network testbed, the IPSec VPN setup with both standard 

and enhanced Blowfish encryption algorithms had been examined, together with the 

setup of VoIP services, monitor service performance, analyses of gathered data and right 

until validation analysis. By designing and testing various network test scenarios, 

different experiments had been carried out based on alternating settings and network 
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parameters, which allowed implementation of a configuration with various traffic loads 

over a link to test both the outcome and performance of the changes on encryption and 

voice codec. As such, Wireshark and Jperf had been applied for simulation as the primary 

network performance tools. Wireshark verified the encryption process in a network 

testbed, while Jperf recorded network throughput, mean jitter, and packet loss. Besides, 

a virtual OPNET network simulation was designed in order to assist the testing, analyses, 

and verification processes. 

 

 

Figure 17: Research methodology  
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Several factors might affect the quality and performance of VoIP calls and services; these 

factors include the VoIP protocol, available bandwidth, security imposed, VoIP 

equipment specification, network delay, jitter, packet loss and network architecture to 

provide QoS [154]. Figure 18 shows the parameter that affects VoIP QoS, the highlighted 

parts indicate parameters that has been used in this research.  

 

Figure 18: Parameters affect VoIP QoS 
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In this research, for each parameter testing, there are different techniques used with a 

variety of tools.  Table 8 below summarizes the correlation between these three aspects; 

the methods, devices and parameters.  Firstly, to test the performance parameter, the 

Blowfish encryption design, performance and security testing is done through using the 

C++ and MATLAB programming.  Secondly, for the Network QoS (Delay, jitter & 

packet loss), Voice Codecs (G.711, G.729 & AMR-NB), and Network Bandwidth (100 

Mbps) & Background traffic (50Mbps, 100Mbps, 150Mbps & 200Mbps) and Voice 

quality (MOS & E-Model) parameters, the method used is Real Network testbed setup 

with and without encryption algorithm (Standard Blowfish & Enhanced Blowfish 

Algorithm) which uses the Ekiga softphone, Iperf, Wireshark/ TCPdump, OpenSwan 

IPSec VPN, RTP tools. For the Network QoS (Delay, jitter & packet loss), Network 

Bandwidth (1 Mbps, 10 Mbps & 100 Mbps) and number of calls made (10 calls & 200 

calls), and Voice quality (MOS & E-Model) parameters are tested through the Virtual 

Network Simulation with and without encryption  algorithm (Standard Blowfish & 

Enhanced Blowfish Algorithm) through the OPNET/Riverbed network simulator device. 

Table 8: Correlation between the methods, tools and parameters 

Methods/ Techniques Devices/ Tools    Parameters 

Blowfish encryption design, 

performance and security testing 

 

C++ and MATLAB 

programming 

 

   Performance (Execution time  

   & throughput) 

   Cryptanalysis (Avalanche effect   

   & correlation coefficient) 

 

Real Network testbed setup with 

and without encryption algorithm 

(Standard Blowfish & Enhanced 

Blowfish Algorithm) 

Ekiga softphone, Iperf, 

Wireshark/ TCPdump, 

OpenSwan IPSec VPN, 

RTP tools 

     Network QoS (Delay, jitter  

     & packet loss) 

     Voice Codecs (G.711, G.729 

     & AMR-NB) 

Network Bandwidth (100 Mbps)  

     & Background traffic (50Mbps, 

     100Mbps, 150Mbps & 200Mbps) 

    Voice quality (MOS &  

     E-Model) 
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Virtual Network Simulation with 

and without encryption algorithm 

(Standard Blowfish & Enhanced 

Blowfish Algorithm 

OPNET/Riverbed 

network simulator 

    Network QoS (Delay, jitter  

     & packet loss) 

Network Bandwidth (1 Mbps, 10 

Mbps & 100 Mbps) 

    No. of calls made (10 calls 

    & 200 calls) 

    Voice quality Measurement (MOS &  

    E-Model) 

 

3.2 ENCRYPTION ALGORITHM ENHANCEMENT 

 Encryption algorithms in this thesis involve both the standard Blowfish and 

enhance Blowfish algorithm where the algorithm is reconstructed on a Feistel network 

and S-Boxes which will be further explained in chapter 4, section 4.1. Figure 19 below 

depicts the performance and security measurement process. Encryption performance is 

measured through execution time; encryption and decryption time whereas for security 

cryptanalysis measurement, both encryption algorithms are tested through avalanche 

effect and correlation coefficient experimentation. These results are compared to ensure 

that the enhanced Blowfish encryption will produce a better performing Encryption 

Algorithms as well as maintaining adequate security characteristics. 

 

 

 Figure 19: Standard Blowfish encryption and enhanced Blowfish algorithms 

measurement  
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3.3 NETWORK TESTBED DESIGN 

The experimental setup, as portrayed in Figures 20, 21 and 22, looked into the effect of 

encryption algorithms and the varied backgrounds of packet sizes upon QoS network and 

VoIP voice quality. The network design involved equipment setup with specification 

listed in Appendix B:- Tables 16 until 18, by using an open source software program and 

a softphone with Windows operating system. The network segmentation was performed 

by using two different VLAN; VLAN1 and VLAN2, which simulated two varied 

locations. Next, a larger network was broken down into smaller ones, where two networks 

were connected with router#1 and #2, which represented the bottleneck node in the 

network as the encryption algorithms were applied in VPN connection with 1Gbps speed 

links. Besides, the voice traffic had been generated by RTP Tool Box and PackETH 

software programs [155] [156].  

The Ekiga softphone and the RTP toolbox softphone with various types of voice codecs 

from different VLAN communicated and manipulated multiple voice sessions 

simultaneously. Moreover, different ranges of Pulse Code Modulation (PCM) voice 

codecs had been tested in this research, which were G.711, G.729, and AMR-NB at 12.2 

kbps encoding scheme. G.711 was selected because it is a popular codec that can offer 

excellent voice quality when compared to other narrowband codecs [113]. Meanwhile, 

G.729 is a popular codec for a wide network area [157], and AMR-NB is mostly used in 

GSM [158], which had been employed in this study as a comparison encoding scheme. 

Other than that, Wireshark and Iperf were applied as packet scan and monitoring tools in 

order to capture and to analyse both QoS and voice quality. The packet that carried voice 

data, which was transmitted between sender and receiver, had been captured by 

Wireshark and converted to eXtensible Markup Language (XML). The gathered data 

were used to calculate QoS network.   

Besides, various types of background traffic had been generated by using packETH [159], 

which functioned as the main simulation tools to test and to flood the network with varied 

types of generated packets. In this testbed, three packet sizes with categories “small”, 

“medium”, and “big” had been employed [160]. The variety in packet sizes was required 

to measure the impact of packet size variation upon data transmission so as to maintain 

end-to-end network performance [161].  

Moreover, the VoIP communication setup in this network testbed had been investigated 

based on the following scenarios: 
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a) No Security: No encryption algorithm was used for VoIP communication and 

network traffic, whereby this setting was used as benchmark.[124][87] 

b)  Standard Blowfish encryption algorithm: The VoIP communication and 

network traffic were imposed with OpenSwan IPSec with the standard 

Blowfish encryption algorithm.[124][87][162] 

c) Enhanced Blowfish encryption algorithm: OpenSwan IPSec and enhanced 

Blowfish encryption algorithm were implemented on VoIP communication 

and network traffic.[149][163] 

The measurements of network QoS and voice quality using MOS score in the network 

testbed had been performed to assess the impact of encryption algorithms under various 

network parameters and allocation of varied bandwidths using the three scenarios 

mentioned above. 
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Legend: 

1-Monitoring Screen ; 2-WIRESHARK machine; 3-Switch #1; 4-IPerf/Jperf machine; 5-RTP 

ToolBOX; 6- Switch #2; 7-Client# 1; 8-Client# 2;  

Figure 21: Physical network testbed 
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Legend: 

9-Routers; 9a-Rl(ISP); 9b-R2; 9c-R3; 10-network monitoring screen; 

11-Keyboard, visual player unit, mouse (KVM)  

 

Figure 22: Specific devices 
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3.4 NETWORK SIMULATION TOOLS  

A Network simulator refers to software tools that deploy, design, run, and predict the 

behaviour of network devices. Moreover, it is comprised of both hardware and software 

components that enable estimation associated to virtual network behaviour. In fact, there 

are many advantages in using the network simulator, for example, efficient time 

management in developing working hardware and software for networking devices, 

along with various choices of hardware and specific network scenarios, which can imitate 

the real network environment with simplicity and lower cost. Besides, this tool offer the 

opportunity to design, modify, test, and study the behaviour exerted by a network design 

to predict its strength and weakness before being deployment into the real world 

environment. As such, various types of network topologies with complex architectures 

can also be tested, which have enabled many researchers to investigate the performance 

and the behaviour of network with added flexibility, scalability, and modularity, thus 

dismissing the “trial-and-error” phase in hardware implementation [164]. As for this 

research, the OPNET (OPtimized Network Engineering Tool) simulator [165], which is 

presently known as Riverbed simulator [166], had been employed to perform simulation 

network design for various types of network scenarios.   

  

3.4.1 OPNET/RIVERBED SIMULATION 

The OPNET Simulator offers the capabilities to test, design, and develop a 

comprehensive network environment with specification, simulation, and performance 

analysis of network. Besides, different areas of network, including single local area 

network (LAN) and wide area network (WAN) to global satellite network, can be 

implemented by using OPNET simulator. Furthermore, based on the discrete event 

system mechanism, OPNET can simulate by modelling the events setup by user, also 

included in the OPNET, the programming tools for user to program each model and 

execute real time network protocol [138]. As the most popular technique in computer 

networking, the vital elements are “events”, which enable the model to change at certain 

discrete point [167]. OPNET, being a packet-based network simulator, measures network 

performance metrics based on the packet simulation generated. Moreover, with the fact 

that it is written in C++ programming language, it can simulate existing models and 

scenarios or a user can provide their codes written in C or C++, where the modeller would 

execute the “event” by scheduling and phasing in accordance to the selected model and 
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setting. Additionally, the graphical user interface (GUI) offers excellent visualization and 

simplified network design to support the development of model, protocols, and 

components. 

 As for this research, the OPNET simulation was applied to design various types of 

network topologies located in several distributed branches. By using the same scenarios 

implemented in the network testbed, VoIP services with varying voice codecs (G.711, 

G729, and AMR-NB), along with and without encryption algorithms, had been tested by 

using the OPNET simulator. The configuration and settings were further adjusted with 

various traffic loads over a link to determine the outcomes that derived from the altered 

codec performance, as well as the impact of security imposed. More details regarding the 

implementation are presented in Chapter 4. 

 

 3.4  SUMMARY  

In order to measure the impact of encrypted algorithm upon QoS network and VoIP voice 

quality as illustrated in Figure 23, a real network testbed was built and used to perform 

VoIP communication experimental tests. In addition, the obtained results were verified 

and validated by comparing the measurement of a variety network designs and topologies 

via OPNET simulation. Moreover, the environment was setup to evaluate the 

performance exerted by both the Blowfish encryption algorithm and the proposed 

enhance algorithm under various network scenarios.   

In addition, the quality of voice was also measured by using mean opinion score (MOS), 

which was performed by both simulations (network testbed and OPNET) with varying 

voice codecs. In fact, the combinations of varied voice codec for both encryption 

algorithms were measured and evaluated to estimate the codec and the encryption 

algorithm that performed exceptionally and provided better voice quality. 
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Figure 23: VoIP quality measurement 
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CHAPTER 4  

BLOWFISH ENCRYPTION ALGORITHM 

ENHANCEMENT AND IMPLEMENTATIONS 

 
This chapter presents the simulation and implementation stages employed in this research. 

As such, a total of six stages related to simulations and implementation had been 

embedded. The initial stage involved both designing and testing the enhanced Blowfish 

algorithm with C++ programming language, where the standard Blowfish encryption 

algorithm was redesigned and modified to improve the aspects of execution time and 

throughput. Next, the security measurement, along with cryptanalysis, had been 

implemented by using the MATLAB programming language. Moving on, the second 

stage referred to the configuration of the network testbed setup, which incorporated the 

implementation of VoIP end devices that were connected to the existing network 

provided by ISP, while the OpenSwan VPN provided secured site-to-site IPSec in tunnel 

mode by employing both standard and enhanced Blowfish encryption algorithms. 

Meanwhile, the third stage involved installation and configuration of VoIP clients, as 

well as the measurement of VoIP voice quality. In addition, the Ekiga softphone was 

installed into both sender and receiver machines in the network testbed. As for the fourth 

stage, the OPNET simulator was implemented to simulate the VoIP applications by using 

various voice codecs and a variety of network behaviour. The fifth stage, through the use 

of various types of voice codecs, along with IPSec security parameter, the quality of voice 

was measured by using the gathered MOS, whereby the related values were collected, 

processed and compared. Finally, the last stage referred to validation and verification, 

where both the standard and the enhanced Blowfish algorithms, which were simulated by 

using OPNET, had been compared with hardware implementation. With that, MOS 

values were validated, data were gathered, and the sample results were verified. 
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4.1 FIRST STAGE: ALGORITHM EXPERIMENT & SIMULATION 

4.1.1 ALGORITHM DESIGN AND TEST BY USING C++ SIMULATION  

A key that ranged from 32 bits to 448 bits was used in Blowfish algorithm. From that key, 

18 32-bit subkeys and four 8 X 32 S-boxes containing a total of 1024 32-bit entries were 

generated, thus concluding in a sum of 1024 32-bit values or 4168 bytes.  

The Blowfish is a 16-round Feistel Structure, as illustrated in Figures 24 and 25. Every 

round is made up of a key- and data-dependent substitution, as well as key-dependent 

permutation. As for F function, as depicted in Figure 26, all the operations embedded 32-

bit words and XOR. The only additional operations, for every round, had been performed 

in the following way [168]: 

 Each block was broken into half. 

 The new left half derived from the right half. 

 After performing XOR on the left half, the results were derived upon performing 

F function at the key and the right half. 

 The essential round was obtained even if the function F (Equation 5) was not 

turned upside down. 

 

F(xL) = ((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod 232  (5)   
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Figure 24: Blowfish Feistel Structure of 16  
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Figure 25: Blowfish algorithm encryption process flow 
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 Adhering to a prior study by [95], the standard Blowfish Algorithm in this 

research had been redesigned, as illustrated in Figure 27, by redesigning the 

original operation of the Blowfish algorithm F function (Equation 6): 

 

F(xL) = (S1,a XOR S2,b mod232)  +  (S3,c XOR S4,d mod 232)  (6) 

 

 P-array and two S-Boxes were initialized 

 The sub keys were prepared by encrypting both the key and P-Array 

 Two S-Boxes used the F function to encrypt the values of S-box 

 The 64-bit input plain text was divided into 32-bit halves (left (xL) and right(xR)) 

 The 32-bit left half xL was XORed with sub key P1 and assigned into xL. Later, 

the xL was fed into the F function. 

Figure 26: Graphic representation of F function in Blowfish algorithm 
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 The modified F function consisted of four S-boxes. The F function split the 32-

bit of input into four 8-bit blocks; Blocks a, b, c, and d. 

o 8 bits from S-box (S1) and 8 bits from S-box (S2) were XORed 

o 8 bits from S-box (S3) and 8 bits from S-box (S4) were XORed 

o The results from the operation of XORed S1 and S2 were applied with the 

results retrieved from the operation of XORed S3 and S4.   

o The process of F Function is depicted as follows: xL was divided into four: 8-

bit blocks: a, b, c, and d. The results are given below (Equation 7): 

 

 F(xL) = (S1,a XOR S2,b mod232) + (S3,c XOR S4,d mod 232). (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Modification F function of enhanced Blowfish algorithm 
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The Pseudocode of enhanced F function with S-boxes operation is given 

below: 

 

Step 1: xL was divided into four 8-bit blocks: a, b, c, and d 

Step 2: (S1,a XOR S2,b mod232) 

Step 3: (S3,c XOR S4,d mod232
) 

Step 4: F(xL)= (S1,a XOR S2,b mod232) + (S3,c XOR S4,d mod232
) 

 

Pseudocode of Encryption  

Step 1: The 64-bit input data were divided into two 32-bit halves (left and 

right): xL and xR 

Step 2: for i=1 to16 

xL was XORed with P[i]. 

Find F(xL) 

F(xL) was XORed with xR. 

Interchange xL and xR. 

Step 3: Interchange xL and xR. 

Step 4 : xR was XORed with P[17]. 

Step 5: xL was XORed with P[18]. 

Step 6: Finally, xL and xR were combined. 

 

Pseudocode of Decryption  

Step 1: The 64-bit input data were divided into two 32-bit halves (left and 

right): xL and xR 

Step 2: for i=16 to1 

xL was XORed with P[i]. 

Find F(xL) 
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F(xL) was XORed with xR. 

Interchange xL and xR. 

Step 3: Interchange xL and xR. 

Step 4: xR was XORed with P[1]. 

Step 5: xL was XORed with P[0]. 

Step 6: Finally, xL and xR were combined. 

As Blowfish Algorithm is a 16 round Feistel structure, it will be iterating a 

simple encryption function 16 times [169][170][171]. 

Operation of Enhanced Blowfish Algorithm 

 The SBox employed values obtained from the randomness digits of pi [104], 

where the function split the encoded values (hexadecimal) of the 32-bit input into 

4 bytes, which were applied as inputs to access the S-Boxes. Next, the outputs 

were summed with two XORs (SBox1 XOR SBox2 and SBox3 XOR SBox4) to 

produce the final 32-bit output. An example of the operations that altered the S-

boxes for enhanced Blowfish algorithm are given below: 

  Given 32 bits as F(xL) = 0x0426cc66, 

The 8 bits were divided into 4, and later, randomized with the extra bits to generate 32 

bits by the S-Box function, as depicted in the following: 

    byte1 = 0x04, S1(byte1) = 0xb8e1afed 

            byte2 = 0x26, S2(byte2) = 0x8e7d44ec 

            byte3 = 0xcc, S3(byte3) = 0x1ab93d1d 

            byte4 = 0x66, S4(byte4) = 0x5121ce64 

Next, the modified S-Boxes were applied in the enhanced Blowfish algorithm: 

F(xL) = (S1,a XOR S2,b mod232) + (S3,c XOR S4,d mod 232). 

  0xb8e1afed ^ 0x8e7d44ec) + (0x1ab93d1d  ^  0x5121ce64) 

   = 0xaf099828     Where,  

   ^ = XOR 

   + = Additional   
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4.1.2 S-BOX DESIGN AND ENHANCEMENT: 

The most intense areas of studies pertaining to Blowfish algorithm are associated to S-

box design [98], whereby any change that takes place to the input vector in an S-box will 

result in random-looking alterations in the output, indicating a relationship that is 

nonlinear and challenging to approximate with linear functions[148]. 

The standard Blowfish algorithm employed 4 S-boxes, where each contained 8-bit input 

and gave 32-bit output (8 X 32) elements; equivalent to 256 fractional parts (hexadecimal 

representation) of Pi (π). Meanwhile, the nXm S-box had n input bits and m output bits, 

larger S-boxes, by and large, more resistant to both differential and linear cryptanalyses 

(larger dimension n, larger the lookup table). 

The alteration made upon the enhanced Blowfish supported the parallel evaluation of two 

XORed operations; (S1, a XOR S2, b mod232) and (S3, c XOR S4, d mod232). The parallel 

XORed operation reduced the time of two XORed from S1, S2, S3, and S4 that can be 

run simultaneously, in comparison to the standard Blowfish algorithm that was performed 

separately/sequential. 

The enhanced Blowfish algorithm applied the existing size and dimension of S-Boxes, 

therefore, suggesting changes in operation structure for S-boxes from the standard 

Blowfish algorithm to not compromise or violate any security matrix as the permutation 

and substitution-generated cipher text to obtain invulnerable, but measurement on the 

security was performed in the next phase.   

The use of 2 parallel XORed and 1 ADDed in the enhanced Blowfish algorithm failed to 

alter/abrupt the role of substitution/permutation in the cipher text, but the confusion of 

producing a cipher text is lower when compared to standard Blowfish algorithm[150]. 

This alteration and modification have improved the standard Blowfish algorithm to some 

extents. The results of all the tests conducted also lead to a common conclusion that the 

performance features of the enhanced Blowfish algorithm with different cases makes it 

perform better and maintain the security as good as standard Blowfish algorithm. 
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4.1.3 PERFORMANCE METRICS 

As depicted in [97], the experiments that evaluated the performances of Blowfish  

algorithm and enhanced Blowfish algorithm had 8 different packet sizes of audio, video, 

and text data types, along with several performance metrics [104], such as those 

elaborated in the following: 

 

4.1.4  EXECUTION TIME (ENCRYPTION AND DECRYPTION)  

One of the many performance metrics is defined as the amount of time required for a 

plaintext message to be converted into cipher text (Encryption), and vice versa 

(Decryption). Hence, the average time, as given in equation (8), was calculated for both 

standard and enhanced Blowfish algorithms based on the gathered data. 

The formula applied to calculate the average rate is as follows: 

AvgTime = 
1

𝑁𝑏
∑𝑁𝑏
𝐼=1

𝑀𝑖

𝑡𝑖
(Kb/s)    (8) 

                                           Where 

AvgTime = Average Data Rate (Kb/s) 

Nb = Number of Messages 

Mi=Message Size (Kb) 

Ti=Time taken to Encrypt Message Mi 

 

Being a significant aspect, the encryption execution time had been considered as a factor 

that assessed the strength or the weakness for encryption algorithms. The speed measure 

was also related to the amount of time for encryption/decryption that employed varied 

parameters, such as key length and data length. 

4.1.5 THROUGHPUT 

The throughput of an algorithm encryption scheme was calculated by dividing the size of 

the plaintext in Megabytes (MBytes) encrypted with the total of encryption time 

(Equation 9): 

Throughput = 
𝑇𝑝

𝐸𝑡
     (9) 
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 Where                               

       Tp = Total Plain Text in Megabytes   

       Et = Encryption Time 

Higher throughput value indicates more efficiency of encrypting any input with an 

encryption algorithm. Thus, it is important to calculate the throughput for the encryption 

as it can present the performance of the algorithm [172].  

 

4.1.6 CPU PROCESS TIME AND MEMORY USAGE 

The experiment was conducted in Microsoft Visual Studio 2010 C++, MathWorks 

MATLAB R2016a simulation by using a personal computer (PC) with i7-2600K 

3.40GHz CPU and 12.0 GB RAM that ran on 64-bit Windows 7. 

 

4.1.7 CRYPTANALYSIS/ SECURITY MEASUREMENT 

This reflects the process of recovering a plaintext or a key from a particular cipher text 

by an unauthorized recipient. In fact, security is the most important factor in evaluating 

cryptographic algorithms, when compared to performance assessment [170], where the 

features consist of security, such as correlation coefficient resistance and avalanche effect 

of the algorithm from cryptanalysis, randomness of algorithm output, and relative 

security when compared to other candidates [173]. 

 

4.1.8 AVALANCHE EFFECT 

A desirable property of any encryption algorithm would be considered by the significant 

changes of a cipher text (output) if the plaintext or the key (input) is modified. Hence, 

when a fixed key and a small change in the plaintext lead to a large change in the cipher 

text, a block cipher could satisfy the text avalanche effect [170]. In fact, changes to one 

bit in either the plaintext or the key could generate a significant change to the bits in the 

cipher text. Mathematically, this is defined as in equation (10) 

Mathematical model: 

∀(x,y)|H(x,y)=1,average(H(F(x)))=(n/2)   (10) 
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Where 

F      = Avalanche effect 

H     = Hamming distance between the output of a random input vector 

                       N/2   = Average or generated by randomly flipping one of the bits 

 

Where F reflects the Avalanche effect when the Hamming distance between the outputs 

of a random input vector and one generated by randomly flipping one of its bits should 

be, on average, n/2 or 0.5.  

   

4.1.9 CORRELATION COEFFICIENT 

The values that are within the acceptable range for correlation coefficient [174] are given 

below: 

 Non-linear relationship is represented by 0  

 Perfect positive linear relationship is represented by +1  

 Perfect negative linear relationship is represented by -1  

 Weak positive (negative) indications of linear relationship via unstable  

linear rule have values between 0 and 0.3 (0 and -0.3)  

 Indications of a moderate positive (negative) linear relationship have 

values between 0.3 and 0.7 (-0.3 and -0.7)  

 Indications of a strong positive (negative) linear relationship have values 

between 0.7 and 1.0 (-0.7 and -1.0)  

 

4.2 SECOND STAGE : NETWORK DESIGN AND TESTBED : 

It had been proven that both encryption and decryption processes have contributed to 

several issues related to voice quality in VoIP services, whereby the delay generated 

could be perceived by the users, thus giving a negative impact upon the quality of voice 

communication [135]. Some common instances that have affected VoIP services are 

packet loss, packet duplication, delay, jitter, as well as out-of-order and incomplete 
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packets. Therefore, in order to investigate the impacts of both the standard and the 

enhanced Blowfish algorithms upon the quality of VoIP services, the network testbed 

displayed in Figure 28 was configured by using OpenSwan VPN [175]. 

 Furthermore, based on some studies [135] [87], several different scenarios were created 

in order to evaluate the impact of encryption upon VoIP calls. As portrayed in Figure 28, 

the network testbed was designed by using a few personal computers (PC) configured 

with open source software programs, internet connection from the internet service 

provider (ISP) connected, as well as being routed from main routers #3, #1, and #2, which 

represented varying virtual local area network (VLAN) that divided the network into 2 

segments; clients and RTP tool box, in which voice calls are made and established by 

using the installed Ekiga softphone and RTP tool box for each LAN. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, additional software programs, such as Wireshark Analyzer [176], had been 

employed to capture network traffic data, as well as to perform offline packet analysis. 

Besides, the graphical user interface (GUI) of Wireshark could be accessed via Wireshark 

Virtual, which can also be used as verification and validation for IPSec encryption. On 

Figure 28: Network testbed 
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top of that, routers #1 and #2 were configured with both standard and enhanced Blowfish 

encryption algorithms using the OpenSwan VPN software program. As the voice call was 

set up and established between client #1 and client #2, the VoIP traffic competed with 

the background UDP traffic sent by a pair of PackETH [156] traffic generator within each 

LAN. In fact, the application of PackETH can generate any possible packet and sequence 

of packets on the Ethernet link, a GUI in the latest version of PackETH 1.8.1, so as to 

provide a simple, flexible, powerful, as well as to support numerous adjustments of 

parameters employed in this experiment. Table 9 shows the experimental setup for 

varying voice codecs without any encryption or encryption, where the aspects of delay, 

jitter, and packet loss were recorded based on varied voice codecs tested under 1Mbps, 

10Mbps and 100Mbps bandwidth allocated.  

Table 9: Network testbed experiment with different voice codec 

Experiment 

Number 
Bandwidth Security Imposed Voice Codecs 

1 

1 Mbps 

10 Mbps 

100 Mbps 

No encryption 

    G.711  

    G729 

    AMR-NB 

 

 

2 
1 Mbps 

10 Mbps 

100 Mbps 

 

Standard Blowfish 

Encryption 

Algorithm 

    

    G.711  

    G729 

    AMR-NB 

 

 

3 

 

1 Mbps 

10 Mbps 

100 Mbps 

 

Enhanced Blowfish 

Encryption 

Algorithm 

    

    G.711  

    G729 

    AMR-NB 
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Network bandwidth controlled by router #1 was configured for bandwidth utilization, 

where the bandwidth in this network testbed was controlled to assess the impact of 

network bandwidth upon voice quality during VoIP implementation with standard 

blowfish encryption, enhanced blowfish encryption, and without any encryption 

algorithm. Besides, the variables of 50mbps, 100mbps, 150mbps, and 200mbps for UDP 

background traffic were increased in order to test the impact of background traffic upon 

packet loss ratio for both VoIP networks and a variety of voice codecs. Table 10 displays 

the experimental setup and the parameter for varying sizes of network background traffic 

with and without encryption for both standard and enhanced Blowfish encryption 

algorithms. 

 

Table 10: Network testbed experiment with different background traffic 

Experiment 
Number 

Background   
traffic       Security Imposed  

Bandwidth 
Allocation 

4 

50 Mbps     No encryption 

    Standard Blowfish   encryption 
Algorithm 

Enhance Blowfish encryption 
Algorithm 

100 Mbps 

5 

100 Mbps No encryption 

Standard Blowfish encryption 
Algorithm 

Enhance Blowfish encryption 
Algorithm 

100 Mbps 

 

 

6 

     150 Mbps No encryption 

Standard Blowfish encryption 
Algorithm 

Enhance Blowfish encryption 
Algorithm 

 
100 Mbps 

 

 

    7 

      

      200 Mbps 

No encryption 

Standard Blowfish encryption 
Algorithm 

Enhance Blowfish encryption 
Algorithm 

100 Mbps 

 

4.3 THIRD STAGE : VOIP CLIENTS AND MONITORING TOOLS 

In order to simulate both VoIP services and call setup; the Ekiga softphone, a selected 

Session Initiation Protocol (SIP) that works on personal computer, was installed and 
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configured in client #1 and client #2 with varied and optional voice codecs, such as G.711, 

G.7.29, and AMR-NB. Both clients were registered to Ekiga server where registration, 

authentication, redirect, and SIP proxy server were provided. Figure 29 illustrates the call 

setup process for Ekiga softphone SIP communication.  

 

4.3.1 SIP CALL SETUP 

The VoIP call established in this testbed had been conducted in these stages: 

1) Both clients were registered with SIP provider/SIP Server, where user name, 

password, and VoIP softphone SIP server information had been obtained. 

2) A specific SIP number (Client#2) was dialed by Client#1 and request was sent to 

SIP redirect server. 

3) The redirect server looked into the requested SIP number or the URL of 

destination client and resent the address to the call originator. 

4) Destination client was informed about the incoming call from the SIP proxy 

server – Ekiga SIP phone began ringing. 

5)  Both clients communicated after the destination client answered the call, where 

the open session for both SIP clients had been established. 

 

 

Figure 29: Ekiga SIP based VoIP call process [183] 
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4.4 FOURTH STAGE: OPNET, CODECS AND NETWORK PERFORMANCE. 

Network Design & Implementation 

The simulation that was used in the OPNET network simulator refers to a network 

structure that was modelled based on a specific network design and several parameters. 

Figure 30 portrays the simulation of network environment by using some network 

components that communicated within a company network in Malaysia, whereby several 

office branches were configured and generated with VoIP communication network (links, 

equipment, application, etc.). In fact, various types of network setups, including network 

test scenarios (topology, routing protocol, resources, etc.), were tested by implementing 

the existing security (encryption algorithms) and the combination of varied VoIP services 

(protocol & codecs).  

.  

 

 

 

 

 

 

 

 

 

 

The implementation of enhanced Blowfish encryption algorithm by using the OPNET 

simulation had been tested by performing several experimental setups with scenario 

parameters, as depicted in Table 11. In fact, the properties of OPNET simulator were 

configured with various scenarios and parameters that differed by call numbers 

(background traffic), voice codecs, allocated bandwidth, and component properties 

including VoIP security for both with and without enhanced or standard blowfish 

algorithms. Next, the network performance and the voice quality of VoIP were recorded 

and compared (delay, jitter, and packet loss). After that, the simulations based on OPNET 

Figure 30: OPNET network design 
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were compared with hardware implementation in the network testbed for comparison, 

validation, and verification purposes. 

Table 11: Properties of OPNET simulation scenarios 

Experiment 
Number 

No of VoIP 
Calls made  

Codecs 
      Scenario Parameter  

Bandwidth 
Allocation 

1-3 

4-6 

7-9 
10 Calls 

G. 711 

G. 729 

AMR-NB 

No encryption 

Standard Blowfish encryption 
Algorithm 

Enhance Blowfish encryption 
Algorithm 

1 Mbps 
4-6 G.729 

7-9 AMR-NB 

   10-12 

13-15 

16-18      200 Calls 

G. 711 

G. 729 

AMR-NB 

   No encryption 

   Standard Blowfish encryption 
   Algorithm    

   Enhance Blowfish encryption  
   Algorithm 

1Mbps 
   13-15 G.729 

   16-18 AMR-NB 

19-21 

22-24 

25-27 

 

 

      10 Calls 

 

 

G. 711 

 
   No encryption 

   Standard Blowfish encryption 
   Algorithm    

Enhance Blowfish encryption  
Algorithm 

 

10 Mbps 

 

 

 

22-24 G.729 

25-27 AMR-NB 

   28-30 

31-33 

34-36       200 Calls 

G. 711 

 
No encryption 

Standard Blowfish encryption 
Algorithm    

Enhance Blowfish encryption  
Algorithm 

 

10 Mbps 
31-33 G.729 

34-36 AMR-NB 

37-39 

     10 Calls 

G. 711 

G. 729 

No encryption 

Standard Blowfish encryption 
Algorithm 

Enhance Blowfish encryption 
Algorithm 

 
 

100 Mbps 

 

40-42 G.729 

43-45 AMR-NB 

   46-48 

     200 Calls 

G. 711 

G. 729 

   No encryption 

   Standard Blowfish encryption  
   Algorithm  

   Enhance Blowfish encryption 
   Algorithm  

100 Mbps    49=51 G.729 

   52-54 AMR-NB 

This scenario was built to boost computer processing demand. With 200 simultaneous 

calls, the origin and destination of the calls will encrypt and decrypt a significant amount 

of data. The objective is to check if, in this situation, some of the algorithms distinguish 

from the others and what the difference is in terms of the quality of the encrypted calls 

and the non-encrypted ones. 
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4.4.1 OPNET NETWORK DESIGN. 

 Networks based in Kuala Lumpur, Malaysia; Narathiwat, Thailand; and Geylang, 

Singapore were designed and configured by using the OPNET simulator. Besides, a 

middle-sized enterprise that adopted the VoIP services had been involved, where each 

located branch was connected and communicated. These three facilities communicated 

by using SIP-based VoIP services, where the main call centre and the headquarters were 

both located at Kuala Lumpur. As the main call signalling, the SIP protocol was 

employed to handle call setup and call establishment. As such, the call centre in Kuala 

Lumpur handled the base network for SIP VoIP server, the SIP proxy server, and together 

with FTP server, which was all deployed in the same location to overload the network 

traffic with various types of network protocols and services, as illustrated in Figure 31. 

 

 

 

 

 

 

 

 

 

 

In order to compare the VoIP codecs, 3 various types of voice codecs were selected and 

tested in this simulation. Besides, the implementation of the encryption algorithm served 

as part of the proposed VoIP security. Thus, voice codec and network topologies were 

tested so as to evaluate both QoS and voice quality. With that, G.711, G.729, and AMR-

NB codecs were selected and tested in this simulation, in which the retrieved results were 

compared with prior network testbed. 

Furthermore, with varied network scenarios, loads of traffics, and security 

implementation; the network QoS parameters (jitter, end-to-end delay, packet loss) and 

the voice quality (MOS) were evaluated to analyse the results obtained from the enhanced 

Figure 31: Simulation VoIP enterprise network 
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Blowfish algorithm for varying scenarios to establish an opinion. The results provided 

data to evaluate the performances exerted by various codecs with the implementation of 

enhanced blowfish algorithm, along with various network scenarios. 

Moreover, various components that had been available in the OPNET modeller were 

employed to design a base model with complicated network design, as well as basic and 

advanced node models, such as routers, switches, server, and wireless devices that 

allowed simulation on complex scenarios with differing link models, path models, and 

network protocol support. 

Besides, all the three branches in this topology were connected by using the connection 

provided by WAN technology: Point-to-Point Digital Signal 3 (PPP_DS4), which is also 

known as T4 line, as well as a bandwidth up to 274 Mbit/s (274 Mb) connected by using 

IP32_Cloud. This simulation design enabled both the evaluation and the comparison of 

performances exerted by VoIP codecs G7.11, G7.29, and AMR-NB under varying 

configuration and scenarios. The next section explains the details for all the components 

embedded in the OPNET simulation for this study. 

4.4.2 APPLICATION CONFIGURATION 

A profile (Appendix C, Figure 62) was constructed by using different application 

definitions, whereby in this research, a few profile name was generated, such as Voice, 

Ftp, e-mail, Http, and database. The simulation configured was setup with different traffic 

loads and network usage patterns. 

With these identical applications, different usage parameters were configured with 

various tier attributes. These defined attributes, which are unique for each profile, enabled 

the execution of various types of common network applications. 

Besides, each tier adhered to the incoming traffic by having a specific name and port that 

are interconnected to a variety of nodes within the designed network. 

4.4.3 APPLICATION SPECIFICATION 

Both the standard and the custom network applications applied in the simulation 

portrayed the attributes of both applications and activities of VoIP services in this 

particular study (Appendix C, Figure 63).  The description was applied for specific 

applications, such as voice, web-browsing, ftp, database, and email; all with heavy and 
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low traffic. Such traffic load simulated varying traffic patterns in order to evaluate the 

VoIP codec and the security parameter under various traffic conditions.   

4.4.4 VOICE ENCODER SCHEMES 

A voice encoder scheme (Appendix C, Figure 64) was set in accordance to the traffic 

generation required in the network. As such, PCM voice encoder schemes G7.11, G7.29, 

and AMR-NB (12.2K) were selected from the voice codec attribute.  

 

4.4.5 PROFILE CONFIGURATION 

The patterns of activities exerted by either a user or a group of users in relation to specific 

applications used over a period of time had been configured by using profile 

configuration. Several profiles, hence, were run on a given network topology or a single 

node. These profiles were executed on the node by configuring them repeatedly, 

concurrently or serially (Appendix C, Figure 65).  

In this simulation, the profile configuration setup that was set as either concurrently or 

simultaneously, which portrayed the real network, behaved with the activities run by 

group. Hence, VoIP services, web surfing, database access, ftp file transfer, and email 

activities were defined in the application definition so as to simulate the scenarios of 

branch activities and network traffic pattern (Appendix C, Figure 66). 

Moreover, the traffic pattern, together with applications and profile configuration, were 

named and specified in these varied object nodes, but it is essential for the traffic to adhere 

to the application definition. 

4.5 FIFTH STAGE: DATA COLLECTION AND PROCESSING 

In order to measure the impact of encryption algorithms upon VoIP communication; data 

collection had been required for investigation, while data analysis was performed 

between different experimental setups. The processes of sending and receiving voice calls 

from one or more locations to another reflected the data collection process. As such, in 

the experiment using network testbed, the Wireshark captured data that were propagated 

from client 1, client 2, RTP Tool, and Iperf in the form of .pcap, which were later 

converted to XML, whereas the .wav. RTP tool was transmitted and recorded as voice 

files in .wav and .pcm, which had been employed to create and to generate MOS score 

based on E-Model/R-factor, in which the graph generated is displayed as MOScqe. 
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Furthermore, the OPNET simulator had the ability to generate traffic based on attributes, 

applications, and profile configurations, whereby the traffic generated both network 

traffic data and utilization from varying settings. The data processing via discrete event 

approach/workflow is as follows: 

a) The configuration from nodes, project, topology, and scenarios created traffic 

that generated statistics 

b)  Simulation setup based on Discrete Event Simulation (DES) 

c) Results and reports/graphs were generated 

4.6 SIXTH STAGE: VALIDATION AND VERIFICATION 

The empirical process that had incorporated the implementation of OPNET simulation 

network settings had been validated with the network testbed/hardware implementation, 

as presented in Chapter 3. In fact, the varying results of the simulation model retrieved 

from both experiments were validated by comparing the results from both experiments. 

Meanwhile, the verification process concluded that the simulation model was indeed 

good and portrayed a fair approach of the hardware model if the variance between both 

results is negligible. Moreover, the varied results obtained throughout the OPNET 

simulation were considered as realistic because the network testbed implementation 

results for network delay, jitter, packet loss, and MOS were obtained by using all network 

scenarios, including IPSec security implementation. In fact, the verification process 

incorporated the iteration of both experiments to determine the aspect of consistency, as 

well as to review the results. 

4.7 SUMMARY 

The enhanced Blowfish algorithm was designed from the standard Blowfish algorithm 

by altering the F function. Besides, 6 phases of simulations and implementations were 

incorporated, where each stage had been essential to increase consistency, verification, 

and validation processes. Moreover, both algorithms were employed to analyze the 

performance exhibited by VoIP under various network situations and simulation 

configurations. The next chapter presents the related results, analysis, and comparison 

from the experimental runs.     
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CHAPTER 5  

RESULTS, ANALYSIS AND COMPARISON 

 

This particular chapter presents and discusses the results obtained from the experiments 

conducted, as described in Chapter 4. With that, three significant scores are presented in 

this chapter, which are i) the evaluation of both performance and security measurement 

of standard Blowfish and enhanced Blowfish algorithm, ii) the measurement of the 

impact from encryption upon network QoS, and iii) voice quality measurement with 

varied voice codecs. Besides, VoIP security encryption for both algorithms were 

configured and tested by using C++, MATLAB, network testbed, and OPNET 

simulation. As such, the results for this research are i) the performance of blowfish 

encryption algorithm (execution time and throughput), along with encryption security 

cryptanalysis, ii) the impact of encryption upon network QoS (Jitter, delay, and packet 

loss), as well as iii) voice quality score (MOS).  

5.1 SIMULATION RESULTS 

Both aspects of execution time and throughput from the algorithms gained in C++ 

reflected bandwidth requirement, where higher throughput significantly contributed to 

better voice quality [177]. After that, the retrieved results for voice quality in network 

testbed and OPNET simulation were validated and verified. Moreover, the Network QoS 

measurement was related to end-to-end services performance, VoIP QoS, such as packet 

loss, delay, and jitter, which had been examined together with varying sizes of bandwidth 

allocated and background traffic.   

The voice quality score had been based on the objective MOS score calculated from E-

Model, whereby the effects of delay, packet loss rate, and jitter upon voice qualities had 

been determined. On top of that, the implementation of various voice codecs contributed 

to the varying MOS scores. Thus, in order to determine the effect of the proposed 

enhanced Blowfish algorithm upon VoIP communication and voice quality, several 

combinations of various voice codecs, bandwidth allocation, calls setup, and background 

traffic were tested. As such, the results retrieved could enhance one’s comprehension 
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concerning VoIP services, which suggests a more reliable security measurement and 

reasonable voice quality. 

. 

5.1.1 ALGORITHM PERFORMANCE (EXECUTION TIME & THROUGHPUT) 

The empirical procedures employed in this research embedded 2 different encryption 

algorithms (Standard Blowfish and enhanced Blowfish algorithms) by employing 64-bit 

secret keys with data from varied packet sizes (ranging from 0.2MB to 2.5MB) and types 

(audio, video, and text). The varying packet sizes and data types were employed based 

on some variable parameters to determine the impact of data length upon speed, which 

contributed to different processing time. 

Figures 32 and 33 illustrate the average execution time and throughput of audio for both 

standard and enhanced Blowfish algorithms by using various packet sizes.  A comparable 

result to data shown below is derived from the analysis of the execution time between 

both algorithm, a significant reduction of execution time approximately starting from 

audio file size 1.4648 MB, 11% reduction of execution time.  As expected, the bigger 

audio size, the greater the execution time achieved by using enhanced Blowfish algorithm, 

where at 2.3438 MB, approximately up to 22.8% reduction of execution time can be 

achieved by using enhance Blowfish algorithm. 

Figure 32: Execution time for standard and enhanced Blowfish algorithms in 

second (s) for audio packet 
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As the throughput is the rate of production or the rate at which something is processed, 

the reduction of time processing by using enhanced Blowfish algorithm can produce 

higher throughput compared to standard Blowfish algorithm. The execution time ratio’s 

percentage is also reflected for algorithm throughput where the higher values of 

throughput of enhanced Blowfish algorithm at 2.3438 MB was approximately 22.8% 

compared to throughput achieve by standard Blowfish algorithm.  

 

5.1.2 DIFFERENT PACKET TYPES (VIDEO & TEXT) 

Figures 34 and 35 portray the average execution time and throughput of video for both 

standard and enhanced Blowfish algorithm by using various packet size. The results 

obtained by execution time for video data types show that starting from data size 1.52681 

MB, enhanced Blowfish algorithm achieve 22 % reduction of execution time compared 

to standard Blowfish algorithm and its significance increase up to 23.5 % reduction of 

execution time for video data size 2.4565 MB.  

 

 

 

 

 

Figure 33: Throughput (MB/s) for standard and enhanced Blowfish algorithms 

for audio packet 
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As the video size increases, as shown in Figure 35, video size 1.687 MB using enhanced 

Blowfish can be seen with 14.2 % higher throughput compared to standard Blowfish 

algorithm. While, starting from video file size 1.845 MB to 2.421 MB, an increment of 

throughput approximately 30.7 % has been achieved by enhanced Blowfish algorithm 

compared to standard Blowfish algorithm.  

Figure 35: Execution time for standard and enhanced Blowfish algorithms in 

second (s) for video packet  

 

 

Figure 34: Throughput (MBytes/s) for standard and enhanced Blowfish 

algorithms for video packet 
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Figures 36 and 37 present the average execution time and throughput of the document 

(text) for both standard and enhanced Blowfish algorithms by using various packet sizes. 

Results show almost similar and significant as tested conducted by using video and audio 

files which indicated reduction up to 29% execution time starting from 1.685 MB to 2.421 

MB data and increment of throughput up to 30% starting between data range 1.526 MB 

to 2.466 MB. 

 

 

 

 

 

 

 

 

 

 

Figure 36: Execution time for standard and enhanced Blowfish algorithms in 

second (s) for text packet 

                   

 

Figure 37: Throughput (MBytes/s) for standard and enhanced Blowfish 

algorithms for text data 
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By using 8 various sizes and types of packets (text, audio, and video) simulated using 

C++ programming, both standard and enhanced Blowfish algorithms were tested. As a 

result, Figures 32, 34, and 36 display that the execution time for the enhanced Blowfish 

algorithm was lower than that of the standard Blowfish algorithm, thus significantly 

contributing to higher throughput, as portrayed in Figures 33, 35, and 37. Additionally, 

the experimental results also concluded that by implementing various types of input data 

(text, audio and video), the outcomes of throughput for both standard and enhanced 

Blowfish algorithms remained almost similar regardless of the types of data. 

. 

5.1.3 CRYPTANALYSIS RESULTS/ SECURITY ANALYSIS 

As described in the cryptanalysis and security analysis in section 4.1.7, two security 

analyses that applied avalanche effect and correlation coefficient had been employed 

to evaluate the security aspect of both standard and enhanced Blowfish algorithms. As 

such, the implementation of both algorithms had been performed by using C++, 

whereas MATLAB programming had been applied for the implementation of 

avalanche effect and correlation coefficient.  

5.1.4 AVALANCHE EFFECT  

The Avalanche effect analysis looked into cryptanalysis and resistance of encryption 

algorithm against potential attacker, as depicted in Chapter 4. In fact, the avalanche effect 

test displayed that the enhanced Blowfish algorithm also did possess exceptional 

diffusion characteristics, which was near similar to that of the standard Blowfish 

algorithm. Figure 38 illustrates the avalanche effect upon cipher text for both standard 

and enhanced Blowfish algorithms with 64-bit secret keys. Next, Figure 39 presents the 

avalanche effect on cipher text for both standard and enhanced Blowfish algorithms with 

64-bit plain text. Meanwhile, Figure 40 shows the comparison of avalanche effect 

between the standard and enhanced Blowfish algorithms with 64-bit cipher text. As a 

result from the comparison of avalanche effect for both standard and enhanced Blowfish 

algorithm, approximately 1% decreased which is slightly different from standard 

blowfish algorithm, yet it exhibits strong avalanche effect and it had been noted that the 

enhanced Blowfish algorithm offered higher encryption quality with minimal memory 

requirement and computational time, besides providing adequate resistance against attack. 
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Figure 38: Avalanche effect percentage with 64-bit key changes on plain text 

 

 

Figure 39: Avalanche effect percentage with 64-bit key changes on secret key 
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Figure 40: Comparison of avalanche effect for both standard and enhanced 

Blowfish algorithms 
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as presented in Figure 42, for standard Blowfish algorithm was 0.0007, while 0.0132 for 

enhanced Blowfish algorithm, thus pointing out that both algorithms had weak positive 

linear relationships. Furthermore, the enhanced Blowfish portrayed a good non-linear 

correlation between plaintext and cipher text, similar to that of the standard Blowfish 

encryption algorithm. 

 

Figure 41: Correlation coefficient for both standard and enhanced Blowfish 

algorithms with 64 bits key. 

Figure 42: Average of correlation coefficient 64-bit key cipher text for both standard 

and enhanced Blowfish algorithm.   
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The alteration made to F function in the standard Blowfish algorithm resulted in enhanced 

encryption quality for both execution time and throughout. Nonetheless, such 

modification displayed a negligible effect upon several security features, where a slight 

variance was noted between avalanche effect and correlation coefficient, in which the 

enhanced Blowfish algorithm generated lower avalanche effect and higher correlation 

coefficient, in comparison to those projected by the standard Blowfish algorithm. As such, 

one can conclude that the enhanced Blowfish could still provide acceptable resistance 

against security penetration and attacks. 

 

5.2 NETWORK TESTBED & OPNET SIMULATIONS RESULTS 

5.2.1 NETWORK QOS PARAMETERS 

The experimental setup that incorporated various bandwidths, along with the usage of 

traffic based on User Datagram Protocol (UDP) and Transmission control protocol (TCP), 

was generated by using PackETH and RTP toolbox. In fact, both PackETH and RTP 

toolbox can create and generate any possible packet, including voice traffic and a 

sequence of packets on Ethernet link, graphical user interface (GUI) in the latest version 

of PackETH 1.8.1 and RTP toolbox, so as to offer a simple, flexible, and powerful tool 

in order to support many alterations in parameters for the experiment. In addition, 

variables 50Mbps, 100Mbps, 150Mbps, and 200Mbps of UDP background traffic were 

increased so as to test the effect of background traffic upon packet loss ratio in VoIP 

networks. Besides, Jperf [178] and Wireshark were also employed as the main 

measurement tools for the testbed. In this testbed, as presented in Figure 43, Jperf and 

Wireshark were installed and set for both data collection and processing. During the call 

set up made between these two nodes (Clients #1 and 2#), Jperf and Wireshark collected 

and processed the sent/received data from each client that produced jitter values, delay, 

packet loss rates, and MOS score. Furthermore, the use of varied voice codecs and VoIP 

security in this experiment measured the effects of voice codecs and encryption 

algorithms variation during data transmission in maintaining end-to-end network security, 

as well as network QoS performance [179]. 
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Figures 44-48 illustrate three different network QoS that were recorded, where simulation 

was created by 1 call within 10 minutes of call duration under VoIP open system (without 

IPSec), VoIP IPSec with standard Blowfish algorithm, and VoIP IPSec with enhanced 

Blowfish algorithm. By using the available 100mbps bandwidth link, a VoIP 

communication with a variety of voice codecs had been transmitted. Moreover, network 

average delay, jitter, and packet loss were recorded with the influence of various UDP 

background traffic sizes generated by PackETH; packet traffic generator starting from 

0Mbps, 50Mbps, 100Mbps, 150Mbps, and 200Mbps traffic overload. Besides, with the 

use of softphone and RTP tool box, VoIP data transmission had been produced during 

VoIP call setup, whereby various packet traffics were employed to perform and to create 

overloaded links, which was later compared with VoIP performance under heavy traffic 

and extreme conditions. 

Figure 43: VoIP calls monitoring and network testbed 
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5.2.2 AVERAGE DELAY 

The results of average delay are tabulated in Table 12 and Figure 44. The findings 

portrayed that G.711 performed better among the three voice codecs, whereby the 

encryption algorithms increased the average delay on voice quality, whereas G.729 

appeared to be the worst. Moreover, the implementation of encryption algorithm had 

managed to increase the average delay for all voice codecs, where the enhanced Blowfish 

encryption algorithm exhibited better results, when compared to the standard Blowfish 

encryption algorithm.   

Table 12: Comparison of average delay from G.711, G.729, and AMR-NB codecs 

 

G.711 G.729 AMR-NB 

No Security 7.5 ms 13.8 ms 10.7 ms 

Standard Blowfish Algorithm 20.3 ms 23.1 ms 22.1 ms 

Enhanced Blowfish Algorithm 16.4 ms 21.5 ms 19.5 ms 

 

Figure 44: Comparison of average delay 
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5.2.3 AVERAGE JITTER 

Table 13 shows the average jitter for voice codecs without security and encryption 

algorithm imposed. As a result, similar to those for average delay, almost the same 

average had been obtained for all voice codecs, except for G.711 that displayed the lowest 

average jitter and G.729 that recorded the highest for all the scenarios tested. In addition, 

the results given in Figure 45 also pointed out that the AMR-NB codecs remained at an 

intermediate average jitter between all the three codecs. The results also provided rather 

significant average delay, where a higher average jitter was recorded for G.729 voice 

codec, while the implementation of standard Blowfish algorithm displayed higher values, 

but the enhanced Blowfish encryption algorithm deferred slightly from VoIP 

communication without any encryption algorithm. 

Table 13: Comparison of average jitter from G.711, G.729, and AMR-NB codecs 

 

G.711 G.729 AMR-NB 

No encryption 20 22 21 

Standard Blowfish Algorithm 22.3 24.5 23.8 

Enhanced Blowfish Algorithm 21.3 23.6 22.6 
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Figure 45: Comparison of average jitter 

 

5.2.4 PACKET LOSS RATIOS 
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background traffic, packet loss below 1% was noted for all voice codecs and settings. 

However, when the background traffic was at 100Mbps, the G.711 voice codec for all 

scenarios tested suffered from a packet loss of about 2%, while the G.729 voice codec 

maintained the lowest for all settings. Next, at 150Mbps traffic load, the packet loss for 

all codecs rapidly increased between 9 and 12%, and when the maximum background 

traffic hit 200 Mbps, the highest 29% of packet loss had been recorded for G.711 voice 

codec with standard Blowfish encryption. Furthermore, a significant decrease in packet 

loss was noted under heavily overloaded network conditions, whereby in this network 

testbed, the G.711 voice codec began degrading significantly with higher ratios upon 

standard Blowfish encryption implementation. Meanwhile, the application of enhanced 

Blowfish encryption slightly decreased the packet loss ratios, in comparison to that of the 

standard Blowfish encryption algorithm.      
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Figure 46: Packet loss ratio for voice codecs without encryption 

 

 

Figure 47: Packet loss ratio for voice codecs with standard Blowfish encryption 
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Figure 48: Packet loss ratio for voice codecs with enhanced Blowfish encryption 

5.2.5 VOICE QUALITY MOS AND E MODEL VALUES 

Various types of scenarios were generated by differing number of calls made, background 

traffic, node properties, and simulation parameter, as designed in Section 4.2, in which 

three different voice codecs (G.711, G729, and AMR-NB) had been compared so as to 

gain the best results. As such, the examination of MOS value, starting with network traffic 

without background traffic or security imposed, the scenarios of the testbed had been 

repeated with various parameters, including the implementation of both standard and 

enhanced Blowfish algorithms with 100Mbps of allocated bandwidth. Table 14 below 

displays the results of the experiments.  

 

Table 14: MOS values for voice codecs  
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G.711 G.729 AMR-NB 

No Security 4.2 3.9 4.0 

Standard Blowfish Algorithm 3.9 3.6 3.7 

Enhanced Blowfish Algorithm 4.0 3.8 3.9 
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Table 14 proves that the codecs; G.711, G.729, and AMR-NB, resulted in varying voice 

qualities. Besides, the varying settings of the testbed gave varying results when 

encryption algorithm was implemented, as displayed in Figure 49. For instance, MOS 

scores for G.711 had been significantly the highest for all scenarios as the implementation 

of enhanced Blowfish encryption algorithm gave better voice quality, in comparison to 

that of the standard Blowfish algorithm. Meanwhile, G.729 provided the worst quality 

among the rest. Moreover, the test determined if the implementation of both encryption 

algorithms affected the quality of voice and their various impacts upon each voice codecs 

examined.  

 

Figure 49: MOS values for voice codecs under different scenarios 
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by comparing the results of both experiments and mathematical model, it was found that 

the model reflected a good and fair approach of the hardware/simulations model since the 

variances between both results were negligible. Hence, the mixed results revealed in this 

chapter have been considered as realistic for hardware implementation in predicting voice 

quality. 

Moreover, by using the E-Model as a non-intrusive measurement method, as described 

in Section 2.4.2, the model combined the impairment caused by transmission parameters 

with R factor (overall transmission quality rating), where the R factor could be 

equivalently transformed to MOS, as depicted in Table 7 on page 57. 

The factor R: 

R = Ro — Is — Id — Ie_eff + A   (1) 

The process of encryption verification has been done by using Wireshark tcpdump 

software where VoIP data has been compared before and after encryption process using 

both algorithms in this thesis. 

 

5.3.1 IMPACTS OF NETWORK DELAY, PACKET LOSS ON THE FACTOR R 

Packet loss, the Ie factor referred to ITU-T Rec [49] gives Id measured values for G.711, 

G.729 and AMR-NB codecs. 

The results for Ie factor for G.711 which is derives from expression of the form: 

 Ie = 0 + 22 ln (1 + 0.2 . p.l)    (11) 

 

Where 0 is typical value for G.711, p.l = packet loss in percent. 

The results for Ie factor for G.729 which is derives from expression of the form: 

 Ie = 11 + 31 ln (1 + 0.15 . p.l)    (12) 

 

The results for Ie factor for AMR-NB which is derives from expression of the form: 

 Ie = 5 + 33 ln (1 + 0.1 . p.l)    (13) 
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Figure 50 illustrates the impairment factor (Ie) versus the packet loss for G.711 for all 

settings based on experimental setup that incorporated the curve fit (red line), as shown 

in equation (11), for voice codec without any encryption algorithm. 

 

Figure 50: Equipment impairment factor (Ie) versus packet loss for G.711 codec 

Figure 51 presents the impairment factor (Ie) versus the packet loss for G.729 given at all 

scenarios based on experimental setup that embedded curve fit (red line), as depicted in 

equation (12), for voice codec without any encryption algorithm. 
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Figure 51: Equipment impairment factor (Ie) versus packet loss for G.729 codec 

Figure 52 displays the impairment factor (Ie) versus the packet loss for AMR-NB given 

at all scenarios based on experimental setup, where the curve fit (red line), as shown in 

equation (13), had been incorporated for voice codec without any encryption algorithm. 

 

Figure 52: Equipment impairment factor (Ie) versus packet loss for AMR-NB codec 
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exceeding PSTN, and delay in packet network, the value of Id was calculated derived 

from E-Model (using default values), adhering to [129] 

The following expressions were applied for calculation: 

 Id = 0.65 + (0.1Ta – 15.93) . δ(Ta – 165)   (14) 

Where: δ(x) = 0 for x < 0, δ(x) = 1 for x > 0 

The end-to-end delay in packet connections is given by: 

 Ta = Tenc + Tp + Tdec + Tn    (15)  

Where: Tenc = encoding delay,  Tp = Packetization delay,  Tdec= Decoding delay 

Tn = network delay (equivalent to sum of queuing, dejittering delay, propagation, and 

services [132]) 

Meanwhile, Figure 53 presents the correlation between delay in packet network, (Id) 

factor, and delay, (Ta), where the results (plot) had been based on the E-Model and the 

curve fit (red line) derived from equation (15). 

 

Figure 53: Relationship between Id factor and Ta delay 

The impacts of network delay and packet loss on factor R by using the default values 

depicted in [9], equation (1) was reduced to equation (16): 
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Substituting equation (11) – (15) into (16), the factor R: 

 

For G.711 codec: 

R= 93.35 – (0.1Tn max – 15.90) . δ(Tn max – 164.75) - 22 ln (1 + 0.2 . p.l)      (17) 

 

For G.729 codec: 

R= 82.35 – (0.1Tn max – 15.43) . δ(Tn max – 130) - 31 ln (1 + 0.2 . p.l)        (18) 

 

For AMR-NB codec: 

R= 88.35 – (0.1Tn max – 15.00) . δ(Tn max – 154.75) - 33 ln (1 + 0.1 . p.l)      (19) 

Where Tn max = maximum network delay. 

Assuming equations (17), (18), and (19), the minimum values of the sum for the encoding 

delay, the decoding delay, and the packetization delay are [49]: 

G.711 codec: 0.25ms 

G.729 codec: 35ms 

AMR-NB codec: 40ms 

Figures 54, 55, and 56 present the correlations of network delay (Tn Max) with R factor 

for G.711, G.729, and AMR-NB, which had been verified and validated with MOS scores 

in the experiments. 
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Figure 54: Network delay versus factor R for G.711 codec 

 

 

Figure 55: Network delay versus factor R for AMR-NB codec 
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Figure 56: Network delay versus factor R for G.729 codec 

The values of Tn max for R under conditions of packet loss for G.711, G.729, and AMR 

NB codecs are given from Figures 54 until 56, respectively, which resulted in a decrease 

in overall transmission quality due to increment in packet loss and delay. In fact, the voice 

quality achieved “Satisfied” and “Very satisfied” MOS scores if the factor R was between 

80 and 90. Moreover, as user satisfaction was closely related to voice quality, hence, the 

results for each codec was factor R > 90, where G.711 attained a score at packet loss = 0 

and Tn < 185.8 ms; packet loss = 2% and Tn < 111.8 ms; packet loss at 4% and Tn < 

56.5 ms. As for G.729, it reached the factor R > 90 score at packet loss = 0 and Tn < 41.1 

ms. Lastly, the AMR-NB codec attained factor R > 90 at packet loss 0 and Tn < 53.4 ms. 

With that, the analytical expression based on the E-Model had successfully verified and 

validated the impacts of packet loss and delay upon voice quality. 

5.3.2 MOS SCORES  

The findings for 36 experiments under various settings, as portrayed in Section 4.4, are 

presented in Table 15 and Figure 57 until 59. As such, all the three codecs with varied 

traffic and security scenarios were tested and the voice quality had been recorded, 

involving various bandwidths and number of calls simultaneously. As a result, G.711 

recorded the highest MOS scores, followed by AMR-NB, and G.729 codecs. In addition, 

the MOS score significantly decreased under the imposed security, which obviously 

referred to the possibility and the start of both network delay and packet loss.    
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Table 15: Comparison of MOS from G.711, G.729, and AMR-NB with and 

without encryption algorithms under different calls setup. 

Experiment 

parameter 

No Encryption Algorithm Standard Blowfish Algorithm Enhanced Blowfish Algorithm 

G.711 G.729 AMR-

NB 

G.711 G.729 AMR-

NB 

G.711 G.729 AMR-

NB 

10 calls  

1 Mbps 

4.10 4.00 4.05 4.00 3.80 3.95 4.05 3.95 4.00 

200 Calls  

1 Mbps 

3.90 3.75 3.80 3.75 3.60 3.68 3.85 3.70 3.75 

10 calls  

10 Mbps 

4.20 4.10 4.10 4.00 3.85 3.98 4.15 3.95 4.05 

200 Calls  

10 Mbps 

4.15 3.85 3.90 3.80 3.63 3.70 3.88 3.70 3.85 

10 Calls 

100 Mbps 

4.3 4.00 4.15 4.10 3.90 4.00 4.15 4.00 4.10 

200 Calls 

100 Mbps 

4.2 4.00 4.05 3.80 3.65 3.75 3.90 3.70 3.80 

 

Figure 57, 58 and 59 illustrates the comparison between G.711, G.729, and AMR-NB 

codecs in accordance to MOS scores, where G.711 displayed the highest MOS with 100 

Mbps and 10 calls setup, while the lowest MOS was recorded by G.729 codec under the 

implementation of standard Blowfish algorithm with 1 Mbps and 200 calls set up. Thus, 

the results showed that both bandwidth limitation and a hike in calls simultaneously 

affected the MOS scores for each voice codec. Besides, the implementation of encryption 

algorithms also contributed to packet delay and packet loss, which slightly reduced the 

quality in voice. In fact, the enhanced Blowfish algorithm exhibited better results, when 

compared to those of standard Blowfish algorithm, where the variance between an 

encrypted VoIP and one that is non-encrypted had been insignificant for voice quality 

degradation. Furthermore, the enhanced encryption exerted better performance than the 

MOS scores obtained for the standard Blowfish algorithm. 
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Figure 57: Comparison of G.711 codec based on varying scenarios. 

 

Figure 58: Comparison of G.729 codec based on varying scenarios. 
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Figure 59: Comparison of AMR-NB codec based on varying scenarios. 

From these experiments, some recommendations to enhance the voice quality of VoIP 

are given in the following: 

1) G.711 displayed exceptional voice quality under two scenarios: without any 

encryption, and enhanced Blowfish encryption with high bandwidth 

2) AMR-NB is strongly recommended for further usage, instead of G.711 and G.729 

for cases with limited or reduction in bandwidth allocation. 

3) The enhanced Blowfish encryption algorithm could offer adequate security as 

well as the standard Blowfish algorithm, besides providing better voice quality, 

reliability, and confidence to be used in VoIP transmission and services. 
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Figure 60: Unencrypted VoIP services  

Secured communication channel and transmission as shown in Figure 61 will provide 

confidential and protected information from being read, manipulated and jeopardized by 

attackers, whereas IPSec imposed in the experiments will provide data protection and 

verification process; compared to the condition of the VoIP data transmission before and 

after security implementation of the IPSec.    

 

Figure 61: Encrypted VoIP services 

5.4 SUMMARY  

In this chapter, the enhanced Blowfish algorithm is proposed and had been implemented 

using C++ and MATLAB. The algorithms were implemented and measured with VoIP 
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system model by using several open source programs: OpenSwan VPN, Wireshark, Jperf, 

and PackETH. One of the objectives of this research is to develop and to improve the 

effectiveness of IPSec encryption algorithm based on standard Blowfish encryption 

algorithm, which had been found to display fast computation time and high 

encryption/decryption throughput. Moreover, both the standard and enhanced Blowfish 

algorithms were compared in terms of performance (throughput and execution time). 

Meanwhile, the implementation on IPSec VPN showed that the enhanced Blowfish 

algorithm exerted better performance and voice quality in VoIP services/calls setup. The 

findings also suggested that the enhanced blowfish algorithm contributed to lower delay, 

jitter, and packet loss, but better voice quality, in comparison to those portrayed by the 

standard Blowfish algorithm.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This chapter, which serves as the last chapter, consists of the study conclusion based on 

the research findings retrieved, as well as potential research works. 

6.1 CONCLUSION 

 Deploying IP telephony or VoIP has emerged as a major challenge for network 

designers and data network researchers. In fact, numerous challenges are present when 

offering security for VoIP, whereby the security imposed usually comes with another 

drawback, primarily because security, network performance, and voice quality appear to 

be conflicting requirements, for instance, initiating a security feature would have an 

impact upon the performance of network QoS and voice quality. With that, this study 

offers enhanced understanding of how the VoIP works within both the open and scalable 

Internet environment. By studying, searching and evaluating the literature related to 

existing encryption algorithm network testbed/ network simulator and voice codecs that 

can be implemented to VoIP services,this research provides information pertaining to 

VoIP performances under various network architectures and security configurations, 

where such information could enhance the existing security implementation, besides 

providing the opportunity for one to choose the most suitable encryption algorithm for 

implementation by related parties. Hence, after analysis and synthesis of the information 

gathered in the literature by identifying gaps in current knowledge, this study covers both 

the impact and the price needed to be paid in relation to the implementation of VoIP 

security dimension. Thus, a balance is sought between secured and exceptional VoIP 

performance services. 

  Encryption algorithms have played some massive roles in securing VoIP 

services; in which the IPSec has been employed in many applications, for example, 

packet encryption, Internet-based security, and security of VoIP services, where the 

Blowfish algorithm has emerged popular and has been widely applied. In fact, each 

encryption technique and algorithm have their benefits and shortcomings, as reported by 

countless researchers who had proven that the Blowfish algorithm exerts better 

performance and the strongest security via strong key size, as well as protection against 
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cryptanalysis. As to redesigning and developing an enhanced encryption/decryption 

algorithm based on an existing block cipher algorithm that minimizes computational 

resources without violating security requirement, therefore, in this research, enhancement 

of the standard Blowfish algorithm had been carried out so as to improve the performance 

and to maintain an acceptable security against cryptanalysis. These contributions could 

ensure that the VoIP services could indeed be advantageous for any broadcast network 

and with such security modifications, the related performance could be increased via 

network throughput, besides reducing end-to-end delay, minimising packet loss ratios, 

providing better voice quality, and maintaining an acceptable security measurement. This 

achievement proves that the enhanced encryption algorithms based on standard Blowfish 

algorithm work effectively without sacrificing the privacy of users during data/voice 

transmission, besides maintaining the existing security level. The proposed algorithm 

contributes to better end-to-end bandwidth utilisation and reduction of transmission delay. 

The last objective which is to improve the performance of VoIP network regarding end-

to-end delay, jitter, and packet loss by using the enhanced Blowfish encryption algorithm 

has also been achieved where the VoIP services measured with MOS and E-Model 

indicated a better performance and results. Furthermore, obtaining a suitable and 

acceptable voice quality for VoIP without unwanted noise, delay, or packet loss (dropped 

sound) is necessary to ascertain satisfaction among its users.       

 The methodology had been employed throughout this research where the process 

began with designing the enhanced Blowfish algorithm, as well as the scenarios of 

network configurations to determine the impact of the enhanced Blowfish algorithm. 

Next, the existing encryption algorithms on VoIP services and the selection of voice 

codecs were implemented along with the encryption algorithm to measure the impact of 

each selection. The measurements included encryption algorithm computation cost, 

throughput and cryptanalysis, network QoS effectiveness (jitter, delay, packet loss), and 

voice quality (MOS and E-Model). Furthermore, the implementation of both standard 

and enhanced Blowfish algorithms had been carried out by using C++ and MATLAB 

programming language in order to compare and to evaluate the performance, as well as 

to determine the security of both algorithms using avalanche effect and correlation 

coefficient to study the resistance of the algorithms from cryptanalysis and the 

randomness of the algorithm output design. On the other hand, MOS and E-Model were 

employed to measure VoIP voice quality tested in network testbed and OPNET simulator, 
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in which the experiments identified the influential factors that affected the quality of 

voice for its value changed from 1 to 5, with the lowest value indicating the lowest quality 

of voice, while the highest value for the best voice quality. In addition, several acceptable 

QoS network performance parameters and MOS voice quality had been applied as a 

metric to evaluate the impact of implementing the suggested security techniques via 

enhanced Blowfish algorithm. 

 Throughout the simulation and the implementation stages, a total of six stages 

were involved, with each stage significantly contributed to the achievement of this 

research. The first process began with C++ programming language, which was used to 

simulate and to test the enhanced Blowfish algorithm, besides comparing it with the 

standard Blowfish algorithm, whereby modification of F function made in standard 

Blowfish algorithm could alter the operation of the existing S-Boxes sizes, which 

eventually decreased algorithm operation time. Additionally, MATLAB programming 

was used for cryptanalysis and security measurement, where both the avalanche effect 

and correlation coefficient results were compared for both algorithms. Moreover, 

different scenarios were set up in the network testbed experiments and OPNET network 

simulator so as to measure the quality of voice by using various voice codecs. 

Furthermore, since MOS had been relatively subjective, the tests took a long time and 

had been proven expensive. Therefore, the E-Model was used objectively before it was 

converted to MOS ratings, where the network testbed and the network simulator had been 

capable in accessing calls using E-Model and in providing results for comparison, 

verification, and validation purposes. 

 The encryption algorithms delivered enhanced performance at the cost of 

minimum computation resources, which contributed to lower execution time and higher 

throughput, significantly, from the implementation of these security features, in which 

efficient VoIP services with an acceptable or excellent voice quality performance could 

be achieved. Therefore, in order to achieve this, the experimental results were retrieved 

from the enhanced Blowfish algorithm, starting from the redesigning of the existing 

algorithm until comparison with the standard Blowfish, whereby the results showed that 

the enhanced Blowfish algorithm displayed lower execution time and higher throughput, 

which are significant due to the modification made to F function and S-Box randomness 

processes. As the performance of encryption algorithms was also related to security 

strength, both the algorithms were tested and evaluated by using cryptanalysis to compare 
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avalanche effects and correlation coefficient. Moreover, the modification of F function 

in the standard Blowfish algorithm affected the security strength, which led the enhanced 

Blowfish algorithm to exhibit less avalanche effect, but higher correlation coefficient, in 

comparison to those of the standard Blowfish algorithm, nonetheless, still projected high 

encryption quality and strong security features.      

 On top of that, the implementation of IPSec contributed to network overhead, 

which affected VoIP services in terms of network QoS (delay, jitter, packet loss) and 

MOS (values of voice quality). Thus, in this research, the proposed enhanced Blowfish 

algorithm had been quantitatively measured in terms of increase or decrease in network 

QoS with various voice codecs (G.711, G.729, and AMR-NB) employed as a 

combination of scenarios in the network testbed and the OPNET simulation to measure 

both VoIP E-Model and MOS voice quality. The findings showed that the enhanced 

Blowfish algorithm improved the performance of network QoS by decreasing delay, jitter, 

and packet loss, which significantly contributed to an acceptable level of voice quality. 

Furthermore, in the varied scenarios tested, the results showed that each codec 

contributed to various network delay, jitter, packet loss, and MOS scores. Furthermore, 

comparison between the standard and the enhanced Blowfish algorithms exemplified that 

the enhanced Blowfish algorithm offered the least delay, jitter, as well as acceptable 

packet loss ratios and MOS scores. The results in this research also had been verified and 

validated by using a mathematical model derived from E-Model. Other than that, by 

comparing the network testbed with OPNET simulation, a suitable choice of voice codec 

that can enhance the quality of voice had been determined. In addition, the results 

obtained from the present VoIP encryption revealed that better MOS scores were 

achieved by using G.711 voice codec under high availability of bandwidth, whereas the 

AMR-NB codec performed better under lower bandwidth, and G.729 recorded the lowest 

MOS scores under both bandwidth scenarios.  

  In conclusion, this thesis evidenced that the implementation of IPSec, along with 

enhanced Blowfish encryption algorithm, in VoIP services led to both network QoS 

efficiency and superior voice quality, in comparison to the standard Blowfish algorithm. 

. 
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6.2 POTENTIAL RESEARCH WORKS 

The emergence of new technologies with varying features has led to a heterogeneous 

VoIP network, where the end-to-end QoS and voice quality were weighed in so as to 

satisfy users. Although the proposed enhanced Blowfish encryption algorithm in this 

thesis significantly facilitated the incorporation of two networks to VoIP quality 

prediction, several potentials do exist to further exploit these benefits. However, it is 

essential to highlight here that the trade-off between the quality of network QoS, 

performance, and security are ongoing issues. Consequently, the following suggestions 

are listed as viable future research ideas: 

1. Further work can investigate the impact of this algorithm upon another 

research domain, together with varied performance and security factors, if 

employed in other encryption applications.  

2. Further investigation on security features focused on data integrity using 

hash algorithms (SHA, MD5) or authentication algorithms (Pre shared key, 

RSA).     

3. Other available voice codecs (Narrowband, Wideband) can be 

investigated, where the impact of encryption algorithms can be studied 

and tested. 

4. The E-Model also has the potential to be enhanced by modifying the 

mathematical model used, so as to offer higher accuracy, reliability, and 

enhanced standard of VoIP voice measurement. 

5. The future research can analyze this proposed encryption algorithm on 

other network platforms, for example, wireless, zigbee, and mobile data 

transport, to name a few. 
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APPENDIX A 

C++ ENHANCE BLOWFISH ALGORITHM 

//blowfish.h 

 

#include <iostream> 

#include <string.h> 

#include "blowfish.h" 

using namespace std; 

typedef unsigned char byte; 

int main() 

{ 

    BLOWFISH bf("FEDCBA9876543210"); 

    string asdf = "BlowwFIshhhhhhhhhhh!"; 

    asdf = bf.Encrypt_CBC(asdf); 

    cout << "Encrypted: " << asdf << endl; 

    asdf = bf.Decrypt_CBC(asdf); 

    cout << "Decrypted: " << asdf; 

    return 0; 

} 

 

 

*/ 

 

#ifndef BLOWFISH_INCLUDED 

#define BLOWFISH_INCLUDED 

 

#include <string> 

 

//headers needed for the CSPRNG 

#ifdef _WIN32 

    #include <Windows.h> 

    #include <Wincrypt.h> 
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#else 

    #include <fstream>  

#endif 

 

typedef unsigned char byte; 

 

class BLOWFISH{ 

 

    // 16 round version 

    //STANDARD: 16 

    //MAXIMUM: 256 

    //**MUST be an EVEN number** 

    #define ROUNDS 16 

    public: 

        BLOWFISH(std::string hexKey); 

        BLOWFISH(byte* cipherKey, int keylength); 

 

        //TODO: string encryption functions -> base64 

        std::string Encrypt_CBC(std::string data); 

        byte* Encrypt_CBC(byte* data, int length, int* newlength); 

        byte* Encrypt_ECB(byte* data, int length, int* newlength); 

        void Encrypt_Block(byte* block, int offset = 0); 

 

        std::string Decrypt_CBC(std::string data); 

        byte* Decrypt_CBC(byte* data, int length, int* newlength); 

        byte* Decrypt_ECB(byte* data, int length, int* newlength); 

        void Decrypt_Block(byte* block, int offset = 0); 

 

        void SetRandomIV(); 

        void SetIV(byte* newIV); 

        byte* GetIV(); 

        bool IvSet; 

 

    protected: 
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        void SetupKey(byte* cipherKey, int length); 

        void encipher(); 

        void decipher(); 

        unsigned int round(unsigned int a, unsigned int b, unsigned int n); 

        void setblock(byte* block, int offset); 

        void getblock(byte* block, int offset); 

        static unsigned int p[]; 

        static unsigned int s0[]; 

        static unsigned int s1[]; 

        static unsigned int s2[]; 

        static unsigned int s3[]; 

 

        unsigned int xl_par; 

        unsigned int xr_par; 

 

        byte IV[8]; 

 

        byte* Crypt_ECB(byte* data, int length, int* newlength, void (BLOWFISH::*CryptBlock)(byte*, int 

offset), bool decrypt); 

        byte* Crypt_CBC(byte* data, int length, int* newlength, void (BLOWFISH::*CryptBlock)(byte*, int 

offset), bool decrypt); 

        byte* padData(byte* data, int length, int* paddedLength, bool decrypt, bool IvSpace); 

        int findPaddingEnd(byte* data, int length); 

        int hex2dec(char hex); 

        std::string byteToHex(unsigned char x); 

}; 

 

    BLOWFISH::BLOWFISH(std::string hexKey) 

    { 

        IvSet = false; 

        if(hexKey.length() % 2 != 0) 

            throw 2; 

        byte key[hexKey.length() / 2]; 

        for(int i = 0; i < hexKey.length() / 2; i++) 
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        { 

            key[i] = hex2dec(hexKey[i * 2]) * 8 + hex2dec(hexKey[i * 2 + 1]); 

        } 

        SetupKey(key, hexKey.length() / 2); 

    } 

 

    int BLOWFISH::hex2dec(char hex) 

    { 

        if('a' <= hex && hex <= 'f') 

            return 10 + (hex - 'a'); 

        if('A' <= hex && hex <= 'F') 

            return 10 + (hex - 'A'); 

        return hex - '0'; 

    } 

 

    BLOWFISH::BLOWFISH(byte* cipherKey, int keyLength) 

    { 

        IvSet = false; 

        SetupKey(cipherKey, keyLength); 

    } 

 

    byte* BLOWFISH::Encrypt_ECB(byte* data, int length, int* newlength) 

    { 

        return Crypt_ECB(data,length, newlength, &BLOWFISH::Encrypt_Block, false); 

    } 

 

    byte* BLOWFISH::Decrypt_ECB(byte* data, int length, int* newlength) 

    { 

        return Crypt_ECB(data,length, newlength, &BLOWFISH::Decrypt_Block, true); 

    } 

 

    byte* BLOWFISH::Encrypt_CBC(byte* data, int length, int* newlength) 

    { 

        return Crypt_CBC(data,length, newlength, &BLOWFISH::Encrypt_Block, false); 
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    } 

 

    byte* BLOWFISH::Decrypt_CBC(byte* data, int length, int* newlength) 

    { 

        return Crypt_CBC(data,length, newlength, &BLOWFISH::Decrypt_Block, true); 

    } 

 

    std::string BLOWFISH::Encrypt_CBC(std::string data) 

    { 

        byte* binaryData = new byte[data.length()]; 

        for(int i = 0; i < data.length(); i++) 

            binaryData[i] = data[i]; 

        int newlen = 0; 

        byte* result = Encrypt_CBC(binaryData,data.length(), &newlen); 

        std::string encoded = ""; 

        for(int i = 0; i < newlen; i++) 

            encoded += byteToHex(result[i]); 

        delete [] result; 

        delete [] binaryData; 

        return encoded; 

    } 

 

    std::string BLOWFISH::Decrypt_CBC(std::string data) 

    { 

        if(data.length() % 2 != 0) 

            throw 2; 

        byte binaryData[data.length() / 2]; 

        for(int i = 0; i < data.length() / 2; i++) 

        { 

            binaryData[i] = hex2dec(data[i * 2]) * 16 + hex2dec(data[i * 2 + 1]); 

        } 

        int len = 0; 

        byte* cryptresult = Decrypt_CBC(binaryData, data.length() / 2, &len); 

        std::string result = ""; 
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        for(int i = 0; i < len; i++) 

            result += cryptresult[i]; 

        delete [] cryptresult; 

        return result; 

    } 

 

    std::string BLOWFISH::byteToHex(unsigned char x) 

    { 

        char hex[17] = "0123456789ABCDEF"; 

        std::string result = ""; 

        result += hex[x / 16]; 

        result += hex[x % 16]; 

        return result; 

    } 

 

    byte* BLOWFISH::padData(byte* data, int length, int* paddedLength, bool decrypt, bool IvSpace = 

false) 

    { 

        int offset = 0; 

        int dataoffset = 0; 

        if(decrypt) 

        { 

            if(length % 8 != 0) throw 8; 

            *paddedLength = length; 

        } 

        else 

        { 

            // 

            *paddedLength = 8 + (length % 8 == 0 ? length : length + 8 - (length % 8)) + (IvSpace ? 8 : 0); 

//pad the data to a multiple of 8 plus one block 

            if(IvSpace) 

                offset = 8; 

        } 
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        // 

        byte* pData = new byte[*paddedLength]; 

        for(int i = 0; i < length; i++) 

            pData[offset + i] = data[i + dataoffset]; 

 

        // 

        for(int i = length + offset; i < *paddedLength; i++) 

            pData[i] = (pData[length - 1 + offset] ^ 0xCC); //fill the padding with a character that is different 

from the last character in the plaintext, so we can find the end later 

 

        return pData; 

    } 

 

    int BLOWFISH::findPaddingEnd(byte* data, int length) 

    { 

        int i = length; 

        while(data[i - 1] == data[length - 1]) // 

        { 

            i--; 

        } 

        return i; // 

    } 

 

    byte* BLOWFISH::Crypt_ECB(byte* data, int length, int* newlength, void 

(BLOWFISH::*CryptBlock)(byte*, int ), bool decrypt) 

    { 

        byte* pData; 

        pData = padData(data,length,newlength, decrypt); // 

 

        for(int i = 0; i < *newlength; i+=8) //run the encryption 

        { 

            (this->*CryptBlock)(pData,i); 

        } 
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        if(decrypt) // 

        { 

            *newlength = findPaddingEnd(pData,*newlength); 

        } 

        return pData; 

    } 

 

    byte* BLOWFISH::Crypt_CBC(byte* data, int length, int* newlength, void 

(BLOWFISH::*CryptBlock)(byte*, int ), bool decrypt) 

    { 

        byte* pData; 

        if(!decrypt && !IvSet) 

            SetRandomIV(); 

        IvSet = false; // don't re-use an IV 

        pData = padData(data,length,newlength, decrypt, true); 

 

        if(!decrypt) 

        { 

            //            for(int i = 0; i < 8; i++) 

                pData[i] = IV[i]; 

        } 

        else 

        { 

            for(int i = 0; i < 8; i++) 

                IV[i] = pData[i]; 

        } 

        byte nextIV[8]; 

        for(int i = 8; i < *newlength; i+=8) // 

        { 

            if(!decrypt) 

            { 

                for(int k = 0; k < 8; k++) 

                    pData[k + i] ^= pData[k + i - 8]; // 

            } 
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            else 

            { 

                for(int k = 0; k < 8; k++) 

                    nextIV[k] = pData[k + i]; 

            } 

            (this->*CryptBlock)(pData,i); 

 

            if(decrypt) 

            { 

                for(int k = 0; k < 8; k++) 

                { 

                    pData[i + k] ^= IV[k]; 

                    IV[k] = nextIV[k]; 

                } 

            } 

        } 

 

        if(decrypt) // 

        { 

            *newlength = findPaddingEnd(pData,*newlength) - 8; 

            byte* noIV = new byte[*newlength]; 

            for(int i = 0; i < *newlength; i++) 

                noIV[i] = pData[i + 8]; 

            delete [] pData; 

            pData = noIV; 

        } 

        return pData; 

    } 

 

    void BLOWFISH::SetRandomIV() 

    { 

        #ifdef _WIN32 

        // 

        HCRYPTPROV hCryptCtx = NULL; 
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        CryptAcquireContext(&hCryptCtx, NULL, MS_DEF_PROV, PROV_RSA_FULL, 

CRYPT_VERIFYCONTEXT); 

        CryptGenRandom(hCryptCtx, 8, IV); 

        CryptReleaseContext(hCryptCtx, 0); 

        #else 

        std::ifstream devRand ("/dev/urandom", std::ios::in | std::ios::binary); 

        if(!devRand.read((char*)&IV,8)) 

        { 

            throw 1; 

        } 

        #endif 

        IvSet = true; 

    } 

 

    void BLOWFISH::SetIV(byte* newIV) 

    { 

        IvSet = true; 

        for(int i = 0; i < 8; i++) 

            IV[i] = newIV[i]; 

    } 

 

    byte* BLOWFISH::GetIV() 

    { 

        byte* returnIV = new byte[8]; 

        for(int i = 0; i < 8; i++) 

            returnIV[i] = IV[i]; 

        return returnIV; 

    } 

 

    void BLOWFISH::Encrypt_Block(byte* block, int offset) 

    { 

        setblock(block,offset); 

        encipher(); 

        getblock(block,offset); 
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    } 

 

    void BLOWFISH::Decrypt_Block(byte* block, int offset) 

    { 

        setblock(block,offset); 

        decipher(); 

        getblock(block,offset); 

    } 

 

    void BLOWFISH::setblock(byte* block, int offset) 

    { 

        // 

        xr_par = 0; xl_par = 0; 

        for(int i = 0; i < 4; i++) 

        { 

            xl_par = (xl_par << 8) + block[offset + i]; 

            xr_par = (xr_par << 8) + block[4 + offset + i]; 

        } 

    } 

 

    void BLOWFISH::getblock(byte* block, int offset) 

    { 

        // 

        unsigned int xl = xl_par; 

        unsigned int xr = xr_par; 

        for(int i = 3; i >= 0; i--) 

        { 

            block[i + offset] = xl % 256; 

            block[i + 4 + offset] = xr % 256; 

            xr = xr >> 8; 

            xl = xl >> 8; 

        } 

    } 
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    void BLOWFISH::SetupKey(byte* cipherKey, int length) 

    { 

        if(length > 56) 

        { 

            throw 56; 

        } 

        byte key[length]; 

        for(int i = 0; i < length; i++) 

            key[i] = cipherKey[i]; 

 

        int j = 0; 

        unsigned int d; 

        for(int i = 0; i < 18; i++) 

        { 

            d = (((key[j % length] * 256 + key[(j + 1) % length]) * 256 + key[(j + 2) % length]) * 256 + key[(j 

+ 3) % length]); 

            p[i] ^= d; 

            j = (j + 4) % length; 

        } 

 

        xl_par = 0; 

        xr_par = 0; 

 

        for(int i = 0; i < 18; i+=2) 

        { 

            encipher(); 

            p[i] = xl_par; 

            p[i + 1] = xr_par; 

        } 

 

        for(int i = 0; i < 256; i+=2) 

        { 

            encipher(); 

            s0[i] = xl_par; 
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            s0[i + 1] = xr_par; 

        } 

 

        for(int i = 0; i < 256; i+=2) 

        { 

            encipher(); 

            s1[i] = xl_par; 

            s1[i+ 1] = xr_par; 

        } 

 

        for(int i = 0; i < 256; i+=2) 

        { 

            encipher(); 

            s2[i] = xl_par; 

            s2[i + 1] = xr_par; 

        } 

 

        for(int i = 0; i < 256; i+=2) 

        { 

            encipher(); 

            s3[i] = xl_par; 

            s3[i + 1] = xr_par; 

        } 

 

    } 

 

    void BLOWFISH::encipher() 

    { 

        xl_par ^= p[0]; 

        for(int i = 0; i < ROUNDS; i+=2) 

        { 

            xr_par = round(xr_par, xl_par, i + 1); 

            xl_par = round(xl_par, xr_par, i + 2); 

        } 
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        xr_par ^= p[ROUNDS + 1]; 

 

        unsigned int swap = xl_par; 

        xl_par = xr_par; 

        xr_par = swap; 

    } 

 

    void BLOWFISH::decipher() 

    { 

        xl_par ^= p[ROUNDS + 1]; 

        for(int i = ROUNDS; i > 0; i -= 2) 

        { 

            xr_par = round(xr_par, xl_par, i); 

            xl_par = round(xl_par, xr_par, i - 1); 

        } 

        xr_par ^= p[0]; 

 

        unsigned int swap = xl_par; 

        xl_par = xr_par; 

        xr_par = swap; 

    } 

 

    unsigned int BLOWFISH::round(unsigned int a, unsigned int b, unsigned int n) 

    { 

        // 

        unsigned int x1 = (s0[(b >> 24) % 256] ^ s1[(b >> 16) % 256]) ; 

        unsigned int x2 = x1 + s3[b % 256]; 

        unsigned int x3 = x1 ^ p[n]; 

        return x3 ^ a; 

    } 

 

    unsigned int BLOWFISH::s0[] = { 

                    0xd1310ba6,0x98dfb5ac,0x2ffd72db,0xd01adfb7,0xb8e1afed,0x6a267e96, 

                    0xba7c9045,0xf12c7f99,0x24a19947,0xb3916cf7,0x0801f2e2,0x858efc16, 
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                    0x636920d8,0x71574e69,0xa458fea3,0xf4933d7e,0x0d95748f,0x728eb658, 

                    0x718bcd58,0x82154aee,0x7b54a41d,0xc25a59b5,0x9c30d539,0x2af26013, 

                    0xc5d1b023,0x286085f0,0xca417918,0xb8db38ef,0x8e79dcb0,0x603a180e, 

                    0x6c9e0e8b,0xb01e8a3e,0xd71577c1,0xbd314b27,0x78af2fda,0x55605c60, 

                    0xe65525f3,0xaa55ab94,0x57489862,0x63e81440,0x55ca396a,0x2aab10b6, 

                    0xb4cc5c34,0x1141e8ce,0xa15486af,0x7c72e993,0xb3ee1411,0x636fbc2a, 

                    0x2ba9c55d,0x741831f6,0xce5c3e16,0x9b87931e,0xafd6ba33,0x6c24cf5c, 

                    0x7a325381,0x28958677,0x3b8f4898,0x6b4bb9af,0xc4bfe81b,0x66282193, 

                    0x61d809cc,0xfb21a991,0x487cac60,0x5dec8032,0xef845d5d,0xe98575b1, 

                    0xdc262302,0xeb651b88,0x23893e81,0xd396acc5,0x0f6d6ff3,0x83f44239, 

                    0x2e0b4482,0xa4842004,0x69c8f04a,0x9e1f9b5e,0x21c66842,0xf6e96c9a, 

                    0x670c9c61,0xabd388f0,0x6a51a0d2,0xd8542f68,0x960fa728,0xab5133a3, 

                    0x6eef0b6c,0x137a3be4,0xba3bf050,0x7efb2a98,0xa1f1651d,0x39af0176, 

                    0x66ca593e,0x82430e88,0x8cee8619,0x456f9fb4,0x7d84a5c3,0x3b8b5ebe, 

                    0xe06f75d8,0x85c12073,0x401a449f,0x56c16aa6,0x4ed3aa62,0x363f7706, 

                    0x1bfedf72,0x429b023d,0x37d0d724,0xd00a1248,0xdb0fead3,0x49f1c09b, 

                    0x075372c9,0x80991b7b,0x25d479d8,0xf6e8def7,0xe3fe501a,0xb6794c3b, 

                    0x976ce0bd,0x04c006ba,0xc1a94fb6,0x409f60c4,0x5e5c9ec2,0x196a2463, 

                    0x68fb6faf,0x3e6c53b5,0x1339b2eb,0x3b52ec6f,0x6dfc511f,0x9b30952c, 

                    0xcc814544,0xaf5ebd09,0xbee3d004,0xde334afd,0x660f2807,0x192e4bb3, 

                    0xc0cba857,0x45c8740f,0xd20b5f39,0xb9d3fbdb,0x5579c0bd,0x1a60320a, 

                    0xd6a100c6,0x402c7279,0x679f25fe,0xfb1fa3cc,0x8ea5e9f8,0xdb3222f8, 

                    0x3c7516df,0xfd616b15,0x2f501ec8,0xad0552ab,0x323db5fa,0xfd238760, 

                    0x53317b48,0x3e00df82,0x9e5c57bb,0xca6f8ca0,0x1a87562e,0xdf1769db, 

                    0xd542a8f6,0x287effc3,0xac6732c6,0x8c4f5573,0x695b27b0,0xbbca58c8, 

                    0xe1ffa35d,0xb8f011a0,0x10fa3d98,0xfd2183b8,0x4afcb56c,0x2dd1d35b, 

                    0x9a53e479,0xb6f84565,0xd28e49bc,0x4bfb9790,0xe1ddf2da,0xa4cb7e33, 

                    0x62fb1341,0xcee4c6e8,0xef20cada,0x36774c01,0xd07e9efe,0x2bf11fb4, 

                    0x95dbda4d,0xae909198,0xeaad8e71,0x6b93d5a0,0xd08ed1d0,0xafc725e0, 

                    0x8e3c5b2f,0x8e7594b7,0x8ff6e2fb,0xf2122b64,0x8888b812,0x900df01c, 

                    0x4fad5ea0,0x688fc31c,0xd1cff191,0xb3a8c1ad,0x2f2f2218,0xbe0e1777, 

                    0xea752dfe,0x8b021fa1,0xe5a0cc0f,0xb56f74e8,0x18acf3d6,0xce89e299, 

                    0xb4a84fe0,0xfd13e0b7,0x7cc43b81,0xd2ada8d9,0x165fa266,0x80957705, 

                    0x93cc7314,0x211a1477,0xe6ad2065,0x77b5fa86,0xc75442f5,0xfb9d35cf, 



163 

 

                    0xebcdaf0c,0x7b3e89a0,0xd6411bd3,0xae1e7e49,0x00250e2d,0x2071b35e, 

                    0x226800bb,0x57b8e0af,0x2464369b,0xf009b91e,0x5563911d,0x59dfa6aa, 

                    0x78c14389,0xd95a537f,0x207d5ba2,0x02e5b9c5,0x83260376,0x6295cfa9, 

                    0x11c81968,0x4e734a41,0xb3472dca,0x7b14a94a,0x1b510052,0x9a532915, 

                    0xd60f573f,0xbc9bc6e4,0x2b60a476,0x81e67400,0x08ba6fb5,0x571be91f, 

                    0xf296ec6b,0x2a0dd915,0xb6636521,0xe7b9f9b6,0xff34052e,0xc5855664, 

                    0x53b02d5d,0xa99f8fa1,0x08ba4799,0x6e85076a}; 

 

    unsigned int BLOWFISH::s1[] = { 

                    0x4b7a70e9,0xb5b32944,0xdb75092e,0xc4192623,0xad6ea6b0,0x49a7df7d, 

                    0x9cee60b8,0x8fedb266,0xecaa8c71,0x699a17ff,0x5664526c,0xc2b19ee1, 

                    0x193602a5,0x75094c29,0xa0591340,0xe4183a3e,0x3f54989a,0x5b429d65, 

                    0x6b8fe4d6,0x99f73fd6,0xa1d29c07,0xefe830f5,0x4d2d38e6,0xf0255dc1, 

                    0x4cdd2086,0x8470eb26,0x6382e9c6,0x021ecc5e,0x09686b3f,0x3ebaefc9, 

                    0x3c971814,0x6b6a70a1,0x687f3584,0x52a0e286,0xb79c5305,0xaa500737, 

                    0x3e07841c,0x7fdeae5c,0x8e7d44ec,0x5716f2b8,0xb03ada37,0xf0500c0d, 

                    0xf01c1f04,0x0200b3ff,0xae0cf51a,0x3cb574b2,0x25837a58,0xdc0921bd, 

                    0xd19113f9,0x7ca92ff6,0x94324773,0x22f54701,0x3ae5e581,0x37c2dadc, 

                    0xc8b57634,0x9af3dda7,0xa9446146,0x0fd0030e,0xecc8c73e,0xa4751e41, 

                    0xe238cd99,0x3bea0e2f,0x3280bba1,0x183eb331,0x4e548b38,0x4f6db908, 

                    0x6f420d03,0xf60a04bf,0x2cb81290,0x24977c79,0x5679b072,0xbcaf89af, 

                    0xde9a771f,0xd9930810,0xb38bae12,0xdccf3f2e,0x5512721f,0x2e6b7124, 

                    0x501adde6,0x9f84cd87,0x7a584718,0x7408da17,0xbc9f9abc,0xe94b7d8c, 

                    0xec7aec3a,0xdb851dfa,0x63094366,0xc464c3d2,0xef1c1847,0x3215d908, 

                    0xdd433b37,0x24c2ba16,0x12a14d43,0x2a65c451,0x50940002,0x133ae4dd, 

                    0x71dff89e,0x10314e55,0x81ac77d6,0x5f11199b,0x043556f1,0xd7a3c76b, 

                    0x3c11183b,0x5924a509,0xf28fe6ed,0x97f1fbfa,0x9ebabf2c,0x1e153c6e, 

                    0x86e34570,0xeae96fb1,0x860e5e0a,0x5a3e2ab3,0x771fe71c,0x4e3d06fa, 

                    0x2965dcb9,0x99e71d0f,0x803e89d6,0x5266c825,0x2e4cc978,0x9c10b36a, 

                    0xc6150eba,0x94e2ea78,0xa5fc3c53,0x1e0a2df4,0xf2f74ea7,0x361d2b3d, 

                    0x1939260f,0x19c27960,0x5223a708,0xf71312b6,0xebadfe6e,0xeac31f66, 

                    0xe3bc4595,0xa67bc883,0xb17f37d1,0x018cff28,0xc332ddef,0xbe6c5aa5, 

                    0x65582185,0x68ab9802,0xeecea50f,0xdb2f953b,0x2aef7dad,0x5b6e2f84, 

                    0x1521b628,0x29076170,0xecdd4775,0x619f1510,0x13cca830,0xeb61bd96, 
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                    0x0334fe1e,0xaa0363cf,0xb5735c90,0x4c70a239,0xd59e9e0b,0xcbaade14, 

                    0xeecc86bc,0x60622ca7,0x9cab5cab,0xb2f3846e,0x648b1eaf,0x19bdf0ca, 

                    0xa02369b9,0x655abb50,0x40685a32,0x3c2ab4b3,0x319ee9d5,0xc021b8f7, 

                    0x9b540b19,0x875fa099,0x95f7997e,0x623d7da8,0xf837889a,0x97e32d77, 

                    0x11ed935f,0x16681281,0x0e358829,0xc7e61fd6,0x96dedfa1,0x7858ba99, 

                    0x57f584a5,0x1b227263,0x9b83c3ff,0x1ac24696,0xcdb30aeb,0x532e3054, 

                    0x8fd948e4,0x6dbc3128,0x58ebf2ef,0x34c6ffea,0xfe28ed61,0xee7c3c73, 

                    0x5d4a14d9,0xe864b7e3,0x42105d14,0x203e13e0,0x45eee2b6,0xa3aaabea, 

                    0xdb6c4f15,0xfacb4fd0,0xc742f442,0xef6abbb5,0x654f3b1d,0x41cd2105, 

                    0xd81e799e,0x86854dc7,0xe44b476a,0x3d816250,0xcf62a1f2,0x5b8d2646, 

                    0xfc8883a0,0xc1c7b6a3,0x7f1524c3,0x69cb7492,0x47848a0b,0x5692b285, 

                    0x095bbf00,0xad19489d,0x1462b174,0x23820e00,0x58428d2a,0x0c55f5ea, 

                    0x1dadf43e,0x233f7061,0x3372f092,0x8d937e41,0xd65fecf1,0x6c223bdb, 

                    0x7cde3759,0xcbee7460,0x4085f2a7,0xce77326e,0xa6078084,0x19f8509e, 

                    0xe8efd855,0x61d99735,0xa969a7aa,0xc50c06c2,0x5a04abfc,0x800bcadc, 

                    0x9e447a2e,0xc3453484,0xfdd56705,0x0e1e9ec9,0xdb73dbd3,0x105588cd, 

                    0x675fda79,0xe3674340,0xc5c43465,0x713e38d8,0x3d28f89e,0xf16dff20, 

                    0x153e21e7,0x8fb03d4a,0xe6e39f2b,0xdb83adf7 }; 

 

    unsigned int BLOWFISH::s2[] = { 

                    0xe93d5a68,0x948140f7,0xf64c261c,0x94692934,0x411520f7,0x7602d4f7, 

                    0xbcf46b2e,0xd4a20068,0xd4082471,0x3320f46a,0x43b7d4b7,0x500061af, 

                    0x1e39f62e,0x97244546,0x14214f74,0xbf8b8840,0x4d95fc1d,0x96b591af, 

                    0x70f4ddd3,0x66a02f45,0xbfbc09ec,0x03bd9785,0x7fac6dd0,0x31cb8504, 

                    0x96eb27b3,0x55fd3941,0xda2547e6,0xabca0a9a,0x28507825,0x530429f4, 

                    0x0a2c86da,0xe9b66dfb,0x68dc1462,0xd7486900,0x680ec0a4,0x27a18dee, 

                    0x4f3ffea2,0xe887ad8c,0xb58ce006,0x7af4d6b6,0xaace1e7c,0xd3375fec, 

                    0xce78a399,0x406b2a42,0x20fe9e35,0xd9f385b9,0xee39d7ab,0x3b124e8b, 

                    0x1dc9faf7,0x4b6d1856,0x26a36631,0xeae397b2,0x3a6efa74,0xdd5b4332, 

                    0x6841e7f7,0xca7820fb,0xfb0af54e,0xd8feb397,0x454056ac,0xba489527, 

                    0x55533a3a,0x20838d87,0xfe6ba9b7,0xd096954b,0x55a867bc,0xa1159a58, 

                    0xcca92963,0x99e1db33,0xa62a4a56,0x3f3125f9,0x5ef47e1c,0x9029317c, 

                    0xfdf8e802,0x04272f70,0x80bb155c,0x05282ce3,0x95c11548,0xe4c66d22, 

                    0x48c1133f,0xc70f86dc,0x07f9c9ee,0x41041f0f,0x404779a4,0x5d886e17, 
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                    0x325f51eb,0xd59bc0d1,0xf2bcc18f,0x41113564,0x257b7834,0x602a9c60, 

                    0xdff8e8a3,0x1f636c1b,0x0e12b4c2,0x02e1329e,0xaf664fd1,0xcad18115, 

                    0x6b2395e0,0x333e92e1,0x3b240b62,0xeebeb922,0x85b2a20e,0xe6ba0d99, 

                    0xde720c8c,0x2da2f728,0xd0127845,0x95b794fd,0x647d0862,0xe7ccf5f0, 

                    0x5449a36f,0x877d48fa,0xc39dfd27,0xf33e8d1e,0x0a476341,0x992eff74, 

                    0x3a6f6eab,0xf4f8fd37,0xa812dc60,0xa1ebddf8,0x991be14c,0xdb6e6b0d, 

                    0xc67b5510,0x6d672c37,0x2765d43b,0xdcd0e804,0xf1290dc7,0xcc00ffa3, 

                    0xb5390f92,0x690fed0b,0x667b9ffb,0xcedb7d9c,0xa091cf0b,0xd9155ea3, 

                    0xbb132f88,0x515bad24,0x7b9479bf,0x763bd6eb,0x37392eb3,0xcc115979, 

                    0x8026e297,0xf42e312d,0x6842ada7,0xc66a2b3b,0x12754ccc,0x782ef11c, 

                    0x6a124237,0xb79251e7,0x06a1bbe6,0x4bfb6350,0x1a6b1018,0x11caedfa, 

                    0x3d25bdd8,0xe2e1c3c9,0x44421659,0x0a121386,0xd90cec6e,0xd5abea2a, 

                    0x64af674e,0xda86a85f,0xbebfe988,0x64e4c3fe,0x9dbc8057,0xf0f7c086, 

                    0x60787bf8,0x6003604d,0xd1fd8346,0xf6381fb0,0x7745ae04,0xd736fccc, 

                    0x83426b33,0xf01eab71,0xb0804187,0x3c005e5f,0x77a057be,0xbde8ae24, 

                    0x55464299,0xbf582e61,0x4e58f48f,0xf2ddfda2,0xf474ef38,0x8789bdc2, 

                    0x5366f9c3,0xc8b38e74,0xb475f255,0x46fcd9b9,0x7aeb2661,0x8b1ddf84, 

                    0x846a0e79,0x915f95e2,0x466e598e,0x20b45770,0x8cd55591,0xc902de4c, 

                    0xb90bace1,0xbb8205d0,0x11a86248,0x7574a99e,0xb77f19b6,0xe0a9dc09, 

                    0x662d09a1,0xc4324633,0xe85a1f02,0x09f0be8c,0x4a99a025,0x1d6efe10, 

                    0x1ab93d1d,0x0ba5a4df,0xa186f20f,0x2868f169,0xdcb7da83,0x573906fe, 

                    0xa1e2ce9b,0x4fcd7f52,0x50115e01,0xa70683fa,0xa002b5c4,0x0de6d027, 

                    0x9af88c27,0x773f8641,0xc3604c06,0x61a806b5,0xf0177a28,0xc0f586e0, 

                    0x006058aa,0x30dc7d62,0x11e69ed7,0x2338ea63,0x53c2dd94,0xc2c21634, 

                    0xbbcbee56,0x90bcb6de,0xebfc7da1,0xce591d76,0x6f05e409,0x4b7c0188, 

                    0x39720a3d,0x7c927c24,0x86e3725f,0x724d9db9,0x1ac15bb4,0xd39eb8fc, 

                    0xed545578,0x08fca5b5,0xd83d7cd3,0x4dad0fc4,0x1e50ef5e,0xb161e6f8, 

                    0xa28514d9,0x6c51133c,0x6fd5c7e7,0x56e14ec4,0x362abfce,0xddc6c837, 

                    0xd79a3234,0x92638212,0x670efa8e,0x406000e0}; 

 

    unsigned int BLOWFISH::s3[] = { 

                    0x3a39ce37,0xd3faf5cf,0xabc27737,0x5ac52d1b,0x5cb0679e,0x4fa33742, 

                    0xd3822740,0x99bc9bbe,0xd5118e9d,0xbf0f7315,0xd62d1c7e,0xc700c47b, 

                    0xb78c1b6b,0x21a19045,0xb26eb1be,0x6a366eb4,0x5748ab2f,0xbc946e79, 
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                    0xc6a376d2,0x6549c2c8,0x530ff8ee,0x468dde7d,0xd5730a1d,0x4cd04dc6, 

                    0x2939bbdb,0xa9ba4650,0xac9526e8,0xbe5ee304,0xa1fad5f0,0x6a2d519a, 

                    0x63ef8ce2,0x9a86ee22,0xc089c2b8,0x43242ef6,0xa51e03aa,0x9cf2d0a4, 

                    0x83c061ba,0x9be96a4d,0x8fe51550,0xba645bd6,0x2826a2f9,0xa73a3ae1, 

                    0x4ba99586,0xef5562e9,0xc72fefd3,0xf752f7da,0x3f046f69,0x77fa0a59, 

                    0x80e4a915,0x87b08601,0x9b09e6ad,0x3b3ee593,0xe990fd5a,0x9e34d797, 

                    0x2cf0b7d9,0x022b8b51,0x96d5ac3a,0x017da67d,0xd1cf3ed6,0x7c7d2d28, 

                    0x1f9f25cf,0xadf2b89b,0x5ad6b472,0x5a88f54c,0xe029ac71,0xe019a5e6, 

                    0x47b0acfd,0xed93fa9b,0xe8d3c48d,0x283b57cc,0xf8d56629,0x79132e28, 

                    0x785f0191,0xed756055,0xf7960e44,0xe3d35e8c,0x15056dd4,0x88f46dba, 

                    0x03a16125,0x0564f0bd,0xc3eb9e15,0x3c9057a2,0x97271aec,0xa93a072a, 

                    0x1b3f6d9b,0x1e6321f5,0xf59c66fb,0x26dcf319,0x7533d928,0xb155fdf5, 

                    0x03563482,0x8aba3cbb,0x28517711,0xc20ad9f8,0xabcc5167,0xccad925f, 

                    0x4de81751,0x3830dc8e,0x379d5862,0x9320f991,0xea7a90c2,0xfb3e7bce, 

                    0x5121ce64,0x774fbe32,0xa8b6e37e,0xc3293d46,0x48de5369,0x6413e680, 

                    0xa2ae0810,0xdd6db224,0x69852dfd,0x09072166,0xb39a460a,0x6445c0dd, 

                    0x586cdecf,0x1c20c8ae,0x5bbef7dd,0x1b588d40,0xccd2017f,0x6bb4e3bb, 

                    0xdda26a7e,0x3a59ff45,0x3e350a44,0xbcb4cdd5,0x72eacea8,0xfa6484bb, 

                    0x8d6612ae,0xbf3c6f47,0xd29be463,0x542f5d9e,0xaec2771b,0xf64e6370, 

                    0x740e0d8d,0xe75b1357,0xf8721671,0xaf537d5d,0x4040cb08,0x4eb4e2cc, 

                    0x34d2466a,0x0115af84,0xe1b00428,0x95983a1d,0x06b89fb4,0xce6ea048, 

                    0x6f3f3b82,0x3520ab82,0x011a1d4b,0x277227f8,0x611560b1,0xe7933fdc, 

                    0xbb3a792b,0x344525bd,0xa08839e1,0x51ce794b,0x2f32c9b7,0xa01fbac9, 

                    0xe01cc87e,0xbcc7d1f6,0xcf0111c3,0xa1e8aac7,0x1a908749,0xd44fbd9a, 

                    0xd0dadecb,0xd50ada38,0x0339c32a,0xc6913667,0x8df9317c,0xe0b12b4f, 

                    0xf79e59b7,0x43f5bb3a,0xf2d519ff,0x27d9459c,0xbf97222c,0x15e6fc2a, 

                    0x0f91fc71,0x9b941525,0xfae59361,0xceb69ceb,0xc2a86459,0x12baa8d1, 

                    0xb6c1075e,0xe3056a0c,0x10d25065,0xcb03a442,0xe0ec6e0e,0x1698db3b, 

                    0x4c98a0be,0x3278e964,0x9f1f9532,0xe0d392df,0xd3a0342b,0x8971f21e, 

                    0x1b0a7441,0x4ba3348c,0xc5be7120,0xc37632d8,0xdf359f8d,0x9b992f2e, 

                    0xe60b6f47,0x0fe3f11d,0xe54cda54,0x1edad891,0xce6279cf,0xcd3e7e6f, 

                    0x1618b166,0xfd2c1d05,0x848fd2c5,0xf6fb2299,0xf523f357,0xa6327623, 

                    0x93a83531,0x56cccd02,0xacf08162,0x5a75ebb5,0x6e163697,0x88d273cc, 

                    0xde966292,0x81b949d0,0x4c50901b,0x71c65614,0xe6c6c7bd,0x327a140a, 
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                    0x45e1d006,0xc3f27b9a,0xc9aa53fd,0x62a80f00,0xbb25bfe2,0x35bdd2f6, 

                    0x71126905,0xb2040222,0xb6cbcf7c,0xcd769c2b,0x53113ec0,0x1640e3d3, 

                    0x38abbd60,0x2547adf0,0xba38209c,0xf746ce76,0x77afa1c5,0x20756060, 

                    0x85cbfe4e,0x8ae88dd8,0x7aaaf9b0,0x4cf9aa7e,0x1948c25c,0x02fb8a8c, 

                    0x01c36ae4,0xd6ebe1f9,0x90d4f869,0xa65cdea0,0x3f09252d,0xc208e69f, 

                    0xb74e6132,0xce77e25b,0x578fdfe3,0x3ac372e6}; 

    unsigned int BLOWFISH::p[] = { 

                    0x243f6a88,0x85a308d3,0x13198a2e,0x03707344,0xa4093822,0x299f31d0, 

                    0x082efa98,0xec4e6c89,0x452821e6,0x38d01377,0xbe5466cf,0x34e90c6c, 

                    0xc0ac29b7,0xc97c50dd,0x3f84d5b5,0xb5470917,0x9216d5d9,0x8979fb1b, 

 

                    // 

                    // 

                    0xb83acb02, 0x2002397a, 0x6ec6fb5b, 0xffcfd4dd, 0x4cbf5ed1, 0xf43fe582, 

                    0x3ef4e823, 0x2d152af0, 0xe718c970, 0x59bd9820, 0x1f4a9d62, 0xe7a529ba, 

                    0x89e1248d, 0x3bf88656, 0xc5114d0e, 0xbc4cee16, 0x034d8a39, 0x20e47882, 

                    0xe9ae8fbd, 0xe3abdc1f, 0x6da51e52, 0x5db2bae1, 0x01f86e7a, 0x6d9c68a9, 

                    0x2708fcd9, 0x293cbc0c, 0xb03c86f8, 0xa8ad2c2f, 0x00424eeb, 0xcacb452d, 

                    0x89cc71fc, 0xd59c7f91, 0x7f0622bc, 0x6d8a08b1, 0x834d2132, 0x6884ca82, 

                    0xe3aacbf3, 0x7786f2fa, 0x2cab6e3d, 0xce535ad1, 0xf20ac607, 0xc6b8e14f, 

                    0x5eb4388e, 0x775014a6, 0x656665f7, 0xb64a43e4, 0xba383d01, 0xb2e41079, 

                    0x8eb2986f, 0x909e0ca4, 0x1f7b3777, 0x2c126030, 0x85088718, 0xc4e7d1bd, 

                    0x4065ffce, 0x8392fd8a, 0xaa36d12b, 0xb4c8c9d0, 0x994fb0b7, 0x14f96818, 

                    0xf9a53998, 0xa0a178c6, 0x2684a81e, 0x8ae972f6, 0xb8425eb6, 0x7a29d486, 

                    0x551bd719, 0xaf32c189, 0xd5145505, 0xdc81d53e, 0x48424eda, 0xb796ef46, 

                    0xa0498f03, 0x667deede, 0x03ac0ab3, 0xc497733d, 0x5316a891, 0x30a88fcc, 

                    0x9604440a, 0xceeb893a, 0x7725b82b, 0x0e1ef69d, 0x302a5c8e, 0xe7b84def, 

                    0x5a31b096, 0xc9ebf88d, 0x512d788e, 0x7e4002ee, 0x87e02af6, 0xc358a1bb, 

                    0x02e8d7af, 0xdf9fb0e7, 0x790e942a, 0x3b3c1aba, 0xc6ffa7af, 0x9df796f9, 

                    0x321bb994, 0x0174a8a8, 0xed22162c, 0xcff1bb99, 0xdaa8d551, 0xa4d5e44b, 

                    0xecdde3ec, 0xa80dc509, 0x0393eef2, 0x72523d31, 0xd48e3a1c, 0x224eb65e, 

                    0x6052c3a4, 0x2109c32f, 0x052ee388, 0xed9f7ea9, 0x91c62f97, 0x77b55ba0, 

                    0x150cbca3, 0x3aec6525, 0xdf318383, 0x43a9ce26, 0x9362ad8b, 0x0134140b, 

                    0x8df5cf81, 0x1e9ff559, 0x167f0564, 0x3812f4e0, 0x588a52b0, 0xcbb8e944, 
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                    0xef5b16a3, 0x73c4eda1, 0x7dfcfeea, 0xf54bcbbe, 0x8773e3d2, 0xc531dcd0, 

                    0x55c46729, 0x52774f3a, 0x57ca6bc0, 0x467d3a3b, 0x24778425, 0xb7991e9a, 

                    0xdd825c26, 0xe452c8ee, 0xfcacde1e, 0x84833af3, 0x61211d03, 0x1732c131, 

                    0xccadb247, 0xe606be8c, 0x712b39f1, 0x88b4ef39, 0x3a9fcdc5, 0xc5755169, 

                    0x1ff6994f, 0x39829cb0, 0x11016573, 0x3343cbeb, 0x61d3d0b4, 0x44f30aef, 

                    0xa8ae7375, 0x2a3a1c9d, 0xb4b70914, 0xd6ab250c, 0x853b7328, 0x495f948f, 

                    0xd2a4ed8e, 0x6cf751e4, 0xc320bb75, 0xd9caa0b3, 0x8ba56262, 0x4e84b03f, 

                    0xeea8076e, 0x74a07fe5, 0x8039e00c, 0x36ffdaf8, 0x03731358, 0xb9e671b9, 

                    0xdac4ce1c, 0xb25b10ed, 0x4dd3d5b1, 0xfcf2b480, 0x4634f579, 0x25eac400, 

                    0xa9ac55ea, 0x728932df, 0x06041d05, 0x5d31f502, 0xc539c2e3, 0x2b89d9db, 

                    0x5bcc0a98, 0xc05bfd6f, 0x1b250622, 0x2e21be0e, 0x60973b04, 0xecd54a67, 

                    0xb54fe638, 0xa6ed6615, 0x981a910a, 0x5d92928d, 0xac6fc697, 0xe73c63ad, 

                    0x456edf5f, 0x457a8145, 0x51875a64, 0xcd3099f1, 0x69b5f18a, 0x8c73ee0b, 

                    0x5e57368f, 0x6c79f4bb, 0x7a595926, 0xaab49ec6, 0x8ac8fcfb, 0x8016cbdb, 

                    0x8bbc1f47, 0x6982c711, 0x85c7da7a, 0x58811477, 0xcd67fad1, 0xd764d9b4, 

                    0xc8102950, 0x5cd09da5, 0x1bb1f147, 0x95167d80, 0x0367046d, 0xaf1daca1, 

                    0xa2247b23, 0x11301a54, 0x791d99c6, 0x7a4fb7cf, 0x277449a4, 0x09e57492, 

                    0x35c9a57e, 0x5e7f500a, 0xb9a62a8a, 0xd5242a6b, 0xa1337859, 0x9cda3346, 

                    0x14874047, 0x4328ba08, 0xeb81d51f, 0x3248896a, 0x8007d85d, 0x0f6e8dda, 

                    0x8250bdaf, 0xce2ee042, 0x897ee022, 0x5f003612, 0x3ba18f90, 0x26314076, 

                    0x7824035a, 0x3b57e2d5, 0x8e78aed1, 0xe90dc600 

                    }; 

 

#endif // BLOWFISH_INCLUDED 

 

 

IPSEC VPN (OPENSWAN) ENHANCE BLOWFISH ALGORITHM:  

/master/lib/libcrypto/libblowfish/bf_locl.h 

 

#ifndef HEADER_BF_LOCL_H 

#define HEADER_BF_LOCL_H 

 

#undef c2l 

https://raw.githubusercontent.com/xelerance/Openswan/master/lib/libcrypto/libblowfish/bf_locl.h
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#define c2l(c,l) (l =((unsigned long)(*((c)++)))    , \ 

    l|=((unsigned long)(*((c)++)))<< 8L, \ 

    l|=((unsigned long)(*((c)++)))<<16L, \ 

    l|=((unsigned long)(*((c)++)))<<24L) 

 

/*  

*/ 

#undef c2ln 

#define c2ln(c,l1,l2,n)  

{ \ 

   c+=n; \ 

   l1=l2=0; \ 

   switch (n) { \ 

   case 8: l2 =((unsigned long)(*(--(c))))<<24L; \ 

   case 7: l2|=((unsigned long)(*(--(c))))<<16L; \ 

   case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \ 

   case 5: l2|=((unsigned long)(*(--(c))));     \ 

   case 4: l1 =((unsigned long)(*(--(c))))<<24L; \ 

   case 3: l1|=((unsigned long)(*(--(c))))<<16L; \ 

   case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \ 

   case 1: l1|=((unsigned long)(*(--(c))));     \ 

    } \ 

   } 

 

#undef l2c 

#define l2c(l,c) (*((c)++)=(unsigned char)(((l)     )&0xff), \ 

    *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ 

    *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ 

    *((c)++)=(unsigned char)(((l)>>24L)&0xff)) 

 

/*  

*/ 

#undef l2cn 

#define l2cn(l1,l2,c,n) { \ 
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   c+=n; \ 

   switch (n) { \ 

   case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \ 

   case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \ 

   case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \ 

   case 5: *(--(c))=(unsigned char)(((l2)     )&0xff); \ 

   case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \ 

   case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \ 

   case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \ 

   case 1: *(--(c))=(unsigned char)(((l1)     )&0xff); \ 

    } \ 

   } 

 

/* NOTE - c is not incremented as per n2l */ 

#define n2ln(c,l1,l2,n) { \ 

   c+=n; \ 

   l1=l2=0; \ 

   switch (n) { \ 

   case 8: l2 =((unsigned long)(*(--(c))))    ; \ 

   case 7: l2|=((unsigned long)(*(--(c))))<< 8; \ 

   case 6: l2|=((unsigned long)(*(--(c))))<<16; \ 

   case 5: l2|=((unsigned long)(*(--(c))))<<24; \ 

   case 4: l1 =((unsigned long)(*(--(c))))    ; \ 

   case 3: l1|=((unsigned long)(*(--(c))))<< 8; \ 

   case 2: l1|=((unsigned long)(*(--(c))))<<16; \ 

   case 1: l1|=((unsigned long)(*(--(c))))<<24; \ 

    } \ 

   } 

 

/*  

*/ 

#define l2nn(l1,l2,c,n) 

 { \ 

   c+=n; \ 
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   switch (n) { \ 

   case 8: *(--(c))=(unsigned char)(((l2)    )&0xff); \ 

   case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \ 

   case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \ 

   case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \ 

   case 4: *(--(c))=(unsigned char)(((l1)    )&0xff); \ 

   case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \ 

   case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \ 

   case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \ 

    } \ 

   } 

 

#undef n2l 

#define n2l(c,l)        (l =((unsigned long)(*((c)++)))<<24L, \ 

                         l|=((unsigned long)(*((c)++)))<<16L, \ 

                         l|=((unsigned long)(*((c)++)))<< 8L, \ 

                         l|=((unsigned long)(*((c)++)))) 

 

#undef l2n 

#define l2n(l,c)        (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \ 

                         *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ 

                         *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ 

                         *((c)++)=(unsigned char)(((l)     )&0xff)) 

 

/* This is actually a big endian algorithm, the most significant byte 

 * is used to lookup array 0 */ 

 

#if defined(BF_PTR2) 

 

/* 

*/ 

#define BF_ENC(LL,R,KEY,Pi) (\ 

 LL^=KEY[Pi], \ 

 t=  KEY[BF_ROUNDS+2 +   0 + ((R>>24)&0xFF)], \ 
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 t+= KEY[BF_ROUNDS+2 + 256 + ((R>>16)&0xFF)], \ 

 t^= KEY[BF_ROUNDS+2 + 512 + ((R>>8 )&0xFF)], \ 

 t+= KEY[BF_ROUNDS+2 + 768 + ((R    )&0xFF)], \ 

 LL^=t \ 

 ) 

 

#elif defined(BF_PTR) 

 

#ifndef BF_LONG_LOG2 

#define BF_LONG_LOG2  2       /* default to BF_LONG being 32 bits */ 

#endif 

#define BF_M  (0xFF<<BF_LONG_LOG2) 

#define BF_0  (24-BF_LONG_LOG2) 

#define BF_1  (16-BF_LONG_LOG2) 

#define BF_2  ( 8-BF_LONG_LOG2) 

#define BF_3  BF_LONG_LOG2 /* left shift */ 

 

/* 

*/ 

 

#define BF_ENC(LL,R,S,P) ( \ 

 LL^=P, \ 

 LL^= (((*(BF_LONG *)((unsigned char *)&(S[  0])+((R>>BF_0)&BF_M))+ \ 

  *(BF_LONG *)((unsigned char *)&(S[256])+((R>>BF_1)&BF_M)))^ \ 

  *(BF_LONG *)((unsigned char *)&(S[512])+((R>>BF_2)&BF_M)))+ \ 

  *(BF_LONG *)((unsigned char *)&(S[768])+((R<<BF_3)&BF_M))) \ 

 ) 

#else 

 

/* 

*/ 

 

#define BF_ENC(LL,R,S,P) ( \ 

 LL^=P, \ 
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 LL^=((( S[       ((int)(R>>24)&0xff)] + \ 

  S[0x0100+((int)(R>>16)&0xff)])^ \ 

  S[0x0200+((int)(R>> 8)&0xff)])+ \ 

  S[0x0300+((int)(R    )&0xff)])&0xffffffffL \ 

 ) 

#endif 

 

#endif 
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APPENDIX B 

NETWORK TESTBED SPECIFICATIONS 

Table 16: Device Specification 

No Item/type Operating System /software Specification 

1 

Softphone/   

Client #1 
Microsoft Windows 10  
Pro 64, Version 2016 
 
Ekiga softphone 4.0.1 

Intel (R) Core ™ i7-3632QM CPU, 
2.20GHz, 4.00GB of DDR4 RAM and 
1TB Hard disk 

2 

Softphone/   

Client #2 

Microsoft Windows 10 Pro, 
Version 2016 
 
Ekiga softphone 4.0.1 

Intel® Core™ i7-7700HQ. 8 GHz, up to 
3.8 GHz CPU, 8.00GB of DDR4 RAM 
and 1TB Hard disk 

3     RTP ToolBox 
Microsoft Windows 10 Pro, 
Version 2016 
RTP Packet Testing &  
Simulation Tools Ver 4.10.13 

7th Generation Intel® Core™ i5-7400 
Processor (6M Cache, up to 3.5 GHz) 
8.00GB of DDR4 RAM and 1TB Hard 
disk 

4 
Wireshark 

IPerf/JPerf 
Linux Ubuntu 16.04.2 LTS – 

AMD64 

Distro type : Debian 

Codename: Xenial Xerus 

Wireshark Win64-2.0.13 
 Iperf 2.0.5  

 
Intel® Core™ i7-7700T (2.9 GHz, up to 
3.8 GHz with Intel® Turbo Boost 
Technology, 8 MB cache, 4 cores) 
8.00GB of DDR4 RAM and 2TB Hard 
disk 

5 
PackETH Linux Ubuntu 16.04.2 LTS – 

AMD64 

Distro type : Debian 

Codename: Xenial Xerus 

PackETH 1.8.1 (Linux) 

Wireshark Win64-2.0.13 

7th Generation Intel® Core™ i5-7400 
Processor (6M Cache, up to 3.5 GHz) 
4.00GB of DDR4 RAM and 1TB Hard 
disk 

6 
Router #1 (ISP) Cisco 2911 Integrated  

Services Router 

IOS : c2900-universalk9-

mz.SPA.152-2.T.bin 

 

Memory : DDR2 ECC DRAM 512MB, 
Compact Plash Memory : 256MB 

7 
Router #2 

(VLAN1) 

Linux Ubuntu 16.04.2 LTS – 

AMD64 

Distro type : Debian 

Codename: Xenial Xerus 

7th Generation Intel® Core™ i3-7100   
Processor (3M Cache, up to 3.9 GHz) 
4.00GB of DDR4 RAM and 1TB Hard 
disk 
 

8 
Router #3 

(VLAN2) 

Linux Ubuntu 16.04.2 LTS – 

AMD64 

Distro type : Debian 

Codename: Xenial Xerus 

7th Generation Intel® Core™ i3-7100   
Processor (3M Cache, up to 3.9 GHz) 
4.00GB of DDR4 RAM and 1TB Hard 
disk 
 

9 
Switch #1 

(VLAN1) 

Cisco Catalyst 2960-S 

IOS : c2960-lanbasek9-mz.150-

1.SE3.bin 

 
Cisco Catalyst 2960S-24PD-L 
24 Ports, 2 Uplinks, Flash memory 64MB, 
DRAM 128MB 

10 
Switch #2 

(VLAN2) 

Cisco Catalys 

t 2960-S 

        IOS : c2960-lanbasek9- 

        mz.150-1.SE3.bin 

Cisco Catalyst 2960S-24PD-L 

24 Ports, 2 Uplinks, Flash memory 64MB, 

DRAM 128MB 

 



175 

 

Table 17: Network IP Addresses 

No Item/type IP Addresses Port Interface Description 

1 Softphone/   

Client #1 

192.168.10.20/24 GbE1-g1 VLAN1 to port1 Switch #1 

2 
Softphone/    

Client #2 
192.168.20.20/24 GbE2-g1 VLAN2 to port2 Switch #2  

3 

 

RTP ToolBox 
      192.168.10.30/24    eth0-g3 

VLAN1 to port3 Switch #1 

     

4 Wireshark 192.168.10.5/24 eth1-g4 VLAN2 to port4 Switch #1 

5 Router #1 (ISP)  eth0-g16 R1 to VLAN2 

   eth0-g13 Client 1 to VLAN2 

6 Router #2 (VLAN1) 192.168.20.1/24 eth1-eth4 R2 to R3 

7 Router #3 (VLAN2) 
      192.168.10.1/24 

eth0-g17 R2 to VLAN3 

8 Switch #1 (VLAN1) 192.168.20.10/24 eth0-eth0 TR* to R3 

9 
Switch #2 (VLAN2)       192.168.10.10/24 

eth2-g7 R1 to VLAN1 

   eth0-g8 Wireshark to VLAN1 

   eth2-g9 RTP tools to VLAN1 

   eth1-g10 TCPdump to VLAN1 

 

Table 18: Site-to-site IPSec tunnel 

 

Interface peer local-ip tunnel Description 

eth0 on R2 10.10.2.1 10.10.1.1 tunnel1 esp-group ESP-IPIP ike-
group IKE-IPIP local-
subnet 10.0.5.10/32 
remote-subnet 10.0.6.2/32 
pre-shared-secret 
Bl0wf1$h 

eth0 on R1 10.10.1.1 10.10.2.1 tunnel1 esp-group ESP-IPIP ike-
group IKE-IPIP local-
subnet 10.0.6.2/32 
remote-subnet 
10.0.5.10/32 pre-shared-
secret Bl0wf1$h 
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APPENDIX C 

OPNET CONFIGURATIONS & FIGURES 

 

 

Figure 62: Application Profile Configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 63: Application Configuration Attributes 
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Figure 65: Profile Configuration 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64: Codec Scheme 

Figure 66: Profile Attributes 


