39 research outputs found

    Developing a robot-guided interactive simon game for physical and cognitive training

    Get PDF
    Enveloping cognitive or physical rehabilitation into a game highly increases the patients' commitment with their treatment. Specially with children, keeping them motivated is a very time-consuming work, so therapists are demanding tools to help them with this task. NAOTherapist is a generic robotic architecture that uses Automated Planning techniques to autonomously drive noncontact upper-limb rehabilitation sessions for children with a humanoid NAO robot. Our aim is to develop more robotic games for this platform to enrich its variability and possibilities of interaction. The goal of this work is to present our first attempt to develop a different, more complex game that reuses the previous architecture. We contribute with the design description of a novel robotic Simon game that employs upper-limb poses instead of colors and could qualify as a cognitive and physical training. Statistics of evaluation tests with 14 adults and 56 children are displayed and the outcomes are analyzed in terms of human-robot interaction (HRI) quality. The results demonstrate the application-domain generalization capabilities of the NAOTherapist architecture and give an insight to further analyze the therapeutic benefits of the new developed Simon game.This work is partially funded by grant TIN2012-38079-C03-02 and TIN2015-65686- C5-1-R of Spanish Ministerio de Economía y Competitividad. We also want to thank the Joan Miró school of Leganés for their assistance with the evaluations, to the teachers and the management team for their support, and specially to all the children who kindly participated in the evaluation and enjoyed playing with our robots

    Desarrollo y análisis de estrategias avanzadas de interacción en sistemas robóticos complejos de rehabilitación y asistencia

    Get PDF
    Los últimos informes indican que la incidencia de los accidentes cerebro vasculares van en aumento. Los supervivientes de un accidente cerebro vascular generalmente experimentan hemiparesia, lo que provoca un deterioro de las extremidades que implica un notable deterioro de la calidad de vida. La escasez de recursos junto con la necesidad de rehabilitación y asistencia que presentan estas personas, hacen que el cuidado y los ejercicios de rehabilitación que proporcionan las plataformas robóticas de rehabilitación cobren aún más importancia en la actualidad y en los próximos años. La presente Tesis Doctoral se centra en el desarrollo de una arquitectura multimodal capaz de implementar sistemas robóticos complejos de rehabilitación y asistencia. Con esta arquitectura, se plantea implementar y evaluar los siguientes sistemas. Primero, llevar a cabo la implementación de un sistema complejo de robótica asistencial. Después, desarrollar un sistema para la realización de terapias competitivas. Seguidamente, implementar un sistema para realizar terapias cooperativas. Y finalmente, desarrollar un sistema capaz de implementar terapias de tele-rehabilitación mediante una estrategia de teleoperación maestro-esclavo. Los principales resultados de esta tesis se han publicado en dos artículos en revistas incluidas en el Journal Citation Reports (JCR). La publicación “Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living” se ha evaluado la implementación de un sistema complejo de robótica asistencial basado en la arquitectura multimodal desarrollada en esta tesis, en el que se ha integrado con éxito multitud de sensores junto con diferentes interfaces de control y dispositivos robóticos para la creación de un sistema autónomo capaz de ayudar a un usuario a realizar actividades de la vida diaria. Por otro lado, en la publicación “Differences in Physiological Reactions Due to a Competitive Rehabilitation Game Modality”, se han analizado los cambios que se producen en el estado afectivo del paciente en una terapia de neurorrehabilitación asistida por robots debidos a una modalidad de juego multijugador de tipo competitivo. Finalmente, cabe destacar que uno de los resultados de la presente tesis ha dado lugar a la patente ES1234596U: Dispositivo robótico interconectable para rehabilitación de extremidades

    Social Robots for Long-Term Space Missions

    Get PDF
    Berger I, Kipp A, Lütkebohle I, et al. Social Robots for Long-Term Space Missions. In: 63rd International Astronautical Congress. Naples, Italy: International Astronautical Federation; 2012

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children

    A Systematic Review of Adaptivity in Human-Robot Interaction

    Get PDF
    As the field of social robotics is growing, a consensus has been made on the design and implementation of robotic systems that are capable of adapting based on the user actions. These actions may be based on their emotions, personality or memory of past interactions. Therefore, we believe it is significant to report a review of the past research on the use of adaptive robots that have been utilised in various social environments. In this paper, we present a systematic review on the reported adaptive interactions across a number of domain areas during Human-Robot Interaction and also give future directions that can guide the design of future adaptive social robots. We conjecture that this will help towards achieving long-term applicability of robots in various social domains

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Boosting children's creativity through creative interactions with social robots

    Get PDF
    Creativity is an ability with psychological and developmental benefits. Creative levels are dynamic and oscillate throughout life, with a first major decline occurring at the age of 7 years old. However, creativity is an ability that can be nurtured if trained, with evidence suggesting an increase in this ability with the use of validated creativity training. Yet, creativity training for young children (aged between 6-9 years old) appears as scarce. Additionally, existing training interventions resemble test-like formats and lack of playful dynamics that could engage children in creative practices over time. This PhD project aimed at contributing to creativity stimulation in children by proposing to use social robots as intervention tools, thus adding playful and interactive dynamics to the training. Towards this goal, we conducted three studies in schools, summer camps, and museums for children, that contributed to the design, fabrication, and experimental testing of a robot whose purpose was to re-balance creative levels. Study 1 (n = 140) aimed at testing the effect of existing activities with robots in creativity and provided initial evidence of the positive potential of robots for creativity training. Study 2 (n = 134) aimed at including children as co-designers of the robot, ensuring the robot’s design meets children’s needs and requirements. Study 3 (n = 130) investigated the effectiveness of this robot as a tool for creativity training, showing the potential of robots as creativity intervention tools. In sum, this PhD showed that robots can have a positive effect on boosting the creativity of children. This places social robots as promising tools for psychological interventions.Criatividade é uma habilidade com benefícios no desenvolvimento saudável. Os níveis de criatividade são dinâmicos e oscilam durante a vida, sendo que o primeiro maior declínio acontece aos 7 anos de idade. No entanto, a criatividade é uma habilidade que pode ser nutrida se treinada e evidências sugerem um aumento desta habilidade com o uso de programas validados de criatividade. Ainda assim, os programas de criatividade para crianças pequenas (entre os 6-9 anos de idade) são escassos. Adicionalmente, estes programas adquirem o formato parecido ao de testes, faltando-lhes dinâmicas de brincadeira e interatividade que poderão motivar as crianças a envolverem-se em práticas criativas ao longo do tempo. O presente projeto de doutoramento procurou contribuir para a estimulação da criatividade em crianças propondo usar robôs sociais como ferramenta de intervenção, adicionando dinâmicas de brincadeira e interação ao treino. Assim, conduzimos três estudos em escolas, campos de férias, e museus para crianças que contribuíram para o desenho, fabricação, e teste experimental de um robô cujo objetivo é ser uma ferramenta que contribui para aumentar os níveis de criatividade. O Estudo 1 (n = 140) procurou testar o efeito de atividade já existentes com robôs na criatividade e mostrou o potencial positivo do uso de robôs para o treino criativo. O Estudo 2 (n = 134) incluiu crianças como co-designers do robô, assegurando que o desenho do robô correspondeu às necessidades das crianças. O Estudo 2 (n = 130) investigou a eficácia deste robô como ferramenta para a criatividade, demonstrando o seu potencial para o treino da criatividade. Em suma, o presente doutoramento mostrou que os robôs poderão ter um potencial criativo em atividades com crianças. Desta forma, os robôs sociais poderão ser ferramentas promissoras em intervenções na psicologia

    A Survey of Assistive Technology (AT) Knowledge and Experiences of Healthcare Professionals in the UK and France: Challenges and Opportunities for Workforce Development

    Get PDF
    Background: Assistive Technologies (AT) in healthcare can increase independence and quality of life for users. Concurrently, new AT devices offer opportunities for individualised care solutions. Nonetheless, AT remains under-utilised and is poorly integrated in practice by healthcare professionals (HCPs). Although occupational therapists (OTs), physiotherapists and speech and language therapists (SLTs) consider that AT solutions can offer problem-solving approaches to personalised care, they have a lesser understanding of application of AT in their practice. In this paper, we report findings of a survey on AT knowledge and experiences of HCPs in UK and France. Training needs also explored in the survey are presented in a separate paper on development of online training for the ADAPT project. Method: A survey of 37 closed/open questions was developed in English and French by a team of healthcare researchers. Content was informed by published surveys and studies. Email invitations were circulated to contacts in Health Trusts in UK and France ADAPT regions and the survey was hosted on an online platform. Knowledge questions addressed AT understanding and views of impact on user’s lives. Experience questions focussed on current practices, prescription, follow-up, abandonment and practice standards. 429 HCPs completed the survey (UK = 167; FR = 262) between June and November 2018. Key results: Participants were mainly female (UK 89.2%; FR 82.8%) and qualified 10+ years (UK 66.5%; FR 62.2%). A key group in both countries were OTs (UK 34.1%; FR 46.6%), with more physiotherapists and SLTs in UK (16.8%, 16.8%; vs. FR 6.5%, 2.3%), and more nurses in France (22.1% Vs. UK 10.8%). More HCPs were qualified to degree level in France (75.2%; UK 48.5%, p < 0.001). In terms of knowledge, all HCPs agreed that AT helps people complete otherwise difficult or impossible tasks (UK 86.2%; FR 94.3%) and that successful AT adoption always depends on support from carers, family and professionals (UK 52.7%; FR 66.2%). There were some notable differences between countries that require further exploration. For example, more French HCPs thought that AT is provided by trial and error (84.7%, UK 45.5%, p < 0.001), while more UK HCPs believed that AT promotes autonomous living (93.4%; FR 42.8%, p < 0.001). Also, more French HCPs considered that AT refers exclusively to technologically advanced electronic devices (71.8%, UK 28.8%, p <0.001). In both countries, top AT prescribers were OTs, physiotherapists and SLTs. Respondents had little/no knowledge in comparing/choosing AT (UK 86.8%; FR 76.7%) and stated they would benefit from interdisciplinary clinical standards (UK 80.8%; FR 77.1%). A third of HCPs did not know if AT users had access to adequate resources/support (UK 34.1%; FR 27.5%) and rated themselves as capable to monitor continued effective use of AT (UK 38.9%; FR 34.8%). Conclusion: Knowledge and application of AT was varied between the two countries due to differences in health care provision and support mechanisms. Survey findings suggest that HCPs recognised the value of AT for users’ improved care, but had low confidence in their ability to choose appropriate AT solutions and monitor continued use, and would welcome AT interdisciplinary clinical standards

    Training Needs and Development of Online AT Training for Healthcare Professionals in UK and France

    Get PDF
    Background: Assistive Technology (AT) solutions for people with disabilities has become part of mainstream care provision. Despite advantages of AT on offer, abandonment and non-compliance are challenges for healthcare professionals (HCPs), introducing this technology to clients. Studies of abandonment reveal that 1/3 of all devices provided to service users end up stored unused. Key need is training to make informed decisions about AT tailored to individual needs and circumstances. In an online survey undertaken by the ADAPT project, HPCs identified AT training needs and barriers. Currently, a programme is being developed aimed at introducing AT concepts and enhancing practices to a wide range of HCPs. Method: Survey questions explored gaps, availability, qualifications and barriers to AT training in England and France. A series of consultation meetings with ADAPT partners took place. An advisory group consisting of longstanding AT users and their formal/informal carers and HCPs (occupational therapist, speech and language therapist, psychologist and biomedical engineer) contributed to the discussions on survey findings, development and evaluation of AT training for HCPs, key content areas and means of delivery. Key results: HCPs had no AT specific qualifications (UK 94.6%; FR 81.3%) nor in-service AT training (UK 65.1%; FR 66.4%). They either did not know of AT courses (UK 63.3%) or knew that none existed (FR 72.5%). Barriers to AT training were mainly local training (UK 62.7%, FR 50%) and funding (UK 62.7%, FR 55.7%). Some training priorities were clearer for French HCPs – overall knowledge of AT devices (82.1%, UK 45.8%), customization of AT (65.3%, UK 30.1%), assessing patient holistically (53.4%, UK 25.3%), educating patient/carers (56.5%, UK 28.3%) (p < 0.001). Variances may be due to differing country-specific HCP education approach. A third of both groups highlighted also abandonment, client follow-up, powered wheelchair training and prescribing AT. To bridge gaps in knowledge and identified training needs of HCPs, the online interactive training programme starts by introducing foundations of AT, including definitions, types/uses of AT, legislation/policies and AT in practice. More specialist units build and expand on specific areas, e.g. AT for mobility, communication, assessment and evidence-based practice. The biopsychosocial model of Health and World Health Organisation’s (WHO) International Classification of Functioning, Disability and Health (ICF) framework underpin development of content. ICF shifts focus from disability to health and functioning, in line with a social model of rehabilitation. E-learning comprises existing videos, AT textbook material and bespoke animated presentations. Selfassessment and evaluation of training are embedded and learners receive certificate of completion. Training was piloted to a group of HCPs trainees and postregistration HCPs who commented on relevance of AT content, clarity, accessibility of presentation, and usefulness. Users found training very useful, especially legislation/policies and AT literature. Conclusion: Overall, survey results suggest that both UK and French HCPs’ training on AT solutions is limited and highly variable. There is need for crosschannel AT professional competencies, availability of work-based training and funding support. Development of online, interactive training aims to increase professional confidence and competence in this area as well as the evidence base for AT
    corecore