6 research outputs found

    Designing Adaptive Instruction for Teams: a Meta-Analysis

    Get PDF
    The goal of this research was the development of a practical architecture for the computer-based tutoring of teams. This article examines the relationship of team behaviors as antecedents to successful team performance and learning during adaptive instruction guided by Intelligent Tutoring Systems (ITSs). Adaptive instruction is a training or educational experience tailored by artificially-intelligent, computer-based tutors with the goal of optimizing learner outcomes (e.g., knowledge and skill acquisition, performance, enhanced retention, accelerated learning, or transfer of skills from instructional environments to work environments). The core contribution of this research was the identification of behavioral markers associated with the antecedents of team performance and learning thus enabling the development and refinement of teamwork models in ITS architectures. Teamwork focuses on the coordination, cooperation, and communication among individuals to achieve a shared goal. For ITSs to optimally tailor team instruction, tutors must have key insights about both the team and the learners on that team. To aid the modeling of teams, we examined the literature to evaluate the relationship of teamwork behaviors (e.g., communication, cooperation, coordination, cognition, leadership/coaching, and conflict) with team outcomes (learning, performance, satisfaction, and viability) as part of a large-scale meta-analysis of the ITS, team training, and team performance literature. While ITSs have been used infrequently to instruct teams, the goal of this meta-analysis make team tutoring more ubiquitous by: identifying significant relationships between team behaviors and effective performance and learning outcomes; developing instructional guidelines for team tutoring based on these relationships; and applying these team tutoring guidelines to the Generalized Intelligent Framework for Tutoring (GIFT), an open source architecture for authoring, delivering, managing, and evaluating adaptive instructional tools and methods. In doing this, we have designed a domain-independent framework for the adaptive instruction of teams

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    Detecting Flow Experiences in Cognitive Tasks - A Neurophysiological Approach

    Get PDF
    Das Flow-Erlebnis beschreibt einen Zustand vollständiger Aufgabenvertiefung und mühelosen Handelns, der mit Höchstleistungen, persönlichem Wachstum, sowie allgemeinem Wohlbefinden verbunden ist. Für Unternehmen stellen häufigere Flow-Erlebnisse der ArbeitnehmerInnen daher auch eine produktivitäts- und zufriedenheitsfördernde Basis dar. Vor allem da sich aktuell globale Phänomene wie die steigende Nachfrage nach Wissensarbeit und das niedrige Arbeitsengagement zuspitzen, können Unternehmen von einer Förderung von Flow profitieren. Die Unterstützung von Flow stellt allerdings aufgrund der Vielfalt von Arbeitnehmerfertigkeiten, -aufgaben, und -arbeitsplätzen eine komplexe Herausforderung dar. WissensarbeiterInnen stehen dynamischen Aufgaben gegenüber, die diverse Kompetenzen und die Kooperation mit anderen erfordern. Arbeitsplätze werden vielseitiger, indem die Grenzen zwischen ko-präsenten und virtuellen Interaktionen verschwinden. Diese Vielfalt bedeutet, dass eine solide Flow-Förderung nur durch personen-, aufgaben- und situationsunabhängige Ansätze erfolgen kann. Aus diesem Grund werden zunehmend die neurophysiologischen Grundlagen des Flow-Erlebens untersucht. Auf deren Basis könnten adaptive Neuro-Informationssysteme entwickelt werden, die mittels tragbarer Sensorik Flow kontinuierlich erkennen und fördern können. Diese Wissensbasis ist bislang jedoch nur spärlich und in stark fragmentierter Form vorhanden. Für das Individuum existieren lediglich konkurrierende Vorschläge, die noch nicht durch situations- und sensorübergreifende Studien konsolidiert wurden. Für Gruppen existiert noch fast keine Forschung zu neurophysiologischen Flow-Korrelaten, insbesondere keine im Kontext digital-mediierter Interaktionen. In dieser Dissertation werden genau diese Forschungslücken durch die situationsübergreifende Beobachtung von Flow mit tragbaren EKG und EEG Sensoren adressiert. Dabei werden zentrale Grenzen der experimentellen Flow-Forschung berücksichtigt, vor allem die Defizite etablierter Paradigmen zum kontrollierten Hervorrufen von Flow. Indem Erlebnisse in zwei kognitiven Aufgaben und mehreren Manipulationen (von Schwierigkeit, Natürlichkeit, Autonomie und sozialer Interaktion) variiert werden, wird untersucht, wie Flow intensiver hervorgerufen und wie das Erlebnis stabiler über Situationen hinweg beobachtet werden kann. Die Studienergebnisse deuten dabei insgesamt auf ein Flow-Muster von moderater physiologischer Aktivierung und mentaler Arbeitslast, von erhöhter, aufgabenorientierter Aufmerksamkeit und von affektiver Neutralität hin. Vor allem die EEG Daten zeigen ein diagnostisches Potenzial, schwächere von stärkeren Flow-Zuständen unterscheiden zu können, indem optimale und nicht-optimale Aufgabenschwierigkeiten (für Individuen und Gruppen) erkannt werden. Um das Flow-Erleben weiter zu fördern, werden geeignete Wege für zukünftige Forschung abschließend diskutiert
    corecore