114 research outputs found

    A comparative evaluation of conceptual rainfall–runoff models for a catchment in Victoria Australia using eWater Source

    Get PDF
    Hydrological modelling at a catchment scale was conducted to investigate the impact of climate change and land-use change individually and in combination with the available streamflow in the Painkalac catchment using an eWater Source hydrological model. This study compares the performance of three inbuilt conceptual models within eWater Source, such as the Australian water balance model (AWBM), Sacramento and GR4J for streamflow simulation. The three-model performance was predicted by bivariate statistics (Nash–Sutcliff efficiency) and univariate (mean, standard deviation) to evaluate the efficiency of model runoff predictions. Potential evapotranspiration (PET) data, daily rainfall data and observed streamflow measured from this catchment are the major inputs to these models. These models were calibrated and validated using eight objective functions while further comparisons of these models were made using objective functions of a Nash–Sutcliffe efficiency (NSE) log daily and an NSE log daily bias penalty. The observed streamflow data were split into three sections. Two-thirds of the data were used for calibration while the remaining one-third of the data was used for validation of the model. Based on the results, it was observed that the performance of the GR4J model is more suitable for the Painkalac catchment in respect of prediction and computational efficiency compared to the Sacramento and AWBM models. Further, the impact of climate change, land-use change and combined scenarios (land-use and climate change) were evaluated using the GR4J model. The results of this study suggest that the higher climate change for the year 2065 will result in approximately 45.67% less streamflow in the reservoir. In addition, the land-use change resulted in approximately 42.26% less flow while combined land-use and higher climate change will produce 48.06% less streamflow compared to the observed flow under the existing conditions

    Soil moisture droughts in Germany: retrospective analysis, parametric uncertainty, and monitoring

    Get PDF
    Droughts are worldwide the second most severe natural disaster beside floods. In Europe, droughts are the costliest natural disasters with average expenses of 621 million EUR per event. The last severe drought event took place in 2003. It induced an agro-economic loss of 1.5 billion EUR in Germany alone. Such economical losses emphasize the need of an operational system for monitoring agricultural droughts in order to mitigate their negative consequences. Observation-based monitoring of agricultural droughts, which are characterized by soil moisture deficits, is technically and economically not feasible on regional to national scales. Hydrologic modeling is the prime alternative to estimate soil moisture availability on large spatial domains. Such models are driven by meteorological observations and predict hydrological fluxes and states, such as soil moisture or evapotranspiration. Predictions of hydrologic models underlie several sources of uncertainties. These uncertainties arise from input data, model structure, initial conditions, and model parameters. The implications of parametric uncertainty to hydrologic predictions are analyzed herein. The main objective of this work is to develop a monitoring system for agricultural droughts in Germany. The development of such a system includes several challenges. First, a spatially continuous dataset of soil moisture for entire Germany is derived from modeling. The parametric uncertainty of such hydrologic predictions is taken into account. Second, the propagation of parametric uncertainty of soil moisture to the identification of drought characteristics is estimated in order to evaluate the uncertainty inherent to such a monitoring system. Third, an approach to reduce the parametric uncertainty by using satellite retrieved land surface temperature data is investigated. And forth, an operational system providing drought information in near-real time is developed and implemented

    Development of a method to identify change in the pattern of extreme streamflow events in future climate: Application on the Bhadra reservoir inflow in India

    Get PDF
    Study region: Bhadra basin (1968 km2), located in peninsular India, is considered for demonstration. Study focus: A general framework to assess the impact of climate change on the pattern of daily extreme streamflow events is proposed. Whereas, the impact is confirmed in the recent literature for most of the hydrologic variables at monthly/seasonal time scale, assessment and quantification at finer time scale, e.g. daily, is challenging. Complexity increases for the derived hydrologic variables, such as soil moisture and streamflow as compared to primary hydrologic variables, such as precipitation. The proposed general framework is demonstrated with the daily inflow to the Bhadra reservoir. Different statistical limits of extremes are defined and change in daily extreme pattern (number and magnitude) in the future (2006–2035) is assessed with respect to the baseline period (1971–2000). New hydrological insights for the region: Demonstration of the proposed methodology with the inflow to Bhadra reservoir reveals that the daily extreme events are expected to increase in number with the increase in the threshold of the extreme. For a particular threshold, the average magnitude of the extreme events in the future is found to be higher as compared to the baseline period. However, for monthly totals the case is not the same − it remains almost similar. The methodology, being general in nature, can be applied to other locations in order to assess the future change in streamflow and other derived variables

    Global-scale evaluation of 23 precipitation datasets using gaugeobservations and hydrological modeling

    Get PDF
    Abstract. We undertook a comprehensive evaluation of 23 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another ten gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the conceptual model HBV against streamflow records for each of 9053 small to medium-sized

    Representing past and future hydro-climatic variability over multi-decadal periods in poorly-gauged regions: the case of Ecuador

    Get PDF
    Cette thèse évalue des méthodes pour représenter la variabilité spatio-temporelle hydro-climatique passée et future dans les régions peu jaugées. Elle propose une procédure complète et reproductible appliquée à l'Équateur et s'appuyant sur des données hydro-climatiques observées et simulées en vue de représenter la variabilité passée et de projeter l'impact potentiel des changements climatiques sur les écoulements à la fin du 21ème siècle. Un état de l'art a permis d'identifier plusieurs techniques qui ont été intégrées dans une chaîne méthodologique pour obtenir des séries spatio-temporelles continues de température, de précipitation et de débit sur les périodes multi-décennales passées et futures. Trois chapitres centraux sont consacrés à cet objectif selon les thèmes suivants : (1) régionalisation de la température et des précipitations à partir de mesures in situ en comparant des techniques déterministes et géostatistiques avec une prise en compte de corrections orographiques; (2) reconstruction du débit dans différents bassins versants à l'aide de modèles hydrologiques conceptuels utilisés selon une approche multimodèle et multiparamétrique; et (3) projections hydro-climatiques basées sur des simulations de modèles climatiques sous contrainte d'un scénario marqué d'émission de gaz à effet de serre. La régionalisation du climat a révélé l'importance de caler les paramètres de spatialisation et d'évaluer les champs interpolés par rapport à des stations ponctuelles indépendantes et via des analyses de sensibilité hydrologique. La reconstruction des débits a été possible grâce aux simulations combinées de trois modèles hydrologiques évalués dans des conditions climatiques contrastées, et forcés par les variables climatiques régionalisées. Des simulations de changements hydro-climatiques à moyen terme (2040-2070) et à long terme (2070-2100) ont ensuite été analysées avec des intervalles de confiance de 95 %, en utilisant des scénarios de neuf modèles climatiques et en transférant les paramètres hydrologiques calibrés pour la reconstruction des débits. L'analyse de la variabilité hydro-climatique montre une légère augmentation des températures sur la période 1985-2015, tandis que la variabilité des précipitations est liée aux principaux modes des phases El Niño et La Niña à l'échelle inter-annuelle et au déplacement de la zone de convergence inter-tropicale (ZCIT) à l'échelle saisonnière. Une augmentation générale de la température (+4,4 °C) et des précipitations (+17 %) est attendue d'ici à la fin du 21ème siècle, ce qui pourrait entraîner une augmentation de +5 % à +71 % du débit annuel moyen selon les bassins versants. Ces résultats sont discutés en termes d'importance pour la gestion de l'eau, avant de suggérer de futures recherches hydrologiques telles que la régionalisation du débit des cours d'eau, une meilleure quantification des incertitudes et une évaluation de la capacité à satisfaire les futurs besoins en eau.This thesis investigates methods to represent the past and future hydro-climatic variability in space and over time in poorly-gauged regions. It proposes a complete and reproducible procedure applied to the continental Ecuador to deal with observed and simulated hydro-climatic data in order to represent past variability and project the potential impact of climate change on water resources by the end of the 21st century. Up-to-date techniques were identified in a literature review and were integrated in a chain protocol to obtain continuous space-time series of air temperature, precipitation and streamflow over past and future multi-decadal periods. Three central chapters are dedicated to this objective according to the following topics: (1) regionalization of air temperature and precipitation from in situ measurements by comparing deterministic and geostatistical techniques including orographic corrections; (2) streamflow reconstruction in various catchments using conceptual hydrological models in a multi-model, multi-parameter approach; and (3) hydro-climate projections using climate model simulations under a high range emission scenario. Climate regionalization revealed the importance of calibrating parameters and of assessing interpolated fields against independent gauges and via hydrological sensitivity analyses. Streamflow reconstruction was possible with the regionalized climate inputs and the combined simulations of three hydrological models evaluated in contrasting climate conditions. Future medium term (2040-2070) and long term (2070-2100) hydro-climatic changes were analysed with confidence intervals of 95% using scenarios from nine climate models and transferring the model parameters calibrated for streamflow reconstruction. Analysis of hydro-climatic variability over the period 1985-2015 showed a slight increase in temperature, while precipitation variability was linked to the main modes of El Niño and La Niña phases at inter-annual scale and to the displacement of the inter-tropical convergence zone (ITCZ) at seasonal scale. Under climate change, a general increase in temperature (+4.4 °C) and precipitation (+17%) is expected by the end of the 21st century, which could lead to between +5% and 71% increase in mean annual streamflow depending on the catchments. These results are discussed in terms of significance for water management before suggesting future hydrological research such as regionalizing streamflow, better quantifying uncertainties and assessing the capacity to meet future water requirements

    Modelling the water balance in small catchments: Development of a global application for a local scale

    Get PDF
    The dissertation presents the Global BROOK90 framework, which has been developed at the Chair of Meteorology, TU Dresden by the candidate and co-authors. Global BROOK90 allows modelling the water balance components globally for the local scale of ‘hydrological response units’ in a fully automatic mode. It combines recent advances in global datasets with a physically based model. The framework possesses a vast application range with a special focus on the non-expert users and data scarce regions. To prove the applicability of the framework for different climates, landscapes, soil types and orography, an extensive validation was necessary. Two important components of the water balance – runoff and evaporation– were compared with measured data from all over the globe. Results indicated that considering its build-up and scope, Global BROOK90 performs well on the desired local scale. Certainly, the described approach has substantial shortcomings, thus simulation results must always be treated through the prism of the uncertainties. These limitations result not only from model limitations itself, but also from the input datasets, which were used for parameterization and forcing. Therefore, in this study main uncertainties are addressed allowing the end-user an outlook on their potential impact on the modelling results

    Assessment of the impacts of climate change, land cover transition, and internal climate variability on the hydrology of a forested watershed

    Get PDF
    In this study, the impacts of climate and land cover (LC) changes on the hydrologic processes of the Batchawana watershed in Central Ontario are assessed. Batchawana is a snow-dominated forested watershed with coniferous, deciduous and mixed trees and numerous small lakes. A semi-distributed hydrological model, based on the Raven hydrological framework, is calibrated and validated using ground-based observations for 1981-2001 and 2002-2011, respectively. Eight downscaled General Circulation Models (GCMs) that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and three large ensembles (50 members) of Regional Climate Model (RCM) simulations, under the Representative Concentration Pathway (RCP) 8.5, are used to characterize the role of anthropogenic forcing and internal climate variability in projected changes of watershed runoff. Analyses are performed in the historical and future time frames corresponding to global mean temperature increases of 1.5, 2, 2.5, 3, 3.5 and 4 °C compared to the preindustrial (1851-1900) level. The historical trends of land cover changes are extended to develop future LC scenarios including changes from coniferous to deciduous and mixed forests. Besides, to assess the influence of lakes four scenarios are investigated considering 25% lake shrinkage increments. Deciduous and mixed tree cover result in higher flow rates during fall compared to the base model with partial coniferous tree cover. A decrease in the area of lakes can decrease the streamflow in all seasons. Responding to climate change, the snowpack is projected to decline in the future indicating a shift from nival to a rainfall-dominated hydrological regime in a warmer climate. Further, the mean annual streamflow is projected to increase while the annual maximum flow is expected to decline. Analysis of Internal Variability indicates that human-induced climate change, compared with natural variability, will dominate the hydrological changes in the region during the last decade of the 21st century. Overall, the results show significant changes in the hydrological processes of this forested watershed associated with both climate and land cover changes. This will affect the flood and drought hazards and consequently endanger the agriculture, wood industry and lives of indigenous residents of Batchawana

    10th HyMeX Workshop

    Get PDF
    • …
    corecore