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Abstract: Hydrological modelling at a catchment scale was conducted to investigate the impact of 

climate change and land-use change individually and in combination with the available 

streamflow in the Painkalac catchment using an eWater Source hydrological model. This study 

compares the performance of three inbuilt conceptual models within eWater Source, such as the 

Australian water balance model (AWBM), Sacramento and GR4J for streamflow simulation. The 

three-model performance was predicted by bivariate statistics (Nash–Sutcliff efficiency) and 

univariate (mean, standard deviation) to evaluate the efficiency of model runoff predictions. 

Potential evapotranspiration (PET) data, daily rainfall data and observed streamflow measured 

from this catchment are the major inputs to these models. These models were calibrated and 

validated using eight objective functions while further comparisons of these models were made 

using objective functions of a Nash–Sutcliffe efficiency (NSE) log daily and an NSE log daily bias 

penalty. The observed streamflow data were split into three sections. Two-thirds of the data were 

used for calibration while the remaining one-third of the data was used for validation of the 

model. Based on the results, it was observed that the performance of the GR4J model is more 

suitable for the Painkalac catchment in respect of prediction and computational efficiency 

compared to the Sacramento and AWBM models. Further, the impact of climate change, land-use 

change and combined scenarios (land-use and climate change) were evaluated using the GR4J 

model. The results of this study suggest that the higher climate change for the year 2065 will result 

in approximately 45.67% less streamflow in the reservoir. In addition, the land-use change 

resulted in approximately 42.26% less flow while combined land-use and higher climate change 

will produce 48.06% less streamflow compared to the observed flow under the existing conditions. 

Keywords: eWater source catchment modelling; Digital Elevation Model (DEM); GR4J  

rainfall–runoff model 

 

1. Introduction 

Precise forecasts of catchment streamflow are needed to help the water authority to 

make a better decision on water planning and management. In Australia, the small 

amount of rainfall water becomes runoff and yearly variance in streamflow is greater 

than in other countries [1,2]. In addition to climate change, land-use change is also 

caused by human activity that can impact the quantity and quality of runoff [3]. Climate 

modelling indicates that south-east Australia will be drier in the future [4]. Hydrological 

models are important tools for the planning, design and management of water resource 
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systems. Currently, several hydrological models have been greatly used for obtaining 

the appropriate solutions for numerous environmental problems of catchments. 

According to Legesse [5], hydrological models can be classified into three categories: 

empirical or black-box; physically-based distributed or white-box; and conceptual or 

grey-box models. The empirical models do not consider the governing physical laws of 

the process involved and only relate input to output through some transform function 

[6]. The distributed models have the ability to present the spatial variability of processes, 

boundary conditions and parameters to some degree; however, they are minimal due to 

the excessive need of data and computational time [7]. On the other hand, conceptual 

models represent the effective response of an entire catchment, without attempting to 

characterise the spatial variability of the response explicitly; however, they normally 

need fewer inputs to model streamflow in response to precipitation conceptually with 

acceptable accuracy [8]. Regardless of their lumped nature, these conceptual models are 

used in a wide range of hydrological applications, such as the estimation of catchment 

runoff, analysing the impact of climate and land-use change on runoff, and support 

water engineers and hydrologists for managing the water resources. 

However, the selection of suitable models for the hydrologic assessment is one of 

the significant aspects of modelling practices, especially in data-sparse environments. In 

addition, one of the most difficult aspects of managing the water systems is bringing all 

of the management tools together on a single platform. Currently, single platforms such 

as the Source modelling platform developed by eWater limited, Australia accommodate 

all the details of the catchment; different rainfall–runoff models are used for hydrological 

studies [9,10]. Around 11 rainfall–runoff models are included in the Source framework, 

including three rainfall–runoff models, such as GR4J, the Australian water balance 

model (AWBM) and Sacramento used in this study. The selected conceptual models are 

commonly used in Europe, the USA and Australia to predict runoff; they can be used 

for land-use and climate change impact on streamflow [1,11]. These three rainfall–runoff 

models were selected due to being simple conceptual rainfall–runoff models [12]. GR4J 

and AWBM have a simple structure and faster calibration processes [13]. The AWBM 

model has been used to model the effect of climate change on streamflow in Australia 

[14]. The Sacramento model has been studied extensively and used in forecasting runoff 

[15]. The GR4J model has been proven to be more effective than complex models such 

as TOPMODEL, IHACRES, etc. [7]. 

Information on streamflow is a vital component of most aspects of water resource 

management. The enhanced streamflow forecasting capability will provide multiple 

benefits, including improved water-use efficacy via better anticipation of river inflows, 

an enhanced ability to predict the volumes and timing for flood events, and a related 

reduction in operational losses due to over releases from water storage [10]. Catchment 

characterisation, land-use and land-cover are some of the key factors affecting the 

performance of rainfall–runoff modelling [3]. The runoff generation process in a rural or 

regional catchment is different to that of an urban catchment. This is because the land-

use change could significantly modify the hydrological processes and, therefore, affect 

the runoff generation process [16]. In urban catchments, the runoff may not be blocked 

by any significant retention process, as the runoff paths are predefined by manmade 

sewer and stormwater management systems; however, in rural or regional catchments, 

runoff paths are evolved from natural conditions, such as topography and land use [17]. 

Generally, urban catchments are predominantly impervious areas resulting in a quick 

peak during a storm event. On the other hand, rural or regional catchments are 

dominated by permeable surfaces with a wide range of vegetation cover; hence, they are 

subject to more substantial runoff losses and low peak flows in comparison to urban 

catchments [3,16]. 

Painkalac catchment is located on Painkalac Creek, which separates the townships 

of Aireys Inlet and Fairhaven, along the Great Ocean Road, in Victoria, Australia; it is 

managed by Barwon Water and Corangamite Catchment Management Authority 
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(CMA). In the Corangamite region, more than 70% of the land is used for agriculture 

and the weather in this region is expected to be drier and hotter in the future than today. 

Furthermore, the population in the region is expected to grow by 1.5% per annum and 

this will lead to a higher water demand in future [18]. Therefore, in response to climate 

change, possible land-use change, water allocation (agriculture, environmental flow, 

recreation activities) and for better planning operation and management of water 

resources, the development of a short-term water quantity model is crucial for the water 

management authority. Better streamflow forecast and extra lead-time will assist CMA 

and Barwon Water to make an optimised decision and have better operational 

management. 

The purpose of this study is to develop a water quantity model using eWater Source 

for the Painkalac catchment to enhance its water operation and management. In this 

study, the capability of conceptual models, such as GR4J, AWBM and Sacramento in the 

Painkalac catchment, were studied. Potential evapotranspiration (PET), rainfall and 

streamflow are the major inputs to these models. The key aims of the study are to: (i) 

assess the efficiency of selected conceptual rainfall–runoff models in the Source 

platform; (ii) select an appropriate conceptual model for the Painkalac catchment; and 

(iii) analyse the impact of climate, land-use change and combined scenarios (climate and 

land-use change) on runoff. 

This study is mainly focused on the development of a methodology for the selection 

of a most appropriate hydrological model for a catchment based on catchment 

characteristics and available data. The application of a developed methodology was 

demonstrated on a local catchment. It is hoped that the developed methodology can be 

applied by water professionals in any part of the globe for similar application. 

2. Methodology 

The overall methodology incorporated the tasks: (1) understand the study area/ 

catchment; (2) define the aim of the study; (3) select available suitable hydrological 

models for study and comparison to investigate the best model for the study area; (4) 

collect data for model development, calibration and validation; (5) conduct hydrological 

modelling for the area using selected models; (6) identify the most suitable model for the 

area; (7) develop scenarios for analysis; (8) conduct hydrological modelling for 

developed scenarios; and (9) conduct analysis of the results. The application of 

methodology is demonstrated below. 

2.1. Study Area 

Painakalac catchment is located along the Great Ocean Road at the south-west of 

Geelong, Victoria. Its close-by towns are Aireys Inlet and Fairhaven. A location map of 

the Painakalac catchment is shown in Figure 1a and the land-use distributions for the 

Painakalac catchment are shown in Figure 1b. In May 2016, these towns (Aireys Inlet 

and Fairhaven) were connected to the Geelong water supply system; since then, the 

reservoir is used for environmental flow and recreation purposes [19]. The reservoir has 

a capacity of 409 mega litres (ML) of water, which is collected through this catchment 

system. The catchment has a total area of 3420 hectares, where approximately 96% of the 

land is forest while the remaining 4% is classified as other (free hold) [20]. Furthermore, 

the natural environment of the Painkalac reservoir can be used for walking and picnics, 

besides other recreational purposes, which will eventually benefit the community 

socially and economically [21]. In order to optimise the use of water for the environment, 

while still maintaining sufficient water levels in a reservoir for the recreational benefits, 

the integrated management of water in this catchment is very important. 
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Figure 1. (a) Location and area map of the Painkalac catchment; (b) land-use map of the Painkalac 

catchment adapted from [22]. 

2.2. Source Model Catchment Configuration 

Source is Australia’s National Hydrological Modelling Platform (NHMP), 

developed by eWater, Australia, which is the outcome of nationwide collaboration and 

more than 20 years of scientific research. Source has been embedded with different 

functions, such as incorporating different climate, geographic and water policy settings 

for both Australian catchments and international climate conditions. It has the capability 

of both catchment and river basin modelling [23,24]. The structure of the model is flexible 

for modelling all types of water resource systems to help in planning, management and 

operation for urban and rural catchment and river basins. The Source is used to model 

both water quantity and water quality constituents (catchment models) to improve day-

to-day operations (river operational models), to develop a better understanding of the 

effects of water resource policies on system storages, flows and water sharing (river 

system models), and to optimise the urban supply systems (urban models) [9]. 

There are four major steps involved in the Source modelling: model development, 

calibration/validation, running the model and finally, analysis of the results. Three 

rainfall–runoff models (AWBM, GR4J and Sacramento) commonly used in Source were 

selected to estimate catchment water yield and runoff characteristics [10]. These models 

can be calibrated utilising observed streamflow in the gauged catchments using 
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available objective functions and optimisation methods in the Source framework [7]. The 

catchment can be delineated into sub-catchments with spatially explicit inputs and 

lumped outputs. Source platform supports two types of a model setup, such as 

schematic and geographic. Catchment scenarios are usually developed with a 

geographic wizard that follows a step-by-step procedure to model the rainfall–runoff of 

the processes of a catchment. 

The first step is to prepare a catchment digital elevation model (DEM) that is to be 

loaded for creating a geographic model in Source [25]; see Figure 2. The DEM can be 

extracted as an ASC file format from the Geoscience website (Figure 2 in blue) and after 

processing in QGIS by using Model Fill Sinks, can show the desired catchment boundary 

(Figure 2 in Yellow). Following this, the catchment outlet is selected by the Shapefile of 

the QGIS via Source. For the precise location, the coordinate system of the outlet can be 

identified via Google; it can then be converted to the Source coordinate system. Source 

itself can draw out the river network system by identifying the minimum number of 

sub-catchments; for the purpose of this study, three sub-catchments were selected. The 

next step is to configure the catchment for rainfall–runoff modelling. In this study, the 

effectiveness of the GR4J, Sacramento and AWBM models in the Source rainfall–runoff 

framework were assessed. The following sections provide detailed descriptions of these 

models. The calibration and validation experiments were performed in catchment mode 

in the Source platform to analyse the efficiency of the above three rainfall–runoff models 

available in the Source platform for the Painakalac catchment. 

 

Figure 2. Depiction of the drainage lines of the Painkalac catchment. 

2.2.1. GR4J Model 

Gr4J is a daily time-step running lumped conceptual model. It has the ability to 

calculate soil moisture. The GR4j model is an upgraded version of GR3J, which was 

created by Edijatno and Michel. The model’s origins may be linked back to France, and 

it has since been researched all around the world [13,26]. It has the advantages of 

tracking high flow better than the other two models, Sacrament and AWBM [7]; 

moreover, it takes less time in calibration and validation due to its simplicity. However, 

this model is not effective in capturing lower flows. 

The GR4J rainfall–runoff model produces streamflow by putting the rainfall and 

evapotranspiration data in the model. The detailed processes of the model and its 

equations are presented in the reference [27]. The GR4J model generally had four 

parameters: X1, X2, X3 and X4. However, Source GR4J comprises 6 parameters, 

including the above four and additionally, K and C (see Table 1 below). These two 

parameters are used to isolate the base flow and quick flow in the model without 

affecting the model simulation results. The use of these two parameters is optional [28]. 

For this study, the default values of K (0.95) and C (0.15) were used [29]. The X1 

Parameter is a production store that is located at the surface of the soil, where rainfall 

can be stored; in addition, evapotranspiration and percolation can happen in this store. 
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The type of store soil can influence the capacity of the store and a small amount of 

porosity in the soil can increase the size of the production storage. The water exchange 

coefficient (X2) can influence the routing store, where the negative result caused the 

water to move to the depth of the aquifer whilst when there was a positive result, the 

water moved from an aquifer to routing storage. The routing storage X3 is the quantity 

of water that can be stored into soil voids; the humidity and type of soil can influence 

routing store capacity. X4 shows the duration of conversion of rainfall to streamflow and 

is created by the peak of flood hydrograph on the GR4J model [30]. 

Table 1. Parameters in GR4J and their default values are adapted from [27]. 

Parameter  Description Units Default Range 

X1 Capacity of the production soil (SMA) store  mm 350 1–1500 

X2 Water exchange coefficient  none 0 −10.0–5.0 

X3 Capacity of the routing store mm 40 1–500 

X4 Time parameter for unit hydrographs days 0.5 0.5–4.0 

K 
Filter parameter (as in the observed catchment runoff depth 

model) 
none 0.95 0–1 

C 
Shape parameter (as in the observed catchment runoff depth 

model) 
none 0.15 0–1 

2.2.2. Australian Water Balance Model (AWBM) 

The Australian water balance model (AWBM), which was developed in the early 1990s, 

is one of Australia’s most widely used rainfall–runoff models. Two primary versions of 

AWBM are available. One version is designed for daily water yield and low flow study, 

while the other is designed for hourly flood runoff simulation. A version of the daily water 

yield model for use on ungauged catchments was released in the start of 2003 [31]. 

This model is a lumped conceptual model primarily designed for river basin 

management in Australia. The detailed processes of the model and its equations are 

presented in the reference [32]. The AWBM is a simple rainfall–runoff model that associates 

rainfall and evapotranspiration to streamflow. This model has five water stores in which 

three surface stores are used to model partial areas of streamflow while the other two stores 

are a base flow store and surface streamflow routing store, respectively. Table 2 illustrates 

the AWBM model parameters and their descriptions. Each partial area has its own storage 

capacity as C1, C2 and C3. The partial areas A1, A2 and A3 show the modeller defined 

functional unit or soil classification and the sum of them should be equal to 1. For every time 

step of the model, the rainfall is put into surface stores; then the evapotranspiration is 

deducted from each store individually. Excess rainfall is forming as a result of daily rain 

spills and these rainfalls are distributed between the base flow store and surface routing 

store. The amount of water to be released to each store is represented by the base flow index 

(BFI) parameter. The aggregate runoff is based on total surface water and base flow [7]. The 

base flow recession constant (KBase) calculates the rate of discharge of water from the base 

flow store while the surface flow recession constant (KSurf) calculates the rate of discharge of 

water from the surface runoff routing storage [33]. The AWBM rainfall–runoff model 

produces a better runoff result for larger catchment and medium flows [7] while this model 

is not so effective in a smaller catchment. 
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Table 2. Parameters in AWBM and their default values adapted from [32]. 

Parameter Explanation Units Default 

A1 Fractional area of surface store 1 (part of the catchment)  0.134 

A2 Fractional area of surface store 2 (part of the catchment)  0.433 

A3 Fractional area of surface store 3 (part of the catchment)  0.433 

C1 Capacity surface store 1 mm 7 

C2 Capacity surface store 2  mm 70 

C3 Capacity surface store 3 mm 150 

BF1  
Base flow index (portion of extra runoff going into the base flow 

store) 
 0.35 

KBase 
Base flow recession constant (portion of moisture depth left as per 

time-step) 
 0.95 

KSurf 
Surface flow recession constant (portion of moisture depth left as 

per time-step) 
 0.35 

2.2.3. Sacramento Rainfall–runoff Model 

The Sacramento model was developed by Burnash et al. [34] for the United States 

National Weather Service and the California Department of Water Resources; since then, 

this modelling tool has been used extensively across the world. Its performance was also 

enhanced by structurally modifying the model from earlier experiments. The 

Sacramento model has worked successfully in a variety of climates, including humid, 

arid and semi-arid conditions [15,34]. This model generates daily runoff by the input of 

daily rainfall and potential evapotranspiration data. This model has five stores and 

sixteen parameters to model the runoff, where the stores and parameters are illustrated 

in Table 6. The detailed processes of the model and its equations are presented in the 

reference [35]. The Sacramento rainfall–runoff model is considered a complex model 

compared to the GR4J and AWBM models. The Sacramento model represents the soil as 

two layers, which are considered conceptually hydrological active zones. The 

Sacramento model can classify the catchment into permeable and impermeable areas. 

The impermeable area generates runoff for any type of rainfall whilst the permeable area 

generates runoff from heavy rainfall. The catchment soil was divided into two layers, 

where a thin layer is considered in the upper zone while a much thicker layer is 

considered in the lower zone. The thin layer is comprised of a tension (UZTW) and free 

water store (UZFW), while the thick layer is comprised of a tension store (LZTW) and 

two water stores (LZFWP, LZFWS). These tension and free water storages react to 

produce soil moisture conditions and five elements of runoff [7,36]. In tension water 

stores, water is accumulated between soil layers via surface tension and water is 

removed only with the help of evapotranspiration. Whilst in free water storage, water 

can move in a perpendicular direction and sideways within the soil; in addition, it can 

be discharged via the upper zone as interflow and in the lower zone as base flow. The 

depletion coefficients (LZPK, LZSK and UZK) calculate the rate of discharge from these 

free water storages; the percolation of water from the upper to lower free water stores is 

determined through the parameters PFREE, REXP and ZPERC. The runoff from the 

impermeable area is calculated by the PCTIM and ADIMP parameters; the runoff loss 

through the whole process is calculated through the SIDE, SSOUT and SARVA 

parameters. The Sacramento model uses the unit hydrographs (UH1-UH5) to show the 

fraction of flow present at the channel outlet at selected time intervals. The final 

parameter RSERV is the amount of water in the lower zone free water stores, which is 

not available for transpiration. The streamflow forecast from the Sacramento model is 

via a combination of different impermeable areas, surface runoff, interflow and base 

flow. The impermeable surfaces produce quick runoff from rainfall without a time delay 

while the time wait can be in days for interflow, weeks for base flow and several months 
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for primary base flow [35]. According to Maolin, the Sacramento model provides a better 

result in a dry season and when the river has reduced flow; it overestimates the flow 

during a wet season [15]. 

2.3. Catchment, Streamflow and Climate Data 

For the Painkalac catchment, the streamflow data were taken from station number 

235,257, located at a latitude of −38.44 and a longitude of 144.05. The rainfall and PET 

data are taken from the station located at a latitude of −38.45 and a longitude of 144.05, 

which is closest to the catchment area. 

The three major input data for all the models are evapotranspiration (PET), daily 

rainfall and streamflow. Trend analysis of the data was conducted before the models 

were run over the configured run time using a single analysis procedure. The required 

data, such as rainfall and PET data, are obtained from the Queensland Government 

website [37], while the streamflow data are downloaded from the Bureau of Metrology, 

Australia (BOM) website. However, these data sets do not have any missing data; this 

makes the running process smooth. The data for rainfall and potential 

evapotranspiration are available from the years 1989–2019 while the observed 

streamflow data is available from 1999–2019. Two-thirds of the available streamflow 

data were used for calibration while the last one-third of the data was used for validation 

[11]. Figure 3 below depicts the time series data for the streamflow (from 1999–2019), 

rainfall and PET (1999–2019). The maximum observed streamflow during 2013 is 391 

ML/d. The maximum rainfall during 2005 is 80.70 mm/d while the minimum rainfall is 

0.10 mm during 1999. The maximum PET during 2013 is 9.40 mm/d while the minimum 

PET is 0.30 during 1999. 

 

Figure 3. PET, rainfall and observed streamflow time series chart. 
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2.4. Model Calibration and Validation 

One of the advantages of the Source platform is auto-grouping the parameters for 

producing Meta parameters, which allows the user to group the parameters. This could 

be applied for the whole of the catchment regardless of catchments or functional units; 

it enables the running of the calibration stage without difficulty. The calibration is 

performed via many steps, such as uploading streamflow data, selecting objective 

functions and optimisation methods. 

The objective function measures the over goodness-of-fit between the simulated 

flow and observed flow; thus, it produces the calibration accuracy value of rainfall–

runoff models. It also interprets the observed and modelled outputs into a single number 

[11]. For this study, all the available objective functions were used during the calibration 

process. They are the Nash–Sutcliffe efficiency (NSE) daily, NSE monthly, NSE monthly 

and bias penalty, NSE daily and flow duration, NSE daily and log flow duration, NSE 

daily and bias penalty, NSE log daily and NSE log daily bias penalty. The NSE is a model 

evaluation coefficient that is widely used in all hydrological (and other) modelling 

research [28]. The Nash–Sutcliffe efficiency is a normalised calculation that determines 

the size of residual variance in relation to observed data variance. It measures how well-

simulated data matches observed data and runs from −∞ +1, with +1 indicating a perfect 

fit. As a result, the closer the Nash values are to +1, the better the streamflow prediction 

and model performance [38]. According to the research of 63 expert hydrologists, NSE 

monthly values of 0.6 or higher are “usually adequate” for monthly runoff simulations; 

however, another research by Yu and Zhu [14] adopted an NSE value of 0.7 or greater 

as acceptable for the performance of model simulation. 

The iterative optimisation search algorithm is used for finding the best parameters 

values of the rainfall–runoff model. The Source model provides two methods for 

optimisation, which are shuffled complex evolution (SCE) and uniform random sampling. 

A test analysis was undertaken for more than 200 catchments in south-east Australia and 

found that there is an advantage for using a local optimiser (Rosenbrock) after a global 

optimiser (SCE) for adjusting a calibrated parameter [11]. The SCE algorithm is an efficient 

global optimiser that tries to search the entire perimeter space and can be slow for large 

models. The second algorithm, Rosenbrock, is a gradient-based virtual algorithm; it is a local 

optimiser and is quicker [39]. In this study, the SCE following the Rosenbrock optimisation 

method was used for the model development. The combination of these two algorithms 

speeds up the optimisation processes [40]. The simulation is then used in the final stage by 

utilising the best parameter set, which is determined by objective functions. 

During the validation process, the calibrated model parameter is used to simulate 

runoff for an independent period different from the calibration period. The validation 

step confirms the ability of the model to forecast streamflow outside the calibration 

period [41]. Hence, the Source model uses the calibrated parameters of the rainfall–

runoff model for the validation steps; further observed and modelled flow can be 

compared. A validation accuracy value can be observed as well. 

3. Model Results 

The above said three models, AWBM, GR4J and Sacramento, were calibrated using 

Source version 4.7.0 for the Painkalac catchment. The calibration and validation accuracy 

results for the three utilised rainfall–runoff models for the Painkalac catchment with 

different objective functions are shown in Table 3. The purpose of using all the available 

objective functions and all the optimisation methods was: to select the best objective 

function and optimisation method for attaining higher calibration and validation 

accuracy values for the models; and finally, to estimate a good runoff volume. From 

Table 3, the NSE log daily objective function produces the best result (higher NSE) for 

the selected three models. It is clear that GR4J is performing better compared to AWBM 

or Sacramento in both the calibration and validation periods. The GR4J rainfall–runoff 
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model performed better in all the statistical parameters. The NSE value was 0.54 for 

AWBM, 0.65 for Sacramento and 0.74 NSE for the GR4J model. During the validation 

process, GR4J also performed better in terms of NSE log daily than AWBM and 

Sacramento, which was above 0.85. According to the obtained results, all of the models 

provide positive results for the Painakalac catchment in this study. However, it is 

learned that the GR4J model performs better in terms of calibration accuracy value and 

prediction compared to the Sacramento and AWBM models. Based on this result, the 

GR4J model was selected to study different scenarios (land-use change, climate change 

and combined land-use and climate change impact on streamflow forecast) using NSE 

log daily as an objective function. 

Table 3. The comparison of the three models, GR4J, AWBM and Sacramento, for the calibration 

and validation accuracy values. 

 AWBM Rainfall–runoff Model 
Sacramento Rainfall–runoff 

Model 
GR4J Rainfall–runoff Model 

Objective 

Functions 

Calibration 

Accuracy 

Validation 

Accuracy 

Calibration 

Accuracy 

Validation 

Accuracy 

Calibration 

Accuracy 

Validation 

Accuracy 

NSE daily and 

flow duration  
0.50 0.69 0.59 0.72 0.62 0.61 

NSE daily and log 

flow duration 
0.51 0.69 0.63 0.66 0.37 0.25 

NSE daily 0.21 0.47 0.35 0.52 0.37 0.40 

NSE monthly 0.52 0.81 0.62 0.83 0.72 0.79 

NSE daily and 

bias penalty  
0.19 N/A 0.33 0.52 0.32 0.39 

NSE monthly and 

bias penalty 
0.48 0.79 0.62 0.82 0.69 0.78 

NSE log daily 0.56 0.72 0.66 0.79 0.74 0.84 

NSE log daily bias 

penalty 
0.50 0.67 0.56 0.72 0.70 0.68 

Further comparisons of these models are shown in Table 4, where the GR4J model again 

performed better in all the univariate statistics, such as mean and standard deviation. Since 

the NSE log daily objective function focuses on the lower flow [42], the standard deviation 

and mean values are lower than the observed flow. The statistical characteristics of the 

observed and simulated discharges with all three models are summarised in Table 4. 

Table 4. Comparison of the three-model performance predicted by univariate statistics. 

Objective 

Function 

Calibration/Validation  

Period 
Attribute AWBM Sacramento GR4J Observed 

Perfect Model 

Situation 

NSE log daily 
26 March 1999–30 October 

2012 (calibration) 

Nash–Sutcliff 

efficiency 
0.56 0.66 0.74  1 

Mean (ML/d) 2.10 2.13 2.12 3.90  

Standard 

deviation 

(ML/d) 

7.12 5.91 8.77 17.82  

NSE log daily 

Validation period 

31 October 2012 to 4-March 

2019 (validation) 

Nash–Sutcliff 

efficiency 
0.72 0.79 0.84  1 

Mean (ML/d) 3.063 2.98 2.96 5.00  

Standard 

deviation 

(ML/d) 

10.081 8.22 10.85 18.94  
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3.1. Calibration and Validation of Selected Models 

The calibrated parameters are produced after the calibration of a model, where the 

default parameter values of the rainfall–runoff models are optimised. The calibrated 

parameters of each rainfall–runoff model were compared with the default parameters 

and discussed in the sections below. 

3.1.1. AWBM Model Calibration and Validation 

For this model, the calibration period is from 26 March 1999 (the available two-

thirds of the observed data) to 30 October 2012; the objective function used NSE log 

daily. The calibrated parameter of the AWBM rainfall–runoff model is shown in Table 

5. It can be seen from Figure 4a that the modelled flow for calibration was estimated as 

less compared to the observed flow; the actual observed flow is 19,398 ML while the 

predicted modelled flow is 10,460 ML, which is approximately 46% less than the 

observed flow. In addition, the calibration accuracy value is 0.56 (see Table 5). This 

shows that the quality of the model is not acceptable while according to hydrologists, an 

NSE of 0.6 or more provides adequate model performance [28]. 

Table 5. Calibrated parameters of the AWBM rainfall–runoff model. 

Objective Function  Parameters Default Values  Calibrated Parameters  Parameters Range 

NSE log Daily 

A1 0.13 0.11 0–1 

A2 0.43 0.20 0–1 

KBase 0.95 0.67 0–1 

KSurf 0.35 0.98 0–1 

BFI 0.35 0.51 0–1 

C1 7 49.79 0–50 

C2 70 109.22 0–200 

C3 70 191,312 0–500 

Calibration accuracy 0.56 0–1 

 Validation accuracy 0.72 0–1 

The validation period is from 31 October 2012 to 4 March 2019. It can be seen from 

Figure 4b that the validation accuracy value is 0.72 and the predicted modelled flow is 

around 38.8% less than the observed flow; this shows that the AWBM model estimated 

an acceptable flow for the validation period. 
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Figure 4. (a) AWBM model calibration; (b) AWBM model validation. 

0

50

100

150

200

250

300

350

St
re

am
fl

o
w

 (
M

L/
d

)

Period

Modelled flow Observed flow

NSE value 0.56
Observed flow 19398 ML
Modelled flow 10460 ML
estimated 46% less flow 

0

50

100

150

200

250

300

St
re

am
fl

o
w

 M
L/

d

Period

Modelled flow Observed flow

NSE value 0.72
Observed flow 11,595 ML
Modelled flow 7,094 ML
estimated 38.8% less flow 



Water 2022, 14, 2523 13 of 22 
 

 

3.1.2. Sacramento Model Calibration and Validation 

The calibration period for the Sacramento model is similar to the AWBM model, 

which is from 26 March 1999 to 30 October 2012. The model produced a calibration 

accuracy value of 0.66; in addition, the modelled flow underestimated approximately 

45.27% less streamflow, which can be seen from Figure 5a. The calibration accuracy 

value suggests that the model performance is better compared to the AWBM model [28]; 

however, for catchment water modelling, the higher and closer the NSE value is to 1, the 

better the model performs. The calibrated parameters are shown below in Table 6 below. 

The validation period for the Sacramento model is 31 October 2012 to 4 March 2019 (the 

remaining one-third of the data). The model estimated the validation accuracy value as 

0.79 and the estimated modelled flow as around 40.32% less compared to the observed 

flow (see Figure 5b). The NSE value shows that the model is capable of estimating flow 

outside the calibration period. 

Table 6. Calibrated parameters of the Sacramento rainfall–runoff model. 

Objective 

Function  
Parameters Description 

Default 

Values 

Calibrated 

Parameters 

Parameters 

Range 

NSE log Daily 

LZTWM 

Lower zone tension water maximum: only 

evapotranspiration can remove water form this 

store. 

130 96.38 75–300 

LZFSM 

Lower zone free water supplemental maximum: 

the largest volume from which a supplemental 

base flow can be obtained. 

25 119.33 15–300 

LZFPM 

Lower zone free water primary maximum: the 

maximum capacity from which a primary base 

flow can be extracted. 

60 600 40–600 

LZSK 
The amount of water in LZFSM that drains as a 

daily base flow. 
0.05 0.03 0.03–0.20 

LZPK 
The amount of water in LZPK that drains as a 

daily base flow. 
0.01 0.01 0.001–0.015 

RSERV 
The percentage of free water in the lower zone 

that is not accessible for transpiration. 
0.3 0.20 0–0.40 

SIDE 
The ratio of non-channel base flow (deep 

recharge) to channel (visible) base flow. 
0 0.80 0–0.80 

UH1 

The first component of the unit hydrograph, i.e., 

the fraction of simultaneous runoff that has not 

been delayed. 

1 0.33 0–1 

UH2 

The second component of the unit hydrograph, 

i.e., the fraction of instantaneous runoff that has 

slowed down by one time step. 

0 1 0–1 

UH3 

The third component of the unit hydrograph, i.e., 

the fraction of instantaneous runoff that has 

slowed down by two time steps. 

0 1 0–1 

UH4 

The fourth component of the unit hydrograph, 

i.e., the fraction of instantaneous runoff that has 

slowed down by three time steps. 

0 0.70 0–1 

UH5 

The fifth component of the unit hydrograph, i.e., 

the fraction of instantaneous runoff that has 

slowed down by four time steps. 

0 0.57 0–1 

UZTWM 
Upper zone tension water maximum: the 

maximum volume of water stored by the top 
50 51.14 25–125 
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zone between the field capacity and wilting 

point that can be lost from the soil surface by 

direct evaporation and evapotranspiration. 

Before any water in the top zone is moved to 

other storages, this storage gets filled. 

UZFWM 

Upper zone free water maximum: this store 

serves as both a source of water for interflow and 

a driving force for water transfer to deeper 

levels. 

40 75 10–75 

UZK 
The percentage of water in UZFWM that drains 

as interflow on a daily basis. 
0.3 0.47 0.2–0.5 

ZPERC 
The maximal percolation rate is defined as a 

proportional rise in PBase. 
40 300 0–80 

REXP 

An exponent that determines the rate of change 

in the percolation rate as lower zone water 

storage changes. 

1 3.09 0–3 

PCTIM 

The portion of the basin that is continuously 

impermeable and is adjacent to stream channels, 

contributing to direct runoff. 

0.01 0.01 0–0.05 

SARVA 

A decimal fraction that represents the portion of 

the basin that is generally covered by streams, 

lakes and vegetation that can cause 

evapotranspiration to reduce streamflow. 

0 0.02 0–0.10 

SSOUT 
The amount of flow that can be carried by 

porous material in the streambed. 
0 0.01 0–0.10 

ADIMP 

The portion of the catchment that develops 

impermeable qualities as a result of soil 

saturation. 

0 0.20 0–0.20 

PFREE 

The lowest amount of percolation from the 

higher to lower zone that is immediately 

available for refilling the lower zone’s free water 

storage. 

0.06 0.39 0–0.50 

Calibration accuracy 0.66 0–1 

 Validation accuracy 0.79 0–1 
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Figure 5. (a) Sacramento model calibration; (b) Sacramento model validation. 
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3.1.3. GR4J Model Calibration and Validation 

Figure 6a compares the modelled vs. observed flow for the calibration of the GR4J 

model. The model produced a calibration accuracy value of 0.74 and predicted 45.7% 

less flow compared to the observed flow. The NSE value shows the model is very good 

for water quantity simulation [28] and this model produced the higher calibration 

accuracy value among the other three models; thus, this model is the most suitable 

model for the Painkalac catchment. The calibrated parameters of this model are present 

in Table 7 below. The validation chart for the GR4J model can be seen in Figure 6b. The 

produced validation accuracy value for this model is 0.84 and the model estimated 40.7% 

less streamflow compared to the observed flow. The NSE value indicates the model has 

the best capability to predict streamflow outside the calibration period. Therefore, this 

model is selected as the most suitable model for the Painkalac catchment for the analysis 

of further scenarios. 
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Figure 6. (a) GR4J model calibration; (b) GR4J model validation. 

Table 7. Calibrated parameters of the GR4J rainfall–runoff model. 

Objective Function Parameters Default Values 
Calibrated 

Parameters 

Parameters 

Range 

NSE log Daily 

X1 

More information on 

these parameters can be 

found in Table 1. 

350 233.03 1–1500 

X2 0 −4.15 −10–5 

X3 40 19.14 1–500 

X4 0.5 1.72 0.50–4 

K 0.95 0.95 0–1 

C 0.15 0.15 0–1 

Calibration accuracy 0.74 0–1 

 Validation accuracy 0.84 0–1 

The GR4J rainfall–runoff model produced the highest calibration and validation 

accuracy values of the three models; therefore, the GR4J rainfall–runoff model was 

selected for catchment streamflow assessment under various scenarios. However, none 

of the models performed well under peak streamflow values. 

3.2. GR4J Model Application under Different Scenarios 

The GR4J rainfall–runoff model was used for analysing different scenario impacts. 

The following scenarios were developed for hydrologic modelling: 

(A) Land use change in the case study catchment from forest land to agricultural land 

use. 

(B) Climate change impacts. 

(C) Combined land use and climate change impacts. 
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The modelled flow for these scenarios will help the water management authority to 

take informed decisions for the better operation and management of the catchment when 

there is land use or climate change or both occur simultaneously. 

3.2.1. Land Use Change Impact 

Painkalac catchment is located within the Corangamite region, where more than 

70% of the land is used for agriculture; this is considered the third-largest source of 

income after industry and tourism in this region [18]. Therefore, 50% of the functional 

units of the two sub-catchments within the Painkalac catchment were converted from 

forest land to agricultural land in order to observe the impacts of land-use change on the 

selected model. After model simulation, the land-use change (addition of agricultural 

land) resulted in 42.26% less water compared to the observed flow (Table 8). 

Table 8. Before and after the land-use change water quantity data. 

Observed and Modelled 

Flow Period 
Observed Flow ML Modelled Flow (Original) ML 

Modelled Flow Land-Use 

Change (Addition of 

Agriculture) ML 

2012–2019 11,595 6874 6694 

  40.71% 42.26% 

Agricultural land, shrub land and grassland areas are prone to a combination of 

decreasing rainfall and increasing temperature and solar radiation; this results in drier 

conditions, less runoff and ultimately produces less runoff from the catchment while 

forested areas are strong under those conditions [43]. 

The parameters of the rainfall–runoff models before and after the land-use change 

are shown in Table 9. The rainfall–runoff model parameters, the maximum capacity of 

the production store (X1) and the ground store exchange coefficient (X2), were reduced 

because the capacity of holding water in the production store decreased. This was due 

to exposure to a higher temperature and solar radiation happening in this store as 

compared to forest land; however, the reduced X2 shows more water is stored to aquifer 

due to a higher negative value [30]. The value of the X3 parameter shows that a higher 

amount of water is stored into soil voids. Finally, the X4 parameter is slightly high due 

to more water being available in this process as compared to forest land, and due to 

slightly more time to convert from rainfall to runoff. 

Table 9. The parameters of the rainfall–runoff models before and after land-use change. 

Objective Function Parameters 
Modelled 

(Original)  

Modelled 

(Addition of 

Agriculture) 

Parameters 

Range 

NSE Log Daily 

X1 
More 

information on 

these parameters 

can be found in 

Table 1. 

160.67 157.05 1–1500 

X2 −3.70 −4.01 −10–5 

X3 20.16 20.99 1–500 

X4 1.39 1.39 0.5–4 

K 0.95 0.95 0–1 

C 0.15 0.15 0–1 

Model accuracy value  0.84 0.84 0–1 

Furthermore, the Painkalac catchment is relatively small (36 Km2) and only two sub-

catchments are exposed to 50% (6.61 Km2 + 5.13 Km2 =11.75 Km2) land-use change; thus, there 

was not much flow change between the modelled flow under the existing conditions and the 

modelled flow after the land-use change. The land-use change impacted about 1.54% less 

flow compared to the modelled flow under the existing conditions (Table 8). 
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3.2.2. Higher Climate Change Scenario 

Victoria’s climate is considered to change in the future due to climate change; this 

could impact Victoria’s water resources, which are mostly dependent on the climate. 

Climate change could reduce water availability in the future due to drought, which can 

cause a problem in the planning, operation and management of water resources. 

Therefore, the need for a short-term water quantity forecasting model is important for 

better daily and monthly water resources management. However, this model is also 

capable of forecasting streamflow for any period of time in the future as long as sufficient 

data are available. According to the global climate model projections data developed by 

the DELWP climate change guidelines, there will be a change in temperature, potential 

evapotranspiration (PET) and rainfall for the years 2040 and 2065. The temperature is 

expected to increase by 2.5°C in the Painkalac catchment, which, in turn, would increase 

the PET by 9.5%; rainfall is expected to decrease by 19% in the year 2065 [4]. 

For higher climate change scenarios, the model was calibrated to analyse the impact 

of climate change against the existing conditions. The calibrated parameter is shown in 

Table 10 below. After the model simulation, the impact of climate change on streamflow 

can be seen below in Table 11; as expected, there will be approximately 45.68% less 

streamflow by 2065 due to the higher climate impact. 

Table 10. The parameters of the rainfall–runoff models before and after climate change. 

Objective Function Parameters Modelled (Original)  
Modelled (Addition 

of Agriculture) 
Parameters Range 

NSE Log Daily 

X1 160.67 135.81 1–1500 

X2 −3.70 −0.52 −10–5 

X3 20.16 9.26 1–500 

X4 1.39 1.16 0.5–4 

K 0.95 0.95 0–1 

C 0.15 0.15 0–1 

Model accuracy value 0.84 0.81 0–1 

Table 11. Before and after climate change water quantity result. 

Observed data period  2012–2019 
Percentage % difference in the 

observed and modelled flow 

Observed flow  11,595 ML  

Modelled flow existing condition 6874 ML Decreased 40.71 

Modelled flow for higher climate 

change 
6298 ML Decreased 45.67 

3.2.3. Combined Land-Use and Higher Climate Change Scenario 

In this scenario, the GR4J model was subjected to a combined land use and higher 

climate change scenario in order to evaluate the impact on streamflow. The calibrated 

parameters of this model are shown in Table 12. The impact on streamflow due to the 

combined land use and higher climate change scenario is shown in Table 13. It is 

expected that there will be approximately 48.06% less streamflow compared to the 

observed flow by 2065 due to combined land use and a higher climate change effect. 
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Table 12. The parameters of the rainfall–runoff models before and after combined land use and 

climate change. 

Objective Function Parameters 

Modelled 

Parameters 

(Original)  

Modelled 

Parameters 

(Combined Land 

Use and Climate 

Change) 

Parameters Range 

NSE Log Daily 

X1 160.67 151.29 1–1500 

X2 −3.70 −0.45 −10–5 

X3 20.16 8.62 1–500 

X4 1.39 1.37 0.5–4 

K 0.95 0.95 0–1 

C 0.15 0.15 0–1 

Model accuracy value 0.84 0.81 0–1 

Table 13. Streamflow before and after the combined land-use and climate change result. 

Observed data period  2012–2019 
Percentage % difference in the 

observed and modelled flow 

Observed flow 11,595 ML  

Modelled flow existing condition 6874 ML Decreased 40.71 

Modelled flow for land use and higher 

climate change 
6022 ML Decreased 48.06 

4. Conclusions 

For the Painkalac catchment, three different rainfall–runoff models, such as GR4J, 

Sacramento and AWBM, were evaluated in terms of model performance. All three 

models were calibrated and validated with the eight objective functions available in 

order to select the most suitable model with the help of higher calibration and validation 

accuracy values. It was found that the GR4J rainfall–runoff model with the NSE log daily 

objective function produced the highest calibration value of 0.74 and validation accuracy 

value of 0.84. 

The GR4J model was used as a baseline model; then, the impact of different 

scenarios, such as climate change, land-use change and combined land-use and climate 

change scenarios, were evaluated for streamflow. The climate change for the year 2065 

will result in approximately 45.678% less streamflow in the reservoir and the land-use 

change alone would result in approximately 42.26% less flow; the combined land use 

and climate change would result in 48.06% less flow compared to the observed flow. The 

developed model can be used for short-term forecasting for up to three months by using 

the predicted PET and rainfall data obtained from the BOM website; this can enhance 

the daily operation and management of the Painkalac Creek catchment. However, to 

further improve the model accuracy value, manual calibration and sensitivity analysis 

is recommended. 

It is recommended that water professionals should investigate the suitability of the 

rainfall–runoff models using the developed methodology for a particular catchment 

considering the characteristics of the catchment and available streamflow data. The 

investigation can be extended to the wider rainfall–runoff models available using the 

proposed methodology. 
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