386 research outputs found

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    INTEGRATED SINGLE-PHOTON SENSING AND PROCESSING PLATFORM IN STANDARD CMOS

    Get PDF
    Practical implementation of large SPAD-based sensor arrays in the standard CMOS process has been fraught with challenges due to the many performance trade-offs existing at both the device and the system level [1]. At the device level the performance challenge stems from the suboptimal optical characteristics associated with the standard CMOS fabrication process. The challenge at the system level is the development of monolithic readout architecture capable of supporting the large volume of dynamic traffic, associated with multiple single-photon pixels, without limiting the dynamic range and throughput of the sensor. Due to trade-offs in both functionality and performance, no general solution currently exists for an integrated single-photon sensor in standard CMOS single photon sensing and multi-photon resolution. The research described herein is directed towards the development of a versatile high performance integrated SPAD sensor in the standard CMOS process. Towards this purpose a SPAD device with elongated junction geometry and a perimeter field gate that features a large detection area and a highly reduced dark noise has been presented and characterized. Additionally, a novel front-end system for optimizing the dynamic range and after-pulsing noise of the pixel has been developed. The pixel is also equipped with an output interface with an adjustable pulse width response. In order to further enhance the effective dynamic range of the pixel a theoretical model for accurate dead time related loss compensation has been developed and verified. This thesis also introduces a new paradigm for electrical generation and encoding of the SPAD array response that supports fully digital operation at the pixel level while enabling dynamic discrete time amplitude encoding of the array response. Thus offering a first ever system solution to simultaneously exploit both the dynamic nature and the digital profile of the SPAD response. The array interface, comprising of multiple digital inputs capacitively coupled onto a shared quasi-floating sense node, in conjunction with the integrated digital decoding and readout electronics represents the first ever solid state single-photon sensor capable of both photon counting and photon number resolution. The viability of the readout architecture is demonstrated through simulations and preliminary proof of concept measurements

    Monte Carlo Study of the Dosimetry of Small-Photon Beams Using CMOS Active Pixel Sensors

    Get PDF
    Stereotactic radiosurgery is an increasingly common treatment modality that uses very small photon fields. This technique imposes high dosimetric standards and complexities that remain unsolved. In this work the dosimetric performance of CMOS active pixel sensors is presented for the measurement of small-photons beams. A novel CMOS active pixel sensor called Vanilla developed for scientific applications was used. The detector is an array of 520 × 520 pixels on a 25 μm pitch which allows up to six dynamically reconfigurable regions of interest (ROI) down to 6 × 6 pixels. Full frame readout of over 100 frame/s and a ROI frame rate of over 20000 frame/s are available. Dosimetric parameters measured with this sensor were compared with data collected with ionization chambers, film detectors and GEANT4 Monte Carlo simulations. The sensor performance for the measurement of cross-beam profiles was evaluated for field sizes of 0.5 × 0.5 cm2. The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles from one single row of pixels. The problem of volume averaging is solved by the high spatial resolution provided by the sensor allowing for accurate measurements of beam penumbrae and field size under lateral electronic disequilibrium. Film width and penumbrae agreed within 2.1% and 1.8%, respectively, with film measurement and better than 1.0% with Monte Carlo calculations. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications

    Analysis and design of a wide dynamic range pulse-frequency modulation CMOS image sensor

    Get PDF
    Complementary Metal-Oxide Semiconductor (CMOS) image sensor is the dominant electronic imaging device in many application fields, including the mobile or portable devices, teleconference cameras, surveillance and medical imaging sensors. Wide dynamic range (WDR) imaging is of interest particular, demonstrating a large-contrast imaging range of the sensor. As of today, different approaches have been presented to provide solutions for this purpose, but there exists various trade-offs among these designs, which limit the number of applications. A pulse-frequency modulation (PFM) pixel offers the possibility to outperform existing designs in WDR imaging applications, however issues such as uniformity and cost have to be carefully handled to make it practical for different purposes. In addition, a complete evaluation of the sensor performance has to be executed prior to fabrication in silicon technology. A thorough investigation of WDR image sensor based on the PFM pixel is performed in this thesis. Starting with the analysis, modeling, and measurements of a PFM pixel, the details of every particular circuit operation are presented. The causes of dynamic range (DR) limitations and signal nonlinearity are identified, and noise measurement is also performed, to guide future design strategies. We present the design of an innovative double-delta compensating (DDC) technique which increases the sensor uniformity as well as DR. This technique achieves performance optimization of the PFM pixel with a minimal cost an improved linearity, and is carefully simulated to demonstrate its feasibility. A quad-sampling technique is also presented with the cooperation of pixel and column circuits to generate a WDR image sensor with a reduced cost for the pixel. This method, which is verified through the field-programmable gate array (FPGA) implementation, saves considerable area in the pixel and employs the maximal DR that a PFM pixel provides. A complete WDR image sensor structure is proposed to evaluate the performance and feasibility of fabrication in silicon technology. The plans of future work and possible improvements are also presented

    Hybrid Amorphous-Selenium/CMOS Low-Light Imager

    Get PDF
    This thesis aims to demonstrate a low-light imager capable of moonlight-level imag- ing by combining a custom-designed complementary-metal-oxide-semiconductor (CMOS) pixel array with amorphous selenium (a-Se) as its photosensor. Because of the low dark current of a-Se compared to standard silicon photodiodes, this hybrid structure could enable imagers fabricated in standard mixed-signal CMOS processes to achieve low- light imaging. Such hybrid imagers could have low-light performances comparable to other low-light imagers fabricated in specialized CMOS image-sensor processes. The 320 (H) x 240 (V) imager contains four different pixel designs arranged in four quadrants, with pixel pitches of 7.76 μm x 7.76 μm in quadrants 1 to 3 and 7.76 μm x 8.66 μm in quadrant 4 (Q4). The different quadrants are built to examine various performance-enhancing circuit designs and techniques, including series-stacked devices for leakage suppression, charge-injection suppression that uses dummy transistors, and a programmable dual-capacity design for extended pixel dynamic range. The imager- performance parameters, such as noise, dynamic range, conversion gain, linearity, and full-well capacity were simulated and experimentally verified. This work will also de- scribe the external hardware and software designs used to operate the imager. This thesis summarizes and reports the overall electrical and optical performance of pixels in quadrant 1. The observed signal-to-noise ratio (SNR) of above 20 dB at an illuminance of 0.267 lux demonstrates that the imager can produce excellent images under moonlight-imaging conditions. This was achieved mainly through utilization of the long integration time enabled by circuit techniques implemented at the pixel level, as well as the low dark current of a-Se

    MOSFET Modulated Dual Conversion Gain CMOS Image Sensors

    Get PDF
    In recent years, vision systems based on CMOS image sensors have acquired significant ground over those based on charge-coupled devices (CCD). The main advantages of CMOS image sensors are their high level of integration, random accessibility, and low-voltage, low-power operation. Previously proposed high dynamic range enhancement schemes focused mainly on extending the sensor dynamic range at the high illumination end. Sensor dynamic range extension at the low illumination end has not been addressed. Since most applications require low-noise, high-sensitivity, characteristics for imaging of the dark region as well as dynamic range expansion to the bright region, the availability of a low-noise, high-sensitivity pixel device is particularly important. In this dissertation, a dual-conversion-gain (DCG) pixel architecture was proposed; this architecture increases the signal to noise ratio (SNR) and the dynamic range of CMOS image sensors at both the low and high illumination ends. The dual conversion gain pixel improves the dynamic range by changing the conversion gain based on the illumination level without increasing artifacts or increasing the imaging readout noise floor. A MOSFET is used to modulate the capacitance of the charge sensing node. Under high light illumination conditions, a low conversion gain is used to achieve higher full well capacity and wider dynamic range. Under low light conditions, a high conversion gain is enabled to lower the readout noise and achieve excellent low light performance. A sensor prototype using the new pixel architecture with 5.6μm pixel pitch was designed and fabricated using Micron Technology’s 130nm 3-metal and 2-poly silicon process. The periphery circuitries were designed to readout the pixel and support the pixel characterization needs. The pixel design, readout timing, and operation voltage were optimized. A detail sensor characterization was performed; a 127μV/e was achieved for the high conversion gain mode and 30.8μV/e for the low conversion gain mode. Characterization results confirm that a 42ke linear full well was achieved for the low conversion gain mode and 10.5ke for the high conversion gain mode. An average 2.1e readout noise was measured for the high conversion gain mode and 8.6e for the low conversion gain mode. The total sensor dynamic range was extended to 86dB by combining the two modes of operation with a 46.2dB maximum SNR. Several images were taken by the prototype sensor under different illumination levels. The simple processed color images show the clear advantage of the high conversion gain mode for the low light imaging

    Single Photon Counting Detectors for Low Light Level Imaging Applications

    Get PDF
    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA\u27s Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for moderate to high flux rates where dark noise and CIC are insignificant noise sources. Research into decreasing the dark count rate of GM-APDs will lead to development of imaging arrays that are competitive for low light level imaging and spectroscopy applications in the near future

    Improving Optical Measurements: Non-Linearity Compensation of Compact Charge-Coupled Device (CCD) Spectrometers

    Get PDF
    Charge-coupled device (CCD) spectrometers are widely used as detectors in analytical laboratory instruments and as sensors for in situ optical measurements. However, as the applications become more complex, the physical and electronic limits of the CCD spectrometers may restrict their applicability. The errors due to dark currents, temperature variations, and blooming can be readily corrected. However, a correction for uncertainty of integration time and wavelength calibration is typically lacking in most devices, and detector non-linearity may distort the signal by up to 5% for some measurements. Here, we propose a simple correction method to compensate for non-linearity errors in optical measurements where compact CCD spectrometers are used. The results indicate that the error due to the non-linearity of a spectrometer can be reduced from several hundred counts to about 40 counts if the proposed correction function is applied
    • …
    corecore