9 research outputs found

    Fast and parallel video encoding by workload balancing

    Get PDF
    The issue of balancing the macroblocks (MB) computing workload across the processors are explored. These includes, the prediction of the workload based on the previous frame workload and the scheduling of the MB bounded by the locality constraint. The algorithm was implemented on an IBM SP2, and the results showed that the reduction in the worst case delay is around 19-23%, with both the prediction and scheduling overhead taken into account. Because of the critical path reduction, the overall processor utilization was increased and the overall coding rate improved.published_or_final_versio

    Parallelization of the H.261 video coding algorithm on the IBM SP2(R) multiprocessor system

    Get PDF
    In this paper, the parallelization of the H.261 video coding algorithm on the IBM SP2 multiprocessor system is described. Based on domain decomposition as a framework, data partitioning, data dependencies and communication issues are carefully assessed. From these, two parallel algorithms were developed with the first one maximizes on processor utilization and the second one minimizes on communications. Our analysiis shows that the first algorithm exhibits poor scalability and high communication overhead; and the second algorithm exhibits good scalability and low communication overhead. A best median speed up of 13.72 or 11 frameskec was achieved on 24 processors.published_or_final_versio

    Generalized parallelization methodology for video coding

    Get PDF
    This paper describes a generalized parallelization methodology for mapping video coding algorithms onto a multiprocessing architecture, through systematic task decomposition, scheduling and performance analysis. It exploits data parallelism inherent in the coding process and performs task scheduling base on task data size and access locality with the aim to hide as much communication overhead as possible. Utilizing Petri-nets and task graphs for representation and analysis, the method enables parallel video frame capturing, buffering and encoding without extra communication overhead. The theoretical speedup analysis indicates that this method offers excellent communication hiding, resulting in system efficiency well above 90%. A H.261 video encoder has been implemented on a TMS320C80 system using this method, and its performance was measured. The theoretical and measured performances are similar in that the measured speedup of the H.261 is 3.67 and 3.76 on four PP for QCIF and 352×240 video, respectively. They correspond to frame rates of 30.7 frame per second (fps) and 9.25 fps, and system efficiency of 91.8% and 94% respectively. As it is, this method is particularly efficient for platforms with small number of parallel processors.published_or_final_versio

    Generalized parallelization methodology for video coding

    Get PDF
    This paper describes a generalized parallelization methodology for mapping video coding algorithms onto a multiprocessing architecture, through systematic task decomposition, scheduling and performance analysis. It exploits data parallelism inherent in the coding process and performs task scheduling base on task data size and access locality with the aim to hide as much communication overhead as possible. Utilizing Petri-nets and task graphs for representation and analysis, the method enables parallel video frame capturing, buffering and encoding without extra communication overhead. The theoretical speedup analysis indicates that this method offers excellent communication hiding, resulting in system efficiency well above 90%. A H.261 video encoder has been implemented on a TMS320C80 system using this method, and its performance was measured. The theoretical and measured performances are similar in that the measured speedup of the H.261 is 3.67 and 3.76 on four PP for QCIF and 352×240 video, respectively. They correspond to frame rates of 30.7 frame per second (fps) and 9.25 fps, and system efficiency of 91.8% and 94% respectively. As it is, this method is particularly efficient for platforms with small number of parallel processors.published_or_final_versio

    Spatial and temporal data parallelization of the H.261 video coding algorithm

    Get PDF
    In this paper, the parallelization of the H.261 video coding algorithm on the IBM SP2 multiprocessor system is described. The effect of parallelizing computations and communications in the spatial, temporal, and both spatial-temporal domains are considered through the study of frame rate, speedup, and implementation efficiency, which are modeled and measured with respect to the number of nodes (n) and parallel methods used. Four parallel algorithms were developed, of which the first two exploited the spatial parallelism in each frame, and the last two exploited both the temporal and spatial parallelism over a sequence of frames. The two spatial algorithms differ in that one utilizes a single communication master, while the other attempts to distribute communications across three masters. On the other hand, the spatial-temporal algorithms use a pipeline structure for exploiting the temporal parallelism together with either a single master or multiple masters. The best median speedup (frame rate) achieved was close to 15[15 frames per second (fps)] for 352 × 240 video on 24 nodes, and 13 (37 fps) for QCIF video, by the spatial algorithm with distributed communications. For n 10, with efficiency up to 70%. The spatial-temporal algorithms achieved average speedup performance, but are most scalable for large n.published_or_final_versio

    Parallelization methodology for video coding - an implementation on the TMS320C80

    Get PDF
    This paper presents a parallelization methodology for video coding based on the philosophy of hiding as much communications by computation as possible. It models the task/data size, processor cache capacity, and communication contention, through a systematic decomposition and scheduling approach. With the aid of Petri-nets and task graphs for representation and analysis, it employs a triple buffering scheme to enable the functions of frame capture, management, and coding to be performed in parallel. The theoretical speedup analysis indicates that this method offers excellent communication hiding, resulting in system efficiency well above 90%. To prove its practicality, a H.261 video encoder has been implemented on a TMS320C80 system using the method. Its performance was measured, from which the speedup and efficiency figures were calculated. The only difference detected between the theoretical and measured data is the program control overhead that has not been accounted for in the theoretical model. Even with this, the measured speedup of the H.261 is 3.67 and 3.76 on four parallel processors (PPs) for QCIF and 352 × 240 video, respectively, which correspond to frame rate of 30.7 and 9.25 frames per second, and system efficiency of 91.8% and 94%, respectively. This method is particularly efficient for platforms with small number of parallel processors.published_or_final_versio

    Video Coding Performance

    Get PDF

    CD-I full-motion video encoding on a parallel computer

    No full text

    Techniques for video compression

    Get PDF
    In this report, we present our study on multiprocessor implementation of a MPEG2 encoding algorithm. First, we compare two approaches to implementing video standards, VLSI technology and multiprocessor processing, in terms of design complexity, applications, and cost. Then we evaluate the functional modules of MPEG2 encoding process in terms of their computation time. Two crucial modules are identified based on this evaluation. Then we present our experimental study on the multiprocessor implementation of the two crucial modules. Data partitioning is used for job assignment. Experimental results show that high speedup ratio and good scalability can be achieved by using this kind of job assignment strategy
    corecore