
N86-24536
1985

NASA/ASEE SUMMER FACULTY RESEARCH FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER
THE UNIVERSITY OF ALABAMA AT HUNTSVILLE

MACHINE VISION AND THE OMV

Prepared By:

Academic Rank.

University and Department:

NASA/MSFC:
Laboratory:
Division:
Branch:

NASA Counterpart:

Date:

Michael A. McAnulty

Assistant Professor

University of Alabama in Birmingham
Department of Computer
and Information Science

Information and Electronic Systems
Software and Data Management
Data Management

Frank Vinz

30 August 1985

NASA-NGT-01-008-031
(The University of Alabama in Huntsville)

XXIX-1

https://ntrs.nasa.gov/search.jsp?R=19860015065 2020-03-20T15:39:46+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42841364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

. - . . •
, ir 1 •

Machine Vision And The OMV

M. A. McAnulty, NASA/ASEE Fellow
NASA Contact : Frank Vinz

Marshall Space Flight Center

The orbital Maneuvering Vehicle (OMV) is intended to close with orbiting tar-
gets for relocation or servicing. It will be controlled via video signals and thrus-
ter activation based upon earth or space station directives. A human operator is
squarely in the middle of the control loop for close work. Without directly
addressing future, more autonomous versions of a remote servicer, several tech-
niques that will doubtless be important in a future increase of autonomy also
have some direct application to the current situation, particularly in the area of
image enhancement and predictive analysis.

Several techniques are presented, and some few have been implemented,
which support a machine vision capability proposed to be adequate for detec-
tion, recognition, and tracking. Once feasibly implemented, they must then be
further modified to operate together in real time. This may be achieved by two
courses, the use of an array processor and some initial steps toward data reduc-
tion. The methodology for adapting to a vector architecture is discussed in prel-
iminary form, and a highly tentative rationale for data reduction at the front
end is also discussed. As a by-product, a working implementation of the most
advanced graphic display technique, ray-casting, is described.

XXK-2

Acknowledgements

Appreciation conies in many flavors. For overall mission orientation and
administrative support we owe James Dozier, Leroy Osborn, and Gerry Karr a
great deal. For further elucidation of the NASA situation and requirements, as
well as technical support, thanks are due to Caroline Wang, Steve Purinton, Tom
Bryan, Debbie Graham, and Audie Anderson. My counterparts, Frank Vinz and
Ken Fernandez, were liberal with both information and resources, including an
excellent technical report which] am still trying to catch up to. [14]

500X-3

I. Introduction

The orbiting Maneuvering Vehicle (OMV) has ben described as an orbiting
tugboat, and is intended to reposition other orbiting vehicles and, eventually,
perform simple maintenance procedures. It is expected to be the first in a long
line of unmanned remote vehicles, much in the way Mariner was but more than a
passive presence. Although the planned version of the OMV is to be entirely
ground- or space station-controlled, that is, a telepresence or tele-operated
vehicle, the case is made here that some considerable testing and verification of
more autonomous versions of the OMV can be performed within the teleopera-
tion framework. The proposed techniques do not in any way propose to modify
how the OMV would be operated, but fit well within the scope of enhancements to
a ground based operation, primarily in the area of predictive graphics, to be
described below. This report describes some preliminary procedures that per-
tain primarily to on-board vision and scene interpretation, but which would
necessarily be well-integrated with other sensory and effector modalities in a
working prototype.

The following sections describe, in turn, the planned mode of operation of
the OMV, aspects of machine vision that relate to it, a global description of
necessary tasks, and a report upon work accomplished so far and planned for
the near future.

II. Current Planned OMV Operations

A considerable amount of ground simulation of the teleoperation of a
remote vehicle has been performed, utilizing a compressed air controlled vehi-
cle that rides on air bearings on the 'fiat floor' at MSFC. Included in the simula-
tions is a very low bandwidth communication channel for video signals from the
vehicle, which allows for no more than approximately one 256 by 256 pixel frame
per second This mimics the expected performance of the TDRSS satellite chan-
nel that would be used for orbital operation. A further feature of this channel is
that significant time delays occur, on the order of a second each way in low
orbit.

The vehicle operator controls a six-degree-of-freedon joystick to 'fly' the
vehicle, and observes the vehicle's surroundings via one or more video cameras
mounted, with lights, on the vehicle. Four cameras are currently planned for far
emd near work, and for different views of a docking operation, although only two
are mounted at present. Thus, practically all control of the vehicle is exercised
by an attentive human operator.

The communication channel delay means that an operator does not see the
result of an action for approximately two seconds This is approximate because
there are also abrupt changes in the signal delay, on the order of a half-second
or so, as the routing changes due to earth position. Such considerations are
critical, since docking and close work cannot be done at great speed. Collisions
at too great a speed will either be near-elastic or, if kinetic energy is absorbed,
damaging. Even if contact can be achieved and maintained, several internal sys-
tems on some targets may be impaired by even moderate shock. In fact, the
necessity for slow maneuvering tends to lessen the time delay problem as the
operator will necessarily work in finer increments.

3-D MODEL OF TARGET
VEHICLE

TARGET VEHICLE
MOTIONS

TARGET MOTION SIMULATOR

• 6 DOF RELATIVE MOTION
TO TARGET AND CHASER

CHASER
VEHICLE
MOTIONS

ARRAY PROCESSOR FOR
REAL TIME IMAGE ANALYSIS

• STORE IMAGE

• PREPROCESSING

• FEATURE EXTRACTIONS
• BINARY THRESHOLD

• 2-D FAST FOURIER XFORMS
• ROTATION
• IMAGE SIZE

• CORRELATION
• REFERENCE IMAGE

REQUEST
IMAGE
UPDATE

PERFORMANCE
MEASUREMENT
OF CORRELATION

HOST COMPUTER

• INITIAL CONDITIONS

• VEHICLE DYNAMICS OF TARGET AND CHASER

> CONTROL SYSTEM CHARACTERISTICS

• CONTROL ALGORITHMS FOR AUTOMATIC DOCKING
• ARTIFICIAL INTELLIGENCE TECHNIQUES

• OUTPUTS TO TARGET MOTION SIMULATOR

Exhibit 1 - The simulation environment at MSFC. Note that the
vector processor, tightly coupled to a host computer, is squarely
in the loop as well, and may be used electively to either perform
operations on the imaaes, or simply pass them through unaltered.

3QOX-5

Although a straight video signal is sufficient for earth simulations, it is anti-
cipated that some cleaning and enhancement of the video picture might be
desirable in actual operations. To this end, a signal matching interface between
the video signal and the General Purpose Input-Output Processor (GP10P) of an
FPS-5210 floating point array processor is under construction. The FPS can per-
form simple filtering operations in under half a second (to be described in a
later section) upon the entire image, which matches the input rate anticipated
via TDRSS, but which also will introduce more delay into the loop.

It has been suggested [l] that the time delay problem might be addressed
by a technique termed 'predictive graphics'. Rather than showing the operator
the original video signal, a graphic rendering from a formal model, such as an
engineering description or a constructive solid geometric model, is shown
instead. The model would be so presented as to appear like the object would
after a suitable delay. This requires two things which are at present entirely
absent from the simulation environment.
o Matching procedures for fitting the formal model to the video picture, m

order to determine the target's current orientation and position, and

o Means for predicting where the target will be after a suitable delay, which
would utilize both measured trajectories of the pieces of the target, includ-
ing transforming these to geometric operations on the formal model, and
knowledge of the vehicle's motion relative to the target, to be derived from
joystick or thruster signals.
This topic will be returned to after a generic discussion of what is generally

agreed to constitute machine vision

III Aspects of Machine Vision

Two properties of machine vision relevant to this project. The first of these
is that machine-vision is not an end in itself, rather a means for achieving some
end. The second is that current thinking about machine vision separates it into a
number of steps that deal with quite different kinds and amounts of data. The
flavor of artificial intelligence is, in both aspects, difficult to ignore.

Purely passive vision, with no goal orientation, is rather difficult to contem-
plate meaningfully. At the very least, a seeing entity is constructing a story.
Some situations are rather clear cut. Standard bin-picking problems use a
vision capability to aid a robot in the task of picking an object from among other
objects, lying at an arbitrary orientation, and move it to another location to be
placed at a specified orientation Surveillance systems, m their simplest form,
are required to detect unexpected motion, or more generally unexpected
phenomena This raises the problem of specifying what expected phenomena
look like, and requires a rather more complicated world model Further, human
vision works explicitly or implicitly with not only a well-developed world model,
but m concert with several other senses as well, of which locomotion and touch-
ing are possibly most important.

The basic functions planned for the OMV would appear to lie within a restric-
tive world model consisting of a specification of the target vehicle and of planned
procedures, although even this may become more complicated in the event that
damage assessment or contingency actions are required. For the near term,
having a person in the control loop bypasses the more sophisticated require-
ments entirely.

XXDC-6

The second aspect of machine vision, its multistep nature, is of some con-
siderable relevance. Consider that a system begins with a very simple data
structure, the sampled intensity function in a rectangular array (the raster),
and from it should derive a symbolic description of the essential features of the
scene, sufficiently informative to enable actions to be taken. A representative,
although by no means authoritative, list of steps follows. It should be noted that
each of them involves both data reduction and data transformation.
o Segmentation is the process of classifying regions of the picture solely in

terms of their distinctness from each other. A usual picture of 65,000 or
250,000 pixels will generally produce a number of regions two or more ord-
ers of magnitude fewer than the number of pixels. The description of each
segment will include a boundary encoding and perhaps a list of central
moments, or some other topological description. Naive segmentation is
probably the most over-investigated and best understood component of
computer vision.

o Articulation , or the analysis of the relationships between segments,
analyzes adjacencies and connections. Since a segment represents a sur-
face, at this point possible and probable orientations of the surface and its
curvature are essayed Relevant data structures include adjacency graphs
and preliminary parametric descriptions

o Naive Construction attempts to interpret the surfaces as belonging to one
or more physically possible objects, and attempts to build a three-
dimensional model consistent with the scene At this point components of
the scene may be labelled as generic, domain-independent geometric prim-
itives

o Labelling ,or attaching domain-dependent names to the objects, relates the
world of possible objects to that of known, named objects By this stage a
preliminary recognition may be said to have occurred.

o Updating the current world model, in the case of a time sequence of scenes,
is important. If a single scene were being analyzed, this would not be a criti-
cal step, but most useful applications not only involve changes in time, but
make considerable use of these changes in interpreting the field of view. In
the case of predictive graphics, both quantified trajectories and logical data
(visible/occluded) would be used.

o Domain Consistency is analogous to naive construction, in that 'the
interpretation is tested for possibility as a world situation. The plausibility
and consistency of the domain labelling is evaluated in domain terms. It is
at this level that symbolic programming is most likely to be employed, as
well as sophisticated concept structures. Further, considerable control of
all previous steps is likely to be exercised here, perhaps redoing some of
them in different fashion to provide a more consistent interpretation. Thus,
a system 'thinks' not only about the application domain, but about its own
operation as well. [8]
Although these steps are presented as discrete phases, there is likely to be

considerable crosstalk between them. It is desirable, however, to construct and
maintain a system in separate components, since the objects manipulated differ
widely between phases, and in fact different phases may be best implemented by
different programming paradigms.

Situations which make explicit use of time variance can work in a much
more efficient mode, making use of the property that in the real world things
should not change radically from one view to the next. In a sequence of views,
components may be 'tracked* rather than recognized from scratch every time.

XXDC-7

This property is termed time coherence. Its relative, spatial coherence, may be
stated that if some pixel is determined to be on a particular surface, then neigh-
boring pixels have a high probability of being on the same surface.

On the prosc'riptive side, it is useful to discuss briefly what machine vision is
not. That is, while the following techniques may play a modified part in certain
portions of a system, none is in itself sufficient to achieve the desired objectives
on its own.

Image processing projects a picture function onto another functional basis,
such as the Fourier, Hadamard, or Walsh functions, and examines the projection
for various clusters of coefficients which may relate to image features. The
weakness of this approach is that one is confronted with as large a data space
after the transform as before, no reduction in the problem size has been accom-
plished. Further, features in a function space relate only occasionally to useful
scene properties. Segments of a scene may be usefully transformed for surface
properties such as texture.

Classical pattern recognition assigns a data cluster to one of a finite
number of classes based upon a training sample. There are both statistical and
syntactic forms of pattern recognition, but as traditionally employed they result
in extremely difficult program control structures. This is partly the result of
trying to push domain reasoning into procedural code, and why the multi-
component model prescribed above has evolved. Another weakness is that part
of the recognition process, related to model fitting, involves a continuum of
interpretations rather than a finite number of names.

Model fitting appears especially appropriate to the predictive graphics
situation, in that certain parameters (the position and velocity coordinates of
the target) must be optimally determined There is, however, no global closed
form solution that will fit a structural model to the two-dimensional projection in
the scene. A trial and error method, using an expensive correlation as criterion
function, is necessary if one wishes to take a global approach. It appears that an
analysis of the scene components, essentially all the prescriptive steps
described above, is much more likely to provide an initial parameter setting
that may then be tested at specific points or regions rather than over the entire
model. For one thing, a model must necessarily be modified to reflect that cer-
tain of its components will not even be visible in the projection, hence cannot be
explicitly fit.

IV. Proposed Tasks

There are two broad classes of necessary activity. The first is to develop
procedures that will enable recognizing and tracking a typical target. The
second is to then modify the procedures so that they will work in near real time,
an objective that is initially to be met by using the vector processor, and which
can be further approached by reducing data handling requirements.

Recognizing and tracking appear to require at least three different areas of
work, segmentation, labelling, and motion interpretation. Before discussing any
of these in depth, an overall strategy should be explained, which is an essentially
top-down, or global, approach. Under this, no single component of the objective
is to receive special attention or optimization in the first pass. Rather, a
minimally competent module for each required function should be implemented
as quickly as possible, and all the prototypical modules be made to work
together. This is primarily because the least well understood aspect of a modu-
lar vision system is the communication between modules, the types of data

XXK-6

structures and control messages that inform and direct the performance of
each of the modules. To put it another way, it is not possible to evaluate a single
component of a system, an edge detector as a trivial example, in isolation. There
are at present no criteria for determining that a particular module is optimal
for overall performance of the system, we simply do not understand the coupling
between modules well enough.

Related to this lack of organizational knowledge, it is expected that a com-
plete effort will, in succeeding passes, experiment with a number of different
techniques fit within the overall structure. There exist several documented
techniques for segmentation, for example, in both the edge-detection form and
its "dual, region growing. There are a great number of region description tech-
niques suitable for fitting to a two-space model, although fitting to three-
dimensional models is less well understood. Specific algorithms are proposed in
the following for two reasons, they represent the state of the art at the com-
ponent level, and they appear suitable for adaptation to parallel processing. As
a result, the proposed inventory is weighted heavily toward the class of relaxa-
tion algorithms, those which appear to rely upon local, semi-cooperative
processes. That these happen to coincide with our concept of biological vision is
merely fortuitous, their main property is that they may be adapted, in some
fashion, to near simultaneous processors. Although each will be referenced indi-
vidually, they are all drawn from the same source [2] and will be given page
numbers in the references.

Segmentation Using Edges
The Prager edge relaxation algorithm [10] essentially amplifies consistent

edge phenomena, initially detected as a nontrivial intensity gradient across any
pixel. Even weak gradients will be amplified providing that a spatial series of
them across many pixels exists. Thus, pure gradient magnitude is a secondary
determinant, rather the repetition of a gradient on neighboring pixels deter-
mines which edges are amplified and which suppressed.

Although the detection and amplification of edges by this process is indeed
highly parallel, the result of it still requires considerable work in order to define
regions Each edge must be traversed, an essentially serial process, to deter-
mine closed curves (which thus define a segment), and it will often happen that
curves do not close, so that some higher order processing is eventually neces-
sary.

Segmentation By Growing Regions
The line-handling problems of the edge detector may be quite elegantly

side-stepped by the device of merging picture regions, which must always main-
tain well defined boundaries, though this is expensive in terms of storage. An
older method [4], suitable for monochrome images, mitally treats each pixel as
a separate region (segment), and then dissolves boundaries between segments if
there is sufficient similarity between regions at the boundary. Regions are
maintained in tabular form, recording various statistics such as central
moments and intensity distribution statistics, as well as suitable boundary
encodings This is a formidably large data-base, and it tends to remain some-
what constant in size, since as the number of regions declines the length of the
boundaries increases.

The adaptation of this procedure to vectorized form has not yet been
attempted, even on paper, since adjusting to the unsystematically changing
granularity of the dynamic pictorial data base appears to be unsuited to the sys-
tematic gridding of a vector processor. However, as described in Appendix B,
sufficient other techniques have proven feasible that this may eventually yield as

MOX-9

well, and a proof that it will not, if demonstrated, is in itself a highly informative
and useful result.

Segmentation By Thresholding
This is perhaps the most ancient of research techniques, highly useful

because the resulting objects, binary images, are by far the most tractable.
Further, the camera controller currently being used will threshold automati-
cally, "on the fly", at any arbitrary intensity value, which eliminates a processing
step. This has not been considered for two reasons. First, although initial
approaches to an orbiting target in fact present an object-versus-background
situation, the background in question may be light (earth), dark(space), or com-
posite (horizon in view). This complicates the background definition. Further, it
has been argued previously that simple interpretation of an entire target is not
likely to be as useful as an analytic, piecewise interpretation of its components.
Second, thresholding does not deal at all well with curved surfaces which will,
under anticipated lighting conditions, exhibit a range of intensities. Both edge
detection and region growing handle such surfaces quite gracefully.

It should be noted that the result of a segmentation, however achieved, is a
binary image, so that all the algorithmic advantages remain, and the various
regions are more descriptive than would be the case with pure thresholding.

Optical Flow
We anticipate that the process of connecting image pieces (segments) and

analysis of scene changes, often termed optical flow, will be intimately con-
nected, in that segments which move together are connected Two algorithms
for optical flow are proposed, and one is the object of careful scrutiny with
respect to vectorization Each method constrains neighboring flow (motion) vec-
tors to be similar in orientation and magnitude, thus enforcing a motion coher-
ence heuristic.

The first, due to Horn and Schunk [6], relates object motion to changes in
intensity, using the deceptively simple relationship between time, intensity and
position

f(x + dx, y + dy, t + dt) = f(x, y, t).
A system of constraints results in a problem soluble by Gauss-Seidel relaxation,
a well-understood iterative technique quite suited to vector processors. This is
one instance of the application of regularization, esssentially the introduction of
a stabilizing functional (the coherence assumption) into a minimization calcula-
tion, and is widely applied in computer models of early vision

The second method, due to Barnard and Thompson [3], is more constructive
and involves a large series of local cross-correlations at 'interesting' image
points. It attempts to relate, subject to a smooth motion constraint, interesting
points in two images An 'interesting' region may simply be a large intensity gra-
dient (an edge or corner, by assumption) or may instead correspond to specified
phenomena in a segmentation description. This method is considerably more
challenging than the first as a candidate for vectorization but has the advantage
that processing is not global over the picture, but rather only in selected por-
tions of the images

A velocity map is useful in two ways. First, it provides a lot of information
prior to recognition and model mapping, independent of the problem domain,
concerning range and timing. Avoidanc maneuvers, if necessary, can work from
restricted 'objects world' consideration of velocities Thus, the rate and direc-
tion of 'looming' provides quite accurate information about the relative motion
of chaser and target. Second, since non-trivial velocities generally correspond

XXDC-10

to edges and other detectable features, rather a lot of segmentation work can
be achieved in the process of deriving velocities It appears that relatively com-
petent velocity (flow) derivations can be achieved at considerably reduced reso-
lution, which may in fortunate cases speed up this process by a significant
amount.

Data Reduction
The two alternatives sketched in optical flow illustrate a powerful choice,

that between global techniques, analogous to image processing transforms, and
local, semanticaily informed techniques. The major challenge of the second sort
is to efficiently represent and describe interesting regions, so that the overhead
required in restricting computation to those areas is not unduly great. As an ini-
tial guess, this is expected to involve heavy use of list structures quite unsuited
to the systematic coordinate scheme within vector processors.

Another, highly systematic, form of data reduction involves a variable reso-
lution scheme. This term is generally applied to pyramid schemes, which involve
calculating lower resolution pseudo-pixels at a level of the pyramid as an aver-
age of several (usually four) pixels at the next lower level. The overhead
involved in calculating a full resolution pyramid is substantial and unacceptable
for current purposes, but the advantage of it is that considerable work can be
done at lower-resolution levels, which cuts processing time considerably. We sug-
gest that, rather than calculate a full pyramid, some small percentage of the
image points that samples the scene may perform as well as a true averaged
pyramid level. This is the object of an independent study.

Model Matching

The process of matching image segments to model components has not
been directly addressed yet, although a candidate model has been developed
somewhat fortuitously. The constructive solid geometry (CSG) used to generate
test objects is quite adequate for man-made objects, constructed of relatively
simple primitive shapes. Further, the absence of streamlining, necessary for
aeronautical objects but not astronautical ones, means that very few complex
surfaces are likely to be present. In addition to this correspondence, a CSG
description is more concise and complete than most surface-oriented models,
and it is well structured (a binary tree) for algorithmic manipulation. . The
model is discussed briefly in Appendix A, and the reader is referred to Roth [12]
for a highly readable and competent discussion

V. Summer 1985 Achievements

Activity during this period concentrated, not by design, upon building an
infrastructure This consisted of the generation of test images, the establish-
ment of data paths between the three involved processors, and acclimatization
to the computing environment One segmentation procedure was successfully
implemented in serial form, and analyzed on paper in vector form. These topics
are discussed in turn.

Test Images
It is desirable to begin with images that incorporate properties that will

exist in the real environment, such as perspective distortion, shadowing, shad-
ing, hidden surfaces/objects, and noise. Of all the graphical rendering

XXDC-11

techniques, only ray-casting can elegantly incorporate all these phenomena, and
transparency, mass properties, and translucency as well. (Noise generation is a
different, though routine, matter, and hasn't been necessary yet) The
geometric model that underlies this implementation is constructive solid
geometry, and is described, along with ray-casting proper, in Roth [12]. A brief
orientation to the implemented software is presented in Appendix A. Ray-
casting has been adapted to a vector processor [9], but to do so in this project
was felt to be of minor significance, since implementing the serial version (10-30
minutes per image) used up an unexpected amount of calendar time.

Data Paths, Environment
The vector processor, an FPS-5210, is hosted by a PDP-11/570 running RSX-

11/M. This is connected via Decnet to a VAX-11/780 running VMS. The connec-
tion turns out to be fortunate. Evaluation of performance, particularly of the
segmenting procedures, can only be done visually, using pictures, so that some
graphic capability is essential. A small half-toning routine enables shaded raster
images to be sufficiently well-displayed on the available vector displays, which
are various Tektronix terminals, to enable interpretation. This is described in
Exhibit 4. Raw pixel intensities are logarithmically adjusted by the half-toning
routine so that a satisfying spread of shading levels is achieved. Because of a
noisy connection to the 11/570 terminal, all graphics work must be done on the
VAX. Raster images generated in the VAX cannot be directly transmitted and
used by the 570, so must be put into character form and sent to the 570, where
they can then be directly loaded into the FPS. Returning images to the VAX for
display requires the inverse process.

Although anticipated image sizes will be 256 x 256, many procedures take
long enough during testing that smaller images are desirable. To this end, all
raster files (*.ras) are preceded with two numbers describing the dimensionality
of the image, and most programs adjust themselves to this information.

While this seems to be an inordinate amount of procedural overhead, it does
not directly relate to the target situation at all, where images will go directly
from the video controller into FPS memory, and it is certainly acceptable for
development and testing purposes.

A further accomodation is necessary in that many algorithms are expressed
most concisely in a language that supports dynamic allocation (for lists, queues,
etc), data structuring (so that different types may be included in a single
object), and recursion (for concise management of list and tree structures).
These capabilities exist in Pascal, Ada, PL-1, and C, but of these only Pascal is
available, and its treatment of libraries and modularity is extremely awkward.
As a result, all implementations are in Fortran.

The Prager Edge Relaxor
Of all the proposed procedures, only this was fully implemented in serial

form Although the serial implementation was quite straightforward, the time
performance is disappointing, requiring about five minutes for each cycle, or
thirty or so minutes for reasonable convergence on a 256 x 256 image An illus-
tration of its operation is included as Exhibit 6.

As suggested in a previous section, an edge-based segmentor is incon-
venient, in that the results do not directly define segments. This is because a
segment must include a closed and unambiguous boundary, and the edges that
are produced by this algorithm need further attention before closed boundaries
can be assured. The choice of this procedure was due to its always local nature,
so that it looked like a good practice candidate compared with region growing.

XXK-12

As an exercise for learning the existing capabilities of the FPS it worked well.

Using The Vector Processor
There are two considerations, how to vectorize algorithms, and how to use

the specific processor. The first issue is addressed in Appendix B, the second is
treated here.

A first rule, which will not vary, is that once one is into the vector processor
one must stay there until finished. A single vector operation on a full picture
(85,536 pixels) takes about a tenth of a second. Loading or unloading a picture
to host disk (the 570 can't hold an entire picture) requires thirty seconds. This
is a general rule for any peripheral accelerator.

A second principle, for development purposes only, is to use only the FPS
Math Library routines, and forgo various optimizing possibilities such as the vec-
tor function chainer, the arithmetic coprocessor, and direct assembly coding
until the need for these becomes apparent. The repertoire of routines is quite
rich, if one stays within a single page of the system memory. Routines which
work across page boundaries include only a few arithmetic operations. There is
the option of coding some of the logical vector routines to work across page
boundaries as well, thus avoiding the necessity of working with images in smaller
pieces (the 'mosaic' problem), but it appears that in many cases temporary
data requirements will be so extensive that subdivision cannot be avoided in any
case, so that a direct confrontation with the subdivision-reconstruction problem
must be made.

The FPS will perform a simple vector operation such as addition or com-
parison in about .1 seconds for a 65,536 element vector, which is the size of a
picture (256 x 256). A very simple four-point averaging filter can thus execute in
under a second (see Appendix B), although more complex operations will, if the
full resolution of the picture is used, take on the order of several seconds or
more. The speed of the FPS is nearly the same as that of the VAX for floating
point operations, so that if the co-processor is used along with the main proces-
sor a significant .amount of routine work can be offloaded to it.

Further Proposed Work
The summer's effort has barely scratched the surface of the tasks neces-

sary to enable, even in non-real-time, a primitive matching and prediction facil-
ity. This was occasioned partly by the amount of effort to generate raster test
images (what a video camera 'sees'), and partly by extensive upgrading of equip-
ment, rendering it unavailable.

The tasks necessary to establish a working, though creaky, prototype are
essentially of two kinds. The first is to implement a better segmentation algo-
rithm using region growing, and to implement a motion analysis algorithm,
essentially a tabulation of differences between two pictures. This set of tasks,
while nontrivial, can be expected to require two months of effort. The second
land is considerably more challenging, and deals with matching picture seg-
ments to a geometric model. This is considerably eased if we assume that the
object in view is already known, so that we know which model specification to
work from, but it is still a very challenging opportunity.

Tasks of the first kind appear to adapt well to a parallel processor, those of
the second appear not to These latter will probably, in a first cut, consist of
some variation upon (partial) graph matching. Rather little work of any kind has
been reported concerning graph matching on a parallel processor, it is more
intuitively suited to a symbolic or list-processing environment and perhaps best

xxre-13

implemented there for development purposes. This is not to say that graph
matching can't be done 'in parallel', merely that to do so in a general way
requires breaking new ground.

Finally, the integration of the pieces discussed is in itself not very well
defined, and a control structure that applies the pieces correctly is also likely to
be better specified in a linear, symbolic environment. Further, we suggest that
analysis would proceed in two rather different modes. One of these would bypass
labelling entirely, analyzing a motion sequence entirely in terms of object con-
tinuity and apparent motion, a task that can be done at considerably reduced
resolution and can cut the cost of a vector operation by a factor of 100 or more,
and provide sufficient information for obstacle avoidance and tracking.

Motion analysis itself can provide considerable segmentation information,
thus aiding recognition of target components and their labeling. Matching and
tracking also can make do with considerably less data than an entire picture,
but the data is localized in 'interesting' areas, generally object boundaries the
specification of which is a primary objective of segmentation. While motion
analysis should provide rapid and continuing results for avoidance and tracking,
recognition and labeling may proceed in a piecemeal fashion. A graphical rendi-
tion might thus be a simple and coarse outline, tracked by local trajectories
Assuming there is leftover bandwidth, it may be used to identify and correlate
scene pieces with the known model, which eventually will generate the displayed
scene entirely, and tracking of the target would switch over into a model-
oriented scheme. Stability of the tracking can be maintained using only a few
regions of later pictures.

XXDC-14

REFERENCES

[I] Akin.D.L, M. L. Minsky, E.D Thiel. and C. R. Kurtzmann, NASA Contractor
Report 3734, Space Applications of Automation.Robotics and Machine Intel-
ligence , Contract NAS8-34381, October 1983

[2] Ballard, Dana H. and Christopher M. Brown. Computer Vision , Prentice-Hall,
Englewood Cliffs NJ. 1983

[3] Barnard. S. T. and W. B. Thompson. "Disparity Analysis Of Images", Technical
Report 79-1, Computer Science Department, Univ. Minnesota, January 1979
([2], 208-210)

[4] Brice, C. and C. Fennema, "Scene Analysis Using Regions", Artificial Intelli-
gence 1 (3).205-226, Fall 1970 (described in [2], pp. 158-159)

[5] Freitas, R.A. and W. P Gilbreath (eds), Advanced Automation for Space Mis-
sions , NASA Conference Publication 2255, 1982

[6] Horn, B. K P., and B. G. Schunk, "Determining Optical Flow", AI Memo 572,
A] Lab, MIT. April 1980 (described in [2] pp. 102-105)

[7] Iverson, Kenneth E., A Programming Language , John Wiley 1962

f8] Nazif, A. M and M. D. Levine, "Low Level Image Segmentation: An Expert Sys-
tem", IEEE Transaction on Pattern Analysis and Machine Intelligence 6
(5):555-574, September 1984

[9] Plunkett, David J. and Michael J. Bailey, "The Vectorization Of Ray-Tracing",
IEEE Computer Graphics and Applications 5(8)'52-60, August 1985

f 10] Prager, J. M.,"Extracting and Labeling Boundary Segments In Natural
Scenes", IEEE Transactions on Pattern Analysis and Machine Intelligence 2
(1) 16-27, January 1980 ([2], 85-88)

[II] Requicha, A. A G.,"Representations For Rigid Solids. Theory, Methods, and
Systems", Computing Surveys 12 (4), December 1980

[12] Roth, Sott'D.,"Ray Casting For Modelling Solids", Computer Graphics and
Image Processing 18 ,109-144 1982

[13] Tammoto. S. and T. Pavhdis, "A Hierarchical Data Structure For Picture
Processing", Computer Graphics And Image Processing 4 (2): 104-119, June
1975

[14] Vinz, Frank L., Linda L. Brewster, and L Dale Thomas, Computer Vision for
Real-Time Orbital Operations , NASA Technical Memorandum TM-86457.
August 1984

XXDC-15

APPENDIX A - Raycasting And Constructive Solid Geometry

Raycasting is a deceptively simple computer graphic rendering technique,
which consists of mathematically constructing a line from the viewer through
each of the viewscreen coordinate positions, and determining what part of a
scene or model each hits. If the object so hit is solid, then if its surface normal
can be determined at that point its shading (knowing the direction from which
light is coming) may be determined, thus determining the desired intensity for
that pixel on the rendering. This may be considerably expanded Another ray
may be cast from the point of intersection toward the light source, and if it
should hit some object in the scene then the pixel through which the original ray
was cast should be darkened to represent shadowing at that point. Further, if
the object should be transparent, and possibly refractive, further rays,
appropriately bent, may be cast from the point of intersection to determine just
what light the viewer should see at that point.

Raycasting in and of itself is rather straightforward and lends itself to prac-
tically all forms of light modelling Of more challenging interest is the determi-
nation of intersection points, or how we know where some ray actually hits. For
arbitrary objects represented by some volumetric technique such as oct-trees
this can be quite exhaustive. We have chosen a more tractable means of con-
structing objects from simple geometric solid primitives which is known as con-
structive solid geometry (CSG) This and alternative models are discussed in an
extensive review by Requicha. [ll] Transformed primitives may be combined
using the set operations of intersection, union, and differencing, and quite com-
plex objects may be so constructed This appears to be a useful model for orbit-
ing manmade objects, since they tend to comprise relatively simple forms in
combination. Some moderately simple examples are shown below. They are
copied from Roth [tt], to which the reader is referred for a highly competent
treatment of raycastmg and CSG.

F)C 2 Example of composition tree.

XXDC-16

Current Implementation
A reasonably competent CSG model works with five primitives, the cube, the

sphere, the cylinder, the cone, and the torus. This effort has implemented only
the first three, although addition of the other two (and, indeed, any other for-
mally tractable object) is reasonably straightforward and truly additive to the
existing software. Only matte lighting (single light source) and shadowing are
currently implemented. As well, monochrome (colorless) objects alone are
treated. These properties are sufficient to represent a useful range of targets.

An object is constructed as a binary tree, specified in pre-order (root, left
child, right child), where every node is of degree two or zero. All interior nodes
are combinations (intersect, union, difference), and are of degree two. All leaf
nodes are primitives and are of degree zero. At any node one or more geometric
transformations may be applied which will affect that node and all its children, if
any These include translation, scaling (stretching), and rotation.

The current program reads a file of extension .csg, which consists of com-
ment lines (begin with semicolon), node names (in quotes), or transformations
(again, in quotes) to be applied to the most recently encountered node (and its
children). Each transformation specifies three parameters. A primitive tele-
scope file specification is shown in Exhibit 3. The object is shown in three
different views in Exhibit 5, in which object outlining and shadowing are selec-
tively illustrated. The output of the raycaster is a raster file which is fully com-
petent for display on a raster graphic terminal. Since none is available locally,
the single intensity dot-drawing capability of the vector terminal is utilized to
make a primitive half-tone rendering, described in Exhibit 4.

The raycasting technique competently renders smoothly varying shading,
shadowing, and horizon effects, all of which will present challenges to any scene
interpretation procedure, and it does so in a concise and unified manner.
Specification of an object is considerably more concise and intuitive in CSG than
in a surface patch model, the other widely-used alternative. Further, it is a
truly three-dimensional model, entirely formal, and thus a highly suitable candi-
date for matching to two-dimensional scenes.

The current program reads an object specification from FOR010.DAT, into
which one has previously copied a *.csg file, accepts specification for boundary
lines, shadowing, and display size (default of 256 x 256), and in 5 to 20 minutes
creates a file in FOR008 DAT. If the file is acceptable, it should be copied to a
*.ras file. The program rplay will render the contents of FOR008.DAT to a Tek-
tronix using the ddot routine.

XXK-17

APPENDIX B - Vectorization - An Initial Cut

At the outset specific recognition should be given to existing vector
languages, of which only APL is truly deserving of the name. The techniques and
operations described in its original presentation (Iverson [7]) have been embo-
died substantially in the design of certain vector architectures such as the
Cyber 205, and to an unfortunately lesser extent in the FPS Math Library.

All vector processors, and parallel Pascal and PL-1 as well, concisely
express element-by-element operations. Thus, the statement

C = A + B (in PL-1) or c <- a + b (in APL)

will assign the sum of the i'th elements of A and B to the i'th element of C. It is
assumed, implicitly in APL and by specification in PL-1, that A,B and C are all of
the same magnitude, otherwise the operation is undefined.

Aggregate operations, such as sum, maximum, or mean of vector elements
are treated in PL-1 with library functions. In APL basic reduction operators are
used Thus,

X = SUM(A) (in PL-1, X a scalar) is x <- +/a (in APL)

where / is the reduction operator.
A capability of APL (and the FPS as well) is the logical vector While IF A > B

THEN... is undefined in PL-1 for vector operands, the operation z <- a > b in APL
creates a vector z of elements zero and one, of same magnitude as a and b,
where z(i) is one if a(i) > b(i), zero otherwise.

To this point the FPS library embodies all these functions. The departure is
selection/compression. In APL, a logical vector may be used to select elements
from another arbitrary vector (of same length), producing a new and generally
shorter vector consisting only of those elements of the operand vector that
corresponded to 1's in the selection vector. This sort of arbitrary selection is
endemic to a lot of vision routines, and is so far the only routine that we would
implement outside the math library.

The image must in all cases be processed in pieces, because most pro-
cedures create too much temporary data to be held by the four pages of the
FPS. A 256 by 256 image occupies exactly one page The Prager edge amplifier
is a global/local technique, in that operations on a pixel depend only upon neigh-
boring pixels (local), and all pixels may process independently and in parallel.
This routine works, in fact, upon the edges between pixels, of which there are
twice as many, so that two pages are required to hold edges. One step in the
Prager amplifier is, for each edge, to determine at each end whether 0, 1, 2, or 3
other edges abut the edge (recall that each edge has three neighbors at each
end), based on their strengths From this information the strength of the edge
will be raised, lowered, or left alone A part of this operation requires ordering
the strengths of the three neighbors, a small sort, and simply to do the sort
requires temporarily maintaining over six numbers for each edge, which clearly'
outstrips memory capacity.

XXDC-18

Thus, operations must necessarily be performed on subdivided images (the
mosaic problem) if one wishes to retain the entire picture This applies as well
to the Horn and Schunk optical flow routine, which requires a permanent data
structure of six to eight pages exclusive of temporary memory. While the
mosaic problem is a major irritant, the more fundamental objection to global
processing is its speed. A single step of an iterative process on the whole image
will take many seconds, which is clearly too slow.

The most satisfying route through the timing impasse is some form of data
reduction, already discussed in the body of this report. Two forms are con-
sidered. The first is to work at reduced resolution, either by aggregating
(averaging) into a resolution pyramid (Tanimoto [13]) or simply selecting sys-
tematically spaced pixels into a smaller picture. Working at reduced resolution
serves to identify areas of the picture which require further, high-resolution
analysis.

The second is similar, in that it begins by identifying interesting areas (cf.
the Barnard-Thompson optical flow procedure), and then works only within
them. The major challenge in either case is that procedures at this level work
by updating tables and lists, a form of computing that departs substantially
from traditional vector problems. This is currently under intense scrutiny.

XXDC-19

ty simp.csg
; A simple object— that part of a thick board that lies
; within a spnere. The board has a hole in it. The calculus
; is intersect big sphere with (board minus cylinder).
rint'
'sea' 100 100 100 blow up to "world" size
'rot' 20 20 0 and tilt some so we can see hole

left subtree, board(flat cube) minus thin cylinder'dif '
'cube'
'scale' 1
'cylinder'
'scale' .3
'translate
*

'sphere'
'sea' 1.1
'end'

2

1

1

.3
25

flatten it in y axis
this makes hole in board

0 -.2 not in center of board

right subtree, big sphere
1 1.1 leave some straight edge on board

(a) A file (simp.csg) that
describes a simple, three-
primitive object, with two
connectives.

The tree at the right is
numbered to show correspon-
dence.

(b) Running the ray-
caster. Boundary
lines are only for
easier visualization
not test images.

Shadowing should
be specified for
test images .

cop simp.csg for010.dat
$ run rayc
enter non-zero if display run
0
type nonzero if boundary lines explicit

type non-zero for shadowing
1

0
enter size (square)

130
if not 256

(c) The file (simp.ras) may
be fed to program rplay,
which makes this picture.

What simp.csg makes

Exhibit d, - A Simple CS G Specification, and The Result
Of 'Playing1 It On A Vector Graphic Terminal

XXIX - 20

• a rudimentary snace tel?scooe» based on a picture
in tne hall.
Three parts to this, main barrel, funny little flap
st »nd» and the solar panels.

mean 26 Auc, 85

' uni*
•sca»
rot1

rot'
ret*
tra'

50 50 50
0 -50 0
40 0 0
0 -10 0
0- 0 30

*s**̂ !̂̂ *«** you fly -this thing usino previous transform

that was the main global transform (ishole object)
all the following are relative to origin

main barrel

* uni1

•cyl'
'sea' 1.5 3 1.5
•uni*

ok» here's the ssnels

•un ion 1 of tsac .slabs and a stick
'•-of 45 0 0
« c y l '
'scs' .05 4 .05

these are ta.-o end collars » r o ^ i Q G 90
; ncu; tttso slabs
'un i»
'cub'

'cyl'
•sea1 2 1.5 2
•tra' 0 -1.5 0
; second collar is hollom
1 union'
•trs* 0 1.5 0
'cyl1

'sea* 2 1.5 2
'cyl»
'sea1 1.7 2 1.7

•sea' 2 5 .05
•tra' 200
•cub'
•sea' 2 5 .05
'-tra' - 2 0 0
•end'

funny little flap next

union
9

'union
•rot'
'tra«
'cyl'
•sea'
•cub'
«SC3'

'•tra'

U! K

1

90 0
0 3

2 .1

2,.l
C 0

A i.

0
C

2

f 1
-.5

actually union of flap and panels

Exhibit ̂ - A Constructive Solid Geometry
_ ___ Specification of Prirdtive Telescope^

The tree is specified in pre-order form. Lines
beginning with 7 are comments. Leaf nodes are 'cube',
'sphere1, and 'cylinder1 ('cub' , ' sph' , 'cyl1). Interna
nodes are ' union1 ,' intersection1 , and 'difference'.

Any node may be followed with unlimited number of
transformations, which are applied in order. The line
eni1 is necessary at present to terminate tree.

mx - 21

c
c
c
c
c
c
c
c
c
c
c
c

ORIGINAL PAGE IS
OF POOR QUALITY

dcfot Cix * i y * den) - m e a n 3 jul 35

fix \19 jul - use log Tao

h? l f - tone dot drsuiei— drau/ only if stjoclied
den sity is belc-u next r a n d o m no.

tha sense w o u l d be r e v e r s e d if use
drataing^uihit e en b lack

ubroutine ddctCix »iy * den)
*** seed

real e
dats s e e d t e / 3 2 5 1 7 2 4 3 , 2 . T 1 8 2 S /dats s e e d t e / , .
d = loglO C (den*C49) •+ 1))/ ioglOCSO.)
if (d .It. rsnCseed)) call pntabsCix ,iy)
d
if
re turn
end

rLinear d*n»ltl«« - d|r«ct nap fro* intensity In (0,1)

1.8

density = loglBt inteT>8ittf*8 + 1)

e .1 .3 .4 .5 .6 .7 .8 .g 1.0

1.0

Exhibit - Raster Graphics On A Vector Terminal

It is nuch easier to check a picture program by eye than by data listing.
The routine ddot() listed at the top illustrates how pixel-independent
half-toning works. pntabsQ will draw a single dot, based on the supplied
intensity and the next random number.
Several logarithmic transformations were tried, the last judged by eye
to provide best separation on plotter.

XXIX - 23L

O
R

IG
IN

A
L

P

A
G

E
 «S

O
F

P

O
O

R

Q
U

A
LIT

Y

o

CDP
.

OOcoCD
rHCO
E

HCO
•HCO•HCOCOCDrl

-pco«HOCOSCDCDCD

CDr
l

CD
0)

"•H

rl
'--,

Q
)

CO

C

se
CD

CD
C

D

-r)

s t>
-pCD

CD
,£>

CDr
l

CO
X

CD
-P

C•H

C
D

O

to'S
c

x

•H

C
O

&
*

•H

C
T

)
OOCDCO

0)P
,

CO

i
CD

rt
co

•o

S
e

o
3

 T
3

o
cd

•°-s
«H°

§

CO
V

(
cO

r
l

•H

C
D

-P

rH

P<
CD

O

C
D

«H
CD

ff.
<&

-P
<H

co
o

r
l

o
 ba

»
M

C

V
4

-H
o
 -PCO •6 .

•H

tn
rl

C
D

CO
-H

-P

rH

•H

'
t
l

O

C
-P

P

fO
^
3

C-g-E
&

«
-p

coS
- o

3
 T

3
o

td

CD
-pCOrt

rl C
D

«M

C
O

cScoCO&oICO

£
r
?

52
cj

•H

C
O

&
coCD

co
o

CD
CD

c c

n)
&

&

C
D

rt -H

CD

ng^
S

£
p,b

O
C

C

cfl

-p
H

C

O
>

r
l

O

-H
e <M

CD
,

bO I

-p

-
a
!

•
CO

C
O

 H
->

3

rd
a'

o
O

>

C

D
 ?

1
>

»-H

X
cd -p

-p
r
l -

HE
CD

-H
X

r
l

id

EH

P
.X

S

O
O

C

•rH

OCO
CD

CD
S

i
C

•P

-H

•^4

V
W

*"S -
.CD

(d
>>C

o
o f>

X
X

IX
-

2
3

1 i - si»j-'rt • •?
'• t~"VW'\A. •> . V '"**'?,iv?Xivi- '̂<C ̂ .< ,

•̂ ^̂ :':;̂

•"v ; -,:j.. -,;

ORIGINAL PAGE IS
OF POOR QUALITY

Some telescope, twisted to Its right and amoving
away from you. Al;so, boundary lines not added.

2828 148 3768 577

Zeroith Pass - Row Differences

270 3699

-J- *'«.- >.
»» N \ x

»'i

,i'

A

V
\

First Adjustment Pass

\ '•

Second Adjuistment Pass. Shadow lines
show best, since mostly on light background,
hence began with strongest gradient

771 266 3312

- ̂ -fee-l

201 386 2288

tl

Third Adjustment Pass Fourth Adjustment. Note right hand corner of
distal panel visible for first time.

Exhibit - The Prager Edge Amplifier At Work

This begins with the same view of the previous Exhibit,
with shadows but no boundary lines. The three numbers are
single edges that have been downgraded, left alone, and upgraded
during the pass.

xxix - 24.

