799 research outputs found

    In situ high-temperature Mössbauer spectroscopic study of carbon nanotube-Fe-Al2O3 nanocomposite powder

    Get PDF
    The oxidation of a carbon nanotube–Fe–Al2O3 nanocomposite powder was investigated using notably thermogravimetric analysis, room temperature transmission and emission Mössbauer spectroscopy and, for the first time, in situ high-temperature transmission Mössbauer spectroscopy. The first weight gain (150–300 °C) was attributed to the oxidation into hematite of the α-Fe and Fe3C particles located at the surface and in the open porosity of the alumina grains. The 25 nm hematite particles are superparamagnetic at 250 °C or above. A weight loss (300–540 °C) corresponds to the oxidation of carbon nanotubes and graphene layers surrounding the nanoparticles. The graphene layers surrounding γ-Fe–C particles are progressively oxidized and a very thin hematite layer is formed at the surface of the particles, preventing their complete oxidation while helping to retain the face-centered cubic structure. Finally, two weight gains (670 and 1120 °C) correspond to the oxidation of the intragranular α-Fe particles and the γ-Fe–C particles

    Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas

    Get PDF
    Steam gasification of biochars has emerged as a promising method for generating syngas that is rich in hydrogen. In this study four biochars formed via intermediate pyrolysis (wood pellet, sewage sludge, rapeseed and miscanthus) were gasified in a quartz tubular reactor using steam. The dynamic behaviour of the process and effects of temperature, steam flow and particle size were studied. The results show that increases in both steam flow and temperature significantly increase the dry gas yield and carbon conversion, but hydrogen volume fraction decreases at higher temperatures whilst particle size has little effect on gaseous composition. The highest volume fraction of hydrogen, 58.7%, was obtained at 750 °C from the rapeseed biochar

    Synthesis of carbon nanotube–Fe-Al2O3 nanocomposite powders by selective reduction of different Al1.8Fe0.2O3 solid solutions

    Get PDF
    Al1.8Fe0.2O3 solid solutions have been prepared as amorphous, η (cubic) and α (corundum) phases. The oxides have been reduced in a H2–CH4 gas mixture at 900 or 1000 °C, giving rise to composite powders containing alumina, α- and γ-Fe, Fe3C and different forms of carbon including nanotubes, thick tubes and spheroidal particles. The powders have been investigated using a combination of chemical analysis, X-ray diffraction, Mössbauer spectroscopy, scanning and transmission electron microscopy, thermogravimetric analysis and specific surface area measurements. Using the stable form (corundum) of Al1.8Fe0.2O3 as starting material favours the formation of carbon nanotubes compared to the other forms of carbon. This could partly result from the fact that the metal nanoparticles formed upon reduction of the α solid solution, which act as a catalyst for CH4 decomposition and possibly nanotube nucleation, are smaller than when using amorphous or η solid solutions. Moreover, the crystallization of these latter compounds during the reduction in some way provokes the entrapment of carbon within the oxide grains. The nanotubes, most of which are less than 10 nm in diameter, are arranged in bundles several tens of micrometers long

    Hierarchical Structuring of NMC111-Cathode Materials in Lithium-Ion Batteries: An In-Depth Study on the Influence of Primary and Secondary Particle Sizes on Electrochemical Performance

    Get PDF
    Commercially used LiNi1/3Mn1/3Co1/3O2 (NMC111) in lithium-ion batteries mainly consists of a large-grained nonporous active material powder prepared by coprecipitation. However, nanomaterials are known to have extreme influence on gravimetric energy density and rate performance but are not used at the industrial scale because of their reactivity, low tap density, and diminished volumetric energy density. To overcome these problems, the build-up of hierarchically structured active materials and electrodes consisting of microsized secondary particles with a primary particle scale in the nanometer range is preferable. In this paper, the preparation and detailed characterization of porous hierarchically structured active materials with two different median secondary particle sizes, namely, 9 and 37 mu m, and primary particle sizes in the range 300-1200 nm are presented. Electrochemical investigations by means of rate performance tests show that hierarchically structured electrodes provide higher specific capacities than conventional NMC111, and the cell performance can be tuned by adjustment of processing parameters. In particular, electrodes of coarse granules sintered at 850 degrees C demonstrate more favorable transport parameters because of electrode build-up, that is, the morphology of the system of active material particles in the electrode, and demonstrate superior discharge capacity. Moreover, electrodes of fine granules show an optimal electrochemical performance using NMC powders sintered at 900 degrees C. For a better understanding of these results, that is, of process-structure-property relationships at both granule and electrode levels, 3D imaging is performed with a subsequent statistical image analysis. Doing so, geometrical microstructure characteristics such as constrictivity quantifying the strength of bottleneck effects and descriptors for the lengths of shortest transportation paths are computed, such as the mean number of particles, which have to be passed, when going from a particle through the active material to the aluminum foil. The latter one is at lowest for coarsegrained electrodes and seems to be a crucial quantity

    SCUBA Mapping of Spitzer c2d Small Clouds and Cores

    Get PDF
    We present submillimeter observations of dark clouds that are part of the Spitzer Legacy Program, From Molecular Cores to Planet-Forming Disks (c2d). We used the Submillimetre Common User's Bolometer Array to map the regions observed by Spitzer by the c2d program to create a census of dense molecular cores including data from the infrared to the submillimeter. In this paper, we present the basic data from these observations: maps, fluxes, and source attributes. We also show data for an object just outside the Perseus cloud that was serendipitously observed in our program. We propose that this object is a newly discovered, evolved protostar.Comment: 37 pages, accepted to The Astronomical Journa

    The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A

    Get PDF
    Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the SCUBA-2 shared-risk observations at 450 μ\mum and 850 μ\mum of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the HARP 12^{12}CO J=3-2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index α\alpha map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high 12^{12}CO J=3-2 line contamination, to 27 previously identified clumps in OMC-4. This allows us to quantify the effect of line contamination on the ratio of 850 μ\mum to 450 μ\mum flux densities and how it modifies the deduced spectral index of emissivity β\beta for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC-5 has a 12^{12}CO J=3-2 contamination level of 16 %. Furthermore, we find the strongest contamination level (44 %) towards a young star with disk near OMC-2. This work is part of the JCMT Gould Belt Legacy Survey.Comment: 13 pages, 6 figures, Accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS

    Responsible Behavior for Constellations and Clusters

    Get PDF
    Many large constellations are being considered for deployment over the next ten years into low earth orbit (LEO). This paper seeks to quantify the risks that these constellations pose to the debris environment, the risks that the debris environment poses to these constellations, and the risks that these constellations pose to themselves. The three representative constellations examined in detail in this paper are operated (or planned to be operated) by Spire Global, Iridium, and OneWeb. This paper provides a balanced risk analysis including collision risk, operational risk, and non-adherence risk. For perspective, the risk posed by these economically useful constellations is compared to the risk associated with existing abandoned hardware deposited in clusters

    Analyzing the role of copper in the soot oxidation performance of BaMnO3-perovskite-based catalyst obtained by modified sol-gel synthesis

    Get PDF
    A series of BaMn0.7Cu0.3O3 solids were prepared by a modified sol-gel method in which carbon black (VULCAN XC-72R), and different calcination temperatures (BMC3-CX, where X indicates the calcination temperature) have been used. The fresh and used catalysts were characterized by ICP-OES, XRD, XPS, FESEM, TEM, O2-TPD and H2-TPR. The presence of a carbon black during sol-gel synthesis of BMC3 mixed oxide allows diminishing the calcination temperature needed to achieve the perovskite structure, but it hinders the formation of the BaMnO3 polytype. The use of low calcination temperatures during synthesis reduces the sintering effects, and the mixed oxides present lower particle size, slightly higher BET surface areas and macropores with lower diameter than BMC3. The distribution of copper in BMC3-CX catalysts depends on the calcination temperature and copper insertion into the perovskite structure is promoted as the calcination temperature increases. All BMC3-CX catalysts are active for NO to NO2 and NOx-assisted soot oxidation processes, but only BMC3-C600 and BMC3-C700 show higher catalytic activity than BMC3 reference catalyst. BMC3-C600 presents the best performance as it features a high amount of surface copper and oxygen vacancies that increase during reaction. The comparison between the performance of the two best catalysts of the BM-CX series (BM-C700) and the BMC3-CX series (BMC3-C600) suggests that the unique advantage of using copper in the modified sol-gel synthesis is an additional decrease of 100 °C in the calcination temperature used for the synthesis of the best catalyst, which is 700 °C for BM-CX and 600 °C for BMC3-CX.This research was funded by Spanish Government (PID2019-105542RB-I00) and EU (FEDER Founding)

    Exploring New Approaches to the Organization of Knowledge: The Subject Classification of James Duff Brown

    Get PDF
    James Duff Brown was an infl uential and energetic librarian in Great Britain in the late nineteenth and early twentieth centuries. His Subject Classifi - cation has characteristics that were unusual and idiosyncratic during his own time, but his work deserves recognition as one of the precursors of modern bibliographic classifi cation systems. This article discusses a number of theories and classifi cation practices that Brown developed. In particular, it investigates his views on the order of main classes, on the phenomenon of ???concrete??? subjects, and on the need for synthesized notations. It traces these ideas briefl y into the future through the work of S. R. Ranganathan, the Classifi cation Research Group, and the second edition of the Bliss Bibliographic Classifi cation system. It concludes that Brown???s work warrants further study for the light it may shed on current classifi cation theory and practice.published or submitted for publicatio

    Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    Get PDF
    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.Support for this work was provided by the CTQ2013-41006 project from the Ministry of Education and Science (Spain) and the PROMETEO/2009/043/FEDER project from the Valencian Community Government (Spain)
    corecore