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a b s t r a c t

The oxidation of a carbon nanotube–Fe–Al2O3 nanocomposite powder was investigated using notably

thermogravimetric analysis, room temperature transmission and emission Mössbauer spectroscopy and,

for the first time, in situ high-temperature transmission Mössbauer spectroscopy. The first weight gain

(150–300 ◦C) was attributed to the oxidation into hematite of the �-Fe and Fe3C particles located at the

surface and in the open porosity of the alumina grains. The 25 nm hematite particles are superparamag-

netic at 250 ◦C or above. A weight loss (300–540 ◦C) corresponds to the oxidation of carbon nanotubes

and graphene layers surrounding the nanoparticles. The graphene layers surrounding �-Fe–C particles are

progressively oxidized and a very thin hematite layer is formed at the surface of the particles, preventing

their complete oxidation while helping to retain the face-centered cubic structure. Finally, two weight

gains (670 and 1120 ◦C) correspond to the oxidation of the intragranular �-Fe particles and the �-Fe–C

particles.

1. Introduction

Although many studies on the thermal stability of samples of

carbon nanotubes (CNT) have been reported, most of them are

performed on purified specimens and focus on the oxidation of

the CNTs. By contrast, relatively few thermal stability studies have

been reported on the as-produced specimens, i.e. still containing

the catalyst and substrate [1–5] or on CNT–oxides mixtures pre-

pared on purpose [6,7]. The synthesis of CNTs by catalytic chemical

vapor deposition (CCVD) is based on the catalytic decomposition

of carbonaceous gases on transition metal nanoparticles which

quite often are made up of iron, iron-cobalt, iron-nickel or iron-

molybdenum alloys or mixtures. 57Fe Mössbauer spectroscopy (MS)

offers several advantages for studies of iron-containing compounds.

The spectra, and parameters derived from these, are very sensitive

to electronic, magnetic and structural characteristics of the probed

material and as such, MS is a useful tool for phase identification

and quantification of mixtures of Fe-bearing materials. The aim

of this paper is to study the oxidation in air of a CNT–Fe–Al2O3

nanocomposite powder using notably thermogravimetric analysis

and, for the first time to the best of our knowledge, in situ high tem-
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perature MS to follow the evolution of the various iron phases in

the different stages of the oxidation process of the nanocomposite

powder.

2. Experimental

2.1. Materials

A CNT–Fe–Al2O3 nanocomposite powder (henceforward code-

named as C0) was obtained by the reduction of an �-

(Al0.93Fe0.07)2O3 powder in a H2–CH4 gas mixture as described

elsewhere [8]. Briefly, the �-(Al0.93Fe0.07)2O3 powder was prepared

by decomposition and calcination of the mixed oxinate precursors.

The powder is made up of 2–5 �m grains assembled into tabular-

like aggregates presenting the porous vermicular microstructure

with much looser aggregates made up of 0.2–0.5 �m primary grains

or crystallites. The powder was reduced in a H2–CH4 (20 mol% CH4)

gas mixture. The heating and the cooling rate to the desired tem-

perature (1025 ◦C) and back to room temperature was 5 ◦C/min. No

dwell time was applied at 1025 ◦C. The so-obtained CNT–Fe–Al2O3

nanocomposite powder was studied in detail by a variety of tech-

niques [8] the results of which are summarized in the following.

The carbon content (Cn) was found equal to 1.6 wt.%. The ratio

between the intensity of the D band (ca. 1320 cm−1) and the G

band (ca. 1580 cm−1) of the high-frequency range of the Raman

spectra, ID/G, is equal to about 30%. An increasing ID/G value corre-

sponds to a higher proportion of sp3-like carbon, which is generally



Fig. 1. Typical FEG-SEM image of the CNT–Fe–Al2O3 nanocomposite powder. The

arrows point �-Fe, Fe3C and/or �-Fe–C nanoparticles at the surface of the alumina

grains.

attributed to the presence of more structural defects. The pres-

ence of radial-breathing-modes (RBM) peaks in the low-frequency

range (100–300 cm−1) of the spectrum, the frequencies of which

are inversely proportional to the CNT diameters, reveals the pres-

ence of small-diameter CNTs, such as SWNTs and DWNTs. A typical

FEG-SEM image of a porous area of the powder (Fig. 1) reveals the

presence of long, flexible filaments, with a smooth and regular sur-

face, on the surface of the oxide grains and bridging several grains.

All filaments have a diameter smaller than 30 nm and a length of the

order of some tens of micrometers. From earlier results, it is known

that such filaments are isolated CNTs and/or CNTs bundles. Spher-

ical particles 5–20 nm in diameter, that may be �-Fe, Fe3C and/or

�-Fe–C (some of which are arrowed in Fig. 1) are observed at the

surface of the alumina grains. Most of these particles are covered by

a few graphene layers and do not appear to be connected to a CNT,

indicating that they have been inactive for the formation of CNT. It

is interesting to note that the presence of undesirable thick, short

carbon nanofibers is rarely observed.

2.2. Methods

Thermogravimetric analysis (TGA) of the CNT–Fe–Al2O3

nanocomposite powder was performed in a SETARAM TAG 24

module (simultaneous symmetrical thermoanalyser). The powder

(∼22 mg) was heated (1 ◦C/min) from 25 to 1300 ◦C in a constant

flow of synthetic air (1.5 l/h). Based on the TGA curve, parts of the

nanocomposite powder (∼400 mg) were heated (1 ◦C/min) in a

tubular furnace in flowing air at selected temperatures between

250 and 1300 ◦C. Immediately after the furnace has reached the

desired temperature, the powders were quenched in air. The oxi-

dized powders are hereafter named as C followed by the respective

temperature of oxidation (for instance sample C250 is a powder

heated at 250 ◦C).

XRD patterns were recorded in the range 10–70◦ (2�) using a

Bruker D4 Endeavor diffractrometer equipped with a Cu K� radi-

ation tube. Counts were registered every 0.02◦ (2�). The carbon

content (Cn) was measured by the flash combustion method (the

accuracy of the measurements is ±2%). The powders were observed

by FEG-SEM (JEOL JSM 6700F), with an acceleration tension of 5 kV

using the in-lens electron detector.

All powders were studied by transmission Mössbauer spec-

troscopy (TMS), integral low-energy electron Mössbauer spec-

troscopy (ILEEMS) and in situ high-temperature transmission

Mössbauer spectroscopy (HTTMS). TMS is used to study the bulk

of the material while ILEEMS is applied to examine the surface

of the powders. HTTMS spectra were recorded to obtain in situ

information about the oxidation processes of the CNT nanocom-

posite powder and to identify and quantify the oxidation products

formed. At room temperature (25 ◦C) both TMS and ILEEMS were

employed. HTTMS was applied at selected temperatures between

25 and 850 ◦C. The spectrometers were operating at constant accel-

eration mode with triangular reference signals. 57Co(Rh) sources

were used. All Mössbauer spectra were analyzed in terms of

model-independent distributions of hyperfine-parameter values

and numerical data quoted hereafter refer to maximum-probability

values. Isomer shifts are referenced with respect to �-Fe at room

temperature. ILEEMS is a variant of Mössbauer spectroscopy in

which low-energy electrons are counted. The majority of these elec-

trons, with energy of ∼10 eV, are produced by after effects following

the decay of the probe nuclei in an extremely thin surface layer of

the absorber. Consequently, by comparing the ILEEMS results with

those of TMS, information of the surface of the material can be

inferred [9]. The HTTMS measurements were performed using a

furnace (Wissel Scientific Instruments, model MBF-1100) in which

a constant gas flow of either synthetic air or N2 was maintained.

The furnace was heated at 1 ◦C/min under flow of synthetic air.

After the furnace had reached the desired temperature the gas flow

was switched to N2 to avoid further oxidation of the powder. The

N2 flow was kept during the acquisition of the spectrum. With the

spectrum containing enough statistics the flow was switched back

to synthetic air and the temperature was increased at 1 ◦C/min up to

the next desired temperature. The gas flow was then switched back

to N2 in order to collect the next spectrum. These steps were done

consecutively until the furnace reached the maximum desired tem-

perature (850 ◦C). Immediately after having recorded the spectrum

at 850 ◦C, the flow of N2 was switched to air and the furnace was

cooled down to room temperature at natural cooling of the furnace.

Subsequently a final spectrum was collected at 25 ◦C.

3. Results and discussion

The TGA curve and the corresponding derivative curve (DTG)

(Fig. 2) show several steps, involving both weight losses and gains

at different stages. The initial weight loss at temperatures below

Fig. 2. TGA (a) and DTG (b) curves for the CNT–Fe–Al2O3 nanocomposite powder.



Fig. 3. Carbon content versus the increase in calcination temperature.

150 ◦C is attributed to desorption, mostly corresponding to species

adsorbed onto the surface of the CNTs. A weight gain is observed in

the range 150–300 ◦C. According to earlier studies [10], this weight

gain could correspond to the oxidation of the Fe and Fe-carbide

particles located at the surface and in the open porosity of the

alumina grains. A second weight loss (−0.92%) is observed in the

range 300–540 ◦C. This weight loss is supposed [1] to be due to

the oxidation of carbon, free or combined with iron. The DTG curve

suggests that this process actually proceeds in two steps, which

could indeed indicate the successive oxidation of different forms

of carbon. However, the two steps are ill-resolved and sound con-

clusions in that respect cannot be drawn. Interestingly, Mössbauer

spectroscopy results (see later in this section) indicate that �-Fe–C

particles have not been oxidized at these temperatures. At tem-

peratures increasing beyond 540 ◦C, two successive weight gains

are observed (DTG peaks at 670 and 1120 ◦C). From earlier results

on carbon-free metal-oxide powders [10,11], both weight gains are

proposed to correspond to the oxidation of intragranular �-Fe par-

ticles. However, Mössbauer spectroscopy results (see later in this

section) could indicate that the 1120 ◦C peak also involve �-Fe–C

particles and a FeAl2O4 phase.

On the basis on the TGA curve discussed above, batches of the

CNT–Fe–Al2O3 nanocomposite powder were calcined in air at 250,

300, 420, 540, 670, 850, and 1300 ◦C. The carbon content Cn was

found to gradually decrease from 1.6 to 0.2 wt.% as the calcination

temperature is increased to 850 ◦C (Fig. 3). For C1300, Cn is below

0.2 wt.%, which is within the detection limit of the technique. A

comparison can be made between the second weight loss measured

in the TGA (−0.92%) and that corresponding to the change in car-

bon content from room temperature to 540 ◦C (−1.35%), the latter

being significantly higher. This shows that the first weight gain and

the second weight loss are superimposed and thus, it is not possi-

ble to extract from the TGA curve quantitative results neither for

determining the contents of different carbon forms nor for assess-

ing the oxidation yield of iron species in this temperature range

(about 200–540 ◦C).

Analyses of the XRD patterns for C0–C540 (Fig. 4) reveal the pres-

ence of �-Fe and/or Fe3C (cementite) besides the �-alumina matrix.

It is, however, difficult to discriminate between the patterns of �-Fe

and Fe3C because the respective diffraction peaks are strongly over-

lapping. �-Fe may also be present in the powders, but it cannot be

resolved from the XRD patterns because its main (1 1 1) diffraction

peak (d1 1 1 = 0.208 nm) is probably masked by the �-alumina peak

(d1 1 3 = 0.209 nm). The intensity of the �-Fe and Fe3C peaks regu-

larly decreases upon the increase in calcination temperature above

540 ◦C (C670 and C850). These peaks are no longer detected for

C1300. From C300 to C850, hematite (�-Fe2O3) peaks are detected

Fig. 4. XRD patterns of the calcined powders. A: �-Al2O3 and H: �-Fe2O3.

with increasing intensity. For C1300, the hematite peaks appear to

be slightly less intense than for C850, which could indicate a partial

dissolution into alumina.

Typical FEG-SEM micrographs for selected powders are shown

in Fig. 5. It is difficult from such images to distinguish C0 (Fig. 5a),

C250 (not shown), C300 (Fig. 5b) and C420 (Fig. 5c) from each other.

Indeed, CNTs, CNT bundles and 15–30 nm nanoparticles located at

the surface at the alumina grains are observed. By contrast, much

less CNTs and CNT bundles are observed for C540 (Fig. 5d) and C670

(Fig. 5e). Moreover, for C670, a high density of nanoparticles with

a uniform diameter (∼20 nm) is observed. For C850 (not shown),

CNTs are extremely rarely observed and for C1300 (Fig. 5f), no CNTs

are observed. Interestingly, for C1300, no surface nanoparticles are

observed. This could support the XRD result that hematite particles

are dissolved into alumina after the treatment in air at 1300 ◦C.

The TMS recorded at 25 ◦C for all powders are reproduced in

Fig. 6. Each spectrum in general was fitted as a superposition of

different subspectra: an outer sextet due to �-Fe2O3, a middle

sextet accounting for �-Fe, an inner sextet representing Fe3C, a

singlet characteristic of �-Fe–C, an Fe3+ doublet ascribed to iron

ions in the structure of �-Al2O3 (noted as (Al,Fe)2O3) and an Fe2+

doublet that reflects the presence of small amount of hercynite

(FeAl2O4). Note that the �-Fe2O3 sextet was not present for C0.

For C670 and C850, no Fe3C component was resolvable, and for

C1300 only the �-Fe2O3 sextet and the ferric doublet were found to

exist. Consistently, the most adequate fits of the TMS were obtained

assuming hyperfine-parameter distributions for all components,

hereby imposing a 3:2:1 ratio for the relative spectral areas of

outer lines to middle lines to inner lines for the elemental sextets.

The respective Mössbauer parameter values obtained from the data

reductions are listed in Table 1. The presence of both the Fe3+ and

Fe2+ doublets for C0 are due to the incomplete reduction of the

solid solution. The remaining Fe3+ ions are deep within the alu-

mina grains and it is possible that the Fe2+ ions correspond to a

very thin (<5 nm) layer of FeAl2O4 surrounding some intragranular

Fe nanoparticles, which has been observed before [12]. Note that

the proportion of Fe2+ ions is not affected by heating at temper-

atures as high as 850 ◦C (Table 1), which support the hypothesis

that the corresponding species are within the alumina grains. The

relative spectral area (RA) of the hematite component gradually

increases from 0% (C0) to 32% (C850), but exhibits a sudden drop to

19% for C1300. This indicates that the hematite particles have been

partly dissolved into alumina in agreement with the above XRD and



Fig. 5. Typical FEG-SEM images of the calcined powders: (a) C0; (b) C300; (c) C420; (d) C540; (e) C670; (f) C1300.

FEG-SEM results. The �-Fe contribution gradually decreases from

30% (C0) to 12% (C850), traducing the oxidation of the surface �-

Fe particles, as opposed to the intragranular ones, and thus partly

accounting for the increase of the hematite proportion. As men-

tioned above, no �-Fe is detected for C1300, the intragranular �-Fe

particles having been oxidized too. A gradual decrease of the Fe3C

proportion upon raising the calcination temperature is observed,

from 21% (C0) to 6% (C540). For C670 onwards, no Fe3C is detected.

Considering the respective proportion of �-Fe, Fe3C and �-Fe2O3

(Table 1), it appears clearly that both �-Fe and Fe3C are gradually

oxidized into �-Fe2O3 as the calcination temperature is increased

to 850 ◦C. By contrast, and surprisingly, the proportion of �-Fe–C is

not affected by heating at temperatures as high as 850 ◦C (Table 1).

Kim and Sigmund [13] reported on large �-Fe particles (100 nm in

diameter) tightly encapsulated by a graphitic film. These authors

inferred that the graphitic film prevents the �-Fe from transforming

into �-Fe (the stable phase of iron at room temperature). The study

of the present powder by high-resolution transmission electron

microscopy revealed the presence of encapsulated particles with

diameters of 15–20 nm [8], which were too large for being active for

the formation of CNTs and ended up covered by several graphene

layers. Therefore, it is not unreasonable to propose that these are

the �-Fe–C particles and that after the oxidation of the graphene

layers covering them, a very thin layer of �-Fe2O3 is formed at their

surface, thus preventing a complete oxidation until high tempera-

tures such as 850 ◦C while helping to retain the face-centered cubic

structure. It is well-know that iron particles actively react with oxy-

gen even at room temperature, resulting in an iron oxide layer on

the surface of the particles protecting them from further inward

oxidation. If this suggestion is indeed reasonable one would then

wonder why no change in the area ratio was observed for the �-Fe–C

component (Table 1). The layer of hematite that could be covering

the �-Fe–C particles could be extremely thin so that the measurable

abundance is within the experimental error and consequently one

cannot observe changes in area ratio in the TMS. Indeed, De Grave

et al. [9] observed by ILEEMS that very thin layers of �-Fe2O3 on

Fe-containing particles are not detected by TMS.

ILEEMS experiments at 25 ◦C were carried out to examine

whether the surface of the powder is affected differently by the

heating as compared to the bulk. The emission spectra (not shown)

clearly exhibit the same shapes and in general the same spectral

components as do the corresponding TMS spectra. This indicates

that the different iron species are distributed evenly in the bulk

and the top most surface of the grains. However, the relative area



Fig. 6. TMS spectra (collected at 25 ◦C) of the calcined powder. Solid envelops are the results of fitting the experimental data by model-independent hyperfine-parameter

distributions. �-Fe (red); Fe3C (blue); �-Fe2O3 (brown); Fe3+ in (Al,Fe)2O3 (green); Fe2+ in FeAl2O4 (yellow); �-Fe–C (cyan). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of the article.)

parameter RA for the hematite component in the ILEEMS spectrum

of C250 is significantly higher than the corresponding value for the

TMS spectrum (13% versus 6%, respectively). Concurrently the con-

tribution of the �-Fe component has dropped to 19% from 27%. This

finding suggests that the initial weight gain (250–300 ◦C) observed

in the TGA curve is due to oxidation of the topmost (5 nm) surface

�-Fe particles. More details on ILEEMS studies on similar powders

can be found elsewhere [14]. The differences between the present

results and those of the earlier ILEEMS study arise because of the

different oxidation conditions applied: quenching the powder in

air immediately after reaching the maximum desired temperature

(present study) or oxidation in air at 600 ◦C during 2 h [14].

The in situ HTTMS spectra of the CNT–Fe–Al2O3 nanocomposite

powder are reproduced in Fig. 7. Only three or four components

were required to fit these spectra adequately: an �-Fe sextet, an

(Al,Fe)2O3 doublet and a �-Fe–C singlet, as well as, for the spectra

collected at 250 and 300 ◦C, an Fe3C sextet. The adjusted hyperfine

parameter values are listed in Table 2 and are all in line with the cor-

responding values obtained from the TMS and ILEEMS experiments

as described in the preceding sections. Some interesting features

emerge from the HTTMS experiments:

(i) the absence of the hematite component in all HTTMS spectra

while this component is prominently present in the spectrum

recorded for the powder cooled down to room temperature

after termination of the 850 ◦C run;

(ii) the gradual increase of the contribution of the (Al,Fe)2O3 dou-

blet up to 59% while at the final run at 25 ◦C only 31% is

found, which is close to the value for the parent CNT–Fe–Al2O3

nanocomposite powder (C0);

(iii) the vanishing of the Fe3C subspectrum between 300 and 420 ◦C

while according to the TMS results this phase is still present

after heating at 540 ◦C;

(iv) up to 670 ◦C, the contribution of �-Fe sextet remains unchanged

within experimental error limits, whereas at 850 ◦C this contri-

bution has decreased from 30% to 21%;

(v) the absence of the FeAl2O4 phase in all of the HTTMS spectra.

To comment on observations (i) to (v), the authors have collected

some relevant RA data in Table 3. They concern on the one hand the

percentage of the cementite component, RAc, and the sum RAha

of the hematite and alumina contributions both as obtained from

the 25 ◦C TMS (data from Table 1). On the other hand, the right



Table 1
Relevant hyperfine parameters for the components present on the TMS spectra acquired at 25 ◦C for the CNT–Fe–Al2O3 nanocomposite powder heated in air at selected

temperatures.

Sample (Al,Fe)2O3 �-Fe2O3 Fe2+ doublet

�EQ ı RA Bhf 2εQ ı RA �EQ ı RA

C0 0.56 0.30 20 – – – – 1.57 0.79 5

C250 0.57 0.31 23 49.4 −0.16 0.31 6 1.64 0.72 6

C300 0.57 0.31 24 49.5 −0.12 0.34 9 1.64 0.80 5

C420 0.56 0.31 24 50.1 −0.18 0.35 17 1.62 0.79 5

C540 0.56 0.31 23 50.7 −0.18 0.36 20 1.62 0.72 5

C670 0.57 0.33 25 50.9 −0.19 0.36 26 1.66 0.79a 6

C850 0.57 0.33 29 51.0 −0.21 0.36 32 1.65 0.79a 7

C1300 0.56 0.29 81 50.6 −0.22 0.35 19 – – –

Sample �-Fe Fe3C �-Fe–C

Bhf ı RA Bhf 2εQ ı RA ı RA

C0 32.9 −0.01 30 20.7 0.01 0.19 21 −0.17 24

C250 32.7 −0.01 27 20.8 0.00 0.19 16 −0.17 22

C300 32.8 0.00 25 20.9 −0.02 0.21 15 −0.17 22

C420 32.7 −0.01 25 20.8 0.03a 0.19a 7 −0.17 22

C540 32.8 0.00 24 20.8 0.03a 0.19a 6 −0.17 22

C670 32.8 0.00 21 – – – – −0.17 22

C850 32.9 −0.01 12 − − − − −0.17 20

C1300 – – – – – – – – –

Bhf: hyperfine field at maximum of the distribution (T); 2εQ: quadrupole shifts (mm/s); �EQ: quadrupole splitting at maximum distribution (mm/s); ı: isomer shifts (mm/s);

RA: relative spectral areas (%). The values of isomer shifts are with reference to metallic iron.
a Fixed parameters.

part of Table 3 contains the RA values of the cementite and alu-

mina phases, RAc and RAa, respectively, calculated from the in situ

HTTMS (data from Table 2). The sum RAc + RAha (TMS) and the sum

RAc + RAa (HTTMS) remain constant at ∼50%, except for the high-

est temperature of 850 ◦C at which RAc + RAha has increased to 61%.

For this latter temperature, the �-Fe contribution has dropped to

21% from the otherwise constant value of ∼30% found for the lower

temperatures (Table 2). This indicates that part of the �-Fe particles

has oxidized, presumably forming �-Fe2O3. Hematite is paramag-

netic at high temperatures (T > 668 ◦C) and hence gives rise to a

doublet with hyperfine parameters that are very similar to those of

the present (Al,Fe)2O3 doublet [15]. As a consequence, the hematite

Fig. 7. HTTMS spectra collected at selected temperatures. Solid envelops are the results of fitting the experimental data by model-independent hyperfine-parameter distri-

butions. �-Fe (red); Fe3C (blue); Fe3+ in (Al,Fe)2O3 (green); �-Fe–C (cyan). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article.)



Table 2
Relevant hyperfine parameters for the components observed on the HTTMS spectra acquired at selected temperatures for the CNT–Fe–Al2O3 nanocomposite powder.

Temperature (◦C) (Al,Fe)2O3 �-Fe2O3 Fe2+ doublet

�EQ ı RA Bhf 2εQ ı RA �EQ ı RA

250 0.52 0.25 27 – – – – – – –

300 0.54 0.21 32 – – – – – – –

420 0.55 0.14 50 – – – – – – –

540 0.60 0.10 50 – – – – – – –

670 0.61 0.01 50 – – – – – – –

850 0.56 −0.04 59 – – – – – – –

25 0.57 0.31 31 50.9 −0.17 0.35 32 1.70 0.79a 7

Temperature (◦C) �-Fe Fe3C �-Fe–C

Bhf ı RA Bhf 2εQ ı RA ı RA

250 31.3 −0.07 27 15.6 0.03 0.11 23 −0.22 23

300 31.0 −0.09 28 13.3 −0.01 0.14 19 −0.23 21

420 29.7 −0.15 29 – – – – −0.26 21

540 28.4 −0.21 30 – – – – −0.31 20

670 25.7 −0.27 30 – – – – −0.36 20

850 19.9 −0.24 21 – – – – −0.49 20

25 32.4 0.00 10 – – – – −0.14 20

Bhf: hyperfine field at maximum of the distribution (T); 2εQ: quadrupole shifts (mm/s); �EQ: quadrupole splitting at maximum distribution (mm/s); ı: isomer shifts (mm/s);

RA: relative spectral areas (%). The values of isomer shifts are with reference to metallic iron.
a Fixed parameters.

doublet is obscured by and cannot be distinguished from the alu-

mina doublet. This feature explains the concomitant changes in the

RA values for the �-Fe sextet and the ferric doublet assigned to

(Al,Fe)2O3 upon increasing the measuring temperature from 670

to 850 ◦C. Based on the well-known Néel-Brown expression [16,17]

for the superparamagnetic relaxation time the size of the hematite

particles is estimated to be around 25 nm.

The data of Table 3 indicate that the oxidation of Fe3C gives

rise to �-Fe2O3, as could be expected. The reason that no hematite

sextet is observed in the HTTMS for temperatures T ≥ 250 ◦C is

believed to be the small size of the hematite particles and,

as a consequence thereof, their superparamagnetic behaviour at

temperatures exceeding some so-called blocking temperature. Evi-

dence for the small particle size is provided by the low value of

the magnetic hyperfine field for the hematite sextets in the room-

temperature TMS spectra of the heated powders (Table 1—Bhf for

bulk hematite is 51.7 T). When the temperature of the absorber

is increased to a value higher than this blocking temperature, the

Mössbauer event experiences a zero hyperfine field and the result-

ing spectrum has collapsed to a doublet with quadrupole splitting

equal to the value corresponding to the paramagnetic state, i.e.,

a doublet which remains unresolved from the (Al,Fe)2O3 doublet.

Table 3
Some relevant relative spectral areas (in % of total spectrum area) obtained from

the transmission Mössbauer spectra (TMS) collected at 25 ◦C for the CNT–Fe–Al2O3

nanocomposite powder after calcination in air at selected temperatures and as

obtained from in situ high-temperature transmission Mössbauer spectra (HTTMS)

collected at high temperatures of the CNT–Fe–Al2O3 nanocomposite powder. Esti-

mated errors are ±2%.

Sample TMS HTTMS

RAha
a RAc

b T (◦C) RAa
c RAc

b

C0d 20 21 25 20 21

C250 29 16 250 27 23

C300 33 15 300 32 19

C420 41 7 420 50 –

C540 43 6 540 50 –

C670 51 – 670 50 –

C850 61 – 850 59 –

a Sum for hematite and alumina component.
b Cementite component.
c Alumina component.
d Results for parent non-calcined powder.

According to the results of Bodker and Morup [18] �-Fe2O3 particles

with average particle size of 27 nm, which is about the size of the

particles expected for the presently involved hematite phase, have

a median blocking temperature of 70 ◦C. Such particles, if their size

were rather uniform, which can be expected in the present case,

Fig. 8. TMS (a) and ILEEMS (b) spectra (at 25 ◦C) collected after the HTTMS

measurements. Solid envelops are the results of fitting the experimental data

by model-independent hyperfine-parameter distributions. �-Fe (red); �-Fe2O3

(brown); Fe3+ in (Al,Fe)2O3 (green); Fe2+ in FeAl2O4 (yellow); �-Fe–C (cyan). (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of the article.)



would thus give rise to a well-defined sextet at 25 ◦C and a doublet

at 250 ◦C or higher.

The absence of the Fe2+ due to FeAl2O4 phase in all of the HTTMS

spectra is believed to be due to the weak contribution of this com-

ponent (5% for sample C0, Table 1), which is then overlapped by the

other components in the central part of the spectra.

After acquisition of the HTTMS at 850 ◦C and subsequent cooling

down the sample to room temperature in air, its spectrum was again

measured in TMS (Fig. 8a). The hyperfine parameters of the various

components that could be resolved from that spectrum (Table 2)

were found to be very similar to those obtained from the TMS for

C850 (Table 1). An ILEEMS measurement at 25 ◦C for the powder

resulting from HTTMS measurements was performed (Fig. 8b). The

emission spectrum has the same shape and spectral components

as does the HTTMS spectrum at 25 ◦C (Fig. 8a). The contributions

of all components, i.e., hematite, �-Fe, �-Fe–C, Fe3+ doublet and

Fe2+ doublet are, within experimental errors limits, the same for

the respective HTTMS and ILEEMS spectra indicating that all Fe-

containing phases are evenly distributed between the bulk and the

outer porosity on the one hand and at the surface of the grains on the

other hand. It should be mentioned that the hyperfine parameters

of all components obtained from the ILEEMS are within error limits

identical to the values fitted to the HTTMS spectrum at 25 ◦C.

4. Conclusions

The thermal stability of a CNT–Fe–Al2O3 nanocomposite pow-

der was studied using notably TGA and Mössbauer spectroscopy. In

particular, in situ high-temperature transmission Mössbauer spec-

troscopy was performed for the first time on such materials. The

oxidation process of the powder is characterized by several steps.

The first weight gain (150–300 ◦C) was attributed to the oxida-

tion into hematite (�-Fe2O3) of the �-Fe and Fe-carbide particles

located at the surface and in the open porosity of the alumina grains,

whereas a weight loss (300–540 ◦C) was thought to be the oxida-

tion of carbon found as CNTs and graphene layers surrounding the

Fe and Fe3C particles. The formation of hematite was observed to

start at about 250 ◦C. It was demonstrated that the hematite par-

ticles are superparamagnetic at temperatures equal to 250 ◦C or

higher and were found to be approximately 25 nm in diameter. A

remarkable aspect is that �-Fe–C is unaffected even after oxidation

at 850 ◦C. It was suggested that the encapsulation of �-Fe–C par-

ticles by graphene layers leads to the stability of these particles,

i.e. retention of � (face-centered cubic) structure and in addition

prevents them from oxidation. With the increase in calcination tem-

perature, the graphene layers are oxidized and a very thin layer of

�-Fe2O3 is formed at the surface of the �-Fe–C particles, preventing

the complete oxidation of the �-Fe–C particles until at least 850 ◦C,

while helping to retain the face-centered cubic structure. Finally,

two successive weight gains at 670 and 1120 ◦C could correspond

to the oxidation of the intragranular �-Fe particles and the �-Fe–C

particles.
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