14 research outputs found

    Block-Chain-Based Vaccine Volunteer Records Secure Storage and Service Structure

    Get PDF
    Accurate and complete vaccine volunteer’s data are one valuable asset for clinical research institutions. Privacy protection and the safe storage of vaccine volunteer’s data are vital concerns during clinical trial services. The advent of block-chain technology fetches an innovative idea to solve this problem. As a hash chain with the features of decentralization, authentication, and resistibility, blockchain-based technology can be used to safely store vaccine volunteer clinical trial data. In this paper, we proposed a safe storage method to control volunteer personal /clinical trial data based on blockchain with storing on cloud. Also, a service structure for sharing data of volunteer’s vaccine clinical trials is defined. Further, volunteer blockchain features are defined and examined. The projected storage and distribution method is independent of any third person and no single person has the complete influence to disturb the processing.

    IMPROVE THE PERFORMANCE OF AODV UNDER BLACKHOLE ATTACK IN MANET

    Get PDF
    The Mobile Ad-hoc Network is an infrastructure-less network in which each mobile node can communicate with other node without any fixed network. In view of this, the networks are vulnerable to various kind of attacks such as black hole attack, gray hole attack etc. The black hole attack is one of the cruel attacks in Mobile Ad-hoc NETwork (MANET). The simulation is carried out using MATLAB and analyzes the black hole attack in Ad-hoc On-demand Distance Vector (AODV) routing protocol and compared the performance of packet delivery ratio and delay with existing algorithm Hash_DSR. The result shows that the Hash_AODV is better than the Hash_DSR

    A Real-time Range Finding System with Binocular Stereo Vision

    Get PDF
    To acquire range information for mobile robots, a TMS320DM642 DSP-based range finding system with binocular stereo vision is proposed. Firstly, paired images of the target are captured and a Gaussian filter, as well as improved Sobel kernels, are achieved. Secondly, a feature-based local stereo matching algorithm is performed so that the space location of the target can be determined. Finally, in order to improve the reliability and robustness of the stereo matching algorithm under complex conditions, the confidence filter and the left-right consistency filter are investigated to eliminate the mismatching points. In addition, the range finding algorithm is implemented in the DSP/BIOS operating system to gain real-time control. Experimental results show that the average accuracy of range finding is more than 99% for measuring single-point distances equal to 120cm in the simple scenario and the algorithm takes about 39ms for ranging a time in a complex scenario. The effectivity, as well as the feasibility, of the proposed range finding system are verified

    Improving the Performance of Multi-Hop Wireless Networks by Selective Transmission Power Control

    Get PDF
    In a multi-hop wireless network, connectivity is determined by the link that is established by the receiving signal strength computed by subtracting the path loss from the transmission power. Two path loss models are commonly used in research namely two-ray ground and shadow fading, which determine the receiving signal strength and affect the link quality. Link quality is one of the key factors that affect network performance. In general, network performance improves with better link quality in a wireless network. In this study, we measure the connectivity and performance in a shadow fading path loss model, and our observations shows that both are severely degraded in this path loss model. To improve network performance, we propose power control schemes utilizing link quality to identify the set of nodes required to adjust the transmission power in order to improve the network throughput in both homogeneous and heterogeneous multi-hop wireless networks. Numerical studies to evaluate the proposed schemes are presented and compared.\ud \ud \ud \ud \ud \u

    SOCIOPATH: In Whom You Trust?

    Get PDF
    Distributed systems are getting more and more numerous, complex and used in a wide variety of applications. New solutions and new architectures arise (e.g., clouds) that support new functionalities (e.g., social networks) and pile up several software layers. This evolution implies new non negligible dependences increasing in the number of actors involved in the system (e.g., providers and users). Some undesirable dependences could be hidden by this layer stacking, implying a reduced transparency for users and a misunderstanding of her actual autonomy. Given that any software is directly dependent of the underlying layers, if any of these layers misbehaves, the given software may be unable to provide promised services. We argue that users should be aware of the potential risks resulting from their dependences. To be able to deduce those dependences, one should know the way the system works (architecture, involved resources, providers, participants, etc.). This would help to deduce the potential trust a user could or should have toward the system. We consider this of utmost importance, as professional efficiency and personal privacy could be compromised if untrusted actors control the access to resources. This work proposes SOCIOPATH, a generic meta-model that allows to expose hidden or implied relationships among participants in the digital world, which also introduce dependences at the social level. The notions presented in this approach are basics of many fields, like security, privacy, trust, sociology, economy and so forth. SOCIOPATH can be used in the evaluation process of a system as well as in its upstream design

    Evaluating spatial and frequency domain enhancement techniques on dental images to assist dental implant therapy

    Get PDF
    Dental imaging provides the patient's anatomical details for the dental implant based on the maxillofacial structure and the two-dimensional geometric projection, helping clinical experts decide whether the implant surgery is suitable for a particular patient. Dental images often suffer from problems associated with random noise and low contrast factors, which need effective preprocessing operations. However, each enhancement technique comes with some advantages and limitations. Therefore, choosing a suitable image enhancement method always a difficult task. In this paper, a universal framework is proposed that integrates the functionality of various enhancement mechanisms so that dentists can select a suitable method of their own choice to improve the quality of dental image for the implant procedure. The proposed framework evaluates the effectiveness of both frequency domain enhancement and spatial domain enhancement techniques on dental images. The selection of the best enhancement method further depends on the output image perceptibility responses, peak signal-to-noise ratio (PSNR), and sharpness. The proposed framework offers a flexible and scalable approach to the dental expert to perform enhancement of a dental image according to visual image features and different enhancement requirements

    Uncertainty and Congestion Elimination in 4G Network Call Admission Control using Interval Type-2 Intuitionistic Fuzzy Logic

    Get PDF
    The management and control of the global growth and complex nature of wireless Fourth Generation (4G) Networks elicits the need for Call Admission Control (CAC). However, CAC faces the challenge of network congestion, thereby deteriorating the network Quality of Service (QoS) due to inherent imprecision and uncertainties in the QoS data which leads to difficulties in measuring some objective and constraints of QoS using crisp values. Previous researches have shown the strength of Interval Type-2 Fuzzy Logic System (IT2FLS) in coping adequately with linguistic uncertainties. Intuitionistic fuzzy sets (IFSs) have indicated their ability to further reduce uncertainty by handling conflicting evaluation involving membership (M), nonmembership (NM) and hesitation. This paper applies the Interval Type-2 Intuitionistic Fuzzy Logic System (IT2IFLS) in solving CAC problem in order to achieve a better QoS in 4G Networks

    The dynamic counter-based broadcast for mobile ad hoc networks

    Get PDF
    Broadcasting is a fundamental operation in mobile ad hoc networks (MANETs) crucial to the successful deployment of MANETs in practice. Simple flooding is the most basic broadcasting technique where each node rebroadcasts any received packet exactly once. Although flooding is ideal for its simplicity and high reachability it has a critical disadvantage in that it tends to generate excessive collision and consumes the medium by unneeded and redundant packets. A number of broadcasting schemes have been proposed in MANETs to alleviate the drawbacks of flooding while maintaining a reasonable level of reachability. These schemes mainly fall into two categories: stochastic and deterministic. While the former employs a simple yet effective probabilistic principle to reduce redundant rebroadcasts the latter typically requires sophisticated control mechanisms to reduce excessive broadcast. The key danger with schemes that aim to reduce redundant broadcasts retransmissions is that they often do so at the expense of a reachability threshold which can be required in many applications. Among the proposed stochastic schemes, is counter-based broadcasting. In this scheme redundant broadcasts are inhibited by criteria related to the number of duplicate packets received. For this scheme to achieve optimal reachability, it requires fairly stable and known nodal distributions. However, in general, a MANETs‟ topology changes continuously and unpredictably over time. Though the counter-based scheme was among the earliest suggestions to reduce the problems associated with broadcasting, there have been few attempts to analyse in depth the performance of such an approach in MANETs. Accordingly, the first part of this research, Chapter 3, sets a baseline study of the counter-based scheme analysing it under various network operating conditions. The second part, Chapter 4, attempts to establish the claim that alleviating existing stochastic counter-based scheme by dynamically setting threshold values according to local neighbourhood density improves overall network efficiency. This is done through the implementation and analysis of the Dynamic Counter-Based (DCB) scheme, developed as part of this work. The study shows a clear benefit of the proposed scheme in terms of average collision rate, saved rebroadcasts and end-to-end delay, while maintaining reachability. The third part of this research, Chapter 5, evaluates dynamic counting and tests its performance in some approximately realistic scenarios. The examples chosen are from the rapidly developing field of Vehicular Ad hoc Networks (VANETs). The schemes are studied under metropolitan settings, involving nodes moving in streets and lanes with speed and direction constraints. Two models are considered and implemented: the first assuming an unobstructed open terrain; the other taking account of buildings and obstacles. While broadcasting is a vital operation in most MANET routing protocols, investigation of stochastic broadcast schemes for MANETs has tended to focus on the broadcast schemes, with little examination on the impact of those schemes in specific applications, such as route discovery in routing protocols. The fourth part of this research, Chapter 6, evaluates the performance of the Ad hoc On-demand Distance Vector (AODV) routing protocol with a route discovery mechanism based on dynamic-counting. AODV was chosen as it is widely accepted by the research community and is standardised by the MANET IETF working group. That said, other routing protocols would be expected to interact in a similar manner. The performance of the AODV routing protocol is analysed under three broadcasting mechanisms, notably AODV with flooding, AODV with counting and AODV with dynamic counting. Results establish that a noticeable advantage, in most considered metrics can be achieved using dynamic counting with AODV compared to simple counting or traditional flooding. In summary, this research analysis the Dynamic Counter-Based scheme under a range of network operating conditions and applications; and demonstrates a clear benefit of the scheme when compared to its predecessors under a wide range of considered conditions
    corecore