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Abstract 

Broadcasting is a fundamental operation in mobile ad hoc networks (MANETs) crucial to 

the successful deployment of MANETs in practice. Simple flooding is the most basic 

broadcasting technique where each node rebroadcasts any received packet exactly once. 

Although flooding is ideal for its simplicity and high reachability it has a critical 

disadvantage in that it tends to generate excessive collision and consumes the medium by 

unneeded and redundant packets.  

A number of broadcasting schemes have been proposed in MANETs to alleviate the 

drawbacks of flooding while maintaining a reasonable level of reachability. These schemes 

mainly fall into two categories: stochastic and deterministic. While the former employs a 

simple yet effective probabilistic principle to reduce redundant rebroadcasts the latter 

typically requires sophisticated control mechanisms to reduce excessive broadcast. The key 

danger with schemes that aim to reduce redundant broadcasts retransmissions is that they 

often do so at the expense of a reachability threshold which can be required in many 

applications.  

Among the proposed stochastic schemes, is counter-based broadcasting. In this scheme 

redundant broadcasts are inhibited by criteria related to the number of duplicate packets 

received. For this scheme to achieve optimal reachability, it requires fairly stable and 

known nodal distributions. However, in general, a MANETs‟ topology changes 

continuously and unpredictably over time.  

Though the counter-based scheme was among the earliest suggestions to reduce the 

problems associated with broadcasting, there have been few attempts to analyse in depth 

the performance of such an approach in MANETs. Accordingly, the first part of this 

research, Chapter 3, sets a baseline study of the counter-based scheme analysing it under 

various network operating conditions. 

The second part, Chapter 4, attempts to establish the claim that alleviating existing 

stochastic counter-based scheme by dynamically setting threshold values according to local 

neighbourhood density improves overall network efficiency. This is done through the 

implementation and analysis of the Dynamic Counter-Based (DCB) scheme, developed as 

part of this work. The study shows a clear benefit of the proposed scheme in terms of 



 

III 

average collision rate, saved rebroadcasts and end-to-end delay, while maintaining 

reachability. 

The third part of this research, Chapter 5, evaluates dynamic counting and tests its 

performance in some approximately realistic scenarios. The examples chosen are from the 

rapidly developing field of Vehicular Ad hoc Networks (VANETs). The schemes are 

studied under metropolitan settings, involving nodes moving in streets and lanes with 

speed and direction constraints. Two models are considered and implemented: the first 

assuming an unobstructed open terrain; the other taking account of buildings and obstacles. 

While broadcasting is a vital operation in most MANET routing protocols, investigation of 

stochastic broadcast schemes for MANETs has tended to focus on the broadcast schemes, 

with little examination on the impact of those schemes in specific applications, such as 

route discovery in routing protocols. The fourth part of this research, Chapter 6, evaluates 

the performance of the Ad hoc On-demand Distance Vector (AODV) routing protocol with 

a route discovery mechanism based on dynamic-counting. AODV was chosen as it is 

widely accepted by the research community and is standardised by the MANET IETF 

working group. That said, other routing protocols would be expected to interact in a similar 

manner. The performance of the AODV routing protocol is analysed under three 

broadcasting mechanisms, notably AODV with flooding, AODV with counting and AODV 

with dynamic counting. Results establish that a noticeable advantage, in most considered 

metrics can be achieved using dynamic counting with AODV compared to simple counting 

or traditional flooding.  

In summary, this research analysis the Dynamic Counter-Based scheme under a range of 

network operating conditions and applications; and demonstrates a clear benefit of the 

scheme when compared to its predecessors under a wide range of considered conditions.  
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Chapter 1  

Introduction 

Mobile wireless networks are an appealing and fast growing option to extend or provide 

means of communication where it is hard or impractical to use a fixed wired network. 

Mobility, reduced installation time and long-term cost savings are some of the wireless 

networks‟ benefits. Wireless mobile networks can be categorised  as [1]: Wireless Local 

Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs) and Wireless 

Wide Area Networks (WWANs). This classification is based on network size and 

geographic span. To add to the classification completeness it is essential to add one more 

network type, which is the Wireless Personal Area Network (WPAN).  wireless network 

types [1-4] could be summarised with the following table: 

Table 1-1: Types of wireless networks 

Network 

type 

Technology 

standard 
Commercial name Size 

WPAN IEEE 802.15 ZigBee, Bluetooth  Room size 

WLAN IEEE 802.11 Wi-Fi Building size 

WMAN IEEE 802.16 WiMAX City size 

WWAN 
UMTS, GSM and  

IEEE 802.20 

 

MBWA 
Earth size  

 

Wireless PAN (WPAN) targets short-range communication of a person or a device forming 

a piconet. This is a network of users connected in a master slave fashion, where each 

piconet has one master and several slaves.  

Wireless LANs (WLANs) are further classified by the IEEE 802.11 standard into two 

operational modes [5]: infrastructure-based and ad hoc as depicted in Figure 1-1. The 

former type of networks incorporates access points that facilitate wireless connection from 

and to network users.  

Mobile Ad hoc NETworks (MANETs) are  autonomous systems consisting of a set of 

mobile stations, (called also nodes) that are free to move without the need for a wired 

backbone or a fixed base station [3, 6, 7]. A node is “any device that contains an IEEE 

802.11-conformant medium access control (MAC) and physical layer (PHY) interface to 

the wireless medium” [8]. MANET‟s mobile nodes can be arbitrarily located and are free 

to roam at any given time. Moreover, node mobility can vary from almost stationary to 
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constantly moving nodes. Consequently, network topology and interconnections between 

nodes can change rapidly and unpredictably. Additionally, there are no dedicated routers: 

each node in a MANET acts as a router and is responsible for discovering and maintaining 

routes to other nodes [9].  

Wired Network

Access

Point

Mobile Node
W

ire
less

 L
ink

(a) (b)Server
 

Figure 1-1: Wireless Local Area Networks. (a) Infrastructure-based wireless network (b) ad hoc wireless network 

 

Wireless Sensor Networks (WSNs) are an example of MANETs. WSNs are MANETs with 

some of the following differences [10]: mobility; a sensor network‟s node is mostly 

stationary through its life time, whereas a mobile network node, as the name implies, is 

mostly mobile all the time. Energy, since mobile networks‟ nodes are expected to be 

devices held and operated by humans, it is likely for their batteries to be recharged or 

replaced; this is much less of an option with sensors‟ batteries. Knowing that energy is 

more of a concern with sensors than with mobile network nodes, caution is needed in 

designing and developing sensor applications. An aggregation of WSNs would form a 

mesh network that is more immune to single point failure and nodes‟ disabilities.  

The IEEE 802.11 (1997) [9, 11] was one of the first standards devoted to facing the 

challenge of organizing a systematic standardised approach for WLANs [1]. This standard 

formalises the physical and MAC layers only as the upper layers (layer 3 and above) of the 

Open Systems Interconnection (OSI) model are independent of the network architecture. 

Further details on the MANET IEEE 802.11 architecture will be explained in Chapter 2.  

Wireless MAN (WMAN) basic arrangement comprises one or more base stations, multiple 

subscriber stations and sometimes a repeater station or router to provide more network 

connectivity. Examples of WiMAX networks are Mobily in Saudi Arabia [12] and Urban 

Wimax in the United Kingdom [13]. 
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Wireless WAN (WWAN) cellular systems use satellites and divide the network area into 

hexagonal cells that use multiple low-power transmitters and are served by its base station. 

Additionally IEEE 802.20 Mobile Broadband Wireless Access (MBWA) has some 

advantages over WiMAX: it provides full mobility up to 250 km/h which is vehicular 

speed [4].  

1.1 Characteristics and Limitations of MANETs 

MANETs have several key characteristics, owing to their lack of a centralized 

infrastructure.  

The first characteristic of MANETs, Figure 1-1.(b), is decentralization, with all mobile 

nodes functioning as routers and all wireless devices being interconnected to one another.   

The second characteristic of MANETs is that they possess a dynamic topology. Nodes are 

free to roam in or out of the geographical coverage area, causing rapid and unpredictable 

changes to the network topology over time. Alternative paths between a given pair of 

nodes are automatically found, after which data packets are forwarded across the multi-hop 

paths of the network [9]. To accommodate that, MANETs use different routing 

mechanisms which are further elaborated in the routing section 1.3, page 5.   

Third, MANETs operate on bandwidth-constrained variable-capacity links. This is due 

particularly to the wireless communication medium. This type of communication is 

typically subject to frequent disconnections, low throughput, high response time and lack 

of security [1, 7, 14]. Additionally, low link capacity typically leads to network congestion 

[15-17].  

Fourth, MANETs are often bound by energy constraints. This is because nodes in a 

MANET are often hand-held battery-powered wireless transmitters [16, 17].  

Fifth, a problem that emerges with MANETs as a wireless dynamic topology environment 

is the hidden and exposed terminal issues [5]. Hidden-terminal may result in a situation 

where two nodes may send to a third node simultaneously without them sensing each other 

as they are out of each other‟s range. Exposed-terminal may result in a delay of the 

transmission of a sender node because of irrelevant transmission accruing within its 

transmission range. This would imply the need for a more suitable MAC layer in oppose to 

static network environments [18]. 
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Sixth, with wireless networks there is a lack of full reachability. That is to say, the 

assumption that each node can hear every other node is invalid [8]. 

Lastly, MANETs have a heterogeneous and fragmented network infrastructure that implies 

rapid and large fluctuations in network quality of service (QoS). This can result in poor 

end-to-end performance of different transport protocols across the network [9, 14]. This 

can also result in time-varying and asymmetric signal propagation properties [8]. 

1.2 Applications of MANETs  

Mobile ad hoc networks, owing to their quick and economically less demanding 

deployment, find applications in many areas. Examples of MANET applications are ad hoc 

wireless networks between mobile laptop devices, military applications, collaborative and 

distributed computing, emergency operations, inter-vehicle communications and hybrid 

wireless network architectures. There follows a brief description of some MANET 

applications. 

Military applications: mainly military environments need autonomous and adaptive 

communication with self-configuring ability. Thus, wireless ad hoc networks are excellent 

candidates for military networks [19, 20]. The military community is redefining the way 

wars will be fought in the future, evolving towards a Network-Centric Warfare (NCW) 

paradigm [21]. Moreover, future tactical networks such as the army modernization Brigade 

Combat Team (BCT) [22] will depend heavily on the use of MANETs [23]. 

Collaborative and distributed computing: the requirement of a temporary communication 

infrastructure with minimal configuration among a group of people, in a conference, for 

example, necessitates the formation of an ad hoc wireless network. However, the design, 

development and deployment of collaborative services in MANET environments raise 

complex group management issues [24]. Several research efforts are in progress to 

construct the kind of group management infrastructures required to support collaborative 

applications in MANETs [25-27]. All solutions share a common design principle to 

consider user location as the key grouping criterion: users can collaborate and are assumed 

to belong to the same group as long as they are co-located [24]. 

Emergency operations: ad hoc wireless networks are very useful in emergency operations 

of search and rescue, crowd control and in areas destroyed by war or natural disasters, such 

as earthquakes. An example of emergency application is the Smart project [28]; it aims to 

create a prototype of a mobile telemedicine system including hardware and software that 
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can be rapidly deployed in rural areas or in disaster conditions.  Smart project integrates 

MIPv6 and IEEE 802.11 MANET to provide telemedicine [28]. 

Inter-Vehicle Communications: aiming at improved driving comfort and safety, inter-

vehicle communication is employed between vehicles in the same area [6, 29]. However, 

factors such as signal strength fluctuations, high mobility or channel load saturation [30] 

should be taken into consideration when designing an inter-vehicle protocol. The IEEE 

802.11p standard, also referred to as Wireless Access for the Vehicular Environment 

(WAVE), enhances the original 802.11 standard by the support for Intelligent 

Transportation Systems (ITS) [2]. Additionally, it is based on the Dedicated Short Range 

Communication (DSRC) spectrum as it addresses the needs for high node mobility and 

rapid topological changes [31]. Several organizations are interested in the development and 

deployment of Vehicular Ad hoc NETworks (VANETs) with regards to both safety and 

traffic efficiency; Carlink [32], Car-to-car [29] and IntelliDrive [33] are some examples of 

currently running VANET projects.  

Hybrid wireless networks: one of the major applications in ad hoc wireless networks is in 

hybrid wireless architecture such as Multi-hop Cellular Networks (MCN) and integrated 

Cellular Ad hoc Relay (iCAR) networks. MCN combine the reliability and support of fixed 

base stations of cellular networks with flexibility and multi-hop reliance of ad hoc wireless 

networks [9].  

1.3 Routing 

Routing in MANETs has the same principle as in its wired network counterpart: node A 

tries to send a message m to another node B using some type of routing mechanism. 

However, the design of a MANET routing protocol poses a challenging dilemma. 

Proposing a smart routing scheme should address limited resources and be adaptable to 

changing network topology in both size and traffic density [34, 35]. Packet switching 

networks typically use two classes of routing protocols: link state and distance vector 

routing. The former class of routing necessitates that each router holds an up-to-date 

version of the network connectivity graph along with each link state (up or down) stored in 

a link state database [36]. One of the main issues to be considered when designing a link 

state routing protocol is distributing link state reliably, that is ensuring consistency with 

link state information available to routers [37]. On the other hand in vector routing, each 

router maintains a routing table containing an entry for every other router in the network. 

This entry is composed of two parts: the best direction, vector, next hop leading to a 
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destination and the distance cost of reaching that destination. The distance cost metric may 

be the number of hops, the time delay or the bandwidth [37, 38]. Moreover, routers 

periodically exchange routing tables until a network realisation state is reached where each 

router has copies of each neighbouring connection [36, 39]. In MANETs in particular, 

routing protocols are further classified into table-driven (proactive); and source-initiated 

on-demand driven (reactive); and hybrid [34, 40]. Chapter 2 contains more explanation on 

MANETs routing protocols.  

1.4 Broadcasting  

Broadcasting is the process by which a given node sends a packet to all other nodes in the 

network. Broadcasting is a fundamental network element; it may be used for discovering 

neighbours, collecting global information, naming, addressing, route discovery and 

maintenance for many routing protocols; and sometimes helping in multicasting [41].  

As broadcast operation may involve redundancy and medium contention, it is crucial to 

take that into account when trying to enhance this vital operation; that is, having some 

criteria to reduce unnecessary broadcasts in a way that does not affect the overall message 

reachability [41-44].  

According to Brad and Tracy [42], broadcast techniques are categorized into four families 

utilizing the IEEE 802.11 MAC specifications [11], namely, blind flooding, probability-

based methods, area based methods and neighbour knowledge methods.  

Another way of categorizing of broadcast methods is to divide them into two groups: 

stochastic and deterministic. In deterministic schemes, a transmitting node predetermines 

its forwarding nodes before the broadcast. However, this incurs a large overhead in terms 

of time and message complexity for building and maintaining a fixed backbone, which is 

the set of forwarding nodes, especially in the presence of node failure or mobility. 

Examples include pruning [45, 46], multipoint relaying [47], node-forwarding [48], 

neighbour elimination [49] and clustering [50]. 

Stochastic schemes, in contrast, rebuild a backbone from scratch during each broadcast 

[51]. Nodes make instantaneous local decisions about whether to broadcast a message or 

not using information derived only from overheard broadcast messages. Consequently, 

these schemes incur a smaller overhead and demonstrate superior adjustment within 

changing environments when compared to deterministic schemes [52]. However, they 

typically sacrifice reachability as a trade-off against overhead.  
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Examples of stochastic broadcasting schemes are: probability-based, counter-based, and 

location-based broadcasting schemes. Before rebroadcasting a message in probability-

based schemes a node waits for a period of time called jitter or Random Assessment Delay 

(RAD), to minimize the chance of collision and to assist a better broadcast decision. 

Probability-based scheme controls rebroadcasts with fixed probability P. Nodes using 

counter-based schemes rebroadcast a message when the number of received copies of that 

message is less than some predetermined threshold value and this test is done after RAD 

(the waiting period of time) expires. In location-based schemes, a node rebroadcasts a 

message if the area within the node‟s range that is yet to be covered by the broadcast is 

greater than a threshold A.  

Both stochastic and deterministic schemes share the concept of suppressing excessive 

broadcast. The proposed scheme inherits the advantage of stochastic schemes through 

simple rebroadcast decision. However, it utilises neighbourhood information to further 

enhance the broadcast decision. That is, adjusting the counter threshold value to the current 

neighbourhood density per node. Thus, our proposed scheme is a hybrid broadcasting 

scheme. It combines the simplicity of stochastic schemes and adds the aptitude of 

neighborhood sensing. 

1.5 Motivations 

Broadcasting is an essential data dissemination mechanism that resolves many network 

issues such as route discovery in many well known routing protocols. Ad hoc On-Demand 

Distance Vector Routing is an example [53].  

Several schemes, stochastic and deterministic have been proposed to alleviate problems 

related to flooding [42, 44, 46, 51, 54-58]. Unlike deterministic schemes, stochastic 

schemes are simple to implement with low overhead [42, 44]. However, this comes with 

the trade-off between reachability and saved rebroadcasts to inhibit excessive broadcasts.  

However, some stochastic schemes rely on spatial information that is supported by the 

existence of a physical device, GPS (Global Positioning system) as in area-based scheme 

[42, 44]. In distance-based schemes, the estimated distance depends on parameters related 

to the physical environment, namely the carrier‟s wavelength and the antenna gains [44].  

Moreover, among reviewed stochastic schemes is the counter-based scheme that uses a 

fixed-threshold value on a variable density network. For this available scheme to achieve 

the highest reachability, it should be applied on a network with a stable nodal distribution, 
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a network distribution that is either sparse or dense. However, this is not the case of 

MANETs in reality, where network topology and node density in the network change 

instantly. Furthermore, Tseng et al [41] have proposed an adaptive counter-based scheme 

where they extended the fixed-threshold value into a function )(nC . Besides, they stated 

that „The function )(nC  is undefined yet‟. Being among the stochastic schemes with 

negligible overhead, counter-based broadcast was an appropriate candidate for further 

research, enhancement and study. 

Existing counter-based broadcasting schemes use a fixed-threshold value to reduce 

unnecessary broadcasts. However, this has several shortcomings.   

 First, the topology of a MANET is often random and dynamic, with varying 

degrees of node density in the different regions of the network. Therefore, fixed 

counter threshold approach suffers from unfair distribution of the threshold value 

since every node is assigned the same value of C, regardless of its local topological 

characteristics as time passes by. 

 Second, those schemes necessitate a trade-off between reachability and saved 

rebroadcast. Although the use of small threshold values provides significant 

broadcast savings, this also means that reachability decreases sharply in areas 

where the network is sparse. Increasing the value of C will improve reachability, 

but, once again, broadcast savings will be sacrificed as more rebroadcasts will 

happen [41].  

 Third, we are unaware of any proposed method to dynamically and autonomously 

change the counter threshold value per node and per time.  
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1.6 Contributions 

Motivated by the above observations, this research proposes a new dynamic counter-based 

broadcast scheme, where the counter threshold value and the RAD are dynamically set, 

utilizing local topological information. This research focus on enhancing the performance 

of broadcasting and routing in MANETs, specifically this is maintained by:  

1. Minimise the number of redundant rebroadcasts. 

2. Aid scalability by reducing collisions in dense regions. 

3. Maintain an acceptable reachability level 

4. Minimise end-to-end delay, allowing transmitted packets to be received in a timely 

manner 

To achieve the mentioned objectives, a hybrid broadcasting scheme was developed that 

comprises the simplicity of stochastic schemes and adds the capability of sensing 

neighbourhood information, namely number of neighbours for each node. The number of 

neighbours per node is known through the exchange of „Hello‟ packets within one-hop 

neighbourhood of that node.  

Essentially, nodes in sparse networks would need a higher chance to rebroadcast than 

nodes in dense networks. This could be achieved by the following mechanism: altering the 

threshold value C to adapt to network density where a large threshold value C2 is used for 

sparse networks and a small threshold value C1 for dense networks.  

This research contribution is the Dynamic Counter-Based broadcast, (DCB), where the 

threshold value is based solely on dynamic neighbourhood information. A more detailed 

discussion on DCB is found in Chapter 4.  

1.7 Thesis Statement 

Broadcasting is a vital operation in MANETs. For example, it is used in host paging, fault 

reporting and in many routing protocols to establish routes between source and destination. 

Broadcasting often relies on simple blind flooding. While this offers elevated reachability, 

it consumes high bandwidth and causes excessive redundancy and contention.  

Several broadcasting techniques have been proposed to overcome problems related to 

blind-flooding, including stochastic and deterministic schemes  [46, 50, 56, 59-61]. Among 

the stochastic schemes is the counter-based broadcasting where a node decides to 

rebroadcast a packet if the number of received duplicates is below a certain threshold 
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value. The main advantage of counter-based broadcast is that it inherits the simplicity and 

autonomous quality of stochastic broadcasting schemes compared to deterministic 

schemes. Counter-based broadcast has been shown to greatly improve saved rebroadcasts 

over blind flooding [42, 44].  

In this research I assert the following:  

T1.  While most previous studies have used a fixed counter threshold for rebroadcasting 

irrespective of the node status, this research proposes a Dynamic Counter-Based (DCB) 

algorithm that dynamically adjusts the counter threshold value as per the node‟s 

neighbourhood distribution and node movement using one-hop neighbourhood 

information. Employing neighbourhood information in forwarding decisions enhances the 

performance of existing fixed counter-based flooding in terms of reachability, saved 

rebroadcast and end-to-end delay. 

T2.  The performance properties of most proposed counter-based schemes, including 

our DCB above, have been evaluated in the context of random node movements according 

to the Random WayPoint mobility model. In this research the Metropolitan Model (MM) 

has been developed as an evolution of the existing Manhattan mobility model [62] to 

reflect scenarios where a node moves in straight lines, horizontal and vertical (i.e., streets) 

to avoid obstacles (e.g. buildings in a city) by the ability of each node to move right or left 

at each junction. When nodes move according to the Metropolitan Model the performance 

advantages of the suggested DCB become increasingly superior over the conventional 

fixed-counter scheme.  

T3.  Route discovery in reactive routing protocols could be enhanced using the DCB 

scheme stated in T1. Namely, performance results show that Ad-hoc On-Demand Distance 

Vectoring (AODV) routing would be further improved by reducing redundant 

transmissions of route request packets associated with conventional AODV. This is due to 

the fact that counting and using neighbourhood information per node to dynamically 

decide the counter threshold can significantly reduce routing overhead, packet collisions 

and end-to-end packet delay, while improving network throughput for most considered 

network scenarios. 
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1.8 Thesis Outline  

The rest of the thesis is organised as follows: 

Chapter 2 provides an overview of the related work and preliminary information necessary 

for accommodating subsequent chapters. It starts with a brief introduction on MANETs‟ 

routing protocols, proactive and reactive, getting into more details on the AODV reactive 

routing. This is followed by a section on broadcasting techniques in MANETs and several 

optimizations on the traditional flooding broadcast. Finally, there are the study 

methodology explanation, validation and justification. 

Chapter 3 includes a baseline study of the fixed counter-based broadcasting scheme. 

Moreover, it presents the performance investigation of the scheme in a range of counter 

thresholds and RAD values over different network densities and traffic loads. 

Chapter 4 introduces the Dynamic Counter-Based (DCB) broadcast scheme that combines 

the best features of stochastic and deterministic broadcast techniques, comparing the 

performance to the fixed counter-based broadcast. 

Chapter 5 presents the study of the proposed DCB broadcast scheme in a metropolitan 

environment, reflecting two scenarios, referred to as the highway and the city-model.  

Chapter 6 presents route discovery using the DCB broadcast scheme in the AODV routing 

protocol. The DCB route discovery controls excessive flooding, sensing the neighbourhood 

density and dynamically adjusting counter threshold value. 

Chapter 7 concludes this thesis by summarising primary results and highlights possible 

future research work and directions.  
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Chapter 2  

Related Work and Preliminaries  

The key objective of this chapter is to provide the background information necessary for 

understanding subsequent chapters. Hence, this chapter is organised as follows. Section 2.1 

sheds some light on MANET architecture. Section 2.2 is about routing techniques and 

broadcasting schemes in MANETs. Section 2.3 explains the study method adopted in the 

current thesis, including the simulation environment and validation approach; mobility 

models and system parameters and assumptions. Section 2.4 presents the considered 

performance metrics. Finally, Section 2.6 provides a summary of the chapter. 

2.1 MANET Architecture 

In Chapter 1 some light was shed on MANETs characteristics, limitations and applications. 

Additionally, a classification of wireless mobile networks was presented according to their 

geographic span. In this section necessary MANET technology and architecture is 

explained. 

Most of the wireless LANs specifications were developed by the IEEE 802.11 working 

group [1]. Because the higher levels of the OSI reference model are independent of the 

network architecture the scope of the IEEE 802.11 covers the lower layers of the OSI 

model, the physical and data layers [1, 63] (Figure 2-1). 

Data link layer in the IEEE 802.11 comprises two other layers: the Medium Access Control 

(MAC) layer and the Logic Link Control (LLC) layer [1]. As in any other link layer, LLC 

layer is concerned with the transmission of a link-level PDU (protocol data unit) between 

two stations. Where the MAC layer sets the rules to access the medium and send data, it 

provides the core framing operations. The Physical layer contains two sub-layers: the 

Physical Layer Convergence Procedure (PLCP) and the Physical Medium Dependent 

(PMD). The PLCP maps the MAC frames into a format suitable for radio transmission 

[63]. The PMD transmits any bits it receives from the PLCP into the radio medium using 

antennas [63, 64].  
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The IEEE 802.11 standard applies Ethernet-style networking into radio links with some 

differences stemming from WLAN characteristics such as mobility and the wireless 

communication medium. In MANETs, controlling access to the wireless medium is done 

through Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) with a 

distributed access scheme with no centralised controller [63]. Specifications of the IEEE 

802.11 are shaped mainly by the MAC as it is responsible for handling network mobility 

seamlessly so it would appear for upper layers as if it is a wired LAN [8, 63]. Additionally, 

different physical layer standards may provide different transmission speeds and data rates 

using different radio frequency modulation techniques [1, 8, 63]. The most commonly used 

standards are 802.11b, 802.11a, 802.11g and 802.11n [65]. Radio modulation or spread-

spectrum techniques fall into three main categories: Frequency Hopping (FH), Direct 

Sequence (DS) and Orthogonal Frequency Division Multiplexing (OFDM). In FH the 

system switches from one frequency channel to another in a random pattern that is known 

by both the transmitter and receiver. This makes it harder to eavesdrop the transmission 

[63]. The FH modulation supports 1 Mbps and 2 Mbps data rates [66]. The DS spread-

spectrum spreads each bit into a multi-bit code, that is, it converts a 1 Mbps into an 11 

MHz stream. Because the transmitter spreads a transmitted bit this minimizes the data loss 

[66]. The 802.11b and 802.11g standards use the DS modulation techniques. To be more 

specific 802.11b uses a high rate of DS spread spectrum (HR-DSSS) enabling the 

operation of 5.5 and 11 Mbps data rates [66]. The OFDM multiplexing provides data rates 

of 24 Mbps up to 54 Mbps. In OFDM the signal frequency is broken into n independent 

Figure 2-1: (a) OSI reference model, (b) IEEE 802 reference model 
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(orthogonal) channels. Following that the sub-channels are multiplexed [66]. This will aid 

the transmission against single fading failure [67]. The 802.11a, 802.11g and 802.11n 

standards use the OFDM modulation technique [66]. 

2.2 Routing and Broadcasting in MANETs 

Routing in MANETs is classified into three types: reactive, proactive and hybrid. The 

following sections shed some light on the different routing classes in MANETs.  

2.2.1 Table driven routing 

In table driven, proactive routing protocols each node keeps one or more tables to store 

routing information. Basically the types and number of tables and how they are updated are 

the areas in which these protocols differ [40]. Examples of such routing protocols are: 

Destination-Sequenced Distance-Vector Routing (DSDV) [68], Clusterhead Gateway 

Switch Routing (CGSR) [69], Global State Routing (GSR) [70], Fisheye State Routing 

(FSR) [71], Distance Routing Effect Algorithm for Mobility (DREAM) [72], Optimised 

Link State Routing (OLSR) [73], Topology Broadcast Reverse Path Forwarding (TBRPF) 

[74] and Wireless Routing Protocol (WRP) [34, 40, 75]. Among the listed proactive 

routing protocols is OLSR which is one of the more marked and widely studied proactive 

routing protocols [19, 73, 76]. Moreover, OLSR is a link state routing protocol as opposed 

to distance vector routing. General features of both routing classes are depicted in  

Table 2-1.   

Table 2-1: General features of two major routing classes Distance Vector and Link State Routing 

Distance Vector Routing Link State Routing 

 Transmits a node's entire routing table  

 The router informs its neighbours of topology 

changes  

 Calculates paths using the Bellman-Ford 

algorithm  

 Easy to configure and administer  

 Well suited for small networks 

 Example: Destination-Sequenced Distance-

Vector Routing (DSDV) 

 Transmits only information about the node's 

immediate neighbours 

 The router informs all the nodes in a network of 

topology changes 

 Reacts more quickly, to connectivity changes 

 Requires more storage and more computing to run 

 Examples: Global State Routing (GSR), Optimised 

link state routing (OLSR) 

 

The link state routing protocol maintains a partial map of the network. Additionally, when 

a network link changes state, a notification, called a Link State Advertisement (LSA) is 

flooded throughout the network. However, OLSR minimizes the flooding associated with a 

basic link state protocol by means of Multi-Point Relays (MPR). Additionally, the 
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difference between flooding and MPR is depicted by Raffo [77] in Figure 2-2. The solid 

black nodes are relay points that are used to forward broadcast messages instead of 

indiscriminately forwarding messages by each node in the network which may lead to 

redundancy and collision. 

 

 

2.2.2 Source-initiated on-demand routing 

In on-demand, reactive routing protocols the route is created only when desired by a source 

node. This feature enables these routing schemes to minimize the number of broadcasts to 

retrieve a valid path between source and destination. In [34] twelve on-demand routing 

protocols are investigated and compared, some of which are: Ad-hoc On-Demand Distance 

Vectoring (AODV) [53, 78], Dynamic Source Routing (DSR) [79], Associativity Based 

Routing (ABR) [9], Light-Weight Mobile routing (LMR) [80], Routing On-demand Acyclic 

Multi-path (ROAM) [81], Relative Distance Micro-Discovery Ad hoc Routing (RDMAR) 

[82], Location-Aided Routing (LAR) [83], Ant-colony-based Routing Algorithm (ARA) 

[84], Flow Oriented Routing Protocol (FORP) [85] and Signal Stability Routing (SSR) 

[86]. Among the latest routing protocols is the Dynamic MANET On-demand (DYMO) 

routing protocol [87] which is still under development. Moreover, numerous routing 

protocols are proposed as an enhancement of the widely studied AODV. Examples are: 

DOA: DSR Over AODV Routing for Mobile Ad Hoc Networks [88], Dynamic Route 

Optimization Mechanism for AODV in MANETs [89] and Optimized Ad-hoc On-demand 

Multipath Distance Vector (AOMDV) [90]. The latter is included as a routing protocol 

within the latest version of the network simulator ns-2.34. Although referencing the 

existing reactive routing protocols provides a glimpse into their variety, it is worth showing 

in more details how one of the best known and studied routing protocols works; as 

depicted briefly in Section 2.2.4 and in more details in Chapter 6. 

Figure 2-2: (a) Blind flooding and (b) MPR flooding, where solid nodes are MPRs 
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2.2.3 Hybrid routing protocols 

Hybrid routing protocols are both proactive and reactive in nature [34]. Hybrid protocols 

aim to increase scalability by allowing nodes with close proximity to proactively maintain 

routes, where nodes far from each other follow a route discovery strategy [34]. Examples 

of such protocols are: Zone Routing Protocol (ZRP) [91], Zone-based Hierarchical Link 

State (ZHLS) [92], Anchor Based Routing Protocol [93], Distributed Spanning Trees 

based routing protocol (DST) [94] and Distributed Dynamic Routing (DDR) [95]. ZRP was 

first introduced in 1997 [91]. As the name implies, it divides the network into different 

zones. The size of a zone is given by a radius expressed by number of hops. Moreover, 

ZRP has the advantage of pro-active discovery within a node's local neighbourhood 

(Intrazone Routing Protocol (IARP)) [96] and using a reactive protocol for communication 

with nodes in other zones (Interzone Routing Protocol (IERP)) [91, 97].  

While proactive routing employs large amounts of data for link maintenance, reactive 

routing may fall into network clogging by occasional excessive flooding. A reactive 

routing with controlled flooding is a more reasonable solution compared to the unnecessary 

link maintenance burden, especially in a mobile changeable topology network. Hence, only 

reactive routing has been considered in this research. The rest of this section describes the 

main functionality of a widely investigated and analysed reactive routing protocol, namely 

AODV [98]. 

2.2.4 Ad hoc On-Demand Distance Vector (AODV) Routing 

The Ad hoc On-Demand Distance Vectoring (AODV) routing protocol was introduced in 

1997 [53]. AODV, as a reactive routing protocol, reduces control traffic by originating 

path requests on-demand. This is valuable to mobile environments such as MANETs since 

maintaining a fully up-to-date route information from every node is unnecessary and would 

imply large communication overhead. 

AODV uses a destination sequence number for each routing table entry. The sequence 

number is created by the destination node. The sequence number included in a route 

request or route reply is sent to requesting nodes. Sequence numbers are important as they 

ensure loop free routing which is a required quality in MANET routing [53]. Also, 

sequence numbers are used to determine the freshness of routing information. When 

selecting a route to a destination node, a source node will prefer routes with the greatest 

sequence number as they present the most recent path. Another feature in AODV is that 

link breakage and topological changes are localised to minimise control traffic as opposed 
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to link state routing that necessitates a complete image of the network connectivity graph 

to be present at each node. More details on AODV routing mechanism is depicted in 

Chapter 6. 

2.2.5 Broadcasting  

Broadcasting in MANETs is an essential component for mobile routing protocols [79, 98]. 

Simple flooding is the conventional mechanism used to broadcast a message to mobile 

network nodes. Essentially, flooding happens when a source node disseminates a packet to 

all network nodes. Eventually, each of those receivers rebroadcasts the packet once it is 

received for the first time. If a duplicate packet is received it is simply dropped. This 

behaviour continues until all reachable nodes receive the packet. Though this approach 

offers simple implementation with high guaranteed reachability, it produces high 

transmission overhead and can cause, what is referred to  as a broadcast storm [41, 43, 44, 

99] 

Two main schemes are discussed in the literature to alleviate the drawbacks of simple 

flooding: stochastic schemes and deterministic schemes. The stochastic approach inhibits 

some hosts from rebroadcasting to reduce redundancy, and hence, collision and contention. 

The decision whether or not to rebroadcast a particular received packet in these methods is 

taken individually by each node receiving that packet. The decision is simply direct: to 

rebroadcast or drop. On the other hand, in deterministic methods nodes utilize information 

gathered from neighbourhoods that may be up to three-hops‟ distance to determine which 

of these neighbours should have a copy of the broadcast packet forwarded to them. The 

decision here is somewhat more elaborate as opposed to the stochastic methods, since it 

involves the explicit selection of a subset of neighbouring nodes. In MANETs some of the 

stochastic and deterministic methods share the key element of localized decision making. 

That is, the decision is made independently at each node without relying on global network 

information or infrastructure. However, deterministic methods demand accurate 

neighbourhood information and up-to-date topology information to ensure coverage, and 

this can be a significant challenge in a high mobility network topology.   

2.2.5.1 Deterministic Broadcasting Schemes 

Deterministic approaches are classified according to the type of neighbourhood 

information used [100] as either location-information-based or neighbour-set-based 

broadcast protocols. The former approach needs special additional hardware to provide 

location information such as the existence of a GPS [100] whereas the latter approach uses 
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neighbourhood information only to select a forward node set: a small set of nodes that 

forwards the broadcast packet [101]. In the following, some of the more common 

deterministic schemes are introduced. 

Self-Pruning 

This protocol requires that each node has knowledge of its one-hop neighbours which is 

obtained via the periodic exchange of „Hello‟ packets. A node includes its list of known 

neighbours in the header of each broadcast packet. A node receiving a broadcast packet 

compares its neighbour‟s list to the sender‟s neighbour list. If the receiving node would not 

reach any additional nodes, rebroadcast is inhibited; otherwise the node rebroadcasts the 

packet [46, 54]. 

Scalable Broadcast 

The Scalable Broadcast Algorithm (SBA) requires that all nodes have knowledge of their 

neighbours within two-hop distance. This neighbour knowledge, coupled with the identity 

of the node from which a packet is received, allows a receiving node to determine if it 

would reach additional nodes by rebroadcast. Two-hop neighbour knowledge is achievable 

via the periodic exchange of „Hello‟ packets; each „Hello‟ packet contains the node‟s 

identifier (IP address) and the list of known neighbours. After a node receives a „Hello‟ 

packet from all its neighbours, it has two-hop topology information centred in itself [99].  

Dominant Pruning 

In dominant pruning, the sending node selects adjacent nodes that should relay the packet 

to complete the broadcast. Nodes instruct neighbours to rebroadcast by including their 

addresses as part of a list in each broadcast packet header. When a node receives a 

broadcast packet it checks the header to see if its address is part of the list. If so, it uses a 

Greedy Set Cover algorithm to determine the largest set of neighbours that are not covered 

yet by the sender‟s broadcast [55].  

The Set Cover algorithm is a way to select a set of items that are packed in a fixed set of 

lots. The aim is to obtain all items with the minimal number of lots. The greedy heuristic 

begins by placing the largest subset in the set cover and marking all its elements as 

covered. Then, it repeatedly adds the subset containing the largest number of uncovered 

elements until all elements are completely covered [102]. An example of the Set cover 

problem is depicted in Figure 2-3. 
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Cluster-Based 

Previous methods were based on statistical and topological models which estimate the 

additional coverage of rebroadcast. However, clustering methods are based on graphic 

theoretical concepts. The idea of clustering is basically done by electing a cluster head; all 

surrounding nodes of a head are members of the cluster identified by the cluster head. 

Within a cluster, a member that can communicate with a node in another cluster is a 

gateway [50]. Using this formation, only cluster heads and gateways are allowed to 

rebroadcast messages. However, the overhead of cluster formation and maintenance; the 

required explicit control message exchange and the stationary assumption for cluster 

formation are costs that cannot be ignored [103]. 

2.2.5.2 Stochastic Broadcasting Schemes 

Stochastic schemes aim to alleviate the flooding problem by reducing the possibility of 

redundant broadcasts. The decision to inhibit rebroadcast is made directly by a node and 

assisted either by information induced from the network topology, such as in counter-

based, area-based, and distance-based schemes, or by a predefined probability threshold 

value as in probability-based scheme. There follows an outline of some of the stochastic 

schemes.  

Probability-Based 

The probability-based schemes alleviate problems associated with simple flooding, mainly 

by deciding whether to rebroadcast a message or not based on a fixed probability P. 

Clearly, when    , the scheme is reduced to blind flooding [42, 44, 104]. These schemes 

operate as follows: when a node i receives a broadcast message, it starts a random delay 

timer. When the timer expires, the node rebroadcasts the message with probability P. This 

Figure 2-3: An example of the Set Cover algorithm: Input (a), output (b) 
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random delay ensures that the rebroadcast time is differentiated to minimize collision and 

contention [42].  

Adjusted Probability-Based 

Several improvements to the probability-based scheme are proposed [59, 60, 105]. The 

Dynamic Probabilistic Broadcast [59] enhances probabilistic broadcast by sensing or 

counting the number of received packets Pc and using this number as an indicator of 

network density. If Pc is high, this implies that the node is located in a dense area and 

should use a low probability P and vice versa. Nevertheless, adjusted probability-based 

broadcast [60, 105] improves the conventional probability-based algorithm by utilizing 

neighbourhood information. Moreover, it indicates the number of neighbours using „Hello‟ 

packets to aid the selection of a probability that is density adapted.  

Gossip-Based 

Gossip-based broadcast, or so-called epidemic broadcast algorithm [56, 57]  is similar to 

probability-based broadcast in that it attempts to control flooding by forwarding a 

broadcast message with a fixed probability. However, gossiping methods broadcast the 

message to only one randomly selected neighbour [106] rather than to all neighbours, as in 

probability-based broadcast. Additionally, gossip broadcast is aimed and developed mostly 

for Sensor Networks and gossiping was proposed to reduce the overhead of routing 

protocols that are typically dependent on flooding. Gossiping was combined with Ad-hoc 

On-Demand Distance Vectoring (AODV) to prove a significant improvement over the 

conventional AODV [61]. 

Adaptive Gossip 

Several proposed variants of the gossip-based protocols are designed to be adaptive; that is, 

the transmission decision is based on local information gathered passively, through 

listening, or actively, through issuing query messages to neighbours [107]. Examples of the 

proposed adaptive Gossip-based protocols are Information via Negotiation (SPIN) [106, 

107], Push&Pull [107], GOSSIP1(p, k), GOSSIP2(p1, k, p2, n) and GOSSIP3(p, k, m) [61]. 

The proposed protocols are dedicated for sensor settings; however, there is no obvious 

reason why they should not be employed in MANETs. Each of the proposed protocols 

makes use of local information in a different way. For example, GOSSIP1(p, k) starts 

gossiping with probability = 1 for the first k hops and with probability = p for the 

remaining hops. That would minimize the likelihood of the gossip to dying early. 
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Additionally,  GOSSIP1(1, 1) is equivalent to flooding, since the probability of all nodes, 

including the one responsible for sending the first time is equal to 1.  

The advantage of starting the gossip with     for the first hop is obvious when the 

sender node has few one-hop neighbours and more neighbours on the two-hop and so 

forth. However, when the situation is reversed, that is when a node is located in a dense 

one-hop neighbourhood and has few two-hop neighbours this would degrade the overall 

packet reachability. GOSSIP2 (p1, k, p2, n) performs better in randomly distributed 

networks where dense regions may exist. Moreover, GOSSIP2 works in a similar manner 

to GOSSIP1. However, it introduces two new features p2 and n such that, if a node has 

fewer than n neighbours, it instructs its immediate neighbours to broadcast with probability 

p2 rather than p1 where p2 > p1. 

Location-based 

In location-based schemes, nodes are expected to have some means of identifying their 

exact location, in order to estimate the additional coverage more precisely and decide 

whether to rebroadcast the message. The detailed process of the scheme works as follows 

[44]. Let a host‟s location be (0, 0). Suppose a host has received the same broadcast 

message from k hosts located at (x1, y1), (x2, y2), . . . , (xk, yk). The additional area that can 

be covered can be calculated as follows, provided that the host rebroadcasts the message. 

Let AC((x1, y1), (x2, y2), . . . , (xk, yk)) denote the additional coverage divided by πr
2 

which 

is the area of a circle that represents the transmission range of a node. Then this value is 

compared to a predefined coverage threshold Ath to determine whether the receiving host 

should rebroadcast or not.  

Counter-based 

The counter-based scheme is based on the idea of the inverse relation between the number 

of duplicate broadcast messages received and the Expected Additional Coverage (EAC) 

[42, 44].  EAC is defined as the number of additional nodes which would be reached if the 

current node is to forward the message. The idea of EAC is depicted by an example in 

Figure 2-4. The white nodes are source nodes that initiate the broadcast transmission, and 

the solid black nodes are nodes used to clarify the idea; referred to as (black-a, black-b). 

Apparently, black-a neighbourhood density is higher than that of black-b. Thus, the 

number of duplicate broadcast messages that would be received by black-a is higher as 

well. Moreover, it is likely that the nodes within the transmission range of black-a would 
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already have been reached by other forwarding nodes. Therefore, the EAC of black-a is 

lower than the EAC of black-b.  

 

 

The counter-based broadcast works as follows when receiving a message for the first time: 

a counter c is set to keep track of the number of duplicate messages received. A Random 

Assessment Delay RAD timer is set. The RAD is simply a time delay randomly chosen 

between 0 and Tmax seconds, where Tmax is the highest possible delay interval. This delay is 

necessary for two reasons. First, it allows nodes adequate time to receive redundant 

packets and assess whether to rebroadcast or not. Second, the randomized scheduling 

minimises the likelihood of collisions to happen [42]. As soon as the RAD timer expires, 

the counter is tested against a fixed-threshold value C; broadcast is inhibited if Cc  . The 

counter-based broadcast algorithm is proposed by Tseng et al [44]. Furthermore, Tseng et 

al [44] have proposed an adaptive counter-based scheme where they extended the fixed-

threshold value into a function )(nC  where n is the number of neighbours of the host under 

consideration. Additionally, they stated that „The function )(nC  is undefined yet‟. The 

counter-based broadcast is further examined and explained in Chapter 3.  

2.2.5.3 Counter-Based Related Schemes 

Other variants of the counter-based broadcast scheme include Color-based [51] and 

Distance-aware [58] counter-based broadcast schemes. Both schemes are described briefly 

in the following sections. 

Color-Based Broadcast 

Keshavarz-Haddad et al [51] have proposed the color-based broadcast scheme. The main 

idea behind this scheme is appending colours to broadcast messages. Using η colours C1, 

C2, . . . , Cη each node transmitting a packet selects a colour which it writes to a colour 

field present in the broadcast packet. The algorithm executes in such a way that all nodes 

which hear the message rebroadcast it, unless they have heard all η colours by the time a 

(a) (b) 

Black-b Black-a 

Figure 2-4: Example of Expected Additional Coverage 
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random timer expires. Although, the color-based broadcast is a promising scheme, it has 

some shortcomings that are summarized in the following points: 

The proposed scheme suffers from the same drawback as the fixed counter-based approach 

in that it scores high efficiency only when used with homogeneous density networks, e.g. 

when the network is sparse η =3, and when dense η =2. 

Keshavarz-Haddad et al have stated that when increasing η, reachability increases. 

However, they also claim that there is no such threshold value that can provide full 

reachability for any arbitrary connected network. 

This research aims to prove that the threshold value can be adapted autonomously and 

dynamically by nodes utilizing neighbourhood information. 

Distance-Aware Counter-Based Broadcast  

Chen et al [58] have proposed the „DIS RAD‟ algorithm that is based on the counter-based 

algorithm proposed by Ni et al [44]. This algorithm introduces the concept of distance into 

the counter-based broadcast scheme by giving nodes closer to the node transmission range 

border a higher rebroadcast probability since they create better Expected Additional 

Coverage (EAC). The proposed algorithm runs as follows. First, the source node initiates a 

broadcast request. All of its neighbour nodes increase their counters as soon as they receive 

the broadcast message. The border nodes initiate an SRAD
*
 and interior nodes initiate an 

LRAD. The remaining procedure is the same as in the counter-based scheme. Nodes 

increase their counters by 1 when hearing a duplicated message during RAD. When the 

RAD expires, if the nodes' counters exceed the threshold value, then the broadcast is 

blocked. Otherwise, the broadcast packets are sent out.  

Adapting the concept of distance in the counter-based broadcast has improved reachability 

and saved rebroadcasts. This may be theoritically feasable assuming an open plane terrein 

with no obticales, as per the authors implementation. However, in realilty the presence of 

barriers and obstacles may affect the signal strength and hence degrade the potential of 

using distance as a dicision making foundation. 

Adjusted-Counter-Based Broadcast  

The Adjusted Counter-based algorithm [108] is based on the original counter-based 

algorithm [44]. This algorithm utilises two threshold values for dense and sparse 

                                                 
*
 SRAD stands for Short Random Assessment Delays, while LRAD stands for Long RAD 
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neighbourhood densities respectively. Moreover, this algorithm uses some spatial network 

parameters to calculate the average number of neighbours, such as network area or total 

number of nodes in the network. Effectively, the average and the current number of 

neighbours would determine the threshold value. Using spatial information to calculate the 

average number of neighbours may be synthetically feasible. However, in reality, to 

correctly implement this scheme one would need a central control mechanism to collect, 

measure and utilise spatial information. 

2.3 Method of Study 

After some consideration, simulation was chosen as the method of study in this research. 

Analytical models are of low cost with the ability to study much larger systems than 

simulation. Moreover, understanding of multi-hop wireless MANETs has increased in 

recent times [109]. However, that comes with the price of numerous simplifications and 

assumptions, especially with multi-hop wireless MANETs, and that may restrict their 

validity to a limited number of scenarios [110]. In contrast, analysis using simulation can 

incorporate more details to the level that mimics real-world scenarios.  

The scope of this study includes networks of significant sizes. Deploying a suitable 

experimental test bed would incur excessive overhead in both management and cost 

certainly well beyond available resources. Therefore, simulation was chosen as it provides 

a reasonable balance between real-world accuracy and mathematical tractability [111]. 

Another advantage of simulation is that it facilitates the comparison between protocols 

implemented under the same settings. 

2.3.1 Simulation Environment and Validation  

Several network simulators are available both commercially and as an open source, for 

MANET performance analysis studies. Among the common simulators are ns-2 [112], 

GloMoSim [113], OPNET [114], QualNet [31, 115] and OMNeT++ [110]. Figure 2-5 

shows the use of different simulators from 2001 to 2009 through IEEE conference and 

journal publications. A total of 313 publications considered on MANETs, more than half 

of which were using ns-2 as the benchmark simulator, as depicted in Figure 2-6.  Unlike 

OPNET and QualNet, ns-2 is an open source tool that is open for rapid development and 

updated along with a well documented text.  
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Figure 2-5: The use of different simulators for the MANET study 

 

 

Figure 2-6: The proportion of using different simulators for the MANETs study from 2001 to 2009 
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To evaluate the performance of the suggested broadcasting algorithm in MANETs, the ns-

2 network simulator was selected. Ns-2 is widely used throughout the literature because of 

its detailed, comprehensive and up-to-date infrastructure library for the most important 

MANET protocols. The simulation process, Figure 2-7, starts with providing the simulator 

with the mobility traces and traffic patterns. Mobility traces contain spatial data describing 

network area, location and velocity of each node over time. A traffic pattern file specifies 

packet size, number of sending nodes and packet transmission rate.  

Prior to running any simulation using ns-2, the simulator is validated using the „validation 

test suite‟ [116]. This is a set of scripts provided by the developer [112] to test various 

parts of ns-2, compare results with known values and ensure that the current environment 

is executing properly. 

To validate the extended part of ns-2, this research implements a „fixed value‟ test [117]. 

This is a validation technique that involves selecting constant input parameters and 

checking output results against expected calculated values. The validation is to simulate 

the counter-based broadcast scheme, (see the Counter-based section page: 21), over a small 

network of five stationary nodes in an area of 1000m by 1000m as shown in Figure 2-8. 

The transmission range of each node is 100m and nodes were placed in a linear way 

starting from node (0) to node (4). The nodes‟ placement code is shown in the left-hand 

column in Figure 2-8. 

Node positions are selected to ensure that a node can only communicate to its first-hop 

neighbour only. Moreover, node (0) is set to broadcast 2 packets per second for 100 

seconds simulation time. The counter threshold for the nodes is once set to zero and 

another time set to one. The aim of this validation is to achieve 100% reachability when 

the threshold counter is one and 0% delivery success when the threshold is set to zero. 

Results from this validation matched expected aim.   
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Node Placement script Network map 

 
$node_(0) set X_ 300.00 

$node_(0) set Y_ 500.00 

$node_(0) set Z_ 0.00 

$node_(1) set X_ 370.00 

$node_(1) set Y_ 500.00 

$node_(1) set Z_ 0.00 

$node_(2) set X_ 450.00 

$node_(2) set Y_ 500.00 

$node_(2) set Z_ 0.00 

$node_(3) set X_ 520.00 

$node_(3) set Y_ 500.00 

$node_(3) set Z_ 0.00 

$node_(4) set X_ 600.00 

$node_(4) set Y_ 500.00 

$node_(4) set Z_ 0.00 
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Figure 2-8: Five nodes chain topology for the validation of the counter-based 

implementation in the ns-2 simulation 

 

2.3.2 Mobility Models 

MANET nodes are often considered mobile and a mobility model describes node moving 

patterns within a simulation by generating detailed movement specifications that are 

provided to the simulation core protocols. Using a proper mobility model is crucial to a 

successful simulation study. The credibility of mobility models emerges after considering a 

real network scenario, i.e. a vehicular network, a battlefield, a university campus or a 

conference hall, then designing a simulation environment and parameters that mimic that 

actual scenario.  

Recently, mobility data fed into MANET simulations falls into two categories: real-world 

traces and synthetic traces. Real-world traces are detailed records of real-world movement; 

however, in many cases, communication data collected considers only users falling within 

the same hotspot or Wi-Fi Access Point (AP) range and not users in communication range 

of each other [118-120] . Moreover, most of the data collected from APs represent usage 

pattern, not mobility pattern, and those patterns correspond to devices mostly used while 

stationary only. That is, roaming was considered as users associating with different APs 
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while remaining at their home location [118]. Therefore, although those traces are real-

world records, they do not reflect the true communication pattern of users. Other problems 

include the time (up to years) to capture a significant amount of data [121] and privacy 

restrictions that may prohibit the collection and distribution of such data. Synthetic traces, 

on the other hand do not provide such accuracy in terms of real-life system representation 

as real-world traces; however, they enable researchers to estimate user movements in the 

absence of an appropriate real-world trace at low cost and in short-time scales. In this 

research, synthetic traces generated by coded mobility models are used. The reasons for 

this choice are the limited availability of real-world traces and the typically very high 

specificity of those that are public. A major reason for focusing on synthetic models is the 

ability to generate a variety of normal and extreme scenarios in which to test our developed 

system.  

Synthetic mobility models have been classified into entity and dependent mobility models 

[122]. Entity mobility models represent mobility patterns of nodes moving independently 

of each other. Nevertheless, dependent mobility models represent node moving patterns 

that are spatial or temporally dependent. 

In MANETs, many synthetic entity mobility models have been proposed that would 

involve random node movements with no restrictions such as the widely used Random 

WayPoint mobility model (RWP) discussed in Chapter 1. In Random WayPoint mobility 

model, each node selects a random location on the network as a destination, then travels 

towards it with a constant velocity that is selected randomly and uniformly from [0,Vmax], 

where the parameter Vmax is the maximum allowable velocity for every mobile node [123].  

Figure 2-9 (a) is a snapshot of the ns-2 network animator, nam, showing a simulation of 50 

nodes moving randomly according to the RWP mobility model.  

MANET mobility models considered in our research are: Random WayPoint mobility 

model and Metropolitan Model (MM). Metropolitan Model imitates the movement pattern 

of mobile nodes on streets defined by a map. This map is composed of a number of 

horizontal and vertical streets having one or two lanes of inverse direction. A node is 

allowed to move along a lane and to turn right or left at each intersection of a vertical and a 

horizontal street. Essentially, this model poses temporal and spatial dependency between 

nodes, and restricts node movements by geographical boundaries defined by the model 

map.  Moreover, nodal movements are based on the Manhattan mobility model defined in 
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[62]. Figure 2-9 (b) shows a snapshot of 50 nodes moving according to a pre-defined map 

with 4 vertical and horizontal streets each having two lanes of opposite direction. 

In this study a separate chapter is dedicated to study the proposed protocol under 

circumstances generated by a real-world setting. This examines MANET wireless 

transceivers-equipped vehicles in two scenarios, namely the highway scenario and the city 

scenario, with movement modeled by the MM.  

 

 

                       (a) 

 

 

                       (b) 

Figure 2-9: Ns-2 Network Animator screen plots of 50 nodes moving according to (a) Random Way Mobility model, (b) 

Metropolitan Model  

 

2.3.3 System Parameters and Assumptions   

The key parameters of our simulation study include network terrain area, mobility model, 

number of simulated nodes, minimum and maximum nodal speed, number of traffic flows 

and transmission rates. Our conducted simulation system settings include identical mobile 

nodes operating in a flat area of size 1000m x 1000m. For all simulated scenarios the 

simulation runs for 900 seconds to avoid immature simulation termination and to keep 

simulation time at a manageable level. Each node represents a communication device 

equipped with IEEE 802.11b wireless transceiver and has a transmission range of 250m. In 

reality, radio rays propagate in a non-linear fashion, as they are obstructed by 

environmental obstacles causing reflection or refraction [124]. Thus, this research 

considers a two-ray propagation model with the received signal consisting of two 

components: the line of sight ray and a reflected ray, which is the transmitted signal 

reflected off the ground. In this model, as the distance increases between the transmitter 

and the receiver, the resultant ray power would decay in an oscillatory fashion [125] which 

gives more accurate prediction at long distances than the free space model, which is 

another propagation model implemented and available within the network simulator, ns-2 

[126].  
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To establish the results‟ statistical confidence several random topologies are run for each 

simulation. It was observed that the means of 30, 40 and 50 trials are within the same 

confidence interval of 95%. However, the mean values of 30 and 35 trials are almost the 

same. Consequently, our statistics were collected using a 95% confidence level over 30 

randomly generated topologies. The error bars in the graphs represent upper and lower 

confidence limits from the means and in most cases they have been found to be fairly small 

so that they are obscured by the data series marker itself. For the sake of clarity and 

neatness, the error bars have not been included in some of the graphs. The InterFace 

Queue (IFQ) length used in this research is the default value selected by most MANET 

researchers enabling a reasonable balance between reachability and delay. Implementing a 

longer IFQ would aid in reachability, while resulting in more delays. 

Other simulation parameters are shown in Table 2-2.  

Additionally, some necessary assumptions, which have been commonly employed in the 

literature [41, 46, 54, 58, 59, 61], have been used in the context of this research: 

 All network nodes are equipped with IEEE 802.11b transceivers that are active all 

time and have the same nominal transmission range. 

 A broadcast request can be issued by any source node which has a packet to be 

distributed to the whole network. 

 According to the broadcast algorithm considered in this research, a node has a 

chance of one or fewer times to rebroadcast a given packet. 

 The total number of nodes in a given topology remains constant throughout the 

simulation time. However, network partitioning might occur during simulation so 

the network is not guaranteed to be fully connected all the time.  

 Mobile nodes have sufficient power supply to function throughout the simulation 

time. At no time does a mobile node get turned off or malfunction because of lack 

of power.  

It is worth noting that other assumptions will be acknowledged later in the following 

chapters when appropriate. 
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Table 2-2: Simulation parameter 
 

 

2.4 Performance Metrics 

Performance metrics are used to measure the superiority and efficiency of the network 

performance. Performance metrics are indicators as to how effective are the proposed 

schemes (i.e.) pure broadcast and route discovery; also they are designated to enable 

comparing our algorithm to other related algorithms [41, 44]. Specifically, this research 

aims at minimising unwanted broadcast that would needlessly use up the available 

transmission medium. However, saving redundant packets is not enough as an indicator to 

scheme efficiency, as the purpose of the initial packet transmission is to reach its 

destination, the whole network, in broadcast transmissions. Consequently, it is crucial to 

measure successfully transmitted packets by measuring reachability or throughput metrics. 

Another aim of our proposed scheme is to minimise unwanted packet transmission delays 

by saving the medium from being occupied with redundant retransmissions, enabling a 

timely reception of the transmitted packets. Moreover, an important efficiency measure of 

a routing protocol or a broadcast scheme is the packet collision rate. Fewer collisions 

indicate better consumption of the available bandwidth, assuming that data packets are 

reaching their destinations safely (reachability) and in a timely manner (latency).  The 

performance metrics are summarised as follows: 

 Saved Rebroadcast: defined as (r − t)/r, where r is the number of hosts receiving a 

broadcast message, and t is the number of hosts that actually retransmitted that 

message.  

Simulation parameter Value 

Simulator  ns-2 version (2.33) 

Network Area  1000 x 1000 metre 

Transmission range  100, 150, 250 metre 

Data Packet Size  512 bytes  

Node Max. IFQ Length  50 

Simulation Time  900 sec 

Number of Trials  30 

MAC layer protocol IEEE 802.11b 

Mobility model  Random WayPoint model 

Propagation model Two Ray Ground 

Traffic Type CBR (Constant Bit Rate) 

Channel Bandwidth 11Mb/sec 

Confidence Interval  95% 

Propagation model Two Ray Ground 
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 Collision rate: is the total number of packets dropped by the MAC layer as a result 

of collisions per unit time.  

 Routing overhead: is the total number of Route REQuest (RREQ) packets 

generated and transmitted during the entire simulation time. For packets sent over 

multiple hops, each transmission over one hop is counted as one transmission. 

 Reachability: is the percentage of nodes receiving the broadcast packet over the 

total number of mobile nodes that are reachable directly or indirectly. 

 Normalised throughput: the ratio of the number of data packets successfully 

delivered to their destinations per unit simulation time over the theoretical 

throughput (i.e. the number of data packets generated per second). 

 Average latency: which is the interval from the time the packet broadcast was 

initiated to the time the final destination receives this packet.  

2.5 Summary   

This chapter provided a summary of MANET architecture and standards. Following, is a 

general overview on the routing and broadcast methods in MANETs. Those include the 

stochastic, the deterministic and the counter-based related schemes that stem from the 

former class. 

Different routing protocols are considered for MANETs research, including the proactive 

and reactive routing. Different broadcast techniques were discussed, as broadcasting is 

used heavily in MANET routing protocols and in many vital network operations. The two 

classes of broadcast schemes discussed are the stochastic and the deterministic.  

Stochastic broadcasting schemes are one of the proposed solutions to reduce redundant 

rebroadcasts in a way that alleviate the broadcast storm. They are simpler to implement 

and to maintain compared to the deterministic schemes. 

The chapter has also provided the study method and the main performance metrics 

including reachability, saved rebroadcast, collision rate and average latency. 

Additionally, a validation study was carried out to successfully verify the correctness of the 

simulation model. The next chapter, Chapter 3, introduces a baseline study and analysis of 

the counter-based broadcasting scheme. 
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Subsequently Chapter 4 introduces the proposed scheme, Dynamic Counter-Based scheme 

(DCB) analysis and discussion. Chapter 5 is the study of the proposed scheme DCB in a 

metropolitan environment. Chapter 6 presents the test and analysis of the proposed scheme 

as a means of route discovery in the AODV routing protocol. Lastly, the conclusions and 

future directions are presented in Chapter 7. 
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Chapter 3  

Analysis of Counter-Based Broadcast 

3.1 Introduction  

The fixed counter-based broadcast was suggested in [41, 44] to reduce the effect of 

excessive and redundant packet rebroadcasts. Those studies revealed that counter-based 

broadcast incurs lower overhead compared to blind flooding while maintaining a good 

degree of packet propagation through the network. Nevertheless, when studying the 

performance of counter-based broadcast these studies have not taken into consideration a 

number of important issues that could immensely impact the broadcast performance in 

MANETs. Such issues include network density, network traffic load, node transmission 

range and speed; and RAD length. This chapter investigates the effects of the different 

settings on the counter-based broadcast. 

 

 

 

 

 

 

 

The counter-based broadcast scheme is illustrated in Figure 3-1. In this scheme, when a 

node receives a broadcast packet p for the first time, a counter c is initiated to count every 

receipt of p. After a Random period of time called the Random Assessment Delay (RAD) c 

is compared against a predefined threshold value C.  If c > C the packet is dropped, 

otherwise it is rebroadcasted. When C is large this scheme reduces to blind flooding.  

The remainder of this chapter is organized as follows: Section 3.2 presents the simulation 

environment and system parameters. Section 3.3 includes the analysis of the counter-based 

broadcast scheme under the effect of variable network nodal densities. The next section, 

CBase_Broadcast_Algorithm 

 

Pre: a broadcast packet p at node X was heard 

 

Post: rebroadcast the packet or drop it, according to the algorithm 

 

1. Get the Broadcast ID 

2. Set RAD 

3. c = 1 

4. While (RAD) Do 

If (same packet heard) 

Increment c 

5. End while 

6. If (c > C) 

drop packet 

Exit algorithm 

7. End If 

8. Submit the packet for transmission  

End CBase_Broadcast_Algorithm 

Figure 3-1: Algorithm of the counter-based broadcast  
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3.4 presents the study of the counter-based scheme under the effect network load. 

Following, Section 3.5 presents the RAD sensitivity analysis. Finally, Section 3.6 draws 

the chapter to a conclusion and state overall remarks. 

3.2 Simulation Environment 

The performance of the counter-based broadcast is evaluated using the ns-2 network 

simulator [112]. The counter-based broadcast was initially specified by [44]. Based on the 

specifications, an ns-2 implementation was carried out [42].  This implementation of the 

counter-based code [42] was modified mainly to encompass the realisation of different 

threshold values, supporting the IEEE 802.11b standard with a maximum data rate of 

11Mbit/sec and configuring the Two-ray propagation model with a transmission range of 

100m. These modifications were built upon the ns-2.33, the latest version at the time of 

writing this text.  

The counter threshold values have been varied from 2 to 6. The analysis of the counter-

based scheme is conducted using the simulation model and system parameters specified in 

Chapter 2 Section 2.3. The analysis is concerned with the effect of variable network 

densities and different traffic loads. The employed performance metrics include collision 

rate, saved rebroadcast and reachability as discussed in Chapter 2 Section 2.4. 

3.3 Effects of Network Density 

The study of network density is expressed by varying the numbers of nodes while 

maintaining other network parameters such as transmission range and network area fixed. 

The counter-based scheme is implemented with five different threshold values referred to 

as C2, C3, …, C6 meaning the counter-based schemes with threshold values 2, 3, …, 6 

respectively. The simulation scenarios consist of numbers of nodes that range between 25 

and 100 nodes with steps of 25 nodes. The network area is a terrain of 1000m wide by 

1000m high with each node engaging in the communication with a transmission range of 

100m. Each simulation trial runs for a 900 sec period of time. Each node moves according 

to the Random WayPoint mobility model with minimum and maximum speeds of 1m/sec 

and 8m/sec respectively. The packet injection rate is 10 packets per second initiated by 1 

node randomly chosen from the whole node population creating a random traffic pattern. 

For all figures represented in this section the x-axis represents the variable network 

operational conditions under study, i.e. network density or traffic load, and the y-axis 

represents the actual resultant values scored over the network simulation.  
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3.3.1 Collision Rate 

Figure 3-2 shows the effect of network density on the performance of the counter-based 

scheme with different threshold values and on flooding as well. The figure proves that for 

each counter-based implementation (with a different threshold value) there exists a 

relationship between the number of nodes and the collision rate; increasing the number of 

nodes while fixing all other network parameters results in an increase in collision rate. 

With the given simulation settings, a node covers 3% of the network area, calculated using 

Equation 3.1 where r is the node transmission range and w and h are the network width and 

height respectively. That is 25, 50, 75 and 100 nodes would ideally cover 75%, 150%, 

225% and 300% of the network. However, the probability of overlapping radio 

transmissions increases when the number of nodes increases. 

    

   
     Equation 3.1 

Collision happens when two or more nodes within the same neighbourhood are sending at 

the same time. The probability of collision happening will increase when the number of 

nodes increases, as overlapping simultaneous transmissions are more likely to happen. For 

example, when the number of nodes increases from 25 to 100, the number of collisions 

increases by 460% and 1700% for C2 and C3 respectively. The increase of collision rate is 

not only related to the number of nodes but also to the threshold values. Figure 3-2 exposes 

this relationship between threshold values and the collision rate where increasing the 

threshold value increases the probability of a node retransmitting a packet, which in turn 

amplifies the collision rate. As the figure shows, increasing the threshold value from 2 to 6 

increases the collision rate by 272% for a network with 50 nodes and by 366% packets/ sec 

for a network with 75 nodes. A final remark on Figure 3-2 is that imposing some kind of 

control over the broadcast mechanism, using the counter-threshold technique, decreases the 

collision rate. This is shown by higher collision rates with flooding broadcast compared to 

the counter-based broadcast at all network densities.  
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Figure 3-2: Average Collision rate (packets/sec) versus number of nodes placed over 1000mx1000m area with an 

injection rate of 10 packets/ sec studied with different threshold values and flooding  

 

3.3.2 Saved Rebroadcast 

Figure 3-3 shows the effects of variable network densities on the counter-based broadcast 

with different threshold values and on flooding in terms of the number of saved 

rebroadcasts. That is, how much a packet rebroadcast is saved, prohibited and not sent. 

Figure 3-3 shows the relationship between number of nodes and broadcast savings. 

Increasing the number of nodes would increase the amount of savings and this may be 

explained by noticing that the number of nodes actually receiving a packet and not 

retransmitting it again would increase by increasing the number of nodes. For example: 

increasing the number of nodes from 25 to 100 would increase saved rebroadcast from 

18% to 58% and from 10% to 46% for C2 and C3 respectively. 

Another relationship derived from Figure 3-3 is that between the threshold values and 

saved rebroadcast. Increasing the threshold values decreases the amount of savings. That is 

because the increase in threshold values would allow more packets to be retransmitted, and 

not saved. From Figure 3-3 it is noted that the saved rebroadcast is decreased from 18% to 

1% and from 58% to 14% when increasing the threshold value from 2 to 6 in a network 

with 25 and 100 nodes respectively. This assures the inverse relation between saved 

rebroadcast and threshold values. Broadcast by flooding, by definition, scores no savings 

through all nodal densities, as shown in Figure 3-3. 
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Figure 3-3: Saved Rebroadcast versus number of nodes placed over 1000mx1000m area with an injection rate of 10 

packets/ sec studied with different threshold values and flooding 

 

3.3.3 Reachability 

Figure 3-4 shows the performance of the counter-based approach in terms of reachability, 

plotting the percentage of the network reached by a typical packet. The figure shows that 

increasing the number of nodes would increase reachability. This is a result of the 

increased network coverage with an increased number of nodes. Adding more nodes to the 

network would increase the available routes that the packet would possibly take to reach its 

destination (the whole network in the broadcast case). All broadcast schemes scored 

similar reachability, reaching almost 100% of reachability with 100 nodes. However, at 

networks of 25 nodes counter-based schemes with low threshold values experience a little 

loss in reachability. This is because of over-suppressing packet retransmissions in a low 

connectivity network. Flooding performed comparably better in terms of reachability at 

smaller networks, as it rebroadcast packets with no condition. 
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Figure 3-4: Reachability versus number of nodes placed over 1000mx1000m area with an injection rate of 10 packets/ sec 

studied with different threshold values and flooding 

 

3.4 Effects of Traffic Load 

The study of traffic load is carried out by varying the number of packets transmitted per 

second. This is done by deploying 100 nodes in a network area of 1000m wide by 1000m 

high with each node engaging in communication with a transmission range of 100m. Each 

node moves according to the Random WayPoint mobility model with minimum and 

maximum speeds of 1m/sec and 8m/sec respectively. The packet transmission patterns are 

10, 20, 30, 40, and 50 packets/ sec sent by randomly chosen nodes each sending 1 packet/ 

sec.  

3.4.1 Collision Rate 

Figure 3-5 shows the effect of variable traffic load on the performance of the counter-based 

scheme in terms of collision rate. This figure depicts that when the traffic load in the 

network increases collision rate increases dramatically. This is because increasing number 

of transmitted packets, while maintaining other network parameters would increase the 

probability of two or more nodes within the same range sending packets simultaneously. 

This would result in more collisions in the network as a whole. Comparing counter-based 

schemes with different threshold values within the same injection rate, the scheme with 

threshold value 2 (C2) has comparably lower collision rates than schemes with higher 

threshold values or than flooding. For example, at an injection rate of 10 packets/ sec the 

collision rate increases as threshold values increase: 1162, 1448, 2208, 3151 and 4126 for 
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C2, C3, C4, C5 and C6 respectively. In other words, there is a noticeable increase in 

collision rate when increasing the threshold values, this is around: 25%, 50%, 40% and 

30%, when increasing threshold values from 2 to 3, 3 to 4, 4 to 5 and 5 to 6. That is, higher 

threshold values result in higher number of retransmitting nodes and hence higher collision 

rate. With higher threshold values 5 and 6 the counter-based scheme behaviour converges 

to flooding. On the other hand, increasing the injection rate would increase the collision 

rate noticeably. For example, the collision rate increases by 1080% and by 926% for C2 

and C3 respectively when the injection rate increases from 10 to 50 packets/ sec. 

 

Figure 3-5: Average Collision rate (packets/ sec) versus broadcast injection rate of 100 nodes placed over1000mx1000m 

studied with different threshold values of the counter-based broadcast and flooding 

 

3.4.2 Saved Rebroadcast 

Results in Figure 3-6 show the effects of offered load on the performance of the counter-

based broadcast with different threshold values and on flooding in terms of the number of 

saved rebroadcasts. The figure shows that increasing the injection rate decreases the 

number of saved rebroadcasts. Fixing all network parameters and increasing the number of 

packets generated per second leads to a higher demand on nodes to rebroadcast the 

increased traffic load, lowering the percentage of saved rebroadcast. For example, 

increasing the traffic load from 10 to 50 would decrease the saved rebroadcast from 58% to 

20% and 46% to 10% for C2 and C3 respectively. Another relation is the link between 
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threshold values and saved rebroadcast. That is, increasing threshold values would 

decrease saved rebroadcast. The reason behind this inverse relationship is that increasing 

threshold values increases the probability of a node rebroadcasting a packet rather than 

saving it. For example, increasing the threshold value from 2 to 6 under the same injection 

rate of 10 packets/ sec decreases the saved rebroadcast from 58% to 14%. Broadcasting 

using flooding, by definition, scored zero savings with no savings through all injection 

rates. 

 

Figure 3-6: Saved Rebroadcast versus broadcast injection rate of 100 nodes placed over 1000mx1000m studied with 

different threshold values of the counter-based broadcast and flooding 

 

3.4.3 Reachability 

Figure 3-7 reveals the performance of the counter-based scheme in terms of reachability. 

Reachability indicates the percentage of the network reached by a packet. The figure shows 

that overall reachability decreases with increased traffic load. This is a result of the 

increased collisions with higher injection rates. For example, increasing injection rate from 

10 to 50 decreases reachability from around 95% to 40%, C2, C3 and flooding. 

However, the counter-based scheme with threshold 2 (C2) scored somewhat higher 

reachability at higher network loads. For example, at an injection rate of 20 packets /sec 

the reachability was: 85%, 78%, 73%, 70%, 68% and 67% for C2, C3, C4, C5, C6 and 

flooding respectively. The counter-based schemes with thresholds 5 and 6 (C5 and C6) 

behaviour were similar to that of flooding. 
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Figure 3-7: Reachability versus broadcast injection rate of 100 nodes placed over 1000mx1000m studied with different 

threshold values of the counter-based broadcast and flooding 

3.5 RAD Analysis 

The counter-based broadcast algorithm incorporates into the original flooding broadcast 

technique a small waiting time referenced as the Random Assessment Delay (RAD), 

discussed in Chapter 2. For a successful deployment of counter-based broadcast the RAD 

range must be selected carefully to serve as a waiting time to receive more packets and not 

to add to the overall packet end-to-end delay. 

The results in this section show that using different RAD ranges affects the performance of 

the counter-based dramatically. RAD is calculated to be within the range from 0 to Tmax. 

Original implementation of the counter-based scheme [42] employs the value of 0.01 

seconds as Tmax (the maximum possible interval of RAD). However, it was used within a 

network size of 350 x 350 meters and a transmission range of 100 m. To exhibit the effect 

of different values of Tmax on the counter-based performance, four different 

implementations were simulated. All four implementations deployed 75 nodes in a network 

of 1000m by 1000m.  Moreover, one node is elected to broadcast 4 packets/ sec through 

the whole simulation period. In the first and second sets of simulations, nodes are equipped 

with a wireless transmitter with 250m of transmission range and moving at a maximum 

speed of 20m/ sec and 8m/ sec for the first and second sets respectively. At the third and 

fourth set of simulations nodes are equipped with a wireless transmitter with 150m of 

transmission range with nodes moving at a maximum speed of 20m/ sec and 8m/ sec for 

the third and fourth sets respectively.  
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Table 3-1: RAD sensitivity analysis 

R 
Set 
ID 

Speed Tmax SRB 
Avg 

Sending 
Nodes 

Col 
Rate 

RE 

250m 

1 20m 

0.1 63% 27 73 99% 

0.01 1% 72 739 99% 

0.001 0 73 770 99% 

2 8m 

0.1 50% 37 214 99% 

0.01 13% 73 612 99% 

0.001 0 73 765 99% 

150m 

3 20m 

0.1 32% 39 41 81% 

0.01 1% 64 209 87% 

0.001 0 64 223 87% 

4 8m 

0.1 33% 41 40 83% 

0.01 2% 65 197 89% 

0.001 0 66 221 89% 

 

Table 3-1 shows the different network metrics used to explain the effects of different RAD 

intervals on counter-based performance. Where R is the transmission range, Speed is the 

maximum allowed nodal speed, Tmax is the maximum waiting time, SRB is Saved 

Rebroadcast, Avg Sending Nodes is the average number of sending nodes, Col Rate is the 

collision rate and finally RE is reachability. In set 1 at Tmax = 0.1 seconds the Saved 

rebroadcast shows the highest value among other Tmax values and all other network 

parameters. High waiting time (0.1 second) maximises the probability of a node having the 

threshold value exceeded to discard the packet and not resend it. This implies a low 

collision rate, as shown in Table 3-1. Additionally, this high waiting time (0.1 seconds) 

implies that the number of nodes involved in the transmission is low (27 nodes). looking at 

Set 1, at Tmax = 0.001 seconds the number of sending nodes is 73 nodes, which is almost 

the total number of available nodes in the network. This implies very low saving (zero) and 

a higher rate of collisions: an average of 770 packets/ sec. The same concept applies on 

simulation Sets 2, 3 and 4, with the difference of speed and transmission range. Lower 

nodal speed (8 m/sec) aids with more reachability, as seen in Set 4 compared to Set 3. 

Comparing Sets 1 and 2 to 3 and 4 shows that a higher transmission range also serve as a 

reachability booster. Both lower speeds and higher transmission range would minimise the 

probability of network partitions and hence would imply more reachability. 

3.6 Conclusions 

This chapter presented a performance analysis of flooding and the counter-based schemes 

as means of broadcasting and stochastically enhanced broadcasting respectively. The study 

examined the network performance under the variation of nodal density and offered load.  
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Results show that network density and traffic load both have a dramatic and direct effect 

on the scheme performance with regards to collision rate, saved rebroadcast and 

reachability. 

Nodal density in the network has a proportional relationship to reachability, collision rate 

and saved rebroadcast. Increasing nodal density increases the latter three metrics. 

Moreover, threshold values have an inverse relation to saved rebroadcast and a direct 

relation to collision rate.  That is, collision rate increases with higher threshold values. 

However, higher threshold values decreases saved rebroadcast.  

Moreover, the study in this chapter acted as a validation indicator to our simulator as the 

trends and behaviour of the results shown in this chapter coincide with the result‟s trend 

presented in a previous study [127]. The differences in the exact result‟s figure may stem 

from some differences in the simulation environment employed. For example [127] used a 

different mobility model that is a restricted form of the Random WayPoint mobility model 

used in this research. 

Original implementation of the counter-based broadcast employed a constant range of 

waiting time (RAD). It is proven that this range, bounded by the interval (0-Tmax] is 

extremely correlated to the network parameters selected such as network size, transmission 

range and nodal speed. Selecting an appropriate RAD range affects the network 

performance. 

Considering MANET‟s aspect of dynamic changeable topology, the deployment of the 

counter-based scheme with a fixed-threshold value is not adequate. The subsequent chapter 

introduces a dynamic counter-based scheme where the threshold values are selected 

independently for each node according to its local specific neighbouring conditions. This 

produces a hybrid broadcast scheme having the quality of both stochastic and deterministic 

broadcasting schemes by implying counting and neighbour sensing respectively.    
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Chapter 4  

Dynamic Counter-Based Broadcast 

4.1 Introduction 

In Chapter 3, it was shown that the counter-based broadcast scheme reduced the effect of 

the broadcast storm problem associated with flooding. However, the counter-based scheme 

uses a fixed-threshold value at all network densities. This chapter present the claim that 

adding a neighbourhood sensing capability to the fixed counter-based scheme, enabling it 

to dynamically adjust the threshold value, would further reduce levels of unnecessary 

broadcast transmission, leading to greater scalability and adaptability to changeable 

network topological conditions.  

Assigning the same threshold value to all network nodes can results in poor distribution of 

the threshold values. Mainly, using small threshold values would aid in greater packet 

savings, but this may affect reachability especially in sparse networks. Alternatively, larger 

threshold values are beneficial in sparse networks, but can unnecessary swamp a denser 

network with unneeded redundant packets in a flooding-like manner. Consequently, the 

aim is to achieve some balance between saving and reachability to reduce the chance of a 

node located in a dense region rebroadcasting a received message, while increasing the 

chance of rebroadcasting for nodes within a sparse network area.  

The scheme described here aims at significantly reducing communication overhead while 

still achieving reachability comparable to that of flooding. To achieve this, it utilises 

neighbourhood information, specifically by using the number of neighbours to select the 

most suitable counter threshold. The number of surrounding neighbours (n) that a node has 

at a given time is monitored by periodic exchange of „Hello‟ packets among neighbouring 

nodes. This aids a sensible selection of the threshold value, enabling adaptability to the 

fluctuating network densities that occur in highly mobile networks.  

Utilizing „Hello‟ packets to collect one-hop neighbouring information will inevitably 

induce some extra communication overhead. However, „Hello‟ packets are already in use 

with many important MANET broadcast [45, 47, 100] and routing operations [34, 40, 73, 

78] to maintain local connectivity [128].  
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The performance of the suggested algorithm, the Dynamic Counter-Based (DCB), is 

evaluated by comparing it against the existing blind flooding as well as the fixed-counter-

based in terms of the widely used metrics, namely average collision rate, saved 

rebroadcast, reachability and end-to-end delay. Simulation results confirm that new 

algorithm reveals superior performance in terms of the above metrics, leading to greater 

adaptability and scalability. 

The remainder of this chapter is organised as follows. Section 4.2 describes in detail the 

Dynamic Counter-Based broadcasting algorithm. Section 4.3 discusses the study of DCB 

under the effect of variable nodal densities. Section 4.4 exhibits the performance of the 

proposed scheme DCB under variable network traffic load. Finally, Section 4.5 draws 

several conclusions from this study. 

4.2 Dynamic Counter-Based Broadcast 

Among the reviewed probabilistic broadcasting schemes [41, 44, 51] is the counter-based 

scheme that uses a fixed-threshold value on a variable density network, Chapter 3. For this 

available scheme to achieve the highest reachability, it should be applied within a pre-

known nodal distribution in a network, which is a stable distribution that is either sparse or 

dense. This is due to the fixed-threshold value pre-selected and used in this scheme. To 

adapt the traditional counter-based scheme to suit MANETs with changeable and 

unpredictable network topology that continually varies in a disorderly manner with time, 

two questions must be answered:  

• How to identify network density as either sparse or dense? 

• Is there a decentralised mechanism enabling a node to realise its local network 

density? 

To tackle the second question, a simple mechanism is implemented enabling a node to 

sense its neighbouring density. This is done through incorporating into the original 

counter-based scheme a simple technique to aid neighbour sensing. Specifically, this is 

done by the exchange of small „Hello‟ packets between all one-hop neighbours where each 

packet holds the sender ID. Unlike other deterministic methods, this „Hello‟ packet holds 

the sender IP only. This enables each node to have some knowledge about its neighbouring 

nodes.  
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The first question is tackled by carrying out the following reachability study. Results of 

this study are shown in Figure 4-1. This figure illustrates the reachability of traditional 

broadcast through flooding versus number of nodes N within two different scenarios. Both 

scenarios share some common parameters such as: network area A (1000m x 1000m), 

traffic generation pattern of 10 packets per second sent by one node through the whole 

simulation time and a maximum nodal speed of 8m per second. However, the transmission 

range R varies to be 250m and 150m for the first and second scenarios respectively, 

namely, R250 and R150.  

 

Figure 4-1: Reachability versus number of nodes within two different transmission ranges (R150, R250) 

 

The number of nodes at which reachability is at its maximum is: 35 and 93 nodes for 250m 

and 150m of transmission ranges respectively. An estimation of the average number of 

nodes n at each of the maximum reachability scenarios is known, theoretically, by 

Equation 4.1, that addresses the relation between number of nodes, transmission range, 

network area and average number of nodes [129] .  

           
   

 
          Equation 4.1 

Table 4-1 show that the average number of neighbours of a node in a network with (93 

nodes and a 150m transmission range) and (35 nodes and a 250m transmission range) has 

been found to be around 7 nodes. Therefore on average, a node is considered to be in a 
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sparse network when its number of reachable neighbours is less than 7 and in a dense 

network otherwise. 

Table 4-1: Average number of neighbors 

  

 

 

Enhancing the counter-based broadcast algorithm enabling a node to sense and decide for 

its rebroadcast according to the surrounding environmental topology enhances the overall 

network efficiency in terms of saved rebroadcast and reachability.   

Essentially, sparse networks require a higher chance to rebroadcast than dense networks. 

This can be achieved by utilising a sliding scale mechanism centred at the expected 

average number of neighbours, 7. This would slide the threshold value C by a scale s 

amount to adapt to network density. A broad sensitivity analysis of the scale size s was 

carried out to prove that 3 is the best candidate for the scale size s, providing a sliding 

mechanism centred at 7 as illustrated in Figure 4-2. 

 

 

 

 

 

Additionally a smaller threshold value C1 (2) is used for dense networks (high number of 

neighbours with low EAC
*
) and a large threshold value C2 (6) for sparse networks (low 

number of neighbours and high EAC). The threshold slides from 6 to 2 according to the 

actual number of neighbours per each node in real-time.  

The proposed scheme, Dynamic Counter-Based (DCB) works as follows: when receiving a 

broadcast packet for the first time a node sets the RAD, which is randomly chosen between 

0 and Tmax second and initiates the counter to one. During RAD, the counter is incremented 

by one for each redundant packet received. Following, the appropriate threshold value is 

                                                 
*
 Explained at the Stochastic Broadcasting Schemes ( 2.2.5.2) within the Counter-based Section  

A N R        
   

 
 

1000m x 1000m 93 150 6.50 ≈ 7 

1000m x 1000m 35 250 6.68 ≈ 7 

Figure 4-2: The DCB sliding scale concept 

7 
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selected according to the node local neighbourhood information. That is, the node checks 

the number of neighbours n against the scale size s. If    , (Figure 4-3, line 7) then the 

neighbourhood is considered very sparse and C2 is selected as the threshold value, 

otherwise the sliding scale loop shown in Figure 4-3, line 8 is executed, where n and s are 

the current number of neighbours and the scale size respectively.  

Additionally, the values C1 and C2 are selected in a way that considers the expected 

additional coverage EAC. That is, C2 (sparse network threshold) should be in a way larger 

than C1 (dense network threshold) in order for the node to have a higher chance to 

rebroadcast in a sparse area, given that the EAC of a sparse network is higher than that of a 

dense network.  

Lastly, (line 10, Figure 4-3) the counter is checked against the threshold value; if the 

counter is less than or equal to the threshold, the packet is rebroadcast. Otherwise, it is 

simply dropped. 

 

DCB_Broadcast_Algorithm 

 

Pre: a broadcast packet p at node X is heard. 

 

Post: rebroadcast the packet or drop it, according to the algorithm 

 

1. Get degree n of node X 
2. c = 1 
3. i = 1 
4. Set RAD 
5. While (RAD) Do 

If (same packet heard) Increment c 

6. End while (RAD) 
7. If (n <= s) C = C2 
8. While (i > 0) Do 

if ((n > s*i) AND(n <= s*(i+1)) 

C = C2-1 

If (C < C1) 

C = C1 

Goto End while (i) 

End If 

 i = i + 1 

9. End while (i) 
10. If (c > C) 

drop packet 

Exit ACB_Broadcast_Algorithm 

11. End If 
12. Submit the packet for transmission  
End DCB_Broadcast_Algorithm 

Figure 4-3: The Dynamic Counter-Based broadcast Algorithm 
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4.2.1 DCB Analysis Settings  

This section presents the performance evaluation of the three broadcast algorithms, namely 

Dynamic Counter-Based (DCB), fixed counter-based (CB) and flooding (Flood) within 

variable MANET topologies. 

To develop the simulation models, the network simulator ns-2 (v2.33) [112] is used. The 

simulation process starts with traffic and mobility pattern generation, as discussed in 

Section 2.3.1 and shown in Figure 2-7. After that, core algorithm operations are run and 

results are extracted from output traces, ready for final analysis.  

4.3 Effects of Network Density 

The study of network density is expressed by varying the number of nodes available in 

each network while maintaining other network parameters such as transmission range and 

network area fixed. The counter-based scheme is implemented with two threshold values 2 

and 3 referred to as C2 and C3. The simulation scenarios consist of a wide range of 

considered network sizes, number of nodes in each network range between 25, and 300 

nodes with steps of 25 nodes. Most of the network parameters are mentioned and discussed 

earlier in Section 2.3.3. Among the marked parameters is the network area which is a 

terrain of 1000m wide by 1000m high with each node engaging in communication with a 

transmission range of 250m. Each node moves according to the Random WayPoint 

mobility model, with minimum and maximum speeds of 1m/ sec and 8m/sec respectively, 

that is a maximum speed of approximately 29 km/ hour. The packet injection rate for this 

density study is 4 packets/ sec, initiated by 1 node randomly chosen from the whole node 

population, creating a random traffic pattern. For all figures represented in this section, the 

x-axis represents the variable network operational condition under study (i.e. network 

density, or traffic load) and the y-axis represents the actual resultant values scored over the 

network simulation.  

4.3.1 Collision Rate 

Figure 4-4 shows the effect of variable network densities on the performance of the DCB 

scheme in terms of the average collision rate. The figure proves that there exists a 

relationship between the number of nodes and the collision rate; increasing the number of 

nodes while fixing all other network parameters results in an increase in collision rate.  

Collision happens when two or more nodes within the same proximity are sending packets 

at the same time. Therefore, the probability of a collision increases when the number of 
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nodes increases, as overlapping simultaneous transmissions are more likely to happen with 

more nodes. The amount of the increase is higher in C2, C3 and flooding than in the DCB, 

which suggests that DCB is more scalable than other schemes. The percentage reduction in 

collisions experienced by DCB relative to each of the other schemes in a network of 200 

nodes is around 150%, 900% and 7400% for C2, C3 and flooding respectively. The 

amount of DCB‟s collision reduction is even greater in networks with higher densities. For 

example, this reduction in a network of 300 nodes would be around 800%, 3000% and 

8000% for C2, C3 and flooding respectively. 

 

Figure 4-4: Average collision rate versus number of nodes placed over 1000m x 1000m area using 4 packets/ sec 

broadcast injection rate 

 

Figure 4-5 is a sub-graph of Figure 4-4 plotting only DCB along with the best of its 

competitors in terms of collision rates, namely C2. This figure shows clearly the 

adaptability of the DCB to higher network densities, well-controlling the rebroadcast of 

redundant packets through the network and hence reducing collision rate. 

0

5000

10000

15000

20000

25000

30000

35000

40000

25 50 75 100 125 150 175 200 225 250 275 300

A
ve

ra
ge

 C
o

lli
si

o
n

 R
at

e 
(p

ac
ke

ts
/ 

se
c)

Number of Nodes

DCB

C2

C3

Flood



Chapter 4: Dynamic Counter-Based Broadcast 

52 

 

 

Figure 4-5: sub graph of previous figure: Average collision rate versus number of nodes placed over 1000m x 1000m area 

using 4 packets/ sec broadcast injection rate 

 

4.3.2 Saved Rebroadcast 

Figure 4-6 shows the effects of variable network densities on DCB, fixed counter-based 

(C2, C3) and on flooding in terms of the number of saved rebroadcasts. This measures the 

extent to which possible packet rebroadcasts are saved. This figure clearly show the 

advantage of DCB over conventional counter-based (C2, C3) and flooding by the increase 

of savings. For DCB, this saving is also increased with higher nodal densities, again 

promising better scalability. Other schemes, C2 for example, exhibit a noticeable decrease 

in saved rebroadcast behaviour with higher numbers of nodes (above 250 nodes). This 

decrease in savings is more apparent in C3 as the amount of saving decreases with 

networks of more than 200 nodes. With networks of 300 nodes, DCB scored around 25% 

and 60% more savings than C2 and C3 respectively. This proves that DCB has greater 

scalability than other schemes. Saved rebroadcast measures the amount of savings 

compared to that of flooding where flooding, by definition, does not save any packets.  
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Figure 4-6: Saved rebroadcast versus number of nodes placed over 1000m x 1000m area using 4 packets/ sec broadcast 

injection rate 

 

4.3.3 Reachability 

After proving the advantage of DCB in decreasing the collision rate and maximizing 

packet savings, it is important to investigate the reachability criterion as a key measure of 

scheme efficiency. Reachability is the percentage of the network reached by each 

broadcast packet. Figure 4-7 shows that all schemes suffer a relatively poor reachability at 

networks with 25-50 nodes. This stems from the connectivity problem. When the network 

size is 1000m by 1000m and the total number of nodes in the network is 25 or 50, 

disconnects are likely to happen, causing some packets not to reach their destinations. With 

networks of 100-200 nodes most schemes score 100% reachability with the exception of 

pure flooding, as its reachability decreases with more than 100 nodes, reaching about 40% 

of reachability with 300 nodes. This is expected, as flooding generates redundant 

rebroadcast packets, which leads to more collisions and packet loss. With networks of 200-

300 nodes C3‟s reachability drops considerably, and a noticeable drop in reachability starts 

to happen with C2 at networks of more than 275 nodes. DCB preserves around 100% 

reachability for all networks of more than 100 nodes up to 300 nodes.  
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Figure 4-7: Reachability versus number of nodes placed over 1000m x 1000m area using 4 packets/ sec broadcast 

injection rate 

 

4.3.4 End-to-end Delay 

This section examines latency, the time each packet takes to reach its final destination. As 

Figure 4-8 shows, latency is initially low for all schemes but worsens noticeably as the 

network size increases; however, the point at which the degradation begins varies from one 

scheme to another. In DCB scheme, there is no significant worsening of latency at any 

network size up to the simulated maximum, 300. C3 begins to suffer a loss of performance 

at networks of 225 nodes while latency in flooding increases steeply at sizes over 100 

nodes. The behaviour of increased latency could be understood better when studying the 

collision behaviour of all schemes. The increase in collisions would affect the time a 

packet takes to reach its final destination. Looking at Figure 4-4, a dramatic increase in 

flooding collision rate starts to happen in networks of more than 100 nodes. This is exactly 

the same network size that generated the sharp increase in the end-to-end delay for 

flooding, Figure 4-8. This same principle applies for the other schemes. 
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Figure 4-8: End-to-end delay versus number of nodes placed over 1000m x 1000m area using 4 packets/ sec broadcast 

injection rate 

4.4 Effects of Traffic Load 

The study of traffic load is carried out by varying the number of packets transmitted per 

second. This is done by deploying 100 nodes in a network area of 1000m wide by 1000m 

high with each node engaging in communication with a transmission range of 250m. Each 

node moves according to the Random WayPoint mobility model with a minimum and 

maximum speed of 1m/sec and 8m/sec respectively. The packet transmission patterns 

consist of 1, 5, 10, 15, 20, 25 and 30 randomly chosen nodes transmitting 1 broadcast 

packet per second. A different broadcast transmission pattern such as unicast transmissions 

are considered and studied in Chapter 6. 

4.4.1 Collision Rate 

This section studies the effects of variable traffic load on the performance of the different 

schemes in terms of collision rate. Figure 4-9 illustrates a relation between traffic load and 

collision rate, such that with the increase in traffic load there exists an increase in collision 

rate. This is because increasing the number of transmitted packets per second would 

increase the probability of two or more nodes within the same range sending packets 

simultaneously. This would result in more collisions in the network as a whole. When the 

number of packets sent per second increases from 5-10 packets per second, all schemes, 

except DCB, experience a sharp increase in collision rate. At an injection rate of 10 

packets /sec DCB‟s collision rate is less by around 400% than other schemes.  
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At traffic loads of 20-30 packets /sec, all schemes have a flat collision rate, but DCB still 

experiences fewer collisions than all other schemes by 30%. This is because of the 

dynamic control imposed within the DCB rebroadcasts minimising redundant packets from 

consuming the transmission medium, hence, lower collision rates.  

  

 

Figure 4-9: Average collision rate versus packet injection rate for a network of 100 nodes in 1000m x 1000m area  

4.4.2 Saved Rebroadcast 

Results in Figure 4-10 show the effects of offered load on the performance of the different 

schemes in terms of saved rebroadcasts. The figure illustrates that the amount of savings 

decreases as offered load increases. At 20 packets/ sec all schemes start to have a flat 

behaviour where DCB is scoring around 12% and 20% higher saving than C2 and C3 

respectively. The slight dip in C2 and C3 saving behaviour could be explained by realising 

that as the load increases from 1 to 10 packets/ sec the schemes‟ savings decrease as more 

packets are generated and need to be transmitted to their destinations. With loads higher 

than 10 packets/ sec the schemes become swamped by the number of transmissions, 

resulting in collision and packet drop. As this happens, the number of packets to be 

delivered drops and saving becomes slightly higher, leading to stabilisation with loads 

more than 15 packets/ sec.  
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Figure 4-10: Saved rebroadcast versus packet injection rate for a network of 100 nodes in 1000m x 1000m area 

 

4.4.3 Reachability 

Figure 4-11 shows that the performance of all schemes with regards to reachability is 

degraded sharply with the increase in traffic load. Increasing traffic load increases the 

number of packets generated and should be delivered to every other node in the network.  

For example, at the 400 seconds‟ point of the simulation time there should be a total of 

400, 4000, 8000, 12000 successfully delivered packets for traffic loads 1, 10, 20 and 30 

respectively. And the number of packets will double at around the end of the simulation 

time resulting in network congestion, enforcing lots of packets drops and not be delivered. 

At loads of 1 packet/ sec all schemes score full reachability; however, this behaviour starts 

to degrade with higher loads. The scheme most affected by higher loads is the flooding 

scheme. Flooding reachability starts to degrade with loads more than 1 packet/ sec. The 

fixed counter-based schemes, C2 and C3 are more immune to increased loads than 

flooding, showing degradation at loads higher than 5 packets/ sec. This is due to imposing 

some control over the packet rebroadcasts, yielding less collisions and hence better 

reachability. The maximum reachability achieved at higher traffic loads is DCB‟s; it shows 

greater immunity to the effect of higher traffic loads than the fixed counter-based schemes. 

That is, adapting the threshold value to the current nodal density, imposing more intelligent 

control over the packet retransmissions, leading to a better consumption of the available 

transmission medium and hence, higher packet delivery success rate, reachability. 
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Figure 4-11: Reachability versus packet injection rate for a network of 100 nodes in 1000m x 1000m area 

 

There exists a relation between reachability and collision rate where increased collisions 

would degrade reachability. This is illustrated in Figure 4-12 where the average collision 

rate (bar chart) and reachability (line chart) are plotted in one graph. Results show that 

schemes with lower collision rates score greater reachability.  

 

Figure 4-12: Average collision rate and Reachability versus packet injection rate for a network of 100 nodes in 1000m x 

1000m area 
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4.4.4 Average Latency 

Figure 4-13 shows packet delivery time with increasing traffic load. The figure shows that 

all schemes go through what this research refer to as a break point. That is, nodes consume 

a lot of time (more than 5 sec) trying to deliver a packet to its destination. This would be 

understandable if considering the amount of lost and dropped packets (low reachability) at 

loads of 5-10 packets/ sec for C2 and C3. The most robust scheme is DCB, which breaks at 

loads of 10-15 packets per second. Flooding break-point occurred even at fewer traffic 

loads of 1-5 packets per second. The end-to-end delay criteria measures the time each 

packet takes to successfully reach its final destination and increasing the injection rate 

increases the possibility of packet loss and collisions. Therefore, at higher loads the 

schemes tend to have a slight advantage with regards to the delay. This is clearly apparent 

with the flooding scheme as the delay increases at injection rates of 5 packets/ sec, and 

when injection increases even more, the number of packets that the flooding is capable of 

delivering is decreased, because of packet drop, resulting in the decrease in delay. 

 

Figure 4-13: End-to-end delay versus packet injection rate for a network of 100 nodes in 1000m x 1000m area 

 

4.5 Conclusions 

This chapter presented a new broadcast scheme, the Dynamic Counter-Based broadcast 

scheme (DCB). This scheme is a hybrid scheme that combines packet counting, taken from 
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Experimental study using simulations was carried out to compare the performance of DCB 
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flooding. The performance analysis proves that DCB outperforms the other schemes (C2, 

C3 and flooding) in terms of average collision rate, saved rebroadcast, reachability and 

end-to-end delay, suggesting scope for greater scalability. Although the performance of all 

schemes degrades with higher traffic loads, the DCB responds more effectively, as it 

manages to reduce packet collision and channel contention by minimising unneeded 

broadcasts. The next chapter comprises a study of the different schemes under two 

different metropolitan models, exploring their behaviour under altered node movement 

patterns, speeds and transmission ranges.  
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Chapter 5  

Scheme Performance in Metropolitan 

Vehicular Network 

5.1 Introduction  

An interesting application of wireless MANETs that is emerging with a high potential for 

research and development [130], is the inter-vehicle communication where nodes collect 

and distribute traffic information while moving in urban areas. This chapter presents the 

study of the proposed Dynamic Counter-Based scheme in metropolitan environment. The 

next section, 5.2 is a brief introduction to Vehicular Ad hoc Networks which is a special 

kind of wireless MANETs. Following, Section 5.3 introduces the metropolitan study‟s 

environment settings and system parameters. The section after, 5.4, presents the first part 

of the study under the highway model. Next, Section 5.5 introduces the second part of the 

study under the city model.  

5.2 Vehicular Ad hoc Networks 

Vehicular Ad hoc NETworks (VANETs) emerged from ideas explored in initiatives such 

as the Intelligent Vehicle/Highway Systems (IVHS) [131] and is a vital part of what is 

referred to nowadays as the Intelligent Transportation System (ITS) [130] with initiatives 

from Japan [132], America[133] and Europe[134]. VANETs are a special kind of 

MANETs primarily deployed with ideas of transport efficiency and traffic safety in mind 

[132]. Safety applications have real-time constraints, low delay being the first objective 

[130]. Examples of safety related applications include, accidents minimisation and 

avoidance, collision notice and traffic violation warning [135]. Transport efficiency 

applications include enhancing vehicle flows, route navigation, auto-traffic light 

scheduling and electronic toll collection [130]. Another interesting application of vehicular 

networks is infotainment [136], which focuses mainly on the convenience of driving and 

driver comfort [135]. Some examples include, SPARK, a real-time parking navigation 

system [137] and location-aware digital billboards proposed for vehicular networks 

advertisement  [138]. 
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VANET wireless connectivity patterns include: vehicle to vehicle (ad hoc), vehicle to 

infrastructure (cellular network and WLAN) and among vehicles (hybrid) [33, 130]. The 

distinctive characteristic of VANETs is the highly changeable topology, where network 

nodes move at potentially high speeds in constrained paths within a built-up area 

potentially resulting in frequent network partitions leading to immense connectivity issues 

[130]. With the aim to standardise wireless access in vehicular environments, IEEE 

amended a specification extension (IEEE 802.11p) to the IEEE 802.11 standard for 

wireless local area networks (WLANs) providing wireless communications while in a 

vehicular environment [18]. The IEEE 802.11p standard, also called Wireless Access for 

Vehicle Environment (WAVE), focuses on possible enhancements to the IEEE 802.11 

standard, enabling wireless short-range communications for ITS. The IEEE 802.11p 

amendment released Physical PHY and MAC layer specifications enabling the VANETs 

communications in the 5.9 GHz spectrum [135].  

VANETs communicate with the existing wireless LAN physical layers utilising the IEEE 

802.11p standard and exchange data using the multi-hop decentralized network medium 

avoiding additional costs for communicating via the extension to the 3G cellular networks 

technology [130]. The first approach supports distributed coordination in ad hoc mode 

encompassing the Carrier Sense Multiple Access, CSMA technique enabling nodes to 

sense the carrier before sending. The second, extending 3G, has the possibility of flexible 

assignment of radio resources due to the Code Division Multiple Access, CDMA method, 

but suffers from the complexity of designing coordination function in ad hoc mode [139]. 

Utilizing the CSMA control mechanism in a vehicular environment has its downside. 

When a node senses the carrier and it happens to be busy, the node postpones the 

retransmission until the carrier is free again. This may lead to undesirable delays, 

especially in time-critical applications [140]. Another initiative to set wireless 

communication protocols in the vehicular environment is the Communications Access for 

Land Mobiles (CALM) architecture [141]. CALM covers and enables several methods of 

transmission, short-range (Bluetooth), medium-range (Wi-Fi) and long-range (WiMAX) 

[141]. CALM is still under study and research; however, the Cooperative Vehicle-

Infrastructure Systems (CVIS) project [142] is aimed to implement vehicle communication 

technology based on the CALM architecture. 
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5.3 Metropolitan Network Mobility Study  

The study of the DCB algorithm is carried out within two models which will be referred to 

as the highway model and the city model. The highway model exhibits the study of nodes 

commuting in highways with a maximum speed of 70km/ hour along streets in an open 

plane terrain. Additionally, nodes are able to communicate freely along the line of sight 

with no obstacles or buildings. This model may seem artificial, in the sense that it is 

unlikely that cars would move in a one km square area at a speed of 70km/ hour. However, 

this simplification of selecting a smaller network size is because of time and processing 

limitations. Additionally, this study is needed to illustrate the effect of buildings in the city 

model. In the city model, streets are often separated by buildings and other obstacles; 

therefore, there is not always a direct line of communications between nodes. That is, 

nodes can only communicate with nodes on the same street and with reachable relays at the 

corner of each street, Figure 5-1. The incorporation of relays facilitates vehicle-to-roadside 

communication as well as vehicle-to-vehicle communication patching the network 

partitioning problem. Figure 5-1, represents an illustration of the city model where the 

solid gray blocks represent buildings, the dots at the cross points represent the relays and 

circles around each dot represent the transmission range. The streets, the white areas 

between buildings, are the paths that nodes move on and it is the only way that the 

transmission can travel along. This restriction presents a great communication challenge 

for nodes employed in this model. Nodes implemented by the city model would commute 

at a maximum speed of 30km per hour, applying practical city centre speed limits.  
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Figure 5-1: Illustration of the city model 

 

5.3.1 Mobility Model Implementation 

The mobility pattern specifications, for both mentioned models are based on the Manhattan 

mobility model [62] where the authors provided a C++ mobility generation script 

implementing core node movement within streets and lanes. This was tailored to 

incorporate the existence of gateways at the cross points within the city model. Mobility 

generation process is shown in Figure 5-2. The process starts with the map generation. A 

map specifies the number, direction and coordinates of each street. The resultant map is 

then fed to the C++ mobility generator. Utilising the Perl batch processor, mobility traces 

are created for variable number of nodes and different topological scenarios.  

 

The considered number of nodes in each network are 25, 50, …, 300 nodes each having 30 

different unique mobility trace. Mobility traces are then fed to the ns-2 simulator along 

Figure 5-2: Mobility model generation 

 

 

 

Perl Batch Processor 

C++ 

Mobility 

Generator 

Map 

Mobility traces 

Map 

Generator 



Chapter 5: Scheme Performance in Metropolitan Vehicular Network 

65 

with the traffic model, Figure 2-7. The map under study consists of 4 vertical and 4 

horizontal streets each having 2 lanes of opposite directions as depicted in Figure 5-3. The 

considered map is a simplification of the Glasgow city centre map, Figure 5-4 which is 

composed of 10 vertical and 9 horizontal streets as shown in Figure 5-4. 

 

Figure 5-3: Metropolitan mobility model 

 

 

Figure 5-4: Glasgow city center 

 

5.4 The Highway model 

This part carries out the study and analysis of nodes commuting within a highway scenario. 

Nodes commute within streets using a transmission range of 250m. Schemes under study 

are the Dynamic Counter-Based (DCB), the Counter-Based (CB) and flooding broadcast 

schemes. Those schemes are studied under two kinds of variability: nodal density and 
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traffic load. Metrics tested in each study are: collision rate, reachability and saved 

rebroadcast.  

5.4.1 Effects of Network Density 

The study of network density is carried out by varying the number of nodes while 

maintaining other network parameters fixed. Among the fixed network parameters are the 

traffic load having an injection rate of 4 packets/ sec and the transmission range of 250m. 

The number of nodes considered are 25, 50, ..., 300 with a step of 25 nodes.  

5.4.1.1 Collision Rate 

The average collision rate serves as an indication to scheme efficiency. Lower collision 

rates indicate a higher success at delivering a packet to its destination. Figure 5-5 shows a 

clear relation between the number of nodes and collision rate, where increasing the former 

increases the latter. This relation is apparent with flooding in a network with more than 100 

nodes as collision rate increases dramatically with the increase in the number of nodes. 

This increase is less sharp with CB and DCB. A closer look at the behaviour of CB and 

DCB is depicted in Figure 5-6. This figure shows that the CB scheme scores a sharp 

increase in collision rates at networks of more than 200 nodes compared to a slight 

increase in DCB collision rate. This is because nodes implementing the DCB scheme 

incorporate a dynamic threshold assignment adaptable to the actual number of surrounding 

neighbouring nodes, inhibiting excess broadcasts of redundant packets resulting in fewer 

collisions. 
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Figure 5-5: Average collision rate versus number of nodes in a highway model over network of 1000m x 1000m under a 

traffic load of 4 packets/ sec 

 

 

Figure 5-6: Average collision rate for schemes (DCB and CB) vs. number of nodes in a highway model over a network of 

1000m x 1000m under a traffic load of 4 packets/ sec 

 

5.4.1.2 Saved Rebroadcast 

The number of saved rebroadcast packets is among the most important metrics signifying 

the efficiency of a scheme. Figure 5-7 shows the saving behaviour of the three considered 

schemes, with flooding (by definition) having no saving at all. The figure also shows that 

the amount of saving with low number of nodes (25 nodes) is around 18% for DCB and 

CB. The amount of saved rebroadcast increases for both schemes with the increase of DCB 
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slightly higher than that of CB. The benefit in saving becomes more apparent at networks 

of 100 nodes, scoring a saving of 60% and 70% for CB and DCB respectively. With 

networks of a higher density (200 nodes) CB savings start to collapse, decreasing from 

60% to 30% when network size increases from 200 to 300 nodes respectively. As the nodal 

density becomes higher, the number of received packets becomes even more. Nodes 

implementing the CB scheme would suffer from static criteria that result in rebroadcasting 

this high amount of received packets resulting in fewer savings. However, this is not the 

case with the Dynamic CB (DCB) as it scores even more savings with larger networks, 

increasing savings from 80% to 90% as the network size increases from 200 to 300 nodes. 

This suggests significant scalability advantage of DCB. 

 

Figure 5-7: Saved rebroadcast versus number of nodes in a highway model over a network of 1000m x 1000m under a 

traffic load of 4 packets/ sec 

 

5.4.1.3 Reachability 

As Figure 5-8 shows, reachability of all schemes is affected at networks of 25 to 50 nodes 

as the network connectivity suffers with such a very low nodal density. In networks with 

50 to 100 nodes, all schemes scored a reachability of around 100%. With networks of more 

than 100 nodes flooding reachability starts degrading until it reaches 40% in networks of 

300 nodes. This is due to the higher collision rate resulting from the flooding behaviour of 

retransmitting every received packet with no conditions or sensitivity to nodal density. On 

the other hand, the performances of DCB and CB continue at its optimum until at network 

densities of 225 nodes when the CB reachability starts degrading. This reduction in CB‟s 

reachability is expected as the CB‟s collision rate, Figure 5-6, increases sharply within 
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networks of 225 nodes and above, resulting in more packet loss. However, the DCB 

reachability continues to be around 100% even in dense networks having more than 225 

nodes. This is related to the robust rebroadcasting decision making based on current local 

neighbouring density. 

 

Figure 5-8: Reachability versus number of nodes in a highway model over a network of 1000m x 1000m under a traffic 

load of 4 packets/ sec 
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flooding collision rate is apparent at the increase from 1 to 5 packets/ sec. This dramatic 

increase repeats with counter-based (CB) scheme at higher traffic loads 5 to10 packets/ sec 

as this scheme incorporates the counting technique resulting in more resistance to the 

effect of the increase in packet injection rate. This resistance to traffic load increase is at its 

best with the dynamic counter-based (DCB) as it dynamically alters the threshold value 

prohibiting excess and unwanted packets to be sent through the medium. At the traffic load 

of injecting 10 packets/ sec, the average collision rates are approximately: 1000, 4500, 

6000 packets/ sec for the schemes DCB, CB and flooding respectively. This is a benefit of 

350% and 500% for DCB over CB and flooding respectively. 

 

Figure 5-9: Average collision rate versus packet injection rate in a highway model over a network of a 1000m x 1000m 

network having 100 nodes 
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20 packets /sec the amount of savings is stabilised at around 48% and 30% for DCB and 

CB respectively. Flooding, by definition, scored no savings at all considered loads as it 

retransmits the received packet unconditionally. Nodes refraining from sending redundant 

packets aid with fewer collisions, Figure 5-9, and more reachability, Figure 5-11. That is, 

more savings lead to fewer collisions and vice versa. The slight dip in CB may be 

explained by recalling the definition of savings that is defined as the percentage of the 

nodes receiving a packet and not retransmitting it. The increase in traffic load from 1 to 10 

increases the number of received packets dramatically; at the same time nodes‟ saving is 

degraded with this increase. At an injection rate of 10 packets/ sec the CB‟s collision rate, 

increases sharply, Figure 5-9, then it is stabilised at a high level, leading to an immense 

decrease in savings, resulting from higher loads. With loads higher than 10 packets/ sec a 

slightly higher level of savings results from losing packets that are dropped, as a result of 

collision, resulting in fewer packets received and ready to be saved or sent. At loads of 

lower than 10 packets/ sec, most of the packets are still received and retransmitted (low 

saving) as opposed to savings at loads higher than 10 packets/ sec.  

 

Figure 5-10: Saved rebroadcast versus packet injection rate in a highway model over a network of a 1000m x 1000m 

network having 100 nodes 

 

5.4.2.3 Reachability 

Reachability is linked to the number of collisions in the network, where more collisions 

lead to less reachability as collisions lead to packet loss and drops. As Figure 5-11 shows, 
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reachability decreases with the increase in traffic load. Reachability for all schemes 

reaches 100% at 1 packet/ sec. However, flooding reachability falls when the injection rate 

increases from 1 to 10 and it continues to fall until it reaches around 50% at 30 packets/ 

sec. However, CB‟s reachability starts to fall at injection rates of 5 packets/ sec. This is 

better than that of flooding because of the condition imposed over resending packets 

inhibiting excess packets from congesting the transmission medium, decreasing the 

number of collisions and packets lost, hence improving reachability. This control imposed 

over packet retransmission in CB is even more refined with the DCB enabling for the 

dynamic threshold control that is suitable to the current nodal density. As shown in Figure 

5-11, DCB scores 100% of reachability for injection rates of 1-10 packets/ sec; it decreases 

with higher injection rates until it reaches 70% at 30 packets/ sec. 

 

Figure 5-11: Reachability versus packet injection rate in a highway model over a network of a 1000m x 1000m network 

having 100 nodes 

 

 

5.5 The City Model 

This section studies the proposed scheme in a city-like scenario. In this model, nodes move 

in streets and lanes which are separated by buildings and other obstacles that result in 

obscuring the transmission of a node from reaching nodes on other streets, Figure 5-1. To 

mimic this situation, a transmission range of 150m is implemented for nodes moving along 

streets separated by a space of 200m in a 1000m x 1000m of network area, as illustrated in 

Figure 5-1. Moreover, nodes are implemented to move within a maximum speed of 30 km/ 

hour, applying the city speed limitations. 
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5.5.1 Effects of Network Density 

This section carries out the study of network density by varying the number of nodes while 

maintaining other network parameters fixed. Among the fixed network parameters is the 

traffic load having an injection rate of 4 packets/ sec. The numbers of nodes considered are 

25, 50, ..., 300 with steps of 25 nodes. Metrics considered are average collision rate, saved 

rebroadcast and reachability measured against the number of nodes in the network. 

5.5.1.1 Collision Rate 

Figure 5-12 illustrates the relation between collision rate and number of nodes. Increasing 

the number of nodes while maintaining other network parameters, results in an increased 

collision rate. This increase in collision rate is more apparent with flooding as the collision 

increases sharply in networks of more than 175 nodes. However, the same behaviour of 

sharp increase in collision rate started at smaller networks of 100 nodes for flooding in the 

highway scenario, Figure 5-5. This is because the highway model is implemented in an 

open space with no obstacles, enabling for even more collisions than that of the city 

scenario. CB‟s collision rate is increasing slightly with the increase in the number of nodes 

in the network. This is not the situation with the highway scenario where the CB‟s average 

collision rate increases sharply with networks of more than 200 nodes. The DCB‟s increase 

in collision rate is more subtle than that of CB, implying better scalability in both highway 

and city scenarios.  
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Figure 5-12: Average collision rate versus number of nodes in a city model over a network of 1000m x 1000m under a 

traffic load of 4 packets/ sec 

 

5.5.1.2 Saved Rebroadcast 

The level of saved rebroadcast, illustrated in Figure 5-13, generally increases with the 

increase in the number of nodes. As the figure shows, CB and DCB savings are affected by 

the network partitions for networks having 25 nodes. All schemes saving at 25 nodes is 

around 2% as opposed to all schemes savings at the highway model scoring around 20% at 

the same network size. In networks of 25-100 nodes the level of CB‟s saved rebroadcast is 

slightly better than that of the DCB; this is because DCB threshold assignment is dynamic, 

assigning high threshold values when the number of reachable neighbouring nodes is 

relatively low, allowing for more rebroadcasts (less saving). This is opposed to the fixed-

threshold value (3) used by the CB scheme, inhibiting more packet rebroadcasts at 

networks of 25 to 100 nodes. Within networks of more than 100 nodes the DCB saving 

starts to overcome that of CB. This is due to the dynamic technique accommodating and 

sensing network density to decide for an appropriate threshold value inhibiting unwanted 

packets from being rebroadcast to the communication medium. The saving continues to 

increment until it reaches around 70% and 50% for DCB and CB respectively at networks 

of 300 nodes. Generally, comparing the amount of saving under this model to that of the 

highway model, Figure 5-7, reveals that schemes implemented under the city model score 

fewer savings. This is associated with the network partitions in the city model that result in 
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fewer reachable neighbours and fewer received packets, which increases the likelihood of 

the threshold value not to be exceeded by the number of received packets, hence, 

rebroadcasting a received packet instead of saving it. 

 

Figure 5-13: Saved rebroadcast versus number of nodes in a city model over a network of 1000m x 1000m under a traffic 

load of 4 packets/ sec 

 

 

5.5.1.3 Reachability 

Studying the different schemes under the city model, Figure 5-14, reveals how hard it is to 

reach maximum reachability with network partitions and node separation. While in the 

highway model, Figure 5-8, networks reach maximum reachability 100% though having 50 

nodes only. Reachability in the city model barely reaches its maximum with 300 nodes in 

the network, proving that network partition is the worst hindrance to full network 

reachability. Network partitions and low nodal speeds in the city model make it hard for 

packets to reach some parts of the network, leading to poor reachability. Nevertheless, it is 

worth mentioning that flooding shows a slightly better performance of around 5% at 

densities of 75-125 nodes. This is linked to the fact that the other schemes impose some 

restrictions on the rebroadcast of a received packet resulting in a little loss of reachability 

in this specific density of 75 to 125 nodes, at this partitioned city model. The sharp 

decrease in flooding reachability at networks of 175 nodes may be understood by 

considering the sharp increase in collision rate at networks of the same size, Figure 5-12. 
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Figure 5-14: Reachability versus number of nodes in a city model over a network of 1000m x 1000m under a traffic load 

of 4 packets/ sec 

 

5.5.2 Effects of Traffic Load 

This section incorporates the study of the effects of variable traffic load on the proposed 

scheme, the dynamic counter-based DCB, the counter-based and flooding broadcast 

schemes. The study investigates the considered schemes behaviour in a city scenario. The 

number of nodes commuting through the network is 100 nodes, each communicating with 

a transmission range of 150m. Nodes move along four horizontal and four vertical streets 

where each street consists of two lanes of opposite directions, as depicted in Figure 5-3, 

with a maximum nodal speed of 30km/ hour. Traffic injection rate is 1 packet/ sec sent by 

1, 5, 10, 15, 20, 25 and 30 different elected nodes in the network. Three different metrics 

are considered in the traffic load study: average collision rate, saved rebroadcast and 

reachability. 

5.5.2.1 Collision Rate 

Figure 5-15 shows the effect of variable traffic loads on the different schemes in terms of 

collision rate. As the figure illustrates, the average collision rate increases with the increase 

in traffic load. However, this increase at its maximum never reaches 3000 packets/ sec at 

highest traffic load, 30 packets/ sec, where in the highway model, Figure 5-9, collision 

rates reach around 6000 packets/ sec under the same traffic load. This is related to the 

network partitions in the city model that decrease the chance for nodes to be in the same 
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vicinity of each other, consuming extensively the shared medium resulting in more 

collisions. The way the collision rate increases also reflects the sparseness of the city 

model, resulting in gradual and steady increase. By contrast, in the highway model, Figure 

5-9, the increase in collisions is dramatic and sharp, reaching maximum collisions with 

only 5, 10, 15 packets/ sec for flooding, CB, and DCB respectively.  

 

Figure 5-15: Average collision rate versus packet injection rate per second in a city model over a network of a 1000m x 

1000m network having 100 nodes 

5.5.2.2 Saved Rebroadcast 

As illustrated in Figure 5-16, the amount of saving decreases with the increase in traffic 

load. At an injection rate of 1 packet/ sec, the savings of both DCB and CB are almost the 

same, 30%; however, the difference between their savings becomes more apparent with 

loads more than 5 packets/ sec. Both schemes‟ savings decrease until they reach 8% and 

12% for CB and DCB respectively at an injection rate of 30 packets/ sec. DCB saving 

levels are even higher at extreme network conditions of high traffic loads as it deploys a 

dynamic environment-sensitive rebroadcasting decision. Comparing the amount of savings 

in the city model to that of the highway model, Figure 5-10, it is noticed that networks 

deployed as per the former model suffer partitions that generate more rebroadcasts as the 

threshold value is seldom exceeded by the number of received packets, the counter value. 

This in turn decreases the amount of savings for city networks as opposed to the highway 

model. For example, at injection rates of 1, 15 and 30 packets/ sec the DCB‟s saving under 
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the highway model is around 70%, 60% and 50%, as opposed to 30%, 15% and 10% under 

the city model using the same settings. 

 

Figure 5-16: Saved rebroadcast versus packet injection rate per second in a city model over a network of a 1000m x 

1000m network having 100 nodes 

5.5.2.3 Reachability 

As Figure 5-17 shows, at 1 packet/ sec all schemes suffer a deteriorated reachability of 

around 80% as opposed to 100% reachability for all schemes implemented by the highway 

model under the same injection rate, Figure 5-11. This is due to the high network partitions 

imposed by the city obstacles represented by the separation between streets (200m) and 

employing a transmission range of 150m per each node in the network. Reachability is 

degraded even more with higher traffic loads until it reaches around 30% at networks with 

an injection rate of 30 packet/ sec. This is compared to a reachability of 50% to 70% for all 

schemes implemented under the highway model Figure 5-11. 
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Figure 5-17: Reachability versus packet injection rate per second in a city model over a network of a 1000m x 1000m 

network having 100 nodes 

 

5.6 Conclusions   

This chapter described the performance of the new dynamic counter-based broadcast 

scheme under two models, the highway and the city centre. Both models impose some 

restrictions on the node movement, restricting them to move in specified streets and lanes. 

While the highway model employs an open plan terrain with no obstacles, the city model 

incorporates the existence of buildings that separate each street from the other, resulting in 

higher fragmentation and network partitions. Compared to the flooding and the fixed 

counter-based broadcast schemes, simulation results using the highway model presented 

earlier have revealed that the new scheme, DCB, can improve saved rebroadcast up to 60% 

compared to the counter-based and 90% compared to flooding even under high density, 

and high mobility conditions. A comparable enhancement can also be obtained with 

variable traffic loads applied to the network. Employing the city model, the amount of 

improvement in the DCB saved rebroadcast was 20% over CB and 70% over flooding. The 

results also show that all schemes implemented under the city model achieve lower savings 

than those under the highway model. That said, schemes implemented under the city model 

scored less collision as a whole showing a less sharp increase even at high nodal densities. 

With regards to reachability, all schemes implemented under the city model barely reach 

full reachability at networks of 175 nodes. Comparing this to the schemes under the 

highway model, the latter reaches a full reachability state at networks of 50 nodes only. 
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The next chapter will introduce and evaluate the AODV routing protocol incorporating 

both the counter-based and the dynamic counter-based, within the route discovery process. 

The performance of the two implemented protocols is compared against that of the 

conventional AODV routing.   
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Chapter 6  

Performance Analysis of Dynamic Counter-

Based Route Discovery  

6.1 Introduction 

The performance evaluation of most existing counter-based broadcast schemes suggested 

for MANETs [44, 51, 58, 143] , including the ones that have been discussed in the 

previous chapters, have employed “pure” broadcast scenarios lacking the study of their 

performance impact on real applications such as route discovery within routing protocols. 

A number of MANET routing protocols [53, 73, 78, 79, 87] employ flooding for the 

propagation of routing control packets, such as the Route REQuest (RREQ) Packet Data 

Units (PDUs) used during the route discovery process in for example, On-Demand 

Distance Vector (AODV) routing protocol.  

Routing overhead associated with traditional AODV can be significantly reduced by 

imposing some control mechanism on the rebroadcasting by each node of every received 

RREQ control packet, resulting in less routing overhead. Motivated by this observation, 

this chapter evaluates the performance of the Dynamic Counter-Based Broadcast (DCB) 

scheme introduced in Chapter 4, as a means of route discovery in the well-known AODV 

routing protocol.  

The performance of the route discovery based on DCB, referred to here as Dynamic 

Counter-Based Route Discovery (DCBRD) will be compared against two other protocols. 

The first is the original AODV with route discovery based on flooding [53] (AODV), and 

the second is AODV with route request utilizing counter-based (CB-AODV). 

Consequently, two different route discovery algorithms were implemented, namely, the 

DCBRD and the CB-AODV, the Dynamic counter-based route discovery and the counter-

based route discovery respectively. 

The rest of the chapter is organised as follows: Section 6.2 introduces an overview of route 

discovery process in AODV. Section 6.3 presents the proposed DCBRD and presents its 

algorithm. Section 6.4 explains the simulation environment and settings. Section 6.5 
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analyses the effects of different network operating conditions on the performance of the 

considered protocols. Finally, section 6.6 draws the chapter summary, findings and 

conclusions. 

6.2 Ad hoc On-Demand Distance Vector (AODV) 

Routing Protocol 

Efficient routing protocols are an essential part of the operation of a MANET [144]. 

Routing packets can be used to support a single destination, (unicast) or multiple 

destinations, (multicast). This research is concerned only with unicast routing protocols. 

Conventional routing protocols are based on routing tables, which store paths to all 

possible destinations in the network. A path consists of an ordered set of intermediate 

nodes that are possible candidates for passing a packet from the source node to the 

destination by forwarding it from one node to the other. The distinctive character of a 

MANET, as discussed in Section 1.1, makes routing in such a network a challenging task 

[145]. Notably, the constant mobility of nodes continually changes the network topology 

and affects nodal connectivity. Moreover, the limitations of the wireless transmission 

medium results in comparatively low bandwidth that is prone to channel contention. 

Consequently, routing protocols designed for a MANET environment require qualities 

such as dynamic adaptation to frequent network topological changes; and should also 

comprise a mechanism for inhibiting excess control overhead over the available channel 

bandwidth reserving it for actual data communication. 

Over 30 diverse MANET routing protocols have been designed and proposed so far [145]. 

As was outlined briefly in Section 1.3, MANET routing protocols could be classified 

according to the protocol‟s mechanism of route discovery and route update into three 

categories: proactive (table-driven), reactive (on-demand) and hybrid. Proactive routing 

protocols attempt to maintain up-to-date route information from each node in the network 

to every other node. Contrary to proactive routing protocols, reactive routing, as the name 

may imply, establish and discover a route to a node only when there is a demand for 

routing to that node. Hybrid approaches comprise characteristics of both reactive and 

proactive routing protocols. Reactive routing protocols adjust to network connectivity 

changes using minimal routing overhead by avoiding unnecessary periodic route 

information update at each node. Examples of well studied reactive routing protocols are: 
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Ad-hoc On-Demand Distance Vectoring (AODV) [53, 98], Dynamic Source Routing 

(DSR) [79] and Associativity Based Routing (ABR) [9].  

Among the most discussed and studied routing protocols is AODV. It has been 

standardised by the MANET IETF working group in RFC 3561 [98]. Being reactive, 

AODV discovers and establishes routes only when needed and maintains only those that 

remain active. The protocol consists of two essential procedures: route discovery and route 

maintenance.  

6.2.1 AODV Route Discovery 

The discovery procedure is founded upon the flooding of queries and query-replies in 

cyclic fashion. When source node S wants to send a packet to a destination node D, it 

checks its route table for a route to D. If it has a route to D in its routing table, S forwards 

the packet to the next-hop node toward D. If S has no routing information to D, a route 

discovery is triggered by node S. Specifically, node S floods the network with a broadcast 

Route Request (RREQ) control packet containing the following fields: source address, 

destination address, source sequence number, destination sequence number, hop count and 

a broadcast ID.  
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Figure 6-1: Route discovery illustration 

 

Upon the reception of the RREQ packet by an intermediate node X, the latter acts as 

follows:  If X has not received this RREQ before (noting broadcast ID and source address); 

and X is not the destination, nor has a current route to the destination, it rebroadcasts the 

RREQ. If X was the destination (X = D) or has a current route to D, it generates a Route 

Reply (RREP).  
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The RREP is unicast in a hop-by-hop fashion to the source S. As the RREP propagates, 

each intermediate node creates a route to the destination D. When S receives the RREP, it 

records the route to the destination D and can begin sending data. If S received multiple 

RREPs, the route with the shortest hop count is chosen [53]. Taking Figure 6-1 as an 

example, node S floods the network with a RREQ packets then each intermediate node X 

sets up a reverse path to the source S. When D receives the RREQ, it answers with a RREP 

packet using the shortest reverse path.  

6.2.2 AODV Route Maintenance 

The second main procedure besides route discovery is route maintenance and it is done 

primarily using Route ERRor (RERR) packets [146]. Route maintenance is the nodes‟ 

reaction to changes in the already discovered paths. When a node is not reachable any 

more, a RERR is sent back in a hop-by-hop fashion starting from nodes that are 

immediately prior to the unreachable node connecting it to other sources. „Hello‟ messages 

may be used to detect and monitor the node‟s link state [147]. By the periodic exchange of 

„Hello‟ messages between nodes, if a node fails to receive „Hello‟ messages from a 

neighbour, it considers that neighbour unreachable. When a node moves from one location 

to another it triggers a route discovery process and it sends a RERR packet to all sources 

connected to it. Additionally, any node receiving a RERR, updates its routing table by 

setting the distance to the destination to infinity [148]. Moreover, a node caches a route 

between two endpoints and keeps this route for a length of time given by the Active Route 

Time-Out (ART). ART defines how long a route is kept in the routing table after the last 

transmission of a packet using this route [149]. 
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Figure 6-2: Route maintenance illustration 
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6.3 Dynamic Counter-Based Route Discovery (DCBRD) 

In conventional AODV, a route discovery operation is initiated when a source node S 

wants to send data to another node D, where S does not currently hold a valid route to D. 

Consequently, node S sends a Route Request RREQ to all its one-hop neighbours. 

Intermediate nodes receiving the RREQ will flood it to the network by broadcast.  

 

 

 

 

 

 

 

 

 

 

 

However, nodes implementing DCBRD when receiving a RREQ packet initiate a counter, 

c, that counts the number of duplicate RREQ received, (see line 4, Figure 6-3). Counting 

continues until a waiting period (RAD) is finished. After that, the loop in (see line 6, 

Figure 6-3) is executed; this loop is explained in Chapter 4, Section 2 (4.2). Next, the 

counter c is checked against the threshold value C and RREQ broadcast is inhibited 

if    . The waiting period is called Random Assessment Delay (RAD), as before, and is 

randomly chosen from a uniform distribution between 0 and Tmax seconds, where Tmax is 

the maximum possible delay interval. The selection of the threshold C is based on 

neighbourhood information gathered using „Hello‟ packets. When a node is located in a 

sparse area it selects C2 as the threshold value and C1 when located in a dense area of the 

network. C2 is larger than C1 to maximize the likelihood of a node located in a sparse 

region to forward the RREQ as opposed to a node employing C1. C1 is the minimal 

DCBRD_Algorithm 

 

Pre: a RREQ packet at node X was heard for the first time, n 

is number of neighbours, node’s degree. S is the scale. 

     

Post: rebroadcast the RREQ or drop it, according to the 

algorithm 

 

1. Add the RREQ packet ID to the received packet list  

2. Set RAD 

3. c = 1, i = 1 

4. While (RAD) Do 

If (same RREQ heard) Increment c 

5. End while 

6. While (i > 0) Do 

if ((n > w*i) AND(n <= w*(i+1)) 

C = C2-1 

If (C < C1) 

C = C1 

Goto End while (i) 

End If 

  i = i + 1 

7. End while (i) 

8. If (c > C) 

drop packet 

exit algorithm 

9. End If 

10. Submit the RREQ packet for transmission  
End DCBRD__Algorithm 

 

Figure 6-3: Dynamic Counter-based Route Discovery, DCBRD Algorithm 
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threshold value implemented to maximize the chance of nodes in a dense region 

suppressing the RREQ. It is desirable not to waste bandwidth in a busy region, if a node 

has low expected additional coverage. The values of C1 and C2 are calculated dynamically 

according to the local node neighbourhood, this was explained in more details in Chapter 

4, the DCB algorithm. RREQ dissemination is continued until it is received by the 

destination D or by a node X having a valid route to the destination. After that, a Route 

Reply RREP packet is unicasted back to the source node along the reverse path made at the 

route discovery process. The DCBRD algorithm is depicted in Figure 6-3.  

6.4 Simulation Environment  

To evaluate the performance of the DCBRD scheme, the implementation of the AODV 

routing protocol included in the ns-2 simulator [112] has been modified to incorporate the 

functionality of the DCBRD and the CB-AODV schemes. 

Table 6-1: Simulation Parametrs 

Simulation parameter Value 

Simulator  ns-2 version (2.34) 

Network area  1000 x 1000 meter 

Transmission range  250 meter 

Data Packet Size  512 bytes  

IFQ length  50 

Simulation time  900 sec 

Pause time 0 

Number of trials  30 

MAC layer protocol IEEE 802.11b 

Mobility model  Random WayPoint model 

Traffic type CBR (Constant Bit Rate) 

Channel bandwidth 11Mb/sec 

Confidence Interval  95% 

Maximum velocity 20 m/sec 

Propagation model Two Ray Ground 

Sending rate  10 packets/ sec 

 

 The aim of this simulation is to evaluate and compare the DCBRD to Flooding Based 

AODV (AODV), and the counter-based AODV (CB-AODV) under different network 

conditions. Each node in this simulation scenario moves according to the Random 

WayPoint mobility model in a network area of 1000m x 1000m. To exercise the protocols‟ 

performance under extreme conditions of link breakage, a maximum nodal speed is 

selected to be 20m/ sec i.e. approximately 70 km/ hour. Data flows in a constant bit rate of 
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10 packets/ sec with a packet size of 512 bytes. The number of data connections 

established between a source and a destination is 20, if not stated otherwise.  Simulation 

parameters used in this study are shown in Table 6.1. 

6.5 Performance Evaluation 

To evaluate the performance of the proposed protocol, three different scenario settings 

were implemented to enable testing the scheme under different network operating 

conditions. First, a study of network density is carried out by implementing different 

networks with variable numbers of nodes, while maintaining other network parameters. 

Second, a study of offered network load and its impact on the considered routing protocols, 

providing different numbers of source-destination connections (flows) within a fixed 

number of nodes. Finally, a study of the network is conducted employing different 

maximum nodal speeds. The performance metrics considered here are defined and 

discussed in Chapter 2 Section 4 (2.4). These are: the average collision rate, normalised 

network throughput, routing overhead and end-to-end delay. 

6.5.1 Impact of Network Density   

The study of network density has been carried out by varying the number of nodes over a 

fixed topology area of 1000m x 1000m. The number of nodes considered is 25, 50, ..., 200 

and 250 nodes. The study of networks of 250 nodes has been added to explore the 

protocols‟ behaviour under extreme densities. Each point on the graph represents the 

average of 30 different scenarios of a group of nodes moving according to the random 

waypoint mobility model, with a random maximum velocity between 1 and 20 m/ sec. The 

offered network load is 20 randomly selected source-destination connections per 

simulation scenario, each sending 10 packets/ sec. The series naming in all graphs 

represents the protocol under test for example: DCBRD is Dynamic Counter-Based Route 

Discovery (DCBRD), (AODV) is traditional Flooding Based AODV; and CB-AODV is 

AODV with route request utilizing the fixed counter-based scheme.  

6.5.1.1 Average Routing Overhead 

Average routing overhead measures the average overhead caused by the transmitted RREQ 

packets per second. Lower overhead would imply a better protocol. As Figure 6-4 shows, 

the routing overhead increases with the increase in the number of nodes in a network. This 

increase in overhead is quite dramatic in AODV increasing by as much as 1500%, as the 

number of nodes in the network increases from 100 to 250. This dramatic increase in 
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AODV‟s overhead corresponds to a comparably lower increase in the overhead for 

DCBRD 100% and CB-AODV 160%, Figure 6-5, considering the same network size. This 

is because of the control imposed on the RREQ packets retransmissions in both of the 

schemes, DCBRD and CB-AODV.  

 

Figure 6-4: Routing overhead versus number of nodes placed over a 1000mx1000m area with an injection rate of 10 

packets/ sec 

 

 

Figure 6-5: Routing overhead for DCBRD and CB-AODV versus number of nodes placed over a 1000mx1000m area 

with an injection rate of 10 packets/ sec 
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6.5.1.2 Average Collision Rate 

Average collision rate measures the average RREQ packets‟ collision rate. As Figure 6-6 

shows the AODV RREQ collision rate increases dramatically with the increase in the 

number of nodes in the network. Though the number of connections or flows is constant 

through all network sizes, increasing the number of nodes in the network would increase 

the number of RREQ packets transmitted through the network, which is obvious in AODV. 

However, in the other two protocols, some control over the RREQ packets retransmission 

is imposed; resulting in more resistance to the strain imposed by higher number of nodes 

and hence, higher loads. However, with a greater number of nodes and increased loads 

DCBRD shows more resilience compared to CB-AODV. When the number of nodes is 

increased from 200 to 250 the increase in DCBRD‟s collision is around 20% compared to 

the CB-AODV collision increase of around 80%. This implies DCBRD has improved 

scalability compared to CB-AODV. 

 

Figure 6-6: Average collision rate versus number of nodes placed over a 1000mx1000m area with an injection rate of 10 

packets/ sec 
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This ratio increases sharply as the number of nodes in the network increases. Adding more 

nodes to the network would serve as a connectivity booster protecting data packets from 

being dropped. This increase in throughput continues until it reaches around 75% for all 

three protocols in networks of around 75 nodes. In networks of more than 100 nodes the 

throughput of all protocols starts to decrease. This is because of the higher loads caused by 

more control packets retransmitted in the network. However, DCBRD is again shown to be 

the most resilient to the increase in number of nodes, CV-AODV comes second and 

AODV is the worst. This is because DCBRD and CB-AODV both inhibit the 

retransmission of excess control packets (RREQ), lowering contention and collision and 

enabling the carrier to be occupied with the data packets that need to be sent. At higher 

loads of 200 nodes in the network, the DCBRD benefit over CB-AODV is more apparent 

as the former employs a dynamic threshold assignment dependent on the number of the 

surrounding neighbours. The stabilised throughput behaviour (not degrading) in dense 

networks again signifies DCBRD‟s scalability.  

 

Figure 6-7: Normalised Network Throughput versus number of nodes placed over a 1000mx1000m area with an injection 

rate of 10 packets/ sec 
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increases the time required for a data packet to be delivered from a source to destination. 

DCBRD achieved lowest delay with more dense networks as it inhibits congesting the 

network with unnecessary RREQ packets. After DCBRD, comes CB-AODV with slightly 

higher delays at dense networks and AODV shows the highest delay with a greater number 

of nodes. 

 

 

Figure 6-8: End-to-end delay versus number of nodes placed over a 1000mx1000m area with an injection rate of 10 

packets/ sec 
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with threshold 4. The DCBRD overhead increase is small compared to the other two 

protocols, as it implements a dynamic route discovery that involves fewer participating 

nodes in dense areas, hence causing less RREQ packet overhead. When number of data 

flows increases from 10 to 40, the overhead increases by 25%, 40% and 66% for protocols 

DCBRD, CB-AODV and AODV respectively. Moreover, at network loads of 40 data 

connections DCBRD scored less overhead by 30% and 40% compared to the CB-AODV 

and AODV respectively. 

 

Figure 6-9: Routing overhead versus number of data flows of 100 nodes placed over a 1000mx1000m area 
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Figure 6-10: Average collision rate versus number of data flows of 100 nodes placed over a 1000mx1000m area 

 

6.5.2.3 Normalised Network Throughput 
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Figure 6-11: Normalized network throughput versus number of data flows of 100 nodes placed over a 1000mx1000m 

area 
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6.5.2.4 End-to-End Delay 

Figure 6-12 shows that the time needed to deliver a data packet to its destination becomes 

higher with higher loads. Increasing the number of data flows implies a higher demand to 

deliver a larger amount of data packets resulting in the generation of more control packets, 

RREQ. This in turn, causes higher contention and collision leading to a significant increase 

in the end-to-end delay. This figure also illustrates that the average delay incurred by 

DCBRD is the lowest among the protocols. Dynamically controlling excess RREQ 

transmissions, results in some saving to the medium bandwidth, allowing data packets to 

be delivered in a timely manner.   

 

Figure 6-12: End-to-End delay versus number of data flows of 100 nodes placed over a 1000mx1000m area 
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requiring more maintenance packets to be generated to monitor this change, leading to 

higher overhead. AODV was the protocol most affected with nodal speed increase, as it 

retransmits control packets spontaneously and unconditionally, adding more to the 

overhead. This is not the case in the other two protocols. DCBRD scored the least 

overhead at all speeds with an increase rate of 12% compared to 23% and 26% for CB-

AODV and AODV respectively when the nodal speed increases from 5 m/ sec to 20 m 

/sec. Moreover, the DCBRD scored a benefit of around 10% and 35% over the CB-AODV 

and the AODV respectively, under a maximum nodal speed of 20m/ sec. 

 

Figure 6-13: Routing overhead versus maximum nodal speed of 100 nodes placed over a 1000mx1000m area 
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Figure 6-14: Average collision rate versus maximum nodal speed of 100 nodes placed over a 1000mx1000m area 

6.5.3.3 Normalised Network Throughput 
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Figure 6-15: Normalized network throughput versus maximum nodal speed of 100 nodes placed over a 1000mx1000m 

area 
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6.5.3.4 End-to-End Delay 

End-to-end delay measures the time required to successfully deliver a data packet to its 

destination. Figure 6-16 shows that as the nodal speed becomes higher, the time needed to 

deliver a data packet becomes higher as well. The concept behind that is that higher speeds 

instigate the need for more control packets to be sent over the medium compensating the 

connection breakage that results from higher nodal speeds. This leads to a higher 

consumption of the communication medium making it more difficult for data packet to 

reach their final destinations in a timely manner. The DCBRD benefit is apparent with 

higher nodal speeds that involve transmitting higher capacities of control packets. This is 

well controlled by the DCBRD dynamic retransmission technique. This is, DCB scored a 

benefit of 15% and 60% over CB-AODV and AODV respectively at the highest 

considered nodal speed. 

 

 

Figure 6-16: End-to-End delay versus maximum nodal speed of 100 nodes placed over a 1000mx1000m area 
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discovery mechanism and to the AODV routing that employs counter-based route 

discovery technique. These protocols are referred to here as AODV and CB-AODV 

respectively. Simulation results show that for all considered network densities DCBRD 

outperforms the other two routing protocols in terms of routing overhead, collision rate and 

end-to-end delay. For the network throughput, again DCBRD outperforms the other two 

routing protocols, especially in dense networks where the behaviour of DCBRD stabilises 

and does not degrade as sharply as the other two. In terms of collision rate at high 

densities, the increase of collisions in CB-AODV is around 80%, compared to a DCBRD 

collision increase of only 20%, implying better scalability for the latter.  

Under variable traffic loads considering different numbers of data connections, DCRBD 

performed better at all considered metrics. In terms of overhead at the maximum 

considered network load of 40 data connections, DCBRD has a lower overhead by 30% 

and 40% compared to CB-AODV and AODV respectively. Finally, for all considered 

nodal speeds DCBRD outperformed CB-AODV and AODV in terms of routing overhead, 

end-to-end delay and average collision rate, placing a significantly smaller load on the 

available communication medium. Moreover, under the highest nodal speed of 20m /sec, 

DCBRD scored less end-to-end delay of around 60% and 15% compared to AODV and 

CB-AODV. Regarding the average collision rate, the DCBRD benefit is apparently higher 

at the maximum considered speed, 20m/ sec scoring a benefit of 60% and 370% over CB-

AODV and AODV. Concerning the overall routing overhead, with regards to the RREQ 

control packets in specific, the DCBRD achieved a benefit of 10% and 35% over CB-

AODV and AODV at the maximum nodal speed of 20m/ sec. Incorporating dynamic 

counting into the traditional AODV shows no disadvantages, rather it proves to enhance 

the protocol performance under broad network conditions and thus it is recommended as 

an potential candidate to the AODV routing protocol.  
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Chapter 7  

Conclusions and Future Work  

7.1 Introduction 

Recent developments in telecommunication systems have led to the widespread 

deployment of wireless technology as a means of communication where it is not feasible to 

lay cables or where there is a requirement for user mobility. Mobile Ad hoc Networks 

(MANETs) are a natural solution in situations where a fixed infrastructure cannot be 

established such as battlefield, vehicle networks, emergency or disaster [14]. Each user in 

this type of network acts as a router that relays messages to other users in the network, 

hence the name „multi-hop network‟ [3]. However, the nature of MANETs present major 

communication challenges, such as frequent topological changes due to node mobility and 

packet collision and contention due to using a shared or limited transmission medium [5]. 

Broadcast is a core operation in wireless communication. It is used for addressing and for 

neighbour and route discovery in many well-known routing protocols [36, 145]. The key 

problem associated with broadcasting in the wireless medium is the contention that results 

due to over-zealous retransmission, of which the most extreme example is flooding [44]. 

More efficient broadcast schemes that address key MANET network challenges while 

maintaining network coverage could significantly enhance overall network performance. 

Researchers tend to explore and find ways to enhance the broadcast scheme by imposing 

some control over retransmission [41, 45-47, 49-51, 54, 56, 59, 60, 100, 101, 104]. Those 

efforts fall into two categories: deterministic and stochastic. Deterministic schemes [46, 47, 

49, 50, 54] control excess flooding by building a knowledge-base of the network, which is 

used to send the broadcast message to the right candidate. This may work well in small 

networks with few nodes but would not scale well as networks grow in size. Stochastic 

schemes, [41, 51, 58, 104, 105] in the other hand, maintain a simple decision making 

scheme, depending generally on criteria derived from the received broadcast message. This 

would aid network scalability and keep computational overhead to a minimum. While 

maintaining minimal overhead and reducing excess broadcast, simple stochastic schemes 

are still insufficient. To achieve maximum reachability, they need a stable nodal 

distribution, and that is impossible in real-world MANETs, as the topology changes 
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dynamically all the time. Additionally, some schemes may need additional hardware, such 

as a GPS device [44] to establish broadcast criteria. The aim of this research is to propose 

and analyse a hybrid broadcast scheme that combines the simplicity of stochastic schemes 

with neighbourhood analysis to reduce the number of redundant retransmissions, while 

maintaining the network coverage without the need of added hardware capabilities. 

7.2 Summary of Results 

This research has focused on the development and analysis of the dynamic counter-based 

algorithm as a broadcasting mechanism specifically designed to alleviate the problems 

related to broadcasting contention and collision discussed above. The main contributions 

made by this research are summarised below. 

7.2.1 Fixed counter-based 

 Fixed counter-based broadcasting [44] was one of the earliest suggestions aimed at  

minimising the problems related to flooding in the wireless medium. That said, 

there has been barely any attempt to analyse the scheme performance under the 

effect of different operating conditions of variable traffic loads, transmission 

ranges, RAD waiting time and nodal densities. Motivated by this observation, the 

first part of this research carried out the basic study and analysis of the fixed 

counter-based scheme performance under variable network operational conditions 

of traffic load and density.  

 The study of the counter-based broadcast was conducted based on the initial 

specifications of the scheme [44]. Based on those, an ns-2 implementation was 

carried out [42].  This implementation of the counter-based code [42] was primarily 

modified to encompass the realisation of different threshold values, supporting the 

IEEE 802.11b standard with a maximum data rate of 11Mbit/sec and configuring 

the Two-ray propagation model with a transmission range of 100m, 150m and 

250m. These modifications were built mostly upon the ns-2.33. The extensive 

simulation analysis conducted shows that under the network settings implemented 

using different traffic loads and network nodal densities, a considerable amount of 

packet saving is achievable by the fixed-counter-based scheme, provided that the 

appropriate threshold value is selected. Correspondingly, the results show that with 

higher threshold values, the amount of saving is degraded (inverse relation). For 

example, in networks with varying traffic load, the increase of the threshold value 
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from 2 to 6 decreases the saving by an average of 30%, while the scheme 

reachability remains the same with different threshold values. 

 Initial implementation of the counter-based broadcast employed a specific waiting 

time range that is bounded by the interval (0-Tmax]. However, this research has 

proved that this range is strongly correlated to the network parameters selected, 

such as network size, transmission range and nodal speed. Selecting an appropriate 

RAD range would affect the network performance.  

 Implementing the fixed counter-based broadcast, a node would rebroadcast a 

packet according to a pre-selected static threshold value. This approach may show 

some benefit with small networks, with a predictable number of nodes. However, 

node distribution in MANETs is in constant flux as the topology changes, with 

nodes moving in or out of others reach. The behaviour of the counter-based scheme 

with larger networks is also considered in the second part of this research, 

comparing it to the proposed scheme outlined below. 

7.2.2 Dynamic counter-based 

 Motivated by the previous points, the second part of the research has proposed a 

new broadcast scheme, Dynamic Counter-Based (DCB) broadcasting. In this 

approach, when a node receives a new broadcast message it initiates a counter and 

dynamically selects a threshold value according to the local neighbourhood 

information at that position and time. The node then counts duplicate received 

messages until a random assessment delay expires. When this happens, the counter 

is checked: if it exceeded the threshold value the rebroadcast is inhibited, otherwise 

the message is forwarded. 

 Extensive simulation studies have been conducted to compare the performance of 

the DCB scheme to that of the counter-based (CB) and flooding, with two 

fundamental factors determining network conditions: node density and traffic load. 

Results show that the performance of DCB outperformed the other schemes in 

terms of saved rebroadcast, collision rate, reachability and end-to-end delay in most 

of the cases considered. For example, the collision rate reduction in a dense 

network of 300 nodes would be around 1000% and 8000% compared to CB and 

flooding respectively, and under the highest considered packet injection rate, 30 
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packet/ sec, DCB was scoring an advantage of 20% lower collision rate compared 

to CB and flooding. 

7.2.3 The Metropolitan mobility model study 

 The third part of this research carried a study of DCB, CB and flooding under a 

Metropolitan Model (MM). This compares the schemes in a network given the 

space, movement and speed constraints likely to be experienced in an urban 

vehicular application. Two main scenarios are simulated, called the highway and 

city models. The highway model implements an open plan terrain with no obstacles 

or buildings, having the nodes move at a high speed of up to 70 km/ hour, as might 

be experienced in an outer-city environment. The second model implements a built-

up area with the existence of buildings and other obstacles, as might be expected in 

a built-up city centre. Moreover, this model implements relay points at cross roads 

to repair the network partitions that result from the existence of densely packed 

buildings. 

 The implementation of the schemes under the two considered metropolitan 

environments, highway and city, show significant advantage for the DCB over the 

other two schemes. Under the highway model, DCB improved saved rebroadcast 

up to 60% compared to the counter-based, and 90% compared to flooding, even 

under high density and high mobility conditions. Employing the city model, the 

amount of improvement in the DCB‟s saved rebroadcast was 20% over CB and 

70% over flooding. Moreover, DCB‟s reachability is greater than or equal to the 

other two schemes implemented under both models.  

7.2.4 The Dynamic counting route discovery 

 The performance study of most of the existing broadcast schemes, including the 

new proposed scheme, DCB, has been carried out using only broadcast traffic. That 

is, each packet sent is targeted at all network nodes. There are no significant studies 

that implement those broadcasting schemes in an actual application such as routing. 

In an effort to bridge this gap, the fourth part of this research has examined the 

operation of these broadcasting schemes implemented as a route discovery 

technique within the AODV routing protocol. The variants of AODV thus 

implemented are referred to as Dynamic Counter-Based Route Discovery 

(DCBRD), Counter-Based AODV (CB-AODV) and conventional flooding AODV 

(AODV). 
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 The performance of the DCBRD has been compared against that of AODV 

employing counter-based route discovery, and against conventional flooding 

(AODV) under different network conditions of variable density, traffic load and 

nodal speed. Simulation results show that for all considered network densities, 

DCBRD outperforms the other two routing protocols in terms of routing overhead, 

collision rate and end-to-end delay. As to the network throughput, the DCBRD 

again outperforms the other two routing protocols, especially in dense networks. In 

terms of collision rate at high densities the increase of collisions in CB-AODV is 

around 80%, compared to the DCBRD collision increase of only 20%, implying 

better scalability for the DCBRD protocol. Under variable traffic loads considering 

a different number of data connections, DCRBD performed better. In terms of 

overhead, at the maximum considered network load of 40 data connections, 

DCBRD scored smaller overhead by 30% and 40% compared to the CB-AODV 

and AODV respectively. Moreover, for most considered nodal speeds, the DCBRD 

outperformed CB-AODV and AODV. Specifically, under the highest nodal speed 

of 20m /sec, DCBRD scored less end-to-end delay of around 15% and 61%; and 

fewer collisions of around 60% and 370% compared to the CB-AODV and AODV. 

7.3 Directions for Future Work 

Through this research several interesting issues have surfaced that require further study and 

investigation: 

 While most of the existing schemes were studied under a random nodal movement 

using the Random WayPoint mobility model, this research proposed and analysed 

the study of the considered schemes in a metropolitan mobility scenario, where the 

velocity and node direction is constrained by streets, cross points and lanes. A 

possible line of research would extend the investigation and study of the schemes‟ 

performance under other mobility models, such as group and free walk models. 

 This research explored the dynamic threshold analysis based on the local 

neighbourhood density. However, some preliminary studies done through the 

course of this research suggest that the incorporation of a dynamic RAD into the 

DCB scheme would show some benefit with regards to the minimisation of 

unnecessary delay. Specifically, a short RAD would be used for extremely dense or 

extremely sparse neighbourhoods and a medium to long RAD would be used with 

medium neighbourhood densities.  



Chapter 7: Conclusions and Future Work 

104 

 This research presented an extensive performance analysis of the considered 

schemes in pure broadcast approach and as a technique of route discovery in one of 

the well-known reactive routing protocols, AODV. It would be interesting to study 

and analyse those schemes as a means of route discovery in the new reactive 

routing Ad hoc On-demand Multipath Distance Vector (AOMDV) [90] that is 

proposed and approved to be a part of the ns-2 (2.34) as an extension to the 

conventional AODV routing.  

 Most of the surveyed studies, including the ones proposed in this thesis, have 

carried out the broadcasting study using the ns-2 network simulator. The ns-2 

network simulator provides an excellent facility to develop the different broadcast 

or routing protocols. However, it would be interesting to do a comparative study 

between the broadcasting schemes implemented under ns-2 and OMNeT++[110], 

for example. 

 Most existing studies, including the ones described in this thesis, have relied on 

simulation as a means of calibration and analysis. However, simulation studies may 

require the assumption of many simplifications to keep the complexity of the 

different network aspects implemented under control. Until now, there have been 

some limited initiatives in the direction of MANETs systems deployment, real 

experiments and emulation [150-152]. Those are mainly simple exploratory 

testbeds that are implemented to study a routing protocol in a specific setting. 

Provided the availability of adequate computational resources and infrastructure, it 

would be useful to carry out real experimental measurements and verify simulation 

results obtained in this research.  

 In this research, the performance analysis of the proposed broadcasting scheme is 

studied under the Constant Bit Rate (CBR) broadcasting pattern, where the packets 

are sent constantly with a pre-determined rate relying on a UDP connection. 

Although this tests the schemes under an intense traffic condition, it would be 

interesting to explore the scheme behaviour under different patterns such as those 

generated by dominant TCP traffic.  
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