3,988 research outputs found

    Building Footprint Generation Using Improved Generative Adversarial Networks

    Get PDF
    Building footprint information is an essential ingredient for 3-D reconstruction of urban models. The automatic generation of building footprints from satellite images presents a considerable challenge due to the complexity of building shapes. In this work, we have proposed improved generative adversarial networks (GANs) for the automatic generation of building footprints from satellite images. We used a conditional GAN with a cost function derived from the Wasserstein distance and added a gradient penalty term. The achieved results indicated that the proposed method can significantly improve the quality of building footprint generation compared to conditional generative adversarial networks, the U-Net, and other networks. In addition, our method nearly removes all hyperparameters tuning.Comment: 5 page

    Stochastic Geometry Modeling of Cellular Networks: Analysis, Simulation and Experimental Validation

    Full text link
    Due to the increasing heterogeneity and deployment density of emerging cellular networks, new flexible and scalable approaches for their modeling, simulation, analysis and optimization are needed. Recently, a new approach has been proposed: it is based on the theory of point processes and it leverages tools from stochastic geometry for tractable system-level modeling, performance evaluation and optimization. In this paper, we investigate the accuracy of this emerging abstraction for modeling cellular networks, by explicitly taking realistic base station locations, building footprints, spatial blockages and antenna radiation patterns into account. More specifically, the base station locations and the building footprints are taken from two publicly available databases from the United Kingdom. Our study confirms that the abstraction model based on stochastic geometry is capable of accurately modeling the communication performance of cellular networks in dense urban environments.Comment: submitted for publicatio

    A Planning based Evaluation of Spatial Data Quality of OpenStreetMap Building Footprints in Canada

    Get PDF
    OpenStreetMap (OSM) is an editable world map where users can create and retrieve data. Building footprints are an OSM dataset that is of particular interest, as this data has many useful applications for planners and academic professionals. Measuring the spatial data quality of OSM building footprints remains a challenge as there are numerous quality measures that can be used and existing studies have focused on other OSM datasets or rather a single quality measure. The study performed in this thesis developed a set of ArcGIS models to test numerous spatial data quality measures for OSM building footprints in a sample of mid-sized Canadian municipalities and gain a comprehensive understanding of spatial data quality. The models performed tests by comparing to municipal datasets as well as determining other quality measures without a reference dataset. The results of this study found that the overall spatial data quality of OSM building footprints varies across mid-sized municipalities in Canada. There is no link between a municipality’s location or perceived importance and the level of spatial data quality. The study also found that commercial areas have a higher level of completeness than residential areas. While the models worked well to test numerous spatial data quality measures for building footprints and can be used by others on other building footprint datasets, there exist some limitations. Certain tests that identify potential building footprint errors need to be checked to see if they are indeed errors. Also, the models were not able to measure any aspect of shape metrics. Suggestions for further studies include measuring shape metrics of building footprints from OSM as well as encouraging and subsequently monitoring OSM contributions in a particular area

    Aligning archive maps and extracting footprints for analysis of historic urban environments.

    Get PDF
    Archive cartography and archaeologist's sketches are invaluable resources when analysing a historic town or city. A virtual reconstruction of a city provides the user with the ability to navigate and explore an environment which no longer exists to obtain better insight into its design and purpose. However, the process of reconstructing the city from maps depicting features such as building footprints and roads can be labour intensive. In this paper we present techniques to aid in the semi-automatic extraction of building footprints from digital images of archive maps and sketches. Archive maps often exhibit problems in the form of inaccuracies and inconsistencies in scale which can lead to incorrect reconstructions. By aligning archive maps to accurate modern vector data one may reduce these problems. Furthermore, the efficiency of the footprint extraction methods may be improved by aligning either modern vector data or previously extracted footprints, since common elements can be identified between maps of differing time periods and only the difference between the two needs to be extracted. An evaluation of two alignment approaches is presented: using a linear affine transformation and a set of piecewise linear affine transformations

    Enhancing building footprints with squaring operations

    Get PDF
    Whatever the data source, or the capture process, the creation of a building footprint in a geographical dataset is error prone. Building footprints are designed with square angles, but once in a geographical dataset, the angles may not be exactly square. The almost-square angles blur the legibility of the footprints when displayed on maps, but might also be propagated in further applications based on the footprints, e.g., 3D city model construction. This paper proposes two new methods to square such buildings: a simple one, and a more complex one based on nonlinear least squares. The latter squares right and flat angles by iteratively moving vertices, while preserving the initial shape and position of the buildings. The methods are tested on real datasets and assessed against existing methods, proving the usefulness of the contribution. Direct applications of the squaring transformation, such as OpenStreetMap enhancement, or map generalization are presented

    Can building footprint extraction from LiDAR be used productively in a topographic mapping context?

    Get PDF
    Chapter 3Light Detection and Ranging (LiDAR) is a quick and economical method for obtaining cloud-point data that can be used in various disciplines and a diversity of applications. LiDAR is a technique that is based on laser technology. The process looks at the two-way travel time of laser beams and measures the time and distance travelled between the laser sensor and the ground (Shan & Sampath, 2005). National Mapping Agencies (NMAs) have traditionally relied on manual methods, such as photogrammetric capture, to collect topographic detail. These methods are laborious, work-intensive, lengthy and hence, costly. In addition because photogrammetric capture methods are often time-consuming, by the time the capture has been carried out, the information source, that is the aerial photography, is out of date (Jenson and Cowen, 1999). Hence NMAs aspire to exploit methods of data capture that are efficient, quick, and cost-effective while producing high quality outputs, which is why the application of LiDAR within NMAs has been increasing. One application that has seen significant advances in the last decade is building footprint extraction (Shirowzhan and Lim, 2013). The buildings layer is a key reference dataset and having up-to-date, current and complete building information is of paramount importance, as can be witnessed with government agencies and the private sectors spending millions each year on aerial photography as a source for collecting building footprint information (Jenson and Cowen, 1999). In the last decade automatic extraction of building footprints from LiDAR data has improved sufficiently to be of an acceptable accuracy for urban planning (Shirowzhan and Lim, 2013).peer-reviewe
    • …
    corecore