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Used Productively in a Topographic Mapping Context?
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Introduction
Light Detection and Ranging (LiDAR) is a quick and economical method for obtaining 

cloud-point data that can be used in various disciplines and a diversity of applications. 
LiDAR is a technique that is based on laser technology. Th e process looks at the two-way 
travel time of laser beams and measures the time and distance travelled between the laser 
sensor and the ground (Shan & Sampath, 2005). National Mapping Agencies (NMAs) 
have traditionally relied on manual methods, such as photogrammetric capture, to collect 
topographic detail. Th ese methods are laborious, work-intensive, lengthy and hence, 
costly. In addition because photogrammetric capture methods are oft en time-consuming, 
by the time the capture has been carried out, the information source, that is the aerial 
photography, is out of date (Jenson and Cowen, 1999). Hence NMAs aspire to exploit 
methods of data capture that are effi  cient, quick, and cost-eff ective while producing high 
quality outputs, which is why the application of LiDAR within NMAs has been increasing.  

One application that has seen signifi cant advances in the last decade is building 
footprint extraction (Shirowzhan and Lim, 2013).  Th e buildings layer is a key reference 
dataset and having up-to-date, current and complete building information is of paramount 
importance, as can be witnessed with government agencies and the private sectors 
spending millions each year on aerial photography as a source for collecting building 
footprint information (Jenson and Cowen, 1999).  In the last decade automatic extraction 
of building footprints from LiDAR data has improved suffi  ciently to be of an acceptable 
accuracy for urban planning (Shirowzhan and Lim, 2013).

Th e most common and cost-eff ective outputs from LiDAR are Digital Surface Models 
(DSMs) and Digital Terrain Models (DTMs) (Priestnall et al., 2000). However it would 
be useful to use LiDAR to generate other outputs, such as building footprints. Although, 
research does indicate that the automatic detection of buildings has not yet been fully 
achieved (Awrangjeb et al., 2010) there is the hope in the future that the building footprints 
created from LiDAR data can be added to the large-scale basemaps. Th is is due to the fact 
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that building capture using photogrammetric means is oft en labour intensive.  
Digital Surface Models are very useful at providing building locations, and LiDAR 

in recent times has been considered as a cost eff ective and accurate method of creating 
DSMs (Hill et al., 2000). Th e creation of DSMs and DTMs can be seen as the fi rst inputs 
into one method for building extraction by subtracting the DSMs away from the DTMs. 
Th is process retains features above the terrain, such as buildings and vegetation. Th e 
process can be refi ned by fi ltering the resulting data on a height threshold to remove 
vegetation and other anomalies (Haithcoat et al., 2001; Kwak & Habib, 2013). Bayesian 
Network Classifi cation can be used to detect buildings based on the height diff erence 
between DSMs and DEMs (Ma, 2005). Th e rationale for this method is the assumption 
that separate surface features from ground elevation data are higher than the features 
from the surrounding surface (Priestnall et al., 2000). Th e Bayesian approach has been 
attempted to extract building footprint solely from LiDAR data whilst also attempting to 
retain the highest possible accuracy (Wang et al, 2006). Other methods have been tried for 
extracting building footprints from LiDAR.  

Th e extraction of building footprints is oft en attempted by four steps that are oft en seen 
as successful: diff erentiating between ground and non ground points, identifying building 
features, determining building footprints and fi nally, generalising footprint boundaries 
(Kim & Shan, 2011). Some other current building extraction methods are attempting the 
use of Triangular Irregular Networks (TINs) polygons to be able to classify the buildings 
for the extraction (Alexander et al., 2009). Th ese TIN polygons are also used to help with 
the separation of buildings and vegetation based on the height diff erence.  Th e use of TINs 
to categorise building was shown to be especially eff ective when there is a sudden change 
within elevation between the data (Alexander et al., 2008).

A morphological fi lter is oft en implemented to distinguish between terrain and non-
terrain segments, and is viewed as a core action for building extraction (Elashker & 
Bethel, 2002). Once the original data has been fi ltered Shiravi et al. (2012) recommend 
trying various assessments by adding the height data to check that the buildings fi t the 
requirements. Th ese would be expected to give a high accuracy for building footprints 
from LiDAR data. In fact the dataset produced sometimes has more accurate height 
values than it does boundary lines, with water sometimes causing anomalies with the data 
recorded (Awrangjeb et al., 2010). Another issue with building footprint extraction from 
LiDAR arises when certain aspects are not always correctly removed because of  ‘debris’ 
or small buildings being left  over from the extraction process  (Kim & Shan, 2011).  A 
diff erent problem is holes within buildings and that closed polygons cannot be identifi ed 
automatically (Shirowzhan & Lim, 2013). Vegetation is an additional problem when 
extracting building foorprints from LiDAR data because vegetation and trees ‘interfere’ 
with the urban features, so selection and removal of these features, especially in the pre-
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processing stages is recommended (Zhou & Neuman, 2013). Various authors suggest 
using intensity values to identify vegetation features, distinguishing the vegetation from 
buildings and terrain will facilitate the separation of the data (Th uy Vu, 2009; Goepfer et 
al., 2008).

Methodology
Th e LiDAR data acquired through the ERDF 156 project has a point density of 0.25 

meters and the cloud points were classifi ed into three categories: ground, unassigned, 
and water. Th e scope of the exercise was to investigate how the point cloud data could 
be manipulated to extract building footprints. Comparing the resulting dataset with the 
existing buildings data captured photogrammetrically and orthophoto maps generated 
from aerial photography shot at the same time as the LiDAR survey will highlight and 
detect changes. Th e trials were carried out to investigate whether the LiDAR extracted data 
can potentially be used as a stop-gap to temporary update the building features on existing 
large-scale basemaps until the missing features can be captured photogrammetrically 
from aerial photography. 

In order to extract the building footprints the method adopted was broken down 
into a number of diff erent stages. Th e techniques used were not based on the specifi c 
methods researched from previous work and studies; however the research provided an 
understanding of potential approaches to implement to achieve the desired objective. Th e 
LiDAR point cloud data was supplied in 1km x 1km tiles. Tiles in three sites were selected 
for the trials, the selection was based on the terrain, topographic content and the height 
variations of the built environment:

• Tigne Point in Sliema – dense urban coastal area with great variation in building 
heights ranging from 2 to 15 stories, with minimal ground urban vegetation and roof 
top gardens;

• Il-Maqluba in Gudja – undulating terrain, including a doeline, showing mixed urban 
and rural area typically depicting terraced fi elds bounded with thick rubble walls;

• Mosta – urban fabric of mostly homogenous building heights with adjacent watercourse 
valley and both natural and structured urbanised vegetation. 

As mentioned previously, the supplied LiDAR point cloud data was only classifi ed into 
three categories: water, ground and unassigned. Th is meant that the unassigned category 
contained return data from buildings, vegetation, boats, vehicles, walls, power cables, and 
cranes besides other ‘noise’. Th e aim of the approaches adopted was to fi lter out just the 
building data from all the above-ground information captured by the LiDAR survey.  Th e 
desired end result was building footprints, so the goal was to extract the outlines of the 
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building features rather than their heights above ground.  Th e process fl ow line was two-
pronged. Process 1 was based on polygon outlines generated on the intensity values of the 
LiDAR returns. Process 2 was based on analysing the surface diff erences of Triangulated 
Irregular Networks (TINs) derived from the elevation of the LiDAR data.  Th e results were 
then compared against each other to extract the building outlines.  

Figure 1: Process fl ow line

Process 1
Process 1 focused on the intensity values of the LiDAR data and aimed to fi lter 

buildings based on their intensity values. Th e process entailed the following steps:
- Filter out ground points
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Th e LiDAR data were supplied categorised in three classifi cations. For the fi rst step of 
Process 1 the points for each of the trial areas categorised as ‘unassigned’ were selected 
from the point cloud data. Th e unassigned points were fi rst returns from above ground 
features, which excluded roads, rock surfaces, soil and other ground-level surfaces. 

-Raster Intensity Generation
A raster map based on the intensity values of the LiDAR returns was generated on the 

points categorised as unassigned. Th e values of diff erent features on the resulting intensity 
raster maps were noted and compared to each other; these features included buildings, 
vegetation, vehicles and other features. 

-Filter out on the intensity attributes
In the local context it was observed that vegetation has lower intensity values compared 

to the buildings which oft en have higher intensity values; due to the refl ectance values that 
are returned from vegetation features. Th erefore fi ltering these lower values out removed 
the vegetation from the raster, leaving behind the points returned from building and 
vehicles which can be fi ltered out at a later date following further processing.  One issue 
that arose from this process was that the diff erence in intensity values between buildings 
and vegetation was more marked in urban areas than in rural areas. Th is was due to the 
urban vegetation being ‘greener’, possibly from better irrigation compared to the more 
arid rural areas. In rural areas the intensity fi ltering also picked up rubble walls since these 
are composed of the same fabric as buildings. 

- Polygon creation
Th e fi ltering out based on intensity attributes produced raster maps which were 

polygonised using standard soft ware tools. 

Figure 2: Mosta - Filtered intensity map depicting buildings and vehicles
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Process 2
Process 2 focused on fi ltering the data based on height values. Rather than work with 

DEMs and DSMs this study opted to work with Triangulated Irregular Networks since 
TINs retain information such as surface area, volume, etc.  

- Filter out ground and non-ground points
In Process 2 two point fi les for each of the trial areas were created. Th e fi rst was the raw 

LiDAR point cloud data, all returns and all classifi cations. Th e second was the all returns 
of the points categorised as ‘unassigned’. 

- TIN Creation
Two TINs were then created; the fi rst of the unfi ltered LiDAR points all returns and all 

classifi cations shown in Figure 3 below. Th e second TIN was generated from all returns of 
the non-ground, unassigned points shown in Figure 4. 

- Analyse the Surface Diff erence
Th e resulting two TINs were then compared against each other to determine the surface 

diff erence between the ground points and the above-ground points. Th e end result was a 
dataset of polygons depicting above ground features which included buildings, vegetation, 
cars, fi eld boundaries and buses. An example of the output is shown in Figure 5 below. 

- Filter by Surface Area
Using area as a fi lter it is possible to eliminate objects that are much smaller than 

buildings, such cars and small fi eld boundaries.  

Figure 3: Mosta – TIN of all LiDAR returns all classifi cations
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Figure 4: Mosta - TIN of all LiDAR returns ‘unassigned’

 

Figure 5: Surface diff erence between unassigned TIN and all classifi cations TIN

- Combining of TINs and Intensity Results
Once both processes were fi nalised the next step was to combine the results.  Process 

1, based on intensity fi ltering, produced a polygon dataset that contained buildings and 
vehicles but eliminated vegetation. Process 2 produced a polygon dataset that contained 
buildings and vegetation but eliminated all but the largest vehicles, example buses, and 
overhead cranes.  Th e next step was to compare the two results against each other and 
remove the polygons that do not overlap. Only the common areas in both outputs were 
retained eliminating features that were not present. Th is resulted in the clean removal of 
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both the vegetation and vehicles that would have been previously left  behind should only 
one of the fi ltering methods have been used in isolation rather than in combination. Th is 
was largely successful, especially in the more developed areas such as Silema. 

- Generalisation
Th e previous step resulted in a fairly clear selection of building footprints.  However, 

it was still necessary to carry out generalisation and smoothing to tidy any gaps in the 
buildings from where points were never assigned during the aerial survey.  Th ese processes 
also simplifi ed the building footprints, making them more aesthetically pleasing. 

 
Figure 6: Mosta - Resulting output building footprints aft er generalisation and smoothing

Results
Th e results from the three trials were examined to establish the quality of outputs 

and determine whether the data can be used productively. Th e outputs of all the three 
trial areas were compared with aerial imagery acquired in the same period as the LiDAR 
survey and against a buildings vector dataset acquired through photogrammetric capture 
from older low-fl ying aerial photography. Th e aims of the comparison were to investigate 
whether the polygons extracted did constitute a complete buildings dataset without either 
omitting building features or ‘inventing’ building polygons. Th e comparison was also 
useful to verify the positional accuracy and the shape of the building polygons extracted 
from LiDAR.

Spatiotemporal analysis of the LiDAR extracted building footprints against the older 
photogrammetrically captured building blocks was then carried out.   Th e building 
footprints extracted from LiDAR were overlaid over the building footprints captured 
photogrammetrically in order to identify any polygons present in the LiDAR footprints but 
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not in the existing buildings layer. In theory these ‘new’ polygons represent changes in the 
buildings dataset since the last aerial photography, in other words new development on the 
ground that needs to be updated in the buildings dataset. Th e comparisons did highlight 
substantial development changes to the urban areas since the previous photogrammetric 
capture. In order to verify the authenticity of this assumption the highlighted polygons 
were compared against orthophotos produced from aerial photography shot in the same 
period as the LiDAR survey. Th e visual comparison backed up the assumption and verifi ed 
that the ‘new’ polygons are indeed new building features present on the orthophoto and 
missing from the current buildings dataset. Th ese changes are most likely due to the 
development of the areas since the previous photogrammetric capture had taken place.

        
Figure 7: Mosta showing photogrammetriclly captured buildings over an orthophoto 
(left ), and the change in development detected by LiDAR footprint extraction (right)

      

Positional accuracy is a measure of how closely the points in a dataset agree with 
the corresponding points in the real world. In large-scale topographic mapping at scales 
of 1:1250 typical positional accuracy is of <±1.0m (OS, 2005). Th e building footprints 
extracted from LiDAR were compared with the photogrammetrically captured building 
footprints and tested for positional accuracy; the results ranged from ±1.2m to ±1.5m, 
which are fair results. However it should be noted that the tests were carried out on a 
large-scale dataset not on ground survey data, so the positional accuracy of the results 
is less and cannot be deemed suffi  cient for scales greater than 1:2500. Th is indicates that 
the LiDAR building footprints cannot be used to update directly to the current large-
scale data, which is 1:1000 scale, without necessitating considerable manual editing and 
manipulation. 
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Building shape is one aspect that suff ered from the extraction process. Th e most 
noticeable is the number of ‘holes’ generated in the building polygons from the extraction 
process. Th ese require further work to eliminate. Another issue that compromised the 
shape of the extracted building outlines where protruding balconies and terraces. Th ese 
not only created jagged edges which required smoothing but also distorted the shape by 
extending the building outline further than the actual footprint itself. 

Figure 8: Sliema showing how protruding balconies extend the building outlines further 
than actual footprint, and superfl uous ‘holes’

   
Figure 9: Sliema showing how buildings in close proximity are joined into one polygon
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Simplifying, smoothing and buff ering carried out on the dataset following the 
extraction process did introduce an element of distortion to the shape of the building 
footprints. In a few cases the process joined some close polygons together, this requires 
a certain amount of manual editing to correct. Th e fi nal output also suff ers from some 
round edges. 

Th e Maltese rural landscape is typifi ed by centuries old rubble walls that divide and 
terrace the agricultural land. In more than a few cases these old walls have a thickness 
of a metre or more. Th ese features posed a problem when extracting building footprints 
from the LiDAR data because they were selected with the building features. Since these 
thick rubble walls are constructed from the same fabric they share the same intensity 
value range as stone buildings. Th e issue is compounded by the fact that long networks 
of thick rubble walls have a large surface area and cannot be selected and eliminated by a 
minimum area without also selecting and eliminating legitimate building footprints. By 
the same token boats and larger vehicles were not always eliminated because the objects 
had an area larger than small buildings. Th is issue required manual or semi-automatic 
processing by only selecting building footprints within development and urban zones, 
within coastal boundaries and eliminating objects within road polygons. 

     
Figure 10: Gudja showing thick rubble walls selected with building features

A facet of urban landscape that caused problems was roof gardens, roof level vegetation, 
and roof-top sports grounds with artifi cial turf; because when urban vegetation was 
eliminated by fi ltering on intensity values, the buildings with vegetation at roof level 
were also selected. Th us these features were either completely eliminated or resulted in 
signifi cantly distorted building footprints. 
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Figure 11: Sliema showing diffi  culty in extracting  building footprint of turf covered roof-
top

Conclusion
Th e results from the areas that have higher urban development, such as Sliema and 

Mosta in these trials, show that this process is well suited to identifying the building 
footprints themselves. Th is is mainly due to the fact that there is less contrast in the 
landscape and surrounding features. While in the more rural areas the buildings have very 
similar characteristics to the rest of the landscape making the extraction of the building 
footprint less straightforward.  Rural areas tend to be largely less developed in terms of 
building heights and overall volume of the buildings, besides having thick rubble walls 
that have very similar intensity values to the building features in these areas. Th erefore, 
removal of the rubble walls during the extraction process is more complicated. In some 
cases, ploughed fi elds within the rural areas also oft en displayed similar intensity values 
to the rubble walls and buildings themselves. Th is is unlike the vegetated areas within the 
more urban areas that were oft en greener, possibly due to better irrigation, rendering the 
intensity fi ltering and the removal of the vegetation slightly simpler. On the other hand 
in the urbanised areas garden rooft ops that contain vegetation did cause some extraction 
issues when fi ltering by attributes such as intensity. Th erefore identifying a specifi c value 
range was required. Th is then allowed removal of large areas of vegetation without having 
a great detrimental eff ect on building footprints on building features with rooft op garden.   

Creating a fi ltered TIN and non-fi ltered TIN allowed the separation of ground points 
and non-ground points retaining, besides the building features, extra unwanted objects 
such as cars, large vehicles, boats and vegetation. However, attributes such as area proved 
very useful in this method by fi ltering out cars based on the surface area of the average 
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sized car.  Filtering by area values did not completely eliminate other features such as 
rubble walls in the rural areas, even though the fi ltering values were increased slightly in 
the rural area, the values could not be increased greatly as increases by too large a value 
would potentially lead to the removal of footprints of smaller buildings. 

From these trials it can be concluded that it is quick and easy to produce building 
footprints from LiDAR point cloud data. Th e method used here does produce a relatively 
complete building dataset, however this data cannot be used as a simple replacement to 
updating building features captured at large-scale. Th is is because the shape, detail and 
positional accuracy are not enough to satisfy the specifi cations of topographic mapping at 
scales of 1:2500 or larger. However the output can be useful at scales smaller than 1:2500. 
Further investigation of how this process can be improved is warranted since building 
edges are a crucial element in large-scale building footprints. One avenue of investigation 
that could potential enhance the process described in this paper is by classifying and 
extracting building features from aerial imagery (Yong & Huayi, 2008). Th ese results 
combined with the outputs from this research could potentially improve the accuracy and 
shape of the building footprints extracted from LiDAR.   

Th e data would still require some manual manipulation to render the output 
aesthetically pleasing and to correct inadvertent omissions. Also, additional datasets, like 
urban development limits, coastal outlines and roads, will be required to fi lter out features 
such as thick rubble walls, cars and boats that seep through the extraction process and 
clutter the building footprint dataset. 

Th e methods for building footprint generation and extraction have to take into 
consideration the diff ering landscape and terrain the point cloud data is depicting. In 
this case if the LiDAR surveys are carried out during the winter/spring periods in the 
Mediterranean, when the vegetation is the greenest, the intensity mapping and fi ltering 
out of vegetation would be facilitated due to higher contrast and higher intensity rates. 
All in all the results from these trials were rather promising; however it has to be borne 
in mind that the processes are not totally automatic and do not eliminate all manual 
intervention. Th e processes might not be as labour intensive as photogrammetric capture, 
but the results are also not as sharp and accurate as photogrammetric capture, especially 
at larger scales. However, these results are promising enough to be considered as an option 
for a quick and cheap system to detect change in building footprints and urban areas, and 
as an update at median scales.
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