29,260 research outputs found

    Bridges of longest cycles

    Get PDF
    AbstractThis paper is concerned with bridges of longest cycles in 3-connected non-hamiltonian graphs. Let G be such a graph and let d(u)+d(υ)⩾m for each pair of non-adjacent vertices u and υ. Let the length of its longest cycle C be r. Then the length of any bridge of G is at most r-m+2

    Bounds on the maximum multiplicity of some common geometric graphs

    Get PDF
    We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, non-weighted common geometric graphs drawn on n points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of n points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits {\Omega}(8.65^n) different triangulations. This improves the bound {\Omega}(8.48^n) achieved by the double zig-zag chain configuration studied by Aichholzer et al. (ii) We present a new lower bound of {\Omega}(12.00^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, {\Omega}(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.62^n) non-crossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest non-crossing tours can be exponential in n. Likewise, we show that both the number of longest non-crossing tours and the number of longest non-crossing perfect matchings can be exponential in n. Moreover, we show that there are sets of n points in convex position with an exponential number of longest non-crossing spanning trees. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(nlog n) time algorithm for computing them

    Cubic graphs with large circumference deficit

    Full text link
    The circumference c(G)c(G) of a graph GG is the length of a longest cycle. By exploiting our recent results on resistance of snarks, we construct infinite classes of cyclically 44-, 55- and 66-edge-connected cubic graphs with circumference ratio c(G)/V(G)c(G)/|V(G)| bounded from above by 0.8760.876, 0.9600.960 and 0.9900.990, respectively. In contrast, the dominating cycle conjecture implies that the circumference ratio of a cyclically 44-edge-connected cubic graph is at least 0.750.75. In addition, we construct snarks with large girth and large circumference deficit, solving Problem 1 proposed in [J. H\"agglund and K. Markstr\"om, On stable cycles and cycle double covers of graphs with large circumference, Disc. Math. 312 (2012), 2540--2544]

    Dynamical robustness of biological networks with hierarchical distribution of time scales

    Full text link
    We propose the concepts of distributed robustness and r-robustness, well adapted to functional genetics. Then we discuss the robustness of the relaxation time using a chemical reaction description of genetic and signalling networks. First, we obtain the following result for linear networks: for large multiscale systems with hierarchical distribution of time scales the variance of the inverse relaxation time (as well as the variance of the stationary rate) is much lower than the variance of the separate constants. Moreover, it can tend to 0 faster than 1/n, where n is the number of reactions. We argue that similar phenomena are valid in the nonlinear case as well. As a numerical illustration we use a model of signalling network that can be applied to important transcription factors such as NFkB
    corecore