69 research outputs found

    Towards a green ranking for programming languages

    Get PDF
    While in the past the primary goal to optimize software was the run time optimization, nowadays there is a growing awareness of the need to reduce energy consumption. Additionally, a growing number of developers wish to become more energy-aware when programming and feel a lack of tools and the knowledge to do so.In this paper we define a ranking of energy efficiency in programming languages. We consider a set of computing problems implemented in ten well-known programming languages, and monitored the energy consumed when executing each language. Our preliminary results show that although the fastest languages tend to be the lowest consuming ones, there are other interesting cases where slower languages are more energy efficient than faster ones.This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundacao para a Ciencia e a Tecnologia within project POCI-01-0145-FEDER-016718. The second author is also sponsored by FCT grant SFRH/BD/112733/2015

    Transparent Replication Using Metaprogramming in Cyan

    Full text link
    Replication can be used to increase the availability of a service by creating many operational copies of its data called replicas. Active replication is a form of replication that has strong consistency semantics, easier to reason about and program. However, creating replicated services using active replication still demands from the programmer the knowledge of subtleties of the replication mechanism. In this paper we show how to use the metaprogramming infrastructure of the Cyan language to shield the application programmer from these details, allowing easier creation of fault-tolerant replicated applications through simple annotations.Comment: 8 page

    On Preserving the Behavior in Software Refactoring: A Systematic Mapping Study

    Get PDF
    Context: Refactoring is the art of modifying the design of a system without altering its behavior. The idea is to reorganize variables, classes and methods to facilitate their future adaptations and comprehension. As the concept of behavior preservation is fundamental for refactoring, several studies, using formal verification, language transformation and dynamic analysis, have been proposed to monitor the execution of refactoring operations and their impact on the program semantics. However, there is no existing study that examines the available behavior preservation strategies for each refactoring operation. Objective: This paper identifies behavior preservation approaches in the research literature. Method: We conduct, in this paper, a systematic mapping study, to capture all existing behavior preservation approaches that we classify based on several criteria including their methodology, applicability, and their degree of automation. Results: The results indicate that several behavior preservation approaches have been proposed in the literature. The approaches vary between using formalisms and techniques, developing automatic refactoring safety tools, and performing a manual analysis of the source code. Conclusion: Our taxonomy reveals that there exist some types of refactoring operations whose behavior preservation is under-researched. Our classification also indicates that several possible strategies can be combined to better detect any violation of the program semantics

    Ranking programming languages by energy efficiency

    Get PDF
    This paper compares a large set of programming languages regarding their efficiency, including from an energetic point-of-view. Indeed, we seek to establish and analyze different rankings for programming languages based on their energy efficiency. The goal of being able to rank languages with energy in mind is a recent one, and certainly deserves further studies. We have taken 19 solutions to well defined programming problems, expressed in (up to) 27 programming languages, from well know repositories such as the Computer Language Benchmark Game and Rosetta Code. We have also built a framework to automatically, and systematically, run, measure and compare the efficiency of such solutions. Ultimately, it is based on such comparison that we propose a serious of efficiency rankings, based on multiple criteria. Our results show interesting findings, such as, slower/faster languages consuming less/more energy, and how memory usage influences energy consumption. We also show how to use our results to provide software engineers support to decide which language to use when energy efficiency is a concern(University of Porto) for the help that he provided. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the Portuguese funding agency, FCT - Funda¸c˜ao para a Ciˆencia e a Tecnologia within project POCI-01-0145-FEDER-016718 and UID/EEA/50014/2013. The first and second authors are also sponsored by FCT grants SFRH/BD/112733/2015 and SFRH/BD/132485/201

    Left Recursion in Parsing Expression Grammars

    Full text link
    Parsing Expression Grammars (PEGs) are a formalism that can describe all deterministic context-free languages through a set of rules that specify a top-down parser for some language. PEGs are easy to use, and there are efficient implementations of PEG libraries in several programming languages. A frequently missed feature of PEGs is left recursion, which is commonly used in Context-Free Grammars (CFGs) to encode left-associative operations. We present a simple conservative extension to the semantics of PEGs that gives useful meaning to direct and indirect left-recursive rules, and show that our extensions make it easy to express left-recursive idioms from CFGs in PEGs, with similar results. We prove the conservativeness of these extensions, and also prove that they work with any left-recursive PEG. PEGs can also be compiled to programs in a low-level parsing machine. We present an extension to the semantics of the operations of this parsing machine that let it interpret left-recursive PEGs, and prove that this extension is correct with regards to our semantics for left-recursive PEGs.Comment: Extended version of the paper "Left Recursion in Parsing Expression Grammars", that was published on 2012 Brazilian Symposium on Programming Language

    Energy efficiency across programming languages: how do energy, time, and memory relate?

    Get PDF
    This paper presents a study of the runtime, memory usage and energy consumption of twenty seven well-known software languages. We monitor the performance of such languages using ten different programming problems, expressed in each of the languages. Our results show interesting findings, such as, slower/faster languages consuming less/more energy, and how memory usage influences energy consumption. We show how to use our results to provide software engineers support to decide which language to use when energy efficiency is a concern.We would like to thank Luis Cruz (University of Porto) for the help that he provided. This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the Portuguese funding agency, FCT - Fundacao para a Ciencia e a Tecnologia within project POCI-01-0145-FEDER-016718 and UID/EEA/50014/2013. The first author is also sponsored by FCT grant SFRH/BD/112733/2015

    Towards the design and implementation of aspect-oriented programming for spreadsheets

    Get PDF
    A spreadsheet usually starts as a simple and singleuser software artifact, but, as frequent as in other software systems, quickly evolves into a complex system developed by many actors. Often, different users work on different aspects of the same spreadsheet: while a secretary may be only involved in adding plain data to the spreadsheet, an accountant may define new business rules, while an engineer may need to adapt the spreadsheet content so it can be used by other software systems.Unfortunately,spreadsheetsystemsdonotoffermodular mechanisms, and as a consequence, some of the previous tasks may be defined by adding intrusive “code” to the spreadsheet. In this paper we go through the design and implementation of an aspect-oriented language for spreadsheets so that users can work on different aspects of a spreadsheet in a modular way. For example, aspects can be defined in order to introduce new business rules to an existing spreadsheet, or to manipulate the spreadsheet data to be ported to another system. Aspects are defined as aspect-oriented program specifications that are dynamically woven into the underlying spreadsheet by an aspect weaver. In this aspect-oriented style of spreadsheet development, differentusers develop,orreuse,aspects withoutaddingintrusive code to the original spreadsheet. Such code is added/executed by the spreadsheet weaving mechanism proposed in this paper.This work is financed by the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project UID/EEA/50014/2013. This work has also been partially funded by FLAD/NSF through a project grant (ref. 233/2014). The last author is supported by CAPES through a Programa Professor Visitante do Exterior (PVE) grant (ref. 15075133)

    A Mechanized Proof of a Textbook Type Unification Algorithm

    Get PDF
    Unification is the core of type inference algorithms for modern functional programming languages, like Haskell and SML. As a first step towards a formalization of a type inference algorithm for such programming languages, we present a formalization in Coq of a type unification algorithm that follows classic algorithms presented in programming language textbooks. We also report on the use of such formalization to build a correct type inference algorithm for the simply typed λ-calculus
    corecore