
Energy Efficiency across Programming Languages
How Do Energy, Time, and Memory Relate?

Rui Pereira
HASLab/INESC TEC

Universidade do Minho, Portugal
ruipereira@di.uminho.pt

Marco Couto
HASLab/INESC TEC

Universidade do Minho, Portugal
marco.l.couto@inesctec.pt

Francisco Ribeiro, Rui Rua
HASLab/INESC TEC

Universidade do Minho, Portugal
fribeiro@di.uminho.pt
rrua@di.uminho.pt

Jácome Cunha
NOVA LINCS, DI, FCT

Univ. Nova de Lisboa, Portugal
jacome@fct.unl.pt

João Paulo Fernandes
Release/LISP, CISUC

Universidade de Coimbra, Portugal
jpf@dei.uc.pt

João Saraiva
HASLab/INESC TEC

Universidade do Minho, Portugal
saraiva@di.uminho.pt

Abstract
This paper presents a study of the runtime, memory usage
and energy consumption of twenty seven well-known soft-
ware languages. We monitor the performance of such lan-
guages using ten different programming problems, expressed
in each of the languages. Our results show interesting find-
ings, such as, slower/faster languages consuming less/more
energy, and how memory usage influences energy consump-
tion. We show how to use our results to provide software
engineers support to decide which language to use when
energy efficiency is a concern.

CCS Concepts • Software and its engineering → Soft-
ware performance; General programming languages;

Keywords Energy Efficiency, Programming Languages, Lan-
guage Benchmarking, Green Software

ACM Reference Format:
Rui Pereira,Marco Couto, Francisco Ribeiro, Rui Rua, JácomeCunha,
João Paulo Fernandes, and João Saraiva. 2017. Energy Efficiency
across Programming Languages: How Do Energy, Time, and Mem-
ory Relate?. In Proceedings of 2017 ACM SIGPLAN International
Conference on Software Language Engineering (SLE’17). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3136014.3136031

1 Introduction
Software language engineering provides powerful techniques
and tools to design, implement and evolve software lan-
guages. Such techniques aim at improving programmers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00
https://doi.org/10.1145/3136014.3136031

productivity - by incorporating advanced features in the lan-
guage design, like for instance powerful modular and type
systems - and at efficiently execute such software - by de-
veloping, for example, aggressive compiler optimizations.
Indeed, most techniques were developed with the main goal
of helping software developers in producing faster programs.
In fact, in the last century performance in software languages
was in almost all cases synonymous of fast execution time
(embedded systems were probably the single exception).

In this century, this reality is quickly changing and soft-
ware energy consumption is becoming a key concern for
computer manufacturers, software language engineers, pro-
grammers, and even regular computer users. Nowadays, it
is usual to see mobile phone users (which are powerful com-
puters) avoiding using CPU intensive applications just to
save battery/energy. While the concern on the computers’
energy efficiency started by the hardware manufacturers, it
quickly became a concern for software developers too [28].
In fact, this is a recent and intensive area of research where
several techniques to analyze and optimize the energy con-
sumption of software systems are being developed. Such
techniques already provide knowledge on the energy effi-
ciency of data structures [15, 27] and android language [25],
the energy impact of different programming practices both in
mobile [18, 22, 31] and desktop applications [26, 32], the en-
ergy efficiency of applications within the same scope [2, 17],
or even on how to predict energy consumption in several
software systems [4, 14], among several other works.

An interesting question that frequently arises in the soft-
ware energy efficiency area is whether a faster program is
also an energy efficient program, or not. If the answer is yes,
then optimizing a program for speed also means optimizing
it for energy, and this is exactly what the compiler con-
struction community has been hardly doing since the very
beginning of software languages. However, energy consump-
tion does not depends only on execution time, as shown
in the equation Enerдy = Time × Power . In fact, there are
several research works showing different results regarding

256

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/322933073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031

SLE’17, October 23–24, 2017, Vancouver, Canada R. Pereira et. al.

this subject [1, 21, 27, 29, 35, 38]. A similar question arises
when comparing software languages: is a faster language, a
greener one? Comparing software languages, however, is an
extremely complex task, since the performance of a language
is influenced by the quality of its compiler, virtual machine,
garbage collector, available libraries, etc. Indeed, a software
program may become faster by improving its source code,
but also by "just" optimizing its libraries and/or its compiler.

In this paper we analyze the performance of twenty seven
software languages. We consider ten different programming
problems that are expressed in each of the languages, follow-
ing exactly the same algorithm, as defined in the Computer
Language Benchmark Game (CLBG) [12]. We compile/ex-
ecute such programs using the state-of-the-art compilers,
virtual machines, interpreters, and libraries for each of the
27 languages. Afterwards, we analyze the performance of
the different implementation considering three variables:
execution time, memory consumption and energy consump-
tion. Moreover, we analyze those results according to the
languages’ execution type (compiled, virtual machine and
interpreted), and programming paradigm (imperative, func-
tional, object oriented, scripting) used. For each of the exe-
cution types and programming paradigms, we compiled a
software language ranking according to each variable consid-
ered. Our results show interesting findings, such as, slower/-
faster software languages consuming less/more energy, and
how memory usage influences energy consumption. More-
over, we discuss how to use such results to provide software
engineers support to decide which language to use when
energy efficiency is a concern.
This work builds on previous work [6] which presents

a framework to allow the monitoring of the energy con-
sumption of executable software programs. In that work, the
C-based framework was used to define a preliminary ranking
of ten languages (where only energy was considered). We
reuse the energy monitoring framework (briefly described in
Section 2.2) to analyze the energy efficiency of 27 languages
and (almost) 270 programs. We have also extended it in order
to monitor memory consumption, as well.
This paper is organized as follows: Section 2 exposes the

detailed steps of our methodology to measure and compare
energy efficiency in software languages, followed by a pre-
sentation of the results. Section 3 contains the analysis and
discussion on the obtained results, where we first analyze
whether execution time performance implies energy effi-
ciency, then we examine the relation between peak mem-
ory usage and memory energy consumption, and finally we
present a discussion on how energy, time and memory re-
late in the 27 software languages. In Section 4 we discuss
the threats to the validity of our study. Section 5 presents
the related work, and finally, in Section 6 we present the
conclusions of our work.

2 Measuring Energy in Software
Languages

The initial motivation and primary focus of this work is to
understand the energy efficiency across various program-
ming languages. This might seem like a simple task, but it
is not as trivial as it sounds. To properly compare the en-
ergy efficiency between programming languages, we must
obtain various comparable implementations with a good
representation of different problems/solutions.
With this in mind, we begin by trying to answer the fol-

lowing research question:
• RQ1: Can we compare the energy efficiency of software
languages? This will allow us to have results in which
we can in fact compare the energy efficiency of pop-
ular programming languages. In having these results,
we can also explore the relations between energy con-
sumption, execution time, and memory usage.

The following subsections will detail the methodology
used to answer this question, and the results we obtained.

2.1 The Computer Language Benchmarks Game
In order to obtain a comparable, representative and extensive
set of programs written in many of the most popular and
most widely used programming languages we have explored
The Computer Language Benchmarks Game [12]. (CLBG).

The CLBG initiative includes a framework for running,
testing and comparing implemented coherent solutions for
a set of well-known, diverse programming problems. The
overall motivation is to be able to compare solutions, within
and between, different programming languages. While the
perspectives for comparing solutions have originally essen-
tially analyzed runtime performance, the fact is that CLBG
has recently also been used in order to study the energy
efficiency of software [6, 21, 25].

In its current stage, the CLBG has gathered solutions for 13
benchmark problems, such that solutions to each such prob-
lem must respect a given algorithm and specific implemen-
tation guidelines. Solutions to each problem are expressed
in, at most, 28 different programming languages.
The complete list of benchmark problems in the CLBG

covers different computing problems, as described in Table 1.
Additionally, the complete list of programming languages in
the CLBG is shown in Table 2, sorted by their paradigms.

2.2 Design and Execution
Our case study to analyze the energy efficiency of software
languages is based on the CLBG.
From the 28 languages considered in the CLBG, we ex-

cluded Smalltalk since the compiler for that language is pro-
prietary. Also, for comparability, we have discarded bench-
mark problems whose language coverage is below the thresh-
old of 80%. By language coverage we mean, for each bench-
mark problem, the percentage of programming languages

257

Energy Efficiency across Programming Languages SLE’17, October 23–24, 2017, Vancouver, Canada

Table 1. CLBG corpus of programs.
Benchmark Description Input

n-body
Double precision N-body
simulation 50M

fannkuch-
redux

Indexed access to tiny integer
sequence 12

spectral-
norm

Eigenvalue using the power
method 5,500

mandelbrot
Generate Mandelbrot set
portable bitmap file 16,000

pidigits
Streaming arbitrary precision
arithmetic 10,000

regex-redux
Match DNA 8mers and
substitute magic patterns

fasta
output

fasta
Generate and write random
DNA sequences 25M

k-nucleotide
Hashtable update and
k-nucleotide strings

fasta
output

reverse-
complement

Read DNA sequences, write
their reverse-complement

fasta
output

binary-trees
Allocate, traverse and
deallocate many binary trees 21

chameneos-
redux

Symmetrical thread rendezvous
requests 6M

meteor-
contest

Search for solutions to shape
packing puzzle 2,098

thread-ring
Switch from thread to thread
passing one token 50M

Table 2. Languages sorted by paradigm
Paradigm Languages

Functional Erlang, F#, Haskell, Lisp, Ocaml, Perl,
Racket, Ruby, Rust;

Imperative Ada, C, C++, F#, Fortran, Go, Ocaml,
Pascal, Rust;

Object-
Oriented

Ada, C++, C#, Chapel, Dart , F#, Java,
JavaScript, Ocaml, Perl, PHP, Python,
Racket, Rust, Smalltalk, Swift,
TypeScript;

Scripting Dart, Hack, JavaScript, JRuby, Lua, Perl,
PHP, Python, Ruby, TypeScript;

(out of 27) in which solutions for it are available. This criteria
excluded chameneos-redux, meteor-contest and thread-
ring from our study.
We then gathered the most efficient (i.e. fastest) version

of the source code in each of the remaining 10 benchmark
problems, for all the 27 considered programming languages.

The CLBG documentation also provides information about
the specific compiler/runner version used for each language,
as well as the compilation/execution options considered (for
example, optimization flags at compile/run time). We strictly
followed those instructions and installed the correct com-
piler versions, and also ensured that each solution was com-
piled/executed with the same options used in the CLBG.

Once we had the correct compiler and benchmark solutions
for each language, we tested each one individually to make
sure that we could execute it with no errors and that the
output was the expected one.
The next step was to gather the information about en-

ergy consumption, execution time and peak memory usage
for each of the compilable and executable solutions in each
language. It is to be noted that the CLBG already contains
measured information on both the execution time and peak
memory usage. We measured both not only to check the
consistency of our results against the CLBG, but also since
different hardware specifications would bring about different
results. For measuring the energy consumption, we used In-
tel’s Running Average Power Limit (RAPL) tool [10], which
is capable of providing accurate energy estimates at a very
fine-grained level, as it has already been proven [13, 30]. Also,
the current version of RAPL allows it to be invoked from
any program written in C and Java (through jRAPL [23]).
In order to properly compare the languages, we needed

to collect the energy consumed by a single execution of a
specific solution. In order to do this, we used the system
function call in C, which executes the string values which
are given as arguments; in our case, the command necessary
to run a benchmark solution (for example, the binary-trees
solution written in Python is executed by writing the com-
mand /usr/bin/python binarytrees.py 21).
The energy consumption of a solution will then be the

energy consumed by the system call, which we measured
using RAPL function calls. The overall process (i.e., the work-
flow of our energy measuring framework 1) is described in
Listing 1.
...
for (i = 0 ; i < N ; i++){

time_before = getTime (...);
// performs initial energy measurement
rapl_before (...);

// executes the program
system(command);

// computes the difference between
//this measurement and the initial one
rapl_after (...);
time_elapsed = getTime (...) - time_before;
...

}
...

Listing 1. Overall process of the energy measuring
framework.

In order to ensure that the overhead from our measur-
ing framework, using the system function, is negligible or
non-existing when compared to actually measuring with
RAPL inside a program’s source code, we design a simple
experiment. It consisted of measuring the energy consump-
tion inside of both a C and Java language solution, using

1The measuring framework and the complete set of results are publicly
available at https://sites.google.com/view/energy-efficiency-languages

258

https://sites.google.com/view/energy-efficiency-languages

SLE’17, October 23–24, 2017, Vancouver, Canada R. Pereira et. al.

RAPL and jRAPL respectively, and comparing the results to
the measurements from our C language energy measuring
framework. We found the resulting differences to be insignif-
icant, and therefore negligible, thus we conclude that we
could use this framework without having to worry about
imprecisions in the energy measurements.
Also, we chose to measure the energy consumption and

the execution time of a solution together, since the overhead
will be the same for every measurement, and so this should
not affect the obtained values.
The memory usage of a solution was gathered using the

time tool, available in Unix-based systems. This tool runs a
given program, and summarizes the system resources used
by that program, which includes the peak of memory usage.

Each benchmark solution was executed and measured 10
times, in order to obtain 10 energy consumption and execu-
tion time samples. We did so to reduce the impact of cold
starts and cache effects, and to be able to analyze the mea-
surements’ consistency and avoid outliers. We followed the
same approach when gathering results for memory usage.
For some benchmark problems, we could not obtain any

results for certain programming languages. In some cases,
there was no source code available for the benchmark prob-
lem (i.e., no implementation was provided in a concrete lan-
guage which reflects a language coverage below 100%).2

In other cases, the code was indeed provided but either the
code itself was already buggy or failing to compile or execute,
as documented in CLBG, or, in spite of our best efforts, we
could not execute it, e.g., due to missing libraries 2. From
now on, for each benchmark problem, we will refer as its
execution coverage to the percentage of (best) solutions for
it that we were actually able to successfully execute.
All studies were conducted on a desktop with the fol-

lowing specifications: Linux Ubuntu Server 16.10 operating
system, kernel version 4.8.0-22-generic, with 16GB of RAM,
a Haswell Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

2.3 Results
The results from our study are partially shown in this section,
with the remainder shown in the online appendix for this
paper 1. Table 3, and the left most tables under Results - A.
Data Tables in the appendix, contains themeasured data from
different benchmark solutions. We only show the results
for binary-trees, fannkuch-redux, and fasta within the
paper, which are the first 3 ordered alphabetically. Each row
in a table represents one of the 27 programming languages
which were measured.

The 4 rightmost columns, from left to right, represent the
average values for the Energy consumed (Joules), Time of
execution (milliseconds), Ratio between Energy and Time,
and the amount of peak memory usage in Mb. The Energy

2In these cases, we will include an n.a. indication when presenting their
results.

value is the sum of CPU and DRAM energy consumption.
Additionally, the Ratio can also be seen as the average Power,
expressed in Kilowatts (kW). The rows are ordered according
to the programming language’s energy consumption, from
lowest to highest. Finally, the right most tables under Results
- A. Data Tables contain the standard deviation and average
values for our measured CPU, DRAM, and Time, allowing
us to understand the variance.

The first column states the name of the programming lan-
guages, preceded by either a (c), (i), or (v) classifying them as
either a compiled, interpreted, or virtual-machine language,
respectively. In some cases, the programming language name
will be followed with a ↑x /↓y and/or ⇑x /⇓y symbol. The first
set of arrows indicates that the language would go up by
x positions (↑x) or down by y positions (↓y) if ordered by
execution time. For example in Table 3, for the fasta bench-
mark, Fortran is the second most energy efficient language,
but falls off 6 positions down if ordered by execution time.
The second set of arrows states that the language would go
up by x positions (⇑x) or down by y positions (⇓y) if ordered
according to their peak memory usage. Looking at the same
example benchmark, Rust, while the most energy efficient,
would drop 9 positions if ordered by peak memory usage.

Table 4 shows the global results (on average) for Energy,
Time, and Mb normalized to the most efficient language in
that category. Since the pidigits benchmark solutions only
contained less than half of the languages covered, we did not
consider this one for the global results. The base values are
as follows: Energy for C is 57.86J, Time for C is 2019.26ms, and
Mb for Pascal is 65.96Mb. For instance, Lisp, on average,
consumes 2.27x more energy (131.34J) than C, while taking
2.44x more time to execute (4926.99ms), and 1.92x more
memory (126.64Mb) needed when compared to Pascal.
To better visualize and interpret the data, we also gen-

erated two different sets of graphical data for each of the
benchmarks. The first set, Figures 1-3 and the left most fig-
ures under Results - C. Energy and Time Graphs in the appen-
dix, contains the results of each language for a benchmark,
consisting of three joint parts: a bar chart, a line chart, and a
scatter plot. The bars represent the energy consumed by the
languages, with the CPU energy consumption on the bottom
half in blue dotted bars and DRAM energy consumption on
the top half in orange solid bars, and the left y-axis represent-
ing the average Joules. The execution time is represented
by the line chart, with the right y-axis representing average
time in milliseconds. The joining of these two charts allow
us to better understand the relationship between energy and
time. Finally, a scatter plot on top of both represents the ra-
tio between energy consumed and execution time. The ratio
plot allows us to understand if the relationship between en-
ergy and time is consistent across languages. A variation in
these values indicates that energy consumed is not directly
proportional to time, but dependent on the language and/or
benchmark solution.

259

Energy Efficiency across Programming Languages SLE’17, October 23–24, 2017, Vancouver, Canada

The second set, Figures 4-6 and the right most figures
under Results - C. Energy and Time Graphs in the appendix,
consists of two parts: a bar chart, and a line chart. The blue
bars represent the DRAM’s energy consumption for each of
the languages, with the left y-axis representing the average
Joules. The orange line chart represents the peak memory
usage for each language, with the right y-axis representing
the average Mb. The joining of these two allows us to look
at the relation between DRAM energy consumption and the
peak memory usage for each language in each benchmark.
By turning to the CLBG, we were able to use a large set

of software programming languages which solve various
different programming problems with similar solutions. This
allowed us to obtain a comparable, representative, and exten-
sive set of programs, written in several of the most popular
languages, along with the compilation/execution options,
and compiler versions. With these joined together with our
energy measurement framework, which uses the accurate In-
tel RAPL tool, wewere able tomeasure, analyze, and compare
the energy consumption, and in turn the energy efficiency,
of software languages, thus answering RQ1 as shown with
our results. Additionally, we were also able to measure the
execution time and peak memory usage which allowed us
to analyze how these two relate with energy consumption.
The analysis and discussion of our results is shown in the
next section.

3 Analysis and Discussion
In this section we will present an analysis and discussion on
the results of our study. While our main focus is on under-
standing the energy efficiency in languages, we will also try
to understand how energy, time, and memory relate. Addi-
tionally, in this section we will try to answer the following
three research questions, each with their own designated
subsection.

• RQ2: Is the faster language always the most energy
efficient? Properly understanding this will not only
address if energy efficiency is purely a performance
problem, but also allow developers to have a greater
understanding of how energy and time relates in a
language, and between languages.

• RQ3:How does memory usage relate to energy consump-
tion? Insight on howmemory usage affects energy con-
sumption will allow developers to better understand
how to manage memory if their concern is energy
consumption.

• RQ4: Can we automatically decide what is the best pro-
gramming language considering energy, time, and mem-
ory usage? Often times developers are concerned with
more than one (possibly limited) resource. For exam-
ple, both energy and time, time and memory space,
energy andmemory space or all three. Analyzing these

trade-offs will allow developers to know which pro-
gramming languages are best in a given scenarios.

3.1 Is Faster, Greener?
A very common misconception when analyzing energy con-
sumption in software is that it will behave in the same
way execution time does. In other words, reducing the ex-
ecution time of a program would bring about the same
amount of energy reduction. In fact, the Energy equation,
Energy (J) = Power (W) x Time(s), indicates that re-
ducing time implies a reduction in the energy consumed.
However, the Power variable of the equation, which can-
not be assumed as a constant, also has an impact on the
energy. Therefore, conclusions regarding this issue diverge
sometimes, where some works do support that energy and
time are directly related [38], and the opposite was also ob-
served [21, 29, 35].
The data presented in the aforementioned tables and fig-

ures lets us draw an interesting set of observations regarding
the efficiency of software languages when considering both
energy consumption and execution time. Much like [1] and
[27], we observed different behaviors for energy consump-
tion and execution time in different languages and tests.
By observing the data in Table 4, we can see that the C

language is, overall, the fastest and most energy efficient.
Nevertheless, in some specific benchmarks there are more
efficient solutions (for example, in the fasta benchmark it
is the third most energy efficient and second fastest).

Execution time behaves differently when compared to en-
ergy efficiency. The results for the 3 benchmarks presented
in Table 3 (and the remainder shown in the appendix) show
several scenarios where a certain language energy consump-
tion rank differs from the execution time rank (as the arrows
in the first column indicate). In the fasta benchmark, for
example, the Fortran language is second most energy effi-
cient, while dropping 6 positions when it comes to execution
time. Moreover, by observing the Ratio values in Figures 1
to 3 (and the remainder in the appendix under Results - C. En-
ergy and Time Graphs), we clearly see a substantial variation
between languages. This means that the average power is
not constant, which further strengthens the previous point.
With this variation, we can have languages with very similar
energy consumptions and completely different execution
times, as is the case of languages Pascal and Chapel in the
binary trees benchmark, which energy consumption dif-
fer roughly by 10% in favor of Pascal, while Chapel takes
about 55% less time to execute.
Compiled languages tend to be, as expected, the fastest

and most energy efficient ones. On average, compiled lan-
guages consumed 120J to execute the solutions, while for
virtual machine and interpreted languages this value was
576J and 2365J, respectively. This tendency can also be ob-
served for execution time, since compiled languages took

260

SLE’17, October 23–24, 2017, Vancouver, Canada R. Pereira et. al.

Table 3. Results for binary-trees, fannkuch-redux, and fasta

binary-trees fannkuch-redux fasta
Energy Time Ratio Mb Energy Time Ratio Mb Energy Time Ratio Mb

(c) C 39.80 1125 0.035 131 (c) C ⇓2 215.92 6076 0.036 2 (c) Rust ⇓9 26.15 931 0.028 16
(c) C++ 41.23 1129 0.037 132 (c) C++ ⇑1 219.89 6123 0.036 1 (c) Fortran ↓6 27.62 1661 0.017 1
(c) Rust ⇓2 49.07 1263 0.039 180 (c) Rust ⇓11 238.30 6628 0.036 16 (c) C ↑1 ⇓1 27.64 973 0.028 3
(c) Fortran ⇑1 69.82 2112 0.033 133 (c) Swift ⇓5 243.81 6712 0.036 7 (c) C++ ↑1 ⇓2 34.88 1164 0.030 4
(c) Ada ⇓1 95.02 2822 0.034 197 (c) Ada ⇓2 264.98 7351 0.036 4 (v) Java ↑1 ⇓12 35.86 1249 0.029 41
(c) Ocaml ↓1 ⇑2 100.74 3525 0.029 148 (c) Ocaml ↓1 277.27 7895 0.035 3 (c) Swift ⇓9 37.06 1405 0.026 31
(v) Java ↑1 ⇓16 111.84 3306 0.034 1120 (c) Chapel ↑1 ⇓18 285.39 7853 0.036 53 (c) Go ↓2 40.45 1838 0.022 4
(v) Lisp ↓3 ⇓3 149.55 10570 0.014 373 (v) Lisp ↓3 ⇓15 309.02 9154 0.034 43 (c) Ada ↓2 ⇑3 40.45 2765 0.015 3
(v) Racket ↓4 ⇓6 155.81 11261 0.014 467 (v) Java ↑1 ⇓13 311.38 8241 0.038 35 (c) Ocaml ↓2 ⇓15 40.78 3171 0.013 201
(i) Hack ↑2 ⇓9 156.71 4497 0.035 502 (c) Fortran ⇓1 316.50 8665 0.037 12 (c) Chapel ↑5 ⇓10 40.88 1379 0.030 53
(v) C# ↓1 ⇓1 189.74 10797 0.018 427 (c) Go ↑2 ⇑7 318.51 8487 0.038 2 (v) C# ↑4 ⇓5 45.35 1549 0.029 35
(v) F# ↓3 ⇓1 207.13 15637 0.013 432 (c) Pascal ⇑10 343.55 9807 0.035 2 (i) Dart ⇓6 63.61 4787 0.013 49
(c) Pascal ↓3 ⇑5 214.64 16079 0.013 256 (v) F# ↓1 ⇓7 395.03 10950 0.036 34 (i) JavaScript ⇓1 64.84 5098 0.013 30
(c) Chapel ↑5 ⇑4 237.29 7265 0.033 335 (v) C# ↑1 ⇓5 399.33 10840 0.037 29 (c) Pascal ↓1 ⇑13 68.63 5478 0.013 0
(v) Erlang ↑5 ⇑1 266.14 7327 0.036 433 (i) JavaScript ↓1 ⇓2 413.90 33663 0.012 26 (i) TypeScript ↓2 ⇓10 82.72 6909 0.012 271
(c) Haskell ↑2 ⇓2 270.15 11582 0.023 494 (c) Haskell ↑1 ⇑8 433.68 14666 0.030 7 (v) F# ↑2 ⇑3 93.11 5360 0.017 27
(i) Dart ↓1 ⇑1 290.27 17197 0.017 475 (i) Dart ⇓7 487.29 38678 0.013 46 (v) Racket ↓1 ⇑5 120.90 8255 0.015 21
(i) JavaScript ↓2 ⇓4 312.14 21349 0.015 916 (v) Racket ⇑3 1,941.53 43680 0.044 18 (c) Haskell ↑2 ⇓8 205.52 5728 0.036 446
(i) TypeScript ↓2 ⇓2 315.10 21686 0.015 915 (v) Erlang ⇑3 4,148.38 101839 0.041 18 (v) Lisp ⇓2 231.49 15763 0.015 75
(c) Go ↑3 ⇑13 636.71 16292 0.039 228 (i) Hack ⇓6 5,286.77 115490 0.046 119 (i) Hack ⇓3 237.70 17203 0.014 120
(i) Jruby ↑2 ⇓3 720.53 19276 0.037 1671 (i) PHP 5,731.88 125975 0.046 34 (i) Lua ⇑18 347.37 24617 0.014 3
(i) Ruby ⇑5 855.12 26634 0.032 482 (i) TypeScript ↓4 ⇑4 6,898.48 516541 0.013 26 (i) PHP ↓1 ⇑13 430.73 29508 0.015 14
(i) PHP ⇑3 1,397.51 42316 0.033 786 (i) Jruby ↑1 ⇓4 7,819.03 219148 0.036 669 (v) Erlang ↑1 ⇑12 477.81 27852 0.017 18
(i) Python ⇑15 1,793.46 45003 0.040 275 (i) Lua ↓3 ⇑19 8,277.87 635023 0.013 2 (i) Ruby ↓1 ⇑2 852.30 61216 0.014 104
(i) Lua ↓1 2,452.04 209217 0.012 1961 (i) Perl ↑2 ⇑12 11,133.49 249418 0.045 12 (i) JRuby ↑1 ⇓2 912.93 49509 0.018 705
(i) Perl ↑1 3,542.20 96097 0.037 2148 (i) Python ↑2 ⇑14 12,784.09 279544 0.046 12 (i) Python ↓1 ⇑18 1,061.41 74111 0.014 9
(c) Swift n.e. (i) Ruby ↑2 ⇑17 14,064.98 315583 0.045 8 (i) Perl ↑1 ⇑8 2,684.33 61463 0.044 53

Figure 1. Energy and time graphical data for binary-trees

Figure 2. Energy and time graphical data for fannkuch-redux

5103ms, virtual machine languages took 20623ms, and inter-
preted languages took 87614ms (on average). Grouped by
the different paradigms, the imperative languages consumed
and took on average 125J and 5585ms, the object-oriented
consumed 879J and spent 32965ms, the functional consumed
1367J and spent 42740ms and the scripting languages con-
sumed 2320J and spent 88322ms.
Moreover, the top 5 languages that need less energy and

time to execute the solutions are: C (57J, 2019ms), Rust (59J,
2103ms), C++ (77J, 3155ms), Ada (98J, 3740ms), and Java (114J,

3821ms); of these, only Java is not compiled. As expected, the
bottom 5 languages are all interpreted: Perl (4604J), Python
(4390J), Ruby (4045J), JRuby (2693J), and Lua (2660Js) for en-
ergy; Lua (167416ms), Python (145178ms), Perl (132856ms),
Ruby (119832ms), and TypeScript (93292ms) for time.
The CPU-based energy consumption always represents

the majority of the energy consumed. On average, for the
compiled languages, this value represents 88.94% of the en-
ergy consumed, being the remaining portion assigned to
DRAM. This value is very similar for virtual machine (88.94%)

261

Energy Efficiency across Programming Languages SLE’17, October 23–24, 2017, Vancouver, Canada

Figure 3. Energy and time graphical data for fasta

Figure 4. Energy and memory graphical data for binary-trees

Figure 5. Energy and memory graphical data for fannkuch-redux

Figure 6. Energy and memory graphical data for fasta

and interpreted languages (87.98%). While, as explained in
the last point, the overall average consumption for these 3
language types is very different, the ratio between CPU and
DRAM based energy consumption seems to generally main-
tain the same proportion. This might indicate that optimizing
a program to reduce the CPU-based energy consumption will
also decrease the DRAM-based energy consumption. How-
ever, it is interesting to notice that this value varies more for

interpreted languages (min of 81.57%, max of 92.90%) when
compared to compiled (min of 85.27%, max of 91.75%) or
virtual machine languages (min of 86.10%, max of 92.43%).

With these results, we can try to answer the question
raised in RQ2: Is the faster language always the most energy
efficient? By looking solely at the overall results, shown
in Table 4, we can see that the top 5 most energy efficient
languages keep their rank when they are sorted by execution

262

SLE’17, October 23–24, 2017, Vancouver, Canada R. Pereira et. al.

Table 4. Normalized global results for Energy, Time, and
Memory

Total

Energy Time Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c) C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

time and with very small differences in both energy and time
values. This does not come as a surprise, since in 9 out of 10
benchmark problems, the fastest and most energy efficient
programming language was one of the top 3. Additionally, it
is common knowledge that these top 3 language (C,C++, and
Rust) are known to be heavily optimized and efficient for
execution performance, as our data also shows. Thus, as time
influences energy, we had hypothesized that these languages
would also produce efficient energy consumptions as they
have a large advantage in one of the variables influencing
energy, even if they consumed more power on average.
Nevertheless, if we look at the remaining languages in

Table 4, we can see that only 4 languages maintain the same
energy and time rank (OCaml, Haskel, Racket, and Python),
while the remainder are completely shuffled. Additionally,
looking at individual benchmarks we see many cases where
there is a different order for energy and time.
Moreover, the tables in Results - A. Data Tables in the

appendix also allows us to understand that this question
does not have a concrete and ultimate answer. Although
the most energy efficient language in each benchmark is
almost always the fastest one, the fact is that there is no
language which is consistently better than the others. This
allows us to conclude that the situation on which a language
is going to be used is a core aspect to determine if that
language is the most energy efficient option. For example,
in the regex-redux benchmark, which manipulates strings
using regular expressions, interpreted languages seem to
be an energy efficient choice (TypeScript, JavaScript and

PHP, all interpreted, are in the top 5), although they tend to
be not very energy efficient in other scenarios. Thus, the
answer for RQ2 is: No, a faster language is not always the
most energy efficient.

3.2 Memory Impact on Energy
How does memory usage affect the memory’s energy con-
sumption? There are two main possible scenarios which
may influence this energy consumption: continuous mem-
ory usage and peak memory usage. With the data we have
collected, we will try to answer the latter scenario.
The top 5 languages, also presented in Table 4, which

needed the least amount ofmemory space (on average) to exe-
cute the solutions were: Pascal (66Mb), Go (69Mb), C (77Mb),
Fortran (82Mb), and C++ (88Mb); these are all compiled lan-
guages. The bottom 5 languages were: JRuby (1309Mb), Dart
(570Mb), Erlang (475Mb), Lua (444Mb), and Perl (437Mb);
of these, only Erlang is not an interpreted language.
On average, the compiled languages needed 125Mb, the

virtual machine languages needed 285Mb, and the inter-
preted needed 426Mb. If sorted by their programming para-
digm, the imperative languages needed 116Mb, the object-
oriented 249Mb, the functional 251Mb, and finally the script-
ing needed 421Mb.
Additionally, the top 5 languages which consumed the

least amount of DRAM energy (average) were: C (5J), Rust
(6J), C++ (8J), Ada (10J), and Java (11J); of these, only Java
is not a compiled language. The bottom 5 languages were:
Lua (430J), JRuby (383J), Python (356J), Perl (327J), and Ruby
(295J); all are interpreted languages. On average, the com-
piled languages consumed 14J, the virtual machine languages
consumed 52J, and the interpreted languages consumed 236J.

Looking at the visual data from Figures 4-6, and the right
most figures under Results - C. Energy and Time Graphs in
the appendix, one can quickly see that there does not seem
to be a consistent correlation between the DRAM energy
consumption and the peak memory usage. To verify this, we
first tested both the DRAM energy consumption and peak
memory usage for normality using the Shapiro-Wilk [33]
test. As the data is not normally distributed, we calculated
the Spearman [39] rank-order correlation coefficient. The
result was a Spearman ρ value equal to 0.2091, meaning it
is between no linear relationship (ρ = 0) and a weak uphill
positive relationship (ρ = 0.3).
While we did expect the possibility of little correlation

between the DRAM’s energy consumption and peakmemory
usage, we were surprised that the relationship is almost
non-existent. Thus, answering the first part of RQ3, this
indicates that the DRAM’s energy consumption has very
little to do with how much memory is saved at a given point,
but possibly more of how it is used.

As future work, we wish to measure the continuous mem-
ory usage, or in other words the total amount of memory
used over time, to understand if this is what leads to higher

263

Energy Efficiency across Programming Languages SLE’17, October 23–24, 2017, Vancouver, Canada

DRAM energy consumption.We expect there to be a stronger
relationship between these two as factors such as garbage
collection, cache usage, register location, and the data man-
agement efficiency of each language (read/write) to have a
strong impact on the energy consumption.

3.3 Energy vs. Time vs. Memory
There are many situations where a software engineer has to
choose a particular software language to implement his algo-
rithm according to functional or non functional requirements.
For instance, if he is developing software for wearables, it
is important to choose a language and apply energy-aware
techniques to help save battery. Another example is the im-
plementation of tasks that run in background. In this case,
execution time may not be a main concern, and they may
take longer than the ones related to the user interaction.

With the fourth research question RQ4, we try to under-
stand if it is possible to automatically decide what is the best
programming language when considering energy consump-
tion, execution time, and peak memory usage needed by
their programs, globally and individually. In other words, if
there is a “best” programming languages for all three charac-
teristics, or if not, which are the best in each given scenario.
To this end, we present in Table 5 a comparison of three

language characteristics: energy consumption, execution
time, and peak memory usage. In order to compare the lan-
guages using more than one characteristic at a time we use
a multi-objective optimization algorithm to sort these lan-
guages, known as Pareto optimization [8, 9]. It is necessary to
use such an algorithm because in some cases it may happen
that no solution simultaneously optimizes all objectives. For
our example, energy, time, and memory are the optimization
objectives. In these cases, a dominant solution does not exist,
but each solution is a set, in our case, of software languages.
Here, the solution is called the Pareto optimal.
We used this technique, and in particular the software

available at [37], to calculate different rankings for the ana-
lyzed software languages. In Table 5 we present four multi-
objective rankings: time & memory, energy & time, energy
& memory, and energy & time, & memory. For each rank-
ing, each line represents a Pareto optimal set, that is, a set
containing the languages that are equivalent to each other
for the underlying objectives. In other words, each line is
a single rank or position. A single software language in a
position signifies that the language was clearly the best for
the analyzed characteristics. Multiple languages in a line
imply that a tie occured, as they are essentially similar; yet
ultimately, the languages lean slightly towards one of the
objectives over the other as a slight trade-off.
The most common performance characteristics of soft-

ware languages used to evaluate and choose them are ex-
ecution time and memory usage. If we consider these two
characteristics in our evaluation, C, Pascal, and Go are equiv-
alent. However, if we consider energy and time, C is the best

solution since it is dominant in both single objectives. If
we prefer energy and memory, C and Pascal constitute the
Pareto optimal set. Finally, analyzing all three characteristics,
this scenario is very similar as for time and memory.

It is interesting to see that, when considering energy and
time, the sets are usually reduced to one element. This means,
that it is possible to actually decide which is the best lan-
guage. This happens possibly because there is amathematical
relation between energy and time and thus they are usually
tight together, thus being common that a language is dom-
inant in both objectives at the same time. However, there
are cases where this is not true. For instance, for Pascal and
Chapel it is not possible to decide which one is the best as
Pascal is better in energy and memory use, but worse in
execution time. In these situations the developer needs to
intervene and decide which is the most important aspect to
be able to decide for one language.

It is also interesting to note that, when considering mem-
ory use, languages such as Pascal tend to go up in the
ranking. Although this is natural, it is a difficult analysis
to perform without information such as the one we present.
Given the information presented in Table 5 we can try

to answer RQ4: Can we automatically decide what is
the best software language considering energy, time,
and memory usage? If the developer is only concerned
with execution time and energy consumption, then yes, it is
almost always possible to choose the best language. Unfor-
tunately, if memory is also a concern, it is no longer possible
to automatically decide for a single language. In all the other
rankings most positions are composed by a set of Pareto opti-
mal languages, that is, languages which are equivalent given
the underlying characteristics. In these cases, the developer
will need to make a decision and take into consideration
which are the most important characteristics in each par-
ticular scenario, while also considering any fuctional/non-
functional requirements necessary for the development of
the application. Still, the informationwe provide in this paper
is quite important to help group languages by equivalence
when considering the different objectives. For the best of our
knowledge, this is the first time such work is presented. Note
that we provide the information of each individual charac-
teristic in Table 4 so the developer can actually understand
each particular set (we do not show such information in Ta-
ble 5 to avoid cluttering the paper with to many tables with
numbers).

4 Threats to Validity
The goal of our study was to both measure and understand
the energetic behavior of several programming languages,
allowing us to bring about a greater insight on how certain
languages compare to each other mainly in terms of energy
consumption, but also performance and memory. We present
in this subsection some threats to the validity of our study,

264

SLE’17, October 23–24, 2017, Vancouver, Canada R. Pereira et. al.

Table 5. Pareto optimal sets for different combination of objectives.
Time & Memory Energy & Time Energy & Memory Energy & Time & Memory
C • Pascal • Go C C • Pascal C • Pascal • Go

Rust • C++ • Fortran Rust Rust • C++ • Fortran • Go Rust • C++ • Fortran
Ada C++ Ada Ada

Java • Chapel • Lisp • Ocaml Ada Java • Chapel • Lisp Java • Chapel • Lisp • Ocaml
Haskell • C# Java OCaml • Swift • Haskell Swift • Haskell • C#
Swift • PHP Pascal • Chapel C# • PHP Dart • F# • Racket • Hack • PHP

F# • Racket • Hack • Python Lisp • Ocaml • Go Dart • F# • Racket • Hack • Python JavaScript • Ruby • Python
JavaScript • Ruby Fortran • Haskell • C# JavaScript • Ruby TypeScript • Erlang

Dart • TypeScript • Erlang Swift TypeScript Lua • JRuby • Perl
JRuby • Perl Dart • F# Erlang • Lua • Perl

Lua JavaScript JRuby
Racket

TypeScript • Hack
PHP
Erlang

Lua • JRuby
Ruby

divided into four categories [3], namely: conclusion validity,
internal validity, construct validity, and external validity.

Conclusion Validity From our experiment it is clear that
different programming paradigms and even languageswithin
the same paradigm have a completely different impact on
energy consumption, time, and memory. We also see inter-
esting cases where the most energy efficient is not the fastest,
and believe these results are useful for programmers. For a
better comparison, we not only measured CPU energy con-
sumption but also DRAM energy consumption. This allowed
us to further understand the relationship between DRAM
energy consumption and peak memory usage, while also
understanding the behavior languages have in relation the
energy usage derived from the CPU and DRAM. Addition-
ally, the way we grouped the languages is how we felt is the
most natural to compare languages (by programming para-
digm, and how the language is executed). Thus, this was the
chosen way to present the data in the paper. Nevertheless,
all the data is available and any future comparison groups
such as “.NET languages” or “JVM languages” can be very
easily analyzed.

Internal Validity This category concerns itself with what
factors may interfere with the results of our study. When
measuring the energy consumption of the various different
programming languages, other factors alongside the different
implementations and actual languages themselves may con-
tribute to variations, i.e. specific versions of an interpreter or
virtual machine. To avoid this, we executed every language
and benchmark solution equally. In each, we measured the
energy consumption (CPU and DRAM), execution time, and
peak memory 10 times, removed the furthest outliers, and
calculated the median, mean, standard deviation, min, and
max values. This allowed us to minimize the particular states

of the tested machine, including uncontrollable system pro-
cesses and software. However, the measured results are quite
consistent, and thus reliable. In addition, the used energy
measurement tool has also been proven to be very accurate.

Construct Validity We analyzed 27 different program-
ming languages, each with roughly 10 solutions to the pro-
posed problems, totaling out to almost 270 different cases.
These solutions were developed by experts in each of the
programming languages, with the main goal of "winning" by
producing the best solution for performance time. While the
different languages contain different implementations, they
were written under the same rules, all produced the same
exact output, and were implemented to be the fastest and
most efficient as possible. Having these different yet efficient
solutions for the same scenarios allows us to compare the
different programming languages in a quite just manner as
they were all placed against the same problem. Albeit cer-
tain paradigms or languages could have an advantage for
certain problems, and others may be implemented in a not so
traditional sense. Nevertheless, there is no basis to suspect
that these projects are best or worst than any other kind we
could have used.

External Validity We concern ourselves with the gener-
alization of the results. The obtained solutions were the best
performing ones at the timewe set up the study. As the CLBG
is an ongoing "competition", we expect that more advanced
and more efficient solutions will substitute the ones we ob-
tained as time goes on, and even the languages’ compilers
might evolve. Thus this, along with measurements in differ-
ent systems, might produce slightly different resulting values
if replicated. Nevertheless, unless there is a huge leap within
the language, the comparisons might not greatly differ. The
actual approach and methodology we used also favors easy

265

Energy Efficiency across Programming Languages SLE’17, October 23–24, 2017, Vancouver, Canada

replications. This can be attributed to the CLBG containing
most of the important information needed to run the ex-
periments, these being: the source code, compiler version,
and compilation/execution options. Thus we believe these
results can be further generalized, and other researchers can
replicate our methodology for future work.

5 Related Work
The work presented in this paper extends the work pre-
sented by [6], where the energy consumption monitoring
approach for different programming languages was intro-
duced. The main focus of [6] was the methodology and the
comparison of the CPU-based energy efficiency in 10 of the
28 languages. We made a wider and more in-depth analysis,
since in addition to including all languages, we also included
the DRAM-based energy consumption and peak memory us-
age values, and presented a discussion on how energy, time
and energy relate in software, and on different languages
divided by type and paradigm.
The CLBG benchmark solutions have already been used

for validation purpose by several research works. Among
other examples, CLGB was used to study dynamic behavior
of non-Java JVM languages [20], to analyze dynamic script-
ing languages [36] and compiler optimizations [34], or even
to benchmark a JIT compiler for PHP [16]. At the best of our
knowledge, CLGB was only used once for energy consump-
tion analysis. In [21], the authors used the provided Haskell
implementations, among other benchmarks, to analyze the
energy efficiency of Hakell programs from strictness and
concurrency perspectives, while also analyzing the energy in-
fluence of small implementation changes. The authors of [25]
also used CLBG to compare JavaScript, Java, and C++ in
an Android setting.

While several works have shown indications that a more
time efficient approach does not always lead to the most
energy efficient solution [1, 21, 25, 27, 29, 35], these results
were not the intended focus nor main contribution, but more
of a side observation per se. We focused on trying to un-
derstand and directly answer this question of how energy
efficiency and time relate.
Nevertheless, the energy efficiency in software problem

has been growing in interest in the past few years. In fact,
studies have emerged with different goals and in different
areas, with the common vision of understanding how devel-
opment aspects affect the energy consumption in diversi-
fied software systems. For instance, for mobile applications,
there are works focused on analyzing the energy efficiency
of code blocks [5, 19], or just monitoring how energy con-
sumption evolves over time [11]. Other studies aimed at a
more extensive energy consumption analysis, by comparing
the energy efficiency of similar programs in specific usage
scenarios [4, 17], or by providing conclusions on the energy
impact of different implementation decisions [7]. Several

other works have shown that several factors, such as differ-
ent design patterns [22, 31], coding practices [21, 26, 29, 32],
and data structures [15, 23, 24, 27], actually have a significant
influence in the software’s energy efficiency.

6 Conclusions
In this paper, we first present an analysis and comparison of
the energy efficiency of 27 well-known software languages
from the popular software repository The Computer Lan-
guage Benchmarks Game. We are able to showwhichwere the
most energy efficient software languages, execution types,
and paradigms across 10 different benchmark problems.
Through also measuring the execution time and peak

memory usage, we were able to relate both to energy to
understand not only how memory usage affects energy con-
sumption, but also how time and energy relate. This allowed
us to understand if a faster language is always the most
energy efficient. As we saw, this is not always the case.
Finally, as often times developers have limited resources

and may be concerned with more than one efficiency charac-
teristic we calculated which were the best/worst languages
according to a combination of the previous three character-
istics: Energy & Time, Energy & Peak Memory, Time & Peak
Memory, and Energy & Time & Peak Memory.

Ourwork helps contribute another stepping stone in bring-
ing more information to developers to allow them to become
more energy-aware when programming.

Acknowledgments
We would like to thank Luís Cruz (University of Porto) for the help
that he provided. This work is financed by the ERDF – European
Regional Development Fund through the Operational Programme
for Competitiveness and Internationalisation - COMPETE 2020
Programme within project POCI-01-0145-FEDER-006961, and by
National Funds through the Portuguese funding agency, FCT - Fun-
dação para a Ciência e a Tecnologia within project POCI-01-0145-
FEDER-016718 and UID/EEA/50014/2013. The first author is also
sponsored by FCT grant SFRH/BD/112733/2015.

References
[1] Sarah Abdulsalam, Ziliang Zong, Qijun Gu, and Meikang Qiu. 2015.

Using the Greenup, Powerup, and Speedup metrics to evaluate soft-
ware energy efficiency. In Proc. of the 6th Int. Green and Sustainable
Computing Conf. IEEE, 1–8.

[2] Shaiful Alam Chowdhury and Abram Hindle. 2016. GreenOracle:
estimating software energy consumption with energy measurement
corpora. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR, 2016. 49–60.

[3] Thomas D Cook and Donald T Campbell. 1979. Quasi-experimentation:
design & analysis issues for field settings. Houghton Mifflin.

[4] Marco Couto, Paulo Borba, Jácome Cunha, João P. Fernandes, Rui
Pereira, and João Saraiva. 2017. Products go Green: Worst-Case Energy
Consumption in Software Product Lines. (2017).

[5] Marco Couto, Tiago Carção, Jácome Cunha, João Paulo Fernandes,
and João Saraiva. 2014. Detecting Anomalous Energy Consumption
in Android Applications. In Programming Languages: 18th Brazilian

266

SLE’17, October 23–24, 2017, Vancouver, Canada R. Pereira et. al.

Symposium, SBLP 2014, Maceio, Brazil, October 2-3, 2014. Proceedings,
Fernando Magno Quintão Pereira (Ed.). 77–91.

[6] Marco Couto, Rui Pereira, Francisco Ribeiro, Rui Rua, and João Saraiva.
2017. Towards a Green Ranking for Programming Languages. In Pro-
gramming Languages: 21st Brazilian Symposium, SBLP 2017, Fortaleza,
Brazil, September, 2017.

[7] Luis Cruz and Rui Abreu. 2017. Performance-based Guidelines for
Energy Efficient Mobile Applications. In Proceedings of the 4th In-
ternational Conference on Mobile Software Engineering and Systems
(MOBILESoft ’17). IEEE Press, 46–57.

[8] K. Deb, M. Mohan, and S Mishra. 2005. Evaluating the ε -domination
based multiobjective evolutionary algorithm for a quick computation
of Pareto-optimal solutions. Evolutionary Computation Journal 13, 4
(2005), 501–525.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II. Trans. Evol. Comp
6, 2 (2002), 182–197.

[10] Martin Dimitrov, Carl Strickland, Seung-Woo Kim, Karthik Kumar, and
Kshitij Doshi. 2015. Intel® Power Governor. https://software.intel.com/
en-us/articles/intel-power-governor. (2015). Accessed: 2015-10-12.

[11] F. Ding, F. Xia, W. Zhang, X. Zhao, and C. Ma. 2011. Monitoring Energy
Consumption of Smartphones. In Proc. of the 2011 Int. Conf. on Internet
of Things and 4th Int. Conf. on Cyber, Physical and Social Computing.
610–613.

[12] Isaac Gouy. The Computer Language Benchmarks Game. http:
//benchmarksgame.alioth.debian.org/

[13] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. 2012.
Measuring energy consumption for short code paths using RAPL.
SIGMETRICS Performance Evaluation Review 40, 3 (2012), 13–17.

[14] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. 2013.
Estimating Mobile Application Energy Consumption Using Program
Analysis. In Proc. of the 2013 Int. Conf. on Software Engineering (ICSE
’13). IEEE Press, 92–101.

[15] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh,
Bram Adams, and Abram Hindle. 2016. Energy profiles of java col-
lections classes. In Proc. of the 38th Int. Conf. on Software Engineering.
ACM, 225–236.

[16] Andrei Homescu and Alex Şuhan. 2011. HappyJIT: A Tracing JIT
Compiler for PHP. SIGPLAN Not. 47, 2 (Oct. 2011), 25–36.

[17] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann. 2015.
EcoDroid: An Approach for Energy-based Ranking of Android Apps. In
Proc. of 4th Int. Workshop on Green and Sustainable Software (GREENS
’15). IEEE Press, 8–14.

[18] Ding Li and William G. J. Halfond. 2014. An Investigation Into Energy-
Saving Programming Practices for Android Smartphone App Develop-
ment. In Proceedings of the 3rd International Workshop on Green and
Sustainable Software (GREENS).

[19] Ding Li, Shuai Hao, William GJ Halfond, and Ramesh Govindan. 2013.
Calculating source line level energy information for android appli-
cations. In Proc. of the 2013 Int. Symposium on Software Testing and
Analysis. ACM, 78–89.

[20] Wing Hang Li, David R. White, and Jeremy Singer. 2013. JVM-hosted
Languages: They Talk the Talk, but Do They Walk the Walk?. In Proc.
of the 2013 Int. Conf. on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’13). ACM,
101–112.

[21] Luís Gabriel Lima, Gilberto Melfe, Francisco Soares-Neto, Paulo
Lieuthier, João Paulo Fernandes, and Fernando Castor. 2016. Haskell
in Green Land: Analyzing the Energy Behavior of a Purely Functional
Language. In Proc. of the 23rd IEEE Int. Conf. on Software Analysis,
Evolution, and Reengineering (SANER’2016). IEEE, 517–528.

[22] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas,
Rocco Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. 2014.
Mining energy-greedy API usage patterns in Android apps: an em-
pirical study. In Proc. of the 11th Working Conf. on Mining Software
Repositories. ACM, 2–11.

[23] Kenan Liu, Gustavo Pinto, and Yu David Liu. 2015. Data-oriented char-
acterization of application-level energy optimization. In Fundamental
Approaches to Software Engineering. Springer, 316–331.

[24] Irene Manotas, Lori Pollock, and James Clause. 2014. SEEDS: A Soft-
ware Engineer’s Energy-Optimization Decision Support Framework.
In Proc. of the 36th Int. Conf. on Software Engineering. ACM, 503–514.

[25] Wellington Oliveira, Renato Oliveira, and Fernando Castor. 2017. A
study on the energy consumption of Android app development ap-
proaches. In Proceedings of the 14th International Conference on Mining
Software Repositories. IEEE Press, 42–52.

[26] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva.
2017. Helping Programmers Improve the Energy Efficiency of Source
Code. In Proc. of the 39th Int. Conf. on Soft. Eng. Companion. ACM.

[27] Rui Pereira, Marco Couto, João Saraiva, Jácome Cunha, and João Paulo
Fernandes. 2016. The Influence of the Java Collection Framework on
Overall Energy Consumption. In Proc. of the 5th Int. Workshop on Green
and Sustainable Software (GREENS ’16). ACM, 15–21.

[28] Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Mining
questions about software energy consumption. In Proc. of the 11th
Working Conf. on Mining Software Repositories. ACM, 22–31.

[29] Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Understand-
ing energy behaviors of thread management constructs. In Proc. of
the 2014 ACM Int. Conf. on Object Oriented Programming Systems Lan-
guages & Applications. ACM, 345–360.

[30] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weiss-
mann, and Doron Rajwan. 2012. Power-Management Architecture of
the Intel Microarchitecture Code-Named Sandy Bridge. IEEE Micro 32,
2 (2012), 20–27.

[31] Cagri Sahin, Furkan Cayci, Irene Lizeth Manotas Gutierrez, James
Clause, Fouad Kiamilev, Lori Pollock, and Kristina Winbladh. 2012.
Initial explorations on design pattern energy usage. In Green and
Sustainable Software (GREENS), 2012 1st Int. Workshop on. IEEE, 55–61.

[32] Cagri Sahin, Lori Pollock, and James Clause. 2014. How do code refac-
torings affect energy usage?. In Proc. of 8th ACM/IEEE Int. Symposium
on Empirical Software Engineering and Measurement. ACM, 36.

[33] SS Shaphiro and MB Wilk. 1965. An analysis of variance test for
normality. Biometrika 52, 3 (1965), 591–611.

[34] Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012.
Optimization Coaching: Optimizers Learn to Communicate with Pro-
grammers. In Proc. of ACM Int. Conf. on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’12). ACM, 163–178.

[35] Anne E. Trefethen and Jeyarajan Thiyagalingam. 2013. Energy-aware
software: Challenges, opportunities and strategies. Journal of Compu-
tational Science 4, 6 (2013), 444 – 449.

[36] Kevin Williams, Jason McCandless, and David Gregg. 2010. Dynamic
Interpretation for Dynamic Scripting Languages. In Proc. of the 8th
Annual IEEE/ACM Int. Symposium on Code Generation and Optimization
(CGO ’10). ACM, 278–287.

[37] Matthew Woodruff and Jon Herman. 2013.
pareto.py: a ε − nondomination sorting routine.
https://github.com/matthewjwoodruff/pareto.py. (2013).

[38] Tomofumi Yuki and Sanjay Rajopadhye. 2014. Folklore confirmed:
Compiling for speed= compiling for energy. In Languages and Com-
pilers for Parallel Computing. Springer, 169–184.

[39] Daniel Zwillinger and Stephen Kokoska. 1999. CRC standard probabil-
ity and statistics tables and formulae. Crc Press.

267

https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/

	Abstract
	1 Introduction
	2 Measuring Energy in Software Languages
	2.1 The Computer Language Benchmarks Game
	2.2 Design and Execution
	2.3 Results

	3 Analysis and Discussion
	3.1 Is Faster, Greener?
	3.2 Memory Impact on Energy
	3.3 Energy vs. Time vs. Memory

	4 Threats to Validity
	5 Related Work
	6 Conclusions
	References

