
Ranking Programming Languages by Energy Efficiency

Rui Pereiraa, Marco Coutoa, Francisco Ribeiroa, Rui Ruaa, Jácome Cunhab,
João Paulo Fernandesc, João Saraivaa

aHASLab/INESC TEC & Universidade do Minho, Portugal
bUniversidade do Minho & NOVA LINCS, Portugal

cCISUC & Universidade de Coimbra, Portugal

Abstract

This paper compares a large set of programming languages regarding their
efficiency, including from an energetic point-of-view. Indeed, we seek to establish
and analyze different rankings for programming languages based on their energy
efficiency. The goal of being able to rank languages with energy in mind is a
recent one, and certainly deserves further studies.

We have taken 19 solutions to well defined programming problems, expressed
in (up to) 27 programming languages, from well know repositories such as the
Computer Language Benchmark Game and Rosetta Code. We have also built a
framework to automatically, and systematically, run, measure and compare the
efficiency of such solutions. Ultimately, it is based on such comparison that we
propose a serious of efficiency rankings, based on multiple criteria.

Our results show interesting findings, such as, slower/faster languages con-
suming less/more energy, and how memory usage influences energy consump-
tion. We also show how to use our results to provide software engineers support
to decide which language to use when energy efficiency is a concern.

Keywords: Energy Efficiency, Programming Languages, Language
Benchmarking, Green Software

1. Introduction

Software language engineering provides powerful techniques and tools to
design, implement and evolve software languages. Such techniques aim at im-
proving programmers productivity - by incorporating advanced features in the
language design, like for instance powerful modular and type systems - and at
efficiently execute such software - by developing, for example, aggressive com-
piler optimizations. Indeed, most techniques were developed with the main goal

Email addresses: ruipereira@di.uminho.pt (Rui Pereira), marco.l.couto@inesctec.pt
(Marco Couto), fribeiro@di.uminho.pt (Francisco Ribeiro), rrua@di.uminho.pt (Rui Rua),
jacome@di.uminho.pt (Jácome Cunha), jpf@dei.uc.pt (João Paulo Fernandes),
jas@di.uminho.pt (João Saraiva)

Preprint submitted to Elsevier December 28, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/369760104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of helping software developers in producing faster programs. In fact, in the last
century performance in software languages was in almost all cases synonymous
of fast execution time (embedded systems were probably the single exception).

In this century, this reality is quickly changing and software energy consump-
tion is becoming a key concern for computer manufacturers, software language
engineers, programmers, and even regular computer users. Nowadays, it is usual
to see mobile phone users (which are powerful computers) avoiding using CPU
intensive applications just to save battery/energy. While the concern on the
computers’ energy efficiency started by the hardware manufacturers, it quickly
became a concern for software developers too [1]. In fact, this is a recent and
intensive area of research where several techniques to analyze and optimize the
energy consumption of software systems are being developed. Such techniques
already provide knowledge on the energy efficiency of data structures [2, 3] and
Android language [4], the energy impact of different programming practices
both in mobile [5, 6, 7] and desktop applications [8, 9], the energy efficiency of
applications within the same scope [10, 11], or even on how to predict energy
consumption in several software systems [12, 13], among several other works.

An interesting question that frequently arises in the software energy effi-
ciency area is whether a faster program is also an energy efficient program,
or not. If the answer is yes, then optimizing a program for speed also means
optimizing it for energy, and this is exactly what the compiler construction com-
munity has been hardly doing since the very beginning of software languages.
However, energy consumption does not depends only on execution time, as
shown in the equation Energy = Time×Power. In fact, there are several research
works showing different results regarding this subject [14, 15, 16, 17, 2, 18].

A similar question arises when comparing software languages: is a faster lan-
guage, a greener one? Comparing software languages, however, is an extremely
complex task, since the performance of a language is influenced by the quality of
its compiler, virtual machine, garbage collector, available libraries, etc. Indeed,
a software program may become faster by improving its source code, but also
by “just” optimizing its libraries and/or its compiler.

In previous works [20, 33], we have made coherent and consistent efforts
to assess and compare the performance of (a total of) 27 of the most widely
used software languages. We considered (a total of) ten different programming
problems that are expressed in each of the languages, following the exact same
algorithm, as defined in the Computer Language Benchmark Game (CLBG) [19].
We compiled/executed such programs using the state-of-the-art compilers, vir-
tual machines, interpreters, and libraries for each language. Afterwards, we
analyzed the performance of the different implementation considering runtime
performance, i.e., execution time and peak memory consumption, and energy
consumption. Moreover, we analyzed those results according to the languages’
execution type (compiled, virtual machine and interpreted), and programming
paradigm (imperative, functional, object oriented, scripting) used. For each of
the execution types and programming paradigms, we compiled a software lan-
guage ranking according to each objective individually considered (e.g., time or
energy consumption). We have also proposed global rankings for all the possible

2



combinations of objectives (e.g., time and energy consumption).
This paper extends our previous work in two fundamental ways.
First, we have considered an alternative dimension within our earlier ranking.

Indeed, as one of the objectives we were considering peak memory usage, which
did not prove to be correlated with memory energy consumption. Now, we
are considering continuous memory usage as another possibility for analyzing
memory behavior.

We have found a clear correlation between the memory energy consumption
and the total memory used, where a lower/higher memory usage value leads to
less/more energy being consumed. Since the opposite was observed for peak
memory usage (i.e., almost no relation with memory energy), these results seem
to indicate that it might be more energy efficient to store high amounts of
memory at once and releasing it right afterwards than continuous memory usage
throughout the execution.

Second, we re-apply the methodology that we have defined earlier in order to
provide a complementary ranking that uses a code base other than the CLBG.
Indeed, we consider a repository, Rosetta Code [30], of alternative solutions
to programming problems that is maintained with the main goal of assisting
programmers in understanding syntactic or semantic aspects of programming
languages outside their domain of expertise. So, the solutions that are gathered
have a clarity and pedagogical concern, which is essentially different when com-
pared to CLBG, whose solutions are strictly performance-oriented. To propose
this new ranking, we considered 9 tasks from Rosetta Code, and their solutions
in (up to) the 27 programming languages that we have considered before.

With the proposition of a complementary ranking, we are interested in find-
ing efficiency trends that confirm or contradict our earlier findings with respect
to the efficiency of programming languages. This is aligned with our perspective
that the insights provided by one ranking, if considered in isolation, are more
subject to imprecise systematization, and indeed benefit from complementary
perspectives provided by different rankings. We believe that this is actually an
idea that generalizes to traditional rankings, e.g., when considering the pres-
tigious of worldwide Universities, and the multiple rankings that attempt to
analyze it.

In the definition of the new ranking, we observe that the C programming
language continues to rank at the top, and that most languages are also ranked
similarly as before. But we have also found significant differences, for example,
for the Java programming language, which is ranked significantly below than
before.

This paper is organized as follows: Section 2 exposes the detailed steps of our
methodology to measure and compare energy efficiency in software languages; it
also includes the ranking that we have obtained by applying such methodology
to programs from the CLBG. In Section 3, we describe the complementary
ranking that we have obtained when applying our methodology to programs
from Rosetta Code. In Section 4 we discuss the threats that may affect the
validity of the insights we are drawing. Section 5 presents the related work, and
finally, in Section 6 we present the conclusions of our work.

3



2. Measuring Energy in Software Languages

The initial motivation and primary focus of this work is to understand the
energy efficiency across various programming languages. This might seem like a
simple task, but it is not as trivial as it sounds. To properly compare the energy
efficiency between programming languages, we must obtain various comparable
implementations with a good representation of different problems/solutions.

With this in mind, we begin by trying to answer the following research
question:

• RQ1: Can we compare the energy efficiency of software languages? This
will allow us to have results in which we can in fact compare the energy
efficiency of popular programming languages. In having these results,
we can also explore the relations between energy consumption, execution
time, and memory usage.

The following subsections will detail the methodology used to answer this
question, and the results we obtained.

2.1. The Computer Language Benchmarks Game

In order to obtain a comparable, representative and extensive set of pro-
grams written in many of the most popular and most widely used programming
languages we have explored The Computer Language Benchmarks Game [19].
(CLBG).

The CLBG initiative includes a framework for running, testing and compar-
ing implemented coherent solutions for a set of well-known, diverse programming
problems. The overall motivation is to be able to compare solutions, within and
between, different programming languages. While the perspectives for compar-
ing solutions have originally essentially analyzed runtime performance, the fact
is that CLBG has recently also been used in order to study the energy efficiency
of software [17, 20, 4].

In its current stage, the CLBG has gathered solutions for 13 benchmark
problems, such that solutions to each such problem must respect a given algo-
rithm and specific implementation guidelines. Solutions to each problem are
expressed in, at most, 28 different programming languages.

The complete list of benchmark problems in the CLBG covers different
computing problems, as described in Table 1. Additionally, the complete list
of programming languages in the CLBG is shown in Table 2, sorted by their
paradigms.

2.2. Design and Execution

Our case study to analyze the energy efficiency of software languages is based
on the CLBG.

From the 28 languages considered in the CLBG, we excluded Smalltalk since
the compiler for that language is proprietary. Also, for comparability, we have
discarded benchmark problems whose language coverage is below the thresh-
old of 80%. By language coverage we mean, for each benchmark problem,

4



Table 1: CLBG corpus of programs.

Benchmark Description Input

n-body
Double precision N-body
simulation

50M

fannkuch-

redux

Indexed access to tiny
integer sequence

12

spectral-

norm

Eigenvalue using the power
method

5,500

mandelbrot
Generate Mandelbrot set
portable bitmap file

16,000

pidigits
Streaming arbitrary
precision arithmetic

10,000

regex-redux
Match DNA 8mers and
substitute magic patterns

fasta
output

fasta
Generate and write random
DNA sequences

25M

k-nucleotide
Hashtable update and
k-nucleotide strings

fasta
output

reverse-

complement

Read DNA sequences, write
their reverse-complement

fasta
output

binary-trees

Allocate, traverse and
deallocate many binary
trees

21

chameneos-

redux

Symmetrical thread
rendezvous requests

6M

meteor-

contest

Search for solutions to
shape packing puzzle

2,098

thread-ring
Switch from thread to
thread passing one token

50M

the percentage of programming languages (out of 27) in which solutions for it
are available. This criteria excluded chameneos-redux, meteor-contest and
thread- ring from our study.

We then gathered the most efficient (i.e. fastest) version of the source code
in each of the remaining 10 benchmark problems, for all the 27 considered
programming languages.

The CLBG documentation also provides information about the specific com-
piler/runner version used for each language, as well as the compilation/execution
options considered (for example, optimization flags at compile/run time). We
strictly followed those instructions and installed the correct compiler versions,
and also ensured that each solution was compiled/executed with the same op-
tions used in the CLBG. Once we had the correct compiler and benchmark
solutions for each language, we tested each one individually to make sure that
we could execute it with no errors and that the output was the expected one.

The next step was to gather the information about energy consumption,
execution time and peak memory usage for each of the compilable and exe-
cutable solutions in each language. It is to be noted that the CLBG already

5



Table 2: Languages sorted by paradigm

Paradigm Languages

Functional
Erlang, F#, Haskell, Lisp, Ocaml,
Perl, Racket, Ruby, Rust;

Imperative
Ada, C, C++, F#, Fortran, Go,
Ocaml, Pascal, Rust;

Object-
Oriented

Ada, C++, C#, Chapel, Dart ,
F#, Java, JavaScript, Ocaml, Perl,
PHP, Python, Racket, Rust,
Smalltalk, Swift, TypeScript;

Scripting
Dart, Hack, JavaScript, JRuby,
Lua, Perl, PHP, Python, Ruby,
TypeScript;

contains measured information on both the execution time and peak memory
usage. We measured both not only to check the consistency of our results
against the CLBG, but also since different hardware specifications would bring
about different results. For measuring the energy consumption, we used Intel’s
Running Average Power Limit (RAPL) tool [21], which is capable of providing
accurate energy estimates at a very fine-grained level, as it has already been
proven [22, 23]. Also, the current version of RAPL allows it to be invoked from
any program written in C and Java (through jRAPL [24]).

In order to properly compare the languages, we needed to collect the energy
consumed by a single execution of a specific solution. In order to do this, we
used the system function call in C, which executes the string values which are
given as arguments; in our case, the command necessary to run a benchmark
solution (for example, the binary-trees solution written in Python is executed
by writing the command /usr/bin/python binarytrees.py 21).

The energy consumption of a solution will then be the energy consumed by
the system call, which we measured using RAPL function calls. The overall
process (i.e., the workflow of our energy measuring framework 1) is described in
Listing 1.

...
for (i = 0 ; i < N ; i++){

time_before = getTime (...);
// performs initial energy measurement
rapl_before (...);

// executes the program
system(command);

// computes the difference between
//this measurement and the initial one
rapl_after (...);
time_elapsed = getTime (...) - time_before;
...

}

1The measuring framework and the complete set of results are publicly available at https:
//sites.google.com/view/energy-efficiency-languages

6

https://sites.google.com/view/energy-efficiency-languages
https://sites.google.com/view/energy-efficiency-languages


...

Listing 1: Overall process of the energy measuring framework.

In order to ensure that the overhead from our measuring framework, using
the system function, is negligible or non-existing when compared to actually
measuring with RAPL inside a program’s source code, we design a simple ex-
periment. It consisted of measuring the energy consumption inside of both a
C and Java language solution, using RAPL and jRAPL respectively, and com-
paring the results to the measurements from our C language energy measuring
framework. We found the resulting differences to be insignificant, and therefore
negligible, thus we conclude that we could use this framework without having
to worry about imprecisions in the energy measurements.

Also, we chose to measure the energy consumption and the execution time of
a solution together, since the overhead will be the same for every measurement,
and so this should not affect the obtained values.

The memory usage of a solution was gathered using the time tool, available
in Unix-based systems. This tool runs a given program, and summarizes the
system resources used by that program, which includes the peak of memory
usage.

Each benchmark solution was executed and measured 10 times, in order
to obtain 10 energy consumption and execution time samples. We did so to
reduce the impact of cold starts and cache effects, and to be able to analyze the
measurements’ consistency and avoid outliers. We followed the same approach
when gathering results for memory usage.

For some benchmark problems, we could not obtain any results for certain
programming languages. In some cases, there was no source code available for
the benchmark problem (i.e., no implementation was provided in a concrete
language which reflects a language coverage below 100%).2

In other cases, the code was indeed provided but either the code itself was
already buggy or failing to compile or execute, as documented in CLBG, or, in
spite of our best efforts, we could not execute it, e.g., due to missing libraries 2.
From now on, for each benchmark problem, we will refer as its execution cov-
erage to the percentage of (best) solutions for it that we were actually able to
successfully execute.

All studies were conducted on a desktop with the following specifications:
Linux Ubuntu Server 16.10 operating system, kernel version 4.8.0-22-generic,
with 16GB of RAM, a Haswell Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

2.3. Results

The results from our study are partially shown in this section, with the
remainder shown in the online appendix for this paper 1. Table 3, and the
left most tables under Results - A. Data Tables in the appendix, contains the
measured data from different benchmark solutions. We only show the results

2In these cases, we will include an n.a. indication when presenting their results.

7



for binary-trees, fannkuch-redux, and fasta within the paper, which are
the first 3 ordered alphabetically. Each row in a table represents one of the 27
programming languages which were measured.

The 4 rightmost columns, from left to right, represent the average values for
the Energy consumed (Joules), Time of execution (milliseconds), Ratio between
Energy and Time, and the amount of peak memory usage in Mb. The Energy
value is the sum of CPU and DRAM energy consumption. Additionally, the
Ratio can also be seen as the average Power, expressed in Kilowatts (kW). The
rows are ordered according to the programming language’s energy consumption,
from lowest to highest. Finally, the right most tables under Results - A. Data
Tables contain the standard deviation and average values for our measured CPU,
DRAM, and Time, allowing us to understand the variance.

The first column states the name of the programming languages, preceded
by either a (c), (i), or (v) classifying them as either a compiled, interpreted,
or virtual-machine language, respectively. In some cases, the programming lan-
guage name will be followed with a ↑x/↓y and/or ⇑x/⇓y symbol. The first set
of arrows indicates that the language would go up by x positions (↑x) or down
by y positions (↓y) if ordered by execution time. For example in Table 3, for
the fasta benchmark, Fortran is the second most energy efficient language,
but falls off 6 positions down if ordered by execution time. The second set of
arrows states that the language would go up by x positions (⇑x) or down by y
positions (⇓y) if ordered according to their peak memory usage. Looking at the
same example benchmark, Rust, while the most energy efficient, would drop 9
positions if ordered by peak memory usage.

Table 4 shows the global results (on average) for Energy, Time, and Mb
normalized to the most efficient language in that category. Since the pidigits

benchmark solutions only contained less than half of the languages covered, we
did not consider this one for the global results. The base values are as follows:
Energy for C is 57.86J, Time for C is 2019.26ms, and Mb for Pascal is 65.96Mb.
For instance, Lisp, on average, consumes 2.27x more energy (131.34J) than C,
while taking 2.44x more time to execute (4926.99ms), and 1.92x more memory
(126.64Mb) needed when compared to Pascal.

To better visualize and interpret the data, we also generated two different
sets of graphical data for each of the benchmarks. The first set, Figures 1-3
and the left most figures under Results - C. Energy and Time Graphs in the
appendix, contains the results of each language for a benchmark, consisting of
three joint parts: a bar chart, a line chart, and a scatter plot. The bars represent
the energy consumed by the languages, with the CPU energy consumption on
the bottom half in blue dotted bars and DRAM energy consumption on the top
half in orange solid bars, and the left y-axis representing the average Joules. The
execution time is represented by the line chart, with the right y-axis representing
average time in milliseconds. The joining of these two charts allow us to better
understand the relationship between energy and time. Finally, a scatter plot on
top of both represents the ratio between energy consumed and execution time.
The ratio plot allows us to understand if the relationship between energy and
time is consistent across languages. A variation in these values indicates that

8



energy consumed is not directly proportional to time, but dependent on the
language and/or benchmark solution.

The second set, Figures 4-6 and the right most figures under Results - C.
Energy and Time Graphs in the appendix, consists of two parts: a bar chart,
and a line chart. The blue bars represent the DRAM’s energy consumption for
each of the languages, with the left y-axis representing the average Joules. The
orange line chart represents the peak memory usage for each language, with the
right y-axis representing the average Mb. The joining of these two allows us to
look at the relation between DRAM energy consumption and the peak memory
usage for each language in each benchmark.

By turning to the CLBG, we were able to use a large set of software pro-
gramming languages which solve various different programming problems with
similar solutions. This allowed us to obtain a comparable, representative, and
extensive set of programs, written in several of the most popular languages,
along with the compilation/execution options, and compiler versions. With
these joined together with our energy measurement framework, which uses the
accurate Intel RAPL tool, we were able to measure, analyze, and compare the
energy consumption, and in turn the energy efficiency, of software languages,
thus answering RQ1 as shown with our results. Additionally, we were also
able to measure the execution time and peak memory usage which allowed us
to analyze how these two relate with energy consumption. The analysis and
discussion of our results is shown in the next section.

2.4. Analysis and Discussion

In this section we will present an analysis and discussion on the results of
our study. While our main focus is on understanding the energy efficiency in
languages, we will also try to understand how energy, time, and memory relate.
Additionally, in this section we will try to answer the following three research
questions, each with their own designated subsection.

• RQ2: Is the faster language always the most energy efficient? Prop-
erly understanding this will not only address if energy efficiency is purely
a performance problem, but also allow developers to have a greater un-
derstanding of how energy and time relates in a language, and between
languages.

• RQ3: How does peak usage relate to energy consumption? Insight on
how peak memory usage affects energy consumption will allow developers
to better understand how to manage memory if their concern is energy
consumption.

• RQ4: Can we automatically decide what is the best programming language
considering energy, time, and memory usage? Often times developers are
concerned with more than one (possibly limited) resource. For example,
both energy and time, time and memory space, energy and memory space
or all three. Analyzing these trade-offs will allow developers to know which
programming languages are best in a given scenarios.

9



Table 3: Results for binary-trees, fannkuch-redux, and fasta

binary-trees fannkuch-redux
Energy Time Ratio Mb Energy Time Ratio Mb

(c) C 39.80 1125 0.035 131 (c) C ⇓2 215.92 6076 0.036 2
(c) C++ 41.23 1129 0.037 132 (c) C++ ⇑1 219.89 6123 0.036 1
(c) Rust ⇓2 49.07 1263 0.039 180 (c) Rust ⇓11 238.30 6628 0.036 16
(c) Fortran ⇑1 69.82 2112 0.033 133 (c) Swift ⇓5 243.81 6712 0.036 7
(c) Ada ⇓1 95.02 2822 0.034 197 (c) Ada ⇓2 264.98 7351 0.036 4
(c) Ocaml ↓1 ⇑2 100.74 3525 0.029 148 (c) Ocaml ↓1 277.27 7895 0.035 3
(v) Java ↑1 ⇓16 111.84 3306 0.034 1120 (c) Chapel ↑1 ⇓18 285.39 7853 0.036 53
(v) Lisp ↓3 ⇓3 149.55 10570 0.014 373 (v) Lisp ↓3 ⇓15 309.02 9154 0.034 43
(v) Racket ↓4 ⇓6 155.81 11261 0.014 467 (v) Java ↑1 ⇓13 311.38 8241 0.038 35
(i) Hack ↑2 ⇓9 156.71 4497 0.035 502 (c) Fortran ⇓1 316.50 8665 0.037 12
(v) C# ↓1 ⇓1 189.74 10797 0.018 427 (c) Go ↑2 ⇑7 318.51 8487 0.038 2
(v) F# ↓3 ⇓1 207.13 15637 0.013 432 (c) Pascal ⇑10 343.55 9807 0.035 2
(c) Pascal ↓3 ⇑5 214.64 16079 0.013 256 (v) F# ↓1 ⇓7 395.03 10950 0.036 34
(c) Chapel ↑5 ⇑4 237.29 7265 0.033 335 (v) C# ↑1 ⇓5 399.33 10840 0.037 29
(v) Erlang ↑5 ⇑1 266.14 7327 0.036 433 (i) JavaScript ↓1 ⇓2 413.90 33663 0.012 26
(c) Haskell ↑2 ⇓2 270.15 11582 0.023 494 (c) Haskell ↑1 ⇑8 433.68 14666 0.030 7
(i) Dart ↓1 ⇑1 290.27 17197 0.017 475 (i) Dart ⇓7 487.29 38678 0.013 46
(i) JavaScript ↓2 ⇓4 312.14 21349 0.015 916 (v) Racket ⇑3 1,941.53 43680 0.044 18
(i) TypeScript ↓2 ⇓2 315.10 21686 0.015 915 (v) Erlang ⇑3 4,148.38 101839 0.041 18
(c) Go ↑3 ⇑13 636.71 16292 0.039 228 (i) Hack ⇓6 5,286.77 115490 0.046 119
(i) Jruby ↑2 ⇓3 720.53 19276 0.037 1671 (i) PHP 5,731.88 125975 0.046 34
(i) Ruby ⇑5 855.12 26634 0.032 482 (i) TypeScript ↓4 ⇑4 6,898.48 516541 0.013 26
(i) PHP ⇑3 1,397.51 42316 0.033 786 (i) Jruby ↑1 ⇓4 7,819.03 219148 0.036 669
(i) Python ⇑15 1,793.46 45003 0.040 275 (i) Lua ↓3 ⇑19 8,277.87 635023 0.013 2
(i) Lua ↓1 2,452.04 209217 0.012 1961 (i) Perl ↑2 ⇑12 11,133.49 249418 0.045 12
(i) Perl ↑1 3,542.20 96097 0.037 2148 (i) Python ↑2 ⇑14 12,784.09 279544 0.046 12
(c) Swift n.e. (i) Ruby ↑2 ⇑17 14,064.98 315583 0.045 8

fasta
Energy Time Ratio Mb

(c) Rust ⇓9 26.15 931 0.028 16
(c) Fortran ↓6 27.62 1661 0.017 1
(c) C ↑1 ⇓1 27.64 973 0.028 3
(c) C++ ↑1 ⇓2 34.88 1164 0.030 4
(v) Java ↑1 ⇓12 35.86 1249 0.029 41
(c) Swift ⇓9 37.06 1405 0.026 31
(c) Go ↓2 40.45 1838 0.022 4
(c) Ada ↓2 ⇑3 40.45 2765 0.015 3
(c) Ocaml ↓2 ⇓15 40.78 3171 0.013 201
(c) Chapel ↑5 ⇓10 40.88 1379 0.030 53
(v) C# ↑4 ⇓5 45.35 1549 0.029 35
(i) Dart ⇓6 63.61 4787 0.013 49
(i) JavaScript ⇓1 64.84 5098 0.013 30
(c) Pascal ↓1 ⇑13 68.63 5478 0.013 0
(i) TypeScript ↓2 ⇓10 82.72 6909 0.012 271
(v) F# ↑2 ⇑3 93.11 5360 0.017 27
(v) Racket ↓1 ⇑5 120.90 8255 0.015 21
(c) Haskell ↑2 ⇓8 205.52 5728 0.036 446
(v) Lisp ⇓2 231.49 15763 0.015 75
(i) Hack ⇓3 237.70 17203 0.014 120
(i) Lua ⇑18 347.37 24617 0.014 3
(i) PHP ↓1 ⇑13 430.73 29508 0.015 14
(v) Erlang ↑1 ⇑12 477.81 27852 0.017 18
(i) Ruby ↓1 ⇑2 852.30 61216 0.014 104
(i) JRuby ↑1 ⇓2 912.93 49509 0.018 705
(i) Python ↓1 ⇑18 1,061.41 74111 0.014 9
(i) Perl ↑1 ⇑8 2,684.33 61463 0.044 53

2.4.1. Is Faster, Greener?

A very common misconception when analyzing energy consumption in soft-
ware is that it will behave in the same way execution time does. In other words,

10



Table 4: Normalized global results for Energy, Time, and Memory

Total

Energy Time Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c) C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

reducing the execution time of a program would bring about the same amount of
energy reduction. In fact, the Energy equation, Energy (J) = Power (W) x Time(s),
indicates that reducing time implies a reduction in the energy consumed. How-
ever, the Power variable of the equation, which cannot be assumed as a constant,
also has an impact on the energy. Therefore, conclusions regarding this issue
diverge sometimes, where some works do support that energy and time are
directly related [14], and the opposite was also observed [17, 15, 16].

The data presented in the aforementioned tables and figures lets us draw
an interesting set of observations regarding the efficiency of software languages
when considering both energy consumption and execution time. Much like [18]
and [2], we observed different behaviors for energy consumption and execution
time in different languages and tests.

By observing the data in Table 4, we can see that the C language is, overall,
the fastest and most energy efficient. Nevertheless, in some specific benchmarks
there are more efficient solutions (for example, in the fasta benchmark it is the
third most energy efficient and second fastest).

Execution time behaves differently when compared to energy efficiency. The
results for the 3 benchmarks presented in Table 3 (and the remainder shown
in the appendix) show several scenarios where a certain language energy con-
sumption rank differs from the execution time rank (as the arrows in the first
column indicate). In the fasta benchmark, for example, the Fortran language
is second most energy efficient, while dropping 6 positions when it comes to

11



Figure 1: Energy and time graphical data for binary-trees

execution time. Moreover, by observing the Ratio values in Figures 1 to 3 (and
the remainder in the appendix under Results - C. Energy and Time Graphs), we
clearly see a substantial variation between languages. This means that the aver-
age power is not constant, which further strengthens the previous point. With
this variation, we can have languages with very similar energy consumptions
and completely different execution times, as is the case of languages Pascal

12



Figure 2: Energy and time graphical data for fannkuch-redux

and Chapel in the binary trees benchmark, which energy consumption differ
roughly by 10% in favor of Pascal, while Chapel takes about 55% less time to
execute.

Compiled languages tend to be, as expected, the fastest and most energy
efficient ones. On average, compiled languages consumed 120J to execute the
solutions, while for virtual machine and interpreted languages this value was

13



Figure 3: Energy and time graphical data for fasta

576J and 2365J, respectively. This tendency can also be observed for execution
time, since compiled languages took 5103ms, virtual machine languages took
20623ms, and interpreted languages took 87614ms (on average). Grouped by
the different paradigms, the imperative languages consumed and took on aver-
age 125J and 5585ms, the object-oriented consumed 879J and spent 32965ms,
the functional consumed 1367J and spent 42740ms and the scripting languages

14



Figure 4: Energy and memory graphical data for binary-trees

consumed 2320J and spent 88322ms.
Moreover, the top 5 languages that need less energy and time to execute

the solutions are: C (57J, 2019ms), Rust (59J, 2103ms), C++ (77J, 3155ms),
Ada (98J, 3740ms), and Java (114J, 3821ms); of these, only Java is not com-
piled. As expected, the bottom 5 languages are all interpreted: Perl (4604J),
Python (4390J), Ruby (4045J), JRuby (2693J), and Lua (2660Js) for energy;

15



Figure 5: Energy and memory graphical data for fannkuch-redux

Lua (167416ms), Python (145178ms), Perl (132856ms), Ruby (119832ms), and
TypeScript (93292ms) for time.

The CPU-based energy consumption always represents the majority of the
energy consumed. On average, for the compiled languages, this value represents
88.94% of the energy consumed, being the remaining portion assigned to DRAM.
This value is very similar for virtual machine (88.94%) and interpreted languages

16



Figure 6: Energy and memory graphical data for fasta

(87.98%). While, as explained in the last point, the overall average consumption
for these 3 language types is very different, the ratio between CPU and DRAM
based energy consumption seems to generally maintain the same proportion.
This might indicate that optimizing a program to reduce the CPU-based energy
consumption will also decrease the DRAM-based energy consumption. However,
it is interesting to notice that this value varies more for interpreted languages
(min of 81.57%, max of 92.90%) when compared to compiled (min of 85.27%,

17



max of 91.75%) or virtual machine languages (min of 86.10%, max of 92.43%).
With these results, we can try to answer the question raised in RQ2: Is

the faster language always the most energy efficient? By looking solely at the
overall results, shown in Table 4, we can see that the top 5 most energy efficient
languages keep their rank when they are sorted by execution time and with
very small differences in both energy and time values. This does not come as a
surprise, since in 9 out of 10 benchmark problems, the fastest and most energy
efficient programming language was one of the top 3. Additionally, it is common
knowledge that these top 3 language (C,C++, and Rust) are known to be heavily
optimized and efficient for execution performance, as our data also shows. Thus,
as time influences energy, we had hypothesized that these languages would also
produce efficient energy consumptions as they have a large advantage in one of
the variables influencing energy, even if they consumed more power on average.

Nevertheless, if we look at the remaining languages in Table 4, we can see
that only 4 languages maintain the same energy and time rank (OCaml, Haskel,
Racket, and Python), while the remainder are completely shuffled. Additionally,
looking at individual benchmarks we see many cases where there is a different
order for energy and time.

Moreover, the tables in Results - A. Data Tables in the appendix also allows
us to understand that this question does not have a concrete and ultimate
answer. Although the most energy efficient language in each benchmark is
almost always the fastest one, the fact is that there is no language which is
consistently better than the others. This allows us to conclude that the situation
on which a language is going to be used is a core aspect to determine if that
language is the most energy efficient option. For example, in the regex-redux

benchmark, which manipulates strings using regular expressions, interpreted
languages seem to be an energy efficient choice (TypeScript, JavaScript and
PHP, all interpreted, are in the top 5), although they tend to be not very energy
efficient in other scenarios. Thus, the answer for RQ2 is: No, a faster language
is not always the most energy efficient.

2.4.2. Memory Usage

How does memory usage affect the memory’s energy consumption? To an-
swer this question, we calculated for each language the average peak value, con-
sidering the solutions each language had. The top 5 languages, also presented
in Table 4, with the lowest value were: Pascal (66 Mb), Go (69 Mb), C (77 Mb),
Fortran (82 Mb), and C++ (88 Mb); these are all compiled languages. The
bottom 5 languages were: JRuby (1,309 Mb), Dart (570 Mb), Erlang (475 Mb),
Lua (444 Mb), and Perl (437 Mb); of these, only Erlang is not an interpreted
language.

On average, the peak memory usage of compiled languages was 125 Mb, or
the virtual machine languages was 285 Mb, and for the interpreted was 426 Mb.
If sorted by their programming paradigm, the imperative languages had a peak
of 116 Mb, the object-oriented 249Mb, the functional 251Mb, and finally the
scripting had 421 Mb.

18



Additionally, the top 5 languages with the least amount of DRAM energy
used (on average) were: C (5 J), Rust (6 J), C++ (8 J), Ada (10 J), and Java (11
J); of these, only Java is not a compiled language. The bottom 5 languages were:
Lua (430 J), JRuby (383 J), Python (356 J), Perl (327 J), and Ruby (295 J); all
are interpreted languages. On average, the compiled languages consumed 14J,
the virtual machine languages consumed 52 J, and the interpreted languages
consumed 236 J.

Looking at the visual data from Figures 4-6, and the right most figures under
Results - C. Energy and Time Graphs in the appendix, one can quickly see that
there does not seem to be a consistent correlation between the DRAM energy
consumption and the peak memory usage. To verify this, we first tested both
the DRAM energy consumption and peak memory usage for normality using the
Shapiro-Wilk [25] test. As the data is not normally distributed, we calculated
the Spearman [26] rank-order correlation coefficient. The result was a Spearman
ρ value equal to 0.2091, meaning it is between no linear relationship (ρ = 0)
and a weak uphill positive relationship (ρ = 0.3).

While we did expect the possibility of little correlation between the DRAM’s
energy consumption and peak memory usage, we were surprised that the rela-
tionship is almost non-existent. Thus, answering the first part of RQ3, this
indicates that the DRAM’s energy consumption has very little to do with how
much memory is saved at a given point, but possibly more of how it is used.

2.4.3. Continuous Memory Usage

Since there was no apparent relation between DRAM’s energy consumption
and peak memory usage, we decided to turn our attentions towards the other
way of analyzing memory behavior, which is continuous memory usage.

• RQ3.5: How does total memory usage relate to energy consumption? We
looked at how peak memory usage has almost no statistical effect on the
DRAM’s energy consumption. Thus, looking at the other side of memory
usage, in this case total memory usage over the program’s execution, can
help us better understand this relationship.

The experiment methodology was the same as the one performed for peak
memory usage analysis. For each language, we executed every solution while
keeping track of the total amount of memory used. We used the Python
memory profiler 3 library to obtain the values, and afterwards we calculated,
for each language, the average of all solutions. Table 5 summarizes the results
of the experiment, by showing the relation between DRAM energy consumption
and total memory usage.

The average values presented in the table, and most importantly the order in
which the languages appear, gives as a clear first impression that the DRAM’s
energy consumption relates differently with peak memory usage and continuous

3Python memory profiler page: https://pypi.org/project/memory_profiler/.

19

https://pypi.org/project/memory_profiler/


Table 5: Results for DRAM Energy Consumption and Total Memory

DRAM Joules Peak MB Total MB
(c) C 5.28 77 626
(c) Rust 5.70 102 1087
(c) C++ 8.54 88 2274
(c) Ada 10.00 97 3020
(c) Pascal 15.24 66 3046
(v) Erlang 205.36 475 5457
(c) Go 15.49 69 5797
(v) Lisp 23.84 127 7544
(c) Haskell 22.40 162 8126
(c) Chapel 12.37 264 10513
(c) Fortran 24.16 82 10715
(v) Java 12.89 397 13935
(v) C# 18.62 188 14351
(c) Swift 25.72 179 23102
(v) F# 35.28 280 30218
(i) Dart 36.24 570 33891
(c) OCaml 19.62 186 36839
(v) Racket 63.29 232 38921
(i) TypeScript 272.30 309 52967
(i) JavaScript 42.70 303 88831
(i) Python 358.75 185 116265
(i) PHP 155.13 169 188136
(i) Hack 133.88 221 194589
(i) Ruby 353.00 262 203864
(i) Perl 326.82 437 255738
(i) Lua 487.50 444 690087
(i) JRuby 383.85 1309 890144

memory usage. In the previous section, we saw that the top 5 languages with
lowest peak memory usage were Pascal, Go, C, Fortran, and C++. For contin-
uous memory usage, the top 5 less consuming languages are C (626 Mb), Rust
(1,087 Mb), C++ (2,274 Mb), Ada (3,020 Mb), and Pascal (3,046 Mb). In fact,
almost every other language switches places from one ranking to another.

In order to test if there is a correlation between DRAM energy consump-
tion and continuous memory usage, we repeated the statistical test performed
for peak memory usage. Once again, the Shapiro-Wilk test revealed the val-
ues were not normally distributed, thus we calculated the Spearman correlation
coefficient, which resulted in a ρ value of 0.744, indicating a strong positive re-
lationship. Thus, answering RQ3.5, we now know that there is a strong uphill
relationship between total memory usage and DRAM energy consumption. The
most memory used over a program’s lifecyle, the more DRAM energy consump-
tion is spent.

There seems to be in fact a clear relation between the DRAM energy and
total memory used, where a lower memory usage value leads to less energy
consumed. Since the opposite was observed for peak memory usage (i.e., almost
no relation with DRAM energy), these results seem to indicate that, it might
be more energy efficient to store high amounts of memory at once and releasing
it right afterwards than continuous memory usage throughout the execution.

2.4.4. Energy vs. Time vs. Memory

There are many situations where a software engineer has to choose a par-
ticular software language to implement his algorithm according to functional or

20



Table 6: Pareto optimal sets for different combination of objectives.

Time & Memory Energy & Time

C • Pascal • Go C
Rust • C++ • Fortran Rust

Ada C++
Java • Chapel • Lisp • Ocaml Ada

Haskell • C# Java
Swift • PHP Pascal • Chapel

F# • Racket • Hack • Python Lisp • Ocaml • Go
JavaScript • Ruby Fortran • Haskell • C#

Dart • TypeScript • Erlang Swift
JRuby • Perl Dart • F#

Lua JavaScript
Racket

TypeScript • Hack
PHP

Erlang
Lua • JRuby

Ruby

Energy & Memory Energy & Time & Memory

C • Pascal C • Pascal • Go
Rust • C++ • Fortran • Go Rust • C++ • Fortran

Ada Ada
Java • Chapel • Lisp Java • Chapel • Lisp • Ocaml

OCaml • Swift • Haskell Swift • Haskell • C#
C# • PHP Dart • F# • Racket • Hack • PHP

Dart • F# • Racket • Hack • Python JavaScript • Ruby • Python
JavaScript • Ruby TypeScript • Erlang

TypeScript Lua • JRuby • Perl
Erlang • Lua • Perl

JRuby

non functional requirements. For instance, if he is developing software for wear-
ables, it is important to choose a language and apply energy-aware techniques
to help save battery. Another example is the implementation of tasks that run
in background. In this case, execution time may not be a main concern, and
they may take longer than the ones related to the user interaction.

With the fourth research question RQ4, we try to understand if it is possible
to automatically decide what is the best programming language when consid-
ering energy consumption, execution time, and peak memory usage needed by
their programs, globally and individually. In other words, if there is a “best”

21



programming languages for all three characteristics, or if not, which are the best
in each given scenario.

To this end, we present in Table 6 a comparison of three language character-
istics: energy consumption, execution time, and peak memory usage. In order
to compare the languages using more than one characteristic at a time we use a
multi-objective optimization algorithm to sort these languages, known as Pareto
optimization [27, 28]. It is necessary to use such an algorithm because in some
cases it may happen that no solution simultaneously optimizes all objectives.
For our example, energy, time, and memory are the optimization objectives. In
these cases, a dominant solution does not exist, but each solution is a set, in
our case, of software languages. Here, the solution is called the Pareto optimal.

We used this technique, and in particular the software available at [29], to
calculate different rankings for the analyzed software languages. In Table 6 we
present four multi-objective rankings: time & memory, energy & time, energy &
memory, and energy & time, & memory. For each ranking, each line represents a
Pareto optimal set, that is, a set containing the languages that are equivalent to
each other for the underlying objectives. In other words, each line is a single rank
or position. A single software language in a position signifies that the language
was clearly the best for the analyzed characteristics. Multiple languages in a
line imply that a tie occured, as they are essentially similar; yet ultimately, the
languages lean slightly towards one of the objectives over the other as a slight
trade-off.

The most common performance characteristics of software languages used to
evaluate and choose them are execution time and memory usage. If we consider
these two characteristics in our evaluation, C, Pascal, and Go are equivalent.
However, if we consider energy and time, C is the best solution since it is domi-
nant in both single objectives. If we prefer energy and memory, C and Pascal

constitute the Pareto optimal set. Finally, analyzing all three characteristics,
this scenario is very similar as for time and memory.

It is interesting to see that, when considering energy and time, the sets are
usually reduced to one element. This means, that it is possible to actually
decide which is the best language. This happens possibly because there is a
mathematical relation between energy and time and thus they are usually tight
together, thus being common that a language is dominant in both objectives at
the same time. However, there are cases where this is not true. For instance,
for Pascal and Chapel it is not possible to decide which one is the best as
Pascal is better in energy and memory use, but worse in execution time. In
these situations the developer needs to intervene and decide which is the most
important aspect to be able to decide for one language.

It is also interesting to note that, when considering memory use, languages
such as Pascal tend to go up in the ranking. Although this is natural, it is a
difficult analysis to perform without information such as the one we present.

Given the information presented in Table 6 we can try to answer RQ4: Can
we automatically decide what is the best software language consider-
ing energy, time, and memory usage? If the developer is only concerned
with execution time and energy consumption, then yes, it is almost always possi-

22



ble to choose the best language. Unfortunately, if memory is also a concern, it is
no longer possible to automatically decide for a single language. In all the other
rankings most positions are composed by a set of Pareto optimal languages, that
is, languages which are equivalent given the underlying characteristics. In these
cases, the developer will need to make a decision and take into consideration
which are the most important characteristics in each particular scenario, while
also considering any fuctional/non-functional requirements necessary for the de-
velopment of the application. Still, the information we provide in this paper is
quite important to help group languages by equivalence when considering the
different objectives. For the best of our knowledge, this is the first time such
work is presented. Note that we provide the information of each individual char-
acteristic in Table 4 so the developer can actually understand each particular
set (we do not show such information in Table 6 to avoid cluttering the paper
with to many tables with numbers).

3. Energy Analysis on a Chrestomathy Program Repository

The computer language benchmark game was created with the main goal of
comparing the execution time of different software languages. Thus, in CLBG,
software developers submit solutions that use all advanced mechanisms of the
language with the single purpose of implementing a very fast solution (provided
that solutions follow a predefined algorithm).

The fastest solution to a problem, however, may not represent the usual
programming practices followed by the programmers within the respective lan-
guages. For example, the algorithms required by CLBG do not consider lazy
evaluation since this evaluation mechanism is only supported by a limited num-
ber of languages (which in turn can execute non-lazy code). As a consequence,
languages like Haskell and OCaml cannot use lazy evaluation to save work, thus
(potentially) providing faster solutions.

In this section we consider the programming chrestomathy repository Rosetta
Code [30]. This repository4 was created to gather solutions to the same (pro-
gramming) task in as many different languages as possible. It has a large choice
of programming problems across many languages: considering almost 900 tasks
throughout of 700 languages!

In a clear distinction when compared to CLBG, the purpose of Rosetta Code
is to demonstrate similarities and differences among languages, and by doing so
to to support a programmer with a background in one approach to a problem
in learning another. Indeed, if a programmer is trained or has instruction in
one programming language or programming approach, by reading comparable
solutions to a problem in a different language or using a different programming
approach can aid him in understanding such new language or approach.

When compared to CLGB, Rosetta Code also does not force any particular
algorithm, rule or implementation style for a solution. Actually, the repository

4http://www.rosettacode.org/wiki/Rosetta_Code

23

http://www.rosettacode.org/wiki/Rosetta_Code


makes available multiple solutions to the same problem within the same pro-
gramming language. Such solutions may use, e.g., different constructions pro-
vided by the language: in C++ there are implementations based on Templates,
and also others using standard C-like solutions. This also happens in object-
oriented languages, where in sorting algorithms some solutions use static-arrays
and others use collections.

Additionally, while CLBG provides unit tests and their expected output
for each of the tasks, Rosetta Code does not, often times even only containing
programming snippets which are not executable.

In the next section, we describe in detail the study that we have designed and
conducted in order to compare the energy efficiency of programming languages
using programs from Rosetta Code as our code base.

3.1. Design and Execution

The commendable effort put into the creation and maintenance of Rosetta
Code has resulted in the compilation of programs written in circa 700 different
programming languages, to solve nearly 900 programming tasks.5

For comparability, we have restricted our study to the same 27 languages
that were represented in the CLBG repository.

In order to decide which tasks to consider in our analysis, we started by
sorting all the available tasks by their (decreasing) number of languages for
which Rosetta Code provides at least one solution. We found 51 tasks with at
least 20 implementations in different languages, having preliminarily excluded
the remaining ones. We decided not to consider tasks with less than 20 languages
as this would hinder the representativeness of the task among languages.

Since we need to be able to compare implementations (regarding, e.g., the
energy they use) we then analyzed each of the 51 tasks by hand to choose the
ones that implement some kind of algorithm. We ended up choosing tasks such
as the computation of the Fibonacci number or the merge sort algorithm and
discarded generic tasks such the ones showing how to implement loops or “hello
world” like programs. From this manual inspection, we marked 7 tasks as in-
teresting to further analyze and 20 other as possibly interesting. The 7 tasks
included in the first category implement algorithms that are time and thus (po-
tentially) energy consuming. The 20 tasks in the second category, although
implementing some kind of well-known algorithm, tend to be too fast to get
interesting energy and time readings. Nevertheless, to have a more representa-
tive set of tasks we explored two of these programs, too. The remaining tasks
were excluded either because they did not implemented something comparable
among languages or because the computations were too trivial. The final set of
nine tasks is shown in Table 7.

Although the programming tasks we ended up selecting all had solutions in
(at least) 20 different programming languages, still we were not able to consider

5Even if, of course, there does not necessarily exist a solution for every of the 700 languages
in each of the 900 tasks.

24



Table 7: Rosetta Code chosen set of programs.

Benchmark Description Input

MergeSort
To sort a collection of
integers using merge sort

10k random integers

QuickSort
To sort a collection of
integers using quick sort

10k random integers

Hailstone

Generate the hailstone
sequence for specific
numbers

*Rosetta

Fibonacci Compute Fibonacci number fib(47)

Ackermann
Compute the Ackermann
Function

*Rosetta

N-Queens

Problem
Solve the n-queens puzzle 12-queens

100-doors Solve the 100 doors problem *Rosetta

Remove

duplicates

Remove duplicated
elements in a sequence

217 random elements

Sieve of

Eratosthenes

Compute algorithm that
finds the prime numbers up
to a given integer

10k

all such solutions. In some cases, solutions required deprecated libraries, or
libraries of which we are unaware of despite our best effort. In other cases, the
implementations were incomplete, did not compile, or had incorrect solutions.
The final set of languages to be evaluated for each programming task that we
considered is shown in Table 8, along with the running totals for each language
and for each task.

When presented with a choice of different implementations for a given lan-
guage, we chose the algorithm or implementation most similar to all the other
remaining implementations for that given task. Additionally, as we also wanted
to be as less intrusive as possible, we tried to avoid as much as possible chang-
ing any original code. Thus some implementations were discarded because they
required a complete rewrite of the code.

For every solution utilizable in each programming language, we then needed
to define unit tests, normalize the I/O, and make the implementations exe-
cutable e.g., by adding a main function.

The units tests needed to be sufficiently complex to significantly exercise
the corresponding implementations, but not too much so that they would not
terminate, or cause run-time overflows. As shown by our ranking in Section 2.4,
we need to be very careful when selecting the inputs as some languages can
finish 79.58x slower and eventually requiring limited computing resources. As
some solutions had hard-coded executions, and others read from files, we needed
to normalize this aspect of execution for all programming languages. The inputs
are shown in the top-right column in Table 7. In some cases, the input is stated
as *Rosetta, meaning that the input is based on the specific task defined on the

25



Table 8: Rosetta Code chosen set of languages for each task.

M
er

ge
S

or
t

Q
u

ic
k
S

o
rt

H
a
il

st
on

e

F
ib

o
n

ac
ci

A
ck

er
m

an
n

N
-Q

u
ee

n
s

1
00

-d
o
or

s

R
em

ov
e-

d
u

p
li
ca

te
s

S
ie

ve
-o

f-
E

ra
to

st
h

en
es

T
o
ta

l

(c) Ada X X X X X 5
(c) C X X X X X X X X 8
(c) C++ X X X X X X 6
(c) Chapel X X X 3
(i) Dart X X X X X X 6
(v) Erlang X X X X X X X X 8
(c) Fortran X X X X 4
(c) Go X X X X X X X 7
(c) Haskell X X X X X X X 7
(v) Java X X X X X X X X 8
(i) JavaScript X X X X X X X 7
(v) Lisp X X X X 4
(i) Lua X X X X X X X X 8
(c) OCaml X X X X X X X 7
(c) Pascal X X X X X X X 7
(i) Perl X X X X X X X X X 9
(i) PHP X X X X X X X 7
(i) Python X X X X X X X 7
(v) Racket X X X X X X X 7
(i) Ruby X X X X X X X X 8
(c) Rust X X X X X X X X 8
Total 16 17 18 21 13 11 15 13 17 142

Rosetta Code site.
We have also confirmed that all solutions for the same task produced the

correct output, and those which did not were discarded (this was, for example,
the case of the C implementation for the Sieve of Eratosthenes).

The result of our process of selecting and normalizing all implementations is
a curated repository. This curated repository, together with scripts to execute
each program, are publicly available for others to use6. In order to execute this
study, we used the same compilers, energy measurement benchmark, and same
desktop machine as detailed in Section 2.2.

6https://github.com/greensoftwarelab/RosettaExamples

26

https://github.com/greensoftwarelab/RosettaExamples


In the next section, we present and analyze the results we obtained when
executing our study.

3.2. Analysis and Discussion

This section presents the results of energy consumption and runtime execu-
tion for each of the nine Rosetta Code tasks that we selected.

For each task, we include a table ordering the languages by the energy con-
sumption from lowest (more energy efficient) to highest (less energy efficient).
We recall that both the energy, presented in Joules, and the execution time,
presented in milliseconds, for each task, is the average of ten measurements.
Tables 9, 10 and 11 contain such results.

In the remainder of this section, we analyze, one by one and in detail, the
results we believe have the most profound impact when compared to our earlier
ranking based on the CLBG.

Looking at the results for the sorting algorithms (merge and quicksort, pre-
sented in Table 9) we can see that Java is not performing as well as before.
In fact, while most imperative implementations use the same array as the data
structure to store the original and the sorted list of integer numbers (which is ob-
tained by changing elements among positions), the Java implementations in this
repository use a more OO-based approach: they use (List) collections, and build
new structures which are dynamically populated with sorted elements using add
methods. This overhead does influence the performance of Java. We can also
see surprising differences between different sorting algorithm implementations:
both Pascal and PHP solutions are very efficient performing quicksort, which is
not replicated by the merge sort implementations. For these two languages, the
merge sort implementations use additional temporary arrays for merging.

For the (exponential) Fibonacci problem, whose results are presented in
Table 9, and although we were careful defining test cases so that all implemen-
tations would execute in a timely manner, there is one language - Python - that
could not terminate (within a 24 hour timeout!) for the defined input. While
there are small differences between this specific ranking and the overall CLBG
one, the four most efficient solutions - Ada, Rust, C, C++ - are the same and
do conclude the task very quickly and efficiently.

The results of the four tasks shown in Table 10 also generally follow the
CLBG-based ranking. The most energy inefficient languages in our earlier rank-
ing - Ruby, Python, Perl - also appear in the bottom of the individual rankings.
This also occurs in the other individual rankings in Tables 9 and 11. C wins in
three of these four tasks, and ranks third in the Remove-duplicates task. The
Remove-duplicates task, however, does not require the sorting of the resulting
elements. Thus, most languages do not sort the result, while the implementa-
tions in C, C++, Erlang and Java produce a sorted result. Obviously, this extra
work influences both energy and time consumption. In this task, Java is once
again penalized by the usage of multiple collections (List and Set!).

For the Sieve of Eratosthenes, the results presented in Table 11 are also
aligned with the results obtained with CLBG. A remarkable outlier, however, is

27



observed for the Chapel implementation: although it is very well ranked based
on CLBG, it is the most inefficient language for this task! In spite of our best
effort in trying to understand this corner case, we believe it deserves a more
detailed study of its own, that we leave for future reference, and ideally with
the involvement of an expert of Chapel. Naturally, we have confirmed that
the algorithm implemented in Chapel is the correct one, and so, the result it
produces is also correct.

When globally considering all tasks, we can see that the C programming
language is yet again generally the most energy efficient language and also the
fastest. As shown in the CLBG-based ranking, the compiled languages are also
the best performing ones, whilst the interpreted ones are handicapted by their
execution mechanisms. In fact, for most of the tasks, the languages follow the
CLBG ranking. There are, however, specific implementations/languages that
are penalized by poor implementations available in the Rosetta Code, and also
by the chosen algorithm and used data structures.

28



Table 9: Results for: MergeSort, QuickSort, Hailstone and Fibonacci

MergeSort
Energy Time

(c) C 0.03 6
(c) Rust 0.03 7
(c) Go 0.04 6
(c) OCaml 0.08 9
(v) Lisp 0.26 16
(c) Haskell 0.29 18
(c) Pascal 0.52 46
(i) Ruby 0.63 53
(i) Lua 0.68 54
(i) JavaScript 0.72 61
(i) Perl 0.72 60
(i) Python 1.14 86
(v) Java 1.43 83
(i) PHP 3.03 254
(v) Racket 5.86 392

QuickSort
Energy Time

(c) Pascal 0.02 3
(c) C 0.02 4
(c) Rust 0.03 6
(c) Go 0.05 9
(c) OCaml 0.09 9
(i) PHP 0.23 20
(v) Lisp 0.25 18
(i) Lua 0.26 23
(c) Haskell 0.29 20
(i) Perl 0.32 28
(i) Ruby 0.61 45
(i) Python 0.73 61
(i) JavaScript 0.78 60
(v) Java 1.49 87
(v) Erlang 1.50 101
(i) Dart 1.70 114
(v) Racket 2.24 169

Hailstone
Energy Time

(c) C 0.27 29
(c) Pascal 0.34 16
(c) Ada 0.46 22
(c) Fortran 0.65 34
(c) Go 0.68 31
(c) OCaml 0.68 32
(c) Rust 0.91 39
(c) C++ 1.78 78
(i) JavaScript 2.76 119
(v) Java 4.12 160
(v) Racket 6.28 284
(i) Dart 7.08 293
(c) Haskell 7.99 309
(v) Erlang 16.50 696
(i) Ruby 18.35 776
(i) Lua 22.47 987
(i) Python 46.42 1896
(i) Perl 67.27 2771

Fibonacci
Energy Time

(c) Ada 32.12 2477
(c) Rust 61.94 4704
(c) C 70.91 5241
(c) C++ 82.78 6136
(c) Chapel 84.34 6126
(c) OCaml 105.22 8555
(v) Java 108.36 8325
(c) Go 150.51 11172
(c) Pascal 152.08 11822
(c) Fortran 185.45 14742
(i) Dart 251.70 18531
(v) Racket 275.15 21627
(i) JavaScript 311.22 22352
(v) Lisp 497.41 40442
(v) Erlang 799.22 62462
(c) Haskell 2068.83 143187
(i) PHP 2360.63 171315
(i) Lua 3816.43 290291
(i) Ruby 9657.99 663070
(i) Perl 14380.33 1010606
(i) Python ∞ ∞

29



Table 10: Results for: Ackermann, N-queens, 100-doors and Remove-duplicates

Ackermann
Energy Time

(c) C 0.00 1
(c) Chapel 0.01 2
(c) Ada 17.79 1349
(c) OCaml 26.37 1922
(c) Rust 41.69 1726
(c) C++ 58.18 1345
(c) Haskell 178.49 9036
(v) Racket 237.24 15421
(c) Go 275.78 21421
(v) Erlang 290.60 21110
(i) PHP 3215.77 207815
(i) Lua 5316.18 180432
(i) Perl 14475.82 1008595

N-queens
Energy Time

(c) C 0.05 4
(c) Fortran 0.10 10
(c) Pascal 0.56 53
(v) Java 2.15 167
(i) Dart 2.90 224
(c) Haskell 2.90 204
(c) Rust 4.53 384
(i) JavaScript 8.22 574
(i) Ruby 19.18 1412
(i) Perl 41.23 2881
(i) Python 111.37 7401

100-doors
Energy Time

(c) C 0.01 1
(c) C++ 0.09 10
(c) Fortran 0.35 34
(c) OCaml 0.85 69
(v) Java 1.14 67
(i) Dart 1.20 83
(i) JavaScript 1.59 107
(i) PHP 6.95 422
(c) Pascal 7.39 530
(c) Ada 13.88 1193
(i) Perl 17.54 1217
(i) Ruby 33.02 2513
(v) Erlang 35.42 2267
(i) Python 63.58 4445
(i) Lua 108.23 9188

Remove-duplicates
Energy Time

(c) Rust 0.01 1
(c) C++ 0.12 5
(c) C 0.14 10
(c) Go 0.32 13
(i) Lua 0.51 21
(i) Perl 1.31 53
(i) JavaScript 1.73 73
(v) Erlang 2.36 96
(v) Java 2.96 214
(i) PHP 2.99 121
(i) Python 4.93 206
(i) Ruby 6.13 259
(v) Racket 7.54 318

Table 11: Results for: Sieve of Eratosthenes

Sieve of Eratosthenes
Energy Time

(c) Pascal 0.02 3
(c) C++ 0.03 3
(c) Rust 0.03 4
(c) OCaml 0.05 7
(c) Ada 0.06 8
(c) Haskell 0.10 13
(c) Go 0.11 10
(v) Lisp 0.15 11
(i) PHP 0.30 22
(i) Ruby 0.51 42
(i) Perl 0.64 49
(i) Lua 0.69 37
(v) Java 1.64 89
(v) Racket 1.97 148
(i) Dart 1.98 133
(v) Erlang 2.36 162
(c) Chapel 2280.27 174549

Having produced individual energy-sorted rankings for each of the 9 tasks we
considered, we now wish to produce an overall language ranking so that we can
compare the ranks of languages in a performance-tailored program corpus (the
CLBG) to one more oriented to program comprehension (the Rosetta Code).
To produce such overall ranking we use the Schulze method [31] to agregate

30



the results of the individual rankings in Tables 9, 10 and 11 into a combined
one. We needed to use a different method to produce this ranking, compared
to the CLBG one, because the range of values is very large and the number of
implementation differ much more between tasks. Table 12 shows the Rosetta
Code overall ranking that we obtained.

Table 12: Rosetta Code global ranking based on Energy

Rosetta Code Global Ranking
Position Language
1 C
2 Pascal
3 Ada
4 Rust
5 C++, Fortran
6 Chapel
7 OCaml, Go
8 Lisp
9 Haskell, JavaScript
10 Java
11 PHP
12 Lua, Ruby
13 Perl
14 Dart, Racket, Erlang
15 Python

This new ranking is similar to the earlier one. The top six languages in
CLBG continue to be in the top five this new ranking, with the exception of
Java. As we discussed before the implementations in Java rely on the widely
used Java Collection Framework, which require more work when compared to
imperative-based solutions that use static arrays. We can also see that the
Chapel language also dropped in our Rosetta Code ranking.

These results also show that interpreted languages like PHP, Lua, Ruby,
Perl, Python continue at the bottom being the least energy efficient software
languages.

3.3. Conclusions

As expected, the fact that one specific solution uses a different, more efficient
approach to solve a task did influence the results of our study and the ranking of
the different languages. This occurs in two situations: i) the requirements for a
task on Rosetta Code are not completely defined; thus, there are solutions that
perform work that is not specified (for example, sorting the list after removing
duplicates); and ii) some solutions that use additional temporary data structure
which also force additional computational work to be performed.

In the new study that we have designed and conducted, we use the most
natural and understandable solutions available in Rosetta Code, and we did not
change the program’s repository: as discussed in previous sections only strictly
necessary editions (such as adding test cases or main functions) were performed
on programs. If we were forcing the different implementations for a task to
perform exactly the same algorithm, we were essentially re-doing the CLBG-
based study. This could easily be done, for example in the sorting tasks, by

31



adding a solution in C that sort dynamically linked lists, instead of sorting the
original array, but diverges from our intentions here.

Finally, we are analyzing the energy consumption of programming languages
by using to different repositories: one tailored to analyze performance of lan-
guages and other more program comprehension purposes. As expected our
results show both similarities and differences in the rankings.

4. Threats to Validity

The goal of our study was to both measure and understand the energetic
behavior of several programming languages, allowing us to bring about a greater
insight on how certain languages compare to each other mainly in terms of
energy consumption, but also performance and memory. We present in this
section some threats to the validity of our study, divided into four categories [32],
namely: conclusion validity, internal validity, construct validity, and external
validity.

Conclusion Validity. From our experiment it is clear that different program-
ming paradigms and even languages within the same paradigm have a com-
pletely different impact on energy consumption, time, and memory. We also
see interesting cases where the most energy efficient is not the fastest, and be-
lieve these results are useful for programmers. For a better comparison, we not
only measured CPU energy consumption but also DRAM energy consumption.
This allowed us to further understand the relationship between DRAM energy
consumption and peak and total memory usage, while also understanding the
behavior languages have in relation the energy usage derived from the CPU and
DRAM. Additionally, the way we grouped the languages is how we consider the
most natural to compare languages (by programming paradigm, and how the
language is executed). Thus, this was the chosen way to present the data in the
paper. Nevertheless, all the data is available and any future comparison groups
such as “.NET languages” or “JVM languages” can be very easily analyzed.

Internal Validity. This category concerns itself with what factors may interfere
with the results of our study. When measuring the energy consumption of the
various different programming languages, other factors alongside the different
implementations and actual languages themselves may contribute to variations,
i.e. specific versions of an interpreter or virtual machine. To avoid this, we
executed every language and benchmark solution equally. In each, we measured
the energy consumption (CPU and DRAM), execution time, and peak and total
memory 10 times, removed the furthest outliers, and calculated the median,
mean, standard deviation, min, and max values. This allowed us to minimize
the particular states of the tested machine, including uncontrollable system
processes and software. However, the measured results are quite consistent,
and thus reliable. In addition, the used energy measurement tool has also been
proven to be very accurate. Note also the settings used for both CLBG and
Rosetta was exactly the same. Indeed we copied the settings used for CLBG
and used them with the Rosetta tasks.

32



Construct Validity. In the first study we analyzed 27 different programming
languages, each with roughly 10 solutions to the proposed problems, totaling
out to almost 270 different cases. These solutions were developed by experts
in each of the programming languages, with the main goal of “winning” by
producing the best solution for performance time. While the different languages
contain different implementations, they were written under the same rules, all
produced the same exact output, and were implemented to be the fastest and
most efficient as possible. Having these different yet efficient solutions for the
same scenarios allows us to compare the different programming languages in a
quite just manner as they were all placed against the same problem. Albeit
certain paradigms or languages could have an advantage for certain problems,
and others may be implemented in a not so traditional sense. Nevertheless,
there is no basis to suspect that these projects are best or worst than any
other kind we could have used. In any case, the second set of programs we
used (from the Rosetta Code) has no restrictions which means the programs
may be written using more common dialects of each language (e.g. the use
of lazyness in Haskell or external libraries in Python). This repository has
however other limitations such as the fact that anyone can submit a solution
without any time of validation. Nevertheless, for each task we used we chose
the closest implementation to the remaining ones so we could have comparable
implementation. We have also compared the results of each implementation
guaranteeing they are correct.

External Validity. We concern ourselves with the generalization of the results.
The obtained solutions were the best performing ones at the time we set up
the study. As the CLBG is an ongoing “competition”, we expect that more
advanced and more efficient solutions will substitute the ones we obtained as
time goes on, and even the languages’ compilers might evolve. Thus this, along
with measurements in different systems, might produce slightly different result-
ing values if replicated. Nevertheless, unless there is a huge leap within the
language, the comparisons might not greatly differ. Indeed, when running the
second experiment with the programs from the Rosetta Code the results from
the first experiment are somewhat similar. For instance, the type of language
and the type of execution does not influence the ranking. Nevertheless, there
are some variations in the final ranking. In any case, the actual approach and
methodology we used also favors easy replications. This can be attributed to
the CLBG containing most of the important information needed to run the ex-
periments, these being: the source code, compiler version, and compilation/ex-
ecution options. Thus we believe these results can be further generalized, and
other researchers can replicate our methodology for future work.

5. Related Work

The work presented in this paper extends previous work in [20] and [33].
In this extended version, an analysis on total memory usage was performed
to better understand the relationship between continuous memory usage and

33



DRAM energy consumption. Additionally, we replicated our study on a different
repository, the Rosetta Code chrestomathy repository. This not only allowed
us to validate our previous programming language energy ranking using the
CLBG, but also to understand how different are the results of programs on a
repository for performance based benchmarking and a repository for learning
and comprehensibility.

The CLBG benchmark solutions have already been used for validation pur-
pose by several research works. Among other examples, CLGB was used to
study dynamic behavior of non-Java JVM languages [34], to analyze dynamic
scripting languages [35] and compiler optimizations [36], or even to benchmark a
JIT compiler for PHP [37]. At the best of our knowledge, CLGB was only used
once for energy consumption analysis. In [17], the authors used the provided
Haskell implementations, among other benchmarks, to analyze the energy effi-
ciency of Hakell programs from strictness and concurrency perspectives, while
also analyzing the energy influence of small implementation changes. The au-
thors of [4] also used CLBG to compare JavaScript, Java, and C++ in an
Android setting. A similar study using the Rosetta Code repository was per-
formed [38], where the authors looked at the energy-delay implications on 14
programming languages, on three different computing platforms. They too pro-
duced very similar results to ours.

While several works have shown indications that a more time efficient ap-
proach does not always lead to the most energy efficient solution [17, 15, 16, 18,
2, 4], these results were not the intended focus nor main contribution, but more
of a side observation per se. We focused on trying to understand and directly
answer this question of how energy efficiency and time relate.

Nevertheless, the energy efficiency in software problem has been growing in
interest in the past few years. In fact, studies have emerged with different goals
and in different areas, with the common vision of understanding how develop-
ment aspects affect the energy consumption in diversified software systems. For
instance, for mobile applications, there are works focused on analyzing the en-
ergy efficiency of code blocks [39, 40], or just monitoring how energy consump-
tion evolves over time [41]. Other studies aimed at a more extensive energy
consumption analysis, by comparing the energy efficiency of similar programs
in specific usage scenarios [13, 11], or by providing conclusions on the energy
impact of different implementation decisions [42]. Several other works have
shown that several factors, such as different design patterns [6, 7], coding prac-
tices [15, 17, 8, 9], and data structures [2, 24, 3, 43], actually have a significant
influence in the software’s energy efficiency.

6. Conclusions

In this paper, we present a series of systematic comparisons over the energy
efficiency of 27 well-known software languages. These comparisons take as their
code base programs from popular software repositories such as The Computer
Language Benchmarks Game or Rosetta Code.

34



We were able to show which were the most energy efficient software lan-
guages, execution types, and paradigms across 19 different benchmark prob-
lems. We were also able to relate execution time and memory consumption to
energy consumption to understand not only how memory usage affects energy
consumption, but also how time and energy relate. This allowed us to under-
stand if a faster language is always the most energy efficient. As we saw, this is
not always the case.

Finally, as often times developers have limited resources and may be con-
cerned with more than one objective, or efficiency characteristic, we established
rankings of the best/worst languages according to a combination of different
objectives.

Our work helps contribute another stepping stone in bringing more informa-
tion to developers to allow them to become more energy-aware when program-
ming.

Acknowledgments

We would like to thank Lúıs Cruz (University of Porto) for the help that he
provided. This work is financed by the ERDF – European Regional Development
Fund through the Operational Programme for Competitiveness and Internationali-
sation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961,
and by National Funds through the Portuguese funding agency, FCT - Fundação para a
Ciência e a Tecnologia within project POCI-01-0145-FEDER-016718 and UID/EEA/50014/2013.
The first and second authors are also sponsored by FCT grants SFRH/BD/112733/2015
and SFRH/BD/132485/2017, respectively.

References

[1] G. Pinto, F. Castor, Y. D. Liu, Mining questions about software energy consump-
tion, in: Proc. of the 11th Working Conf. on Mining Software Repositories, ACM,
2014, pp. 22–31.

[2] R. Pereira, M. Couto, J. Saraiva, J. Cunha, J. P. Fernandes, The Influence of the
Java Collection Framework on Overall Energy Consumption, in: Proc. of the 5th
Int. Workshop on Green and Sustainable Software, GREENS ’16, ACM, 2016,
pp. 15–21.

[3] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, A. Hindle, Energy profiles of
java collections classes, in: Proc. of the 38th Int. Conf. on Software Engineering,
ACM, 2016, pp. 225–236.

[4] W. Oliveira, R. Oliveira, F. Castor, A study on the energy consumption of an-
droid app development approaches, in: Proceedings of the 14th International
Conference on Mining Software Repositories, IEEE Press, 2017, pp. 42–52.

[5] D. Li, W. G. J. Halfond, An investigation into energy-saving programming prac-
tices for android smartphone app development, in: Proceedings of the 3rd Inter-
national Workshop on Green and Sustainable Software (GREENS), 2014.

35



[6] C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause, F. Kiamilev, L. Pollock, K. Win-
bladh, Initial explorations on design pattern energy usage, in: Green and Sus-
tainable Software (GREENS), 2012 1st Int. Workshop on, IEEE, 2012, pp. 55–61.

[7] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta,
D. Poshyvanyk, Mining energy-greedy api usage patterns in android apps: an
empirical study, in: Proc. of the 11th Working Conf. on Mining Software Repos-
itories, ACM, 2014, pp. 2–11.

[8] C. Sahin, L. Pollock, J. Clause, How do code refactorings affect energy usage?,
in: Proc. of 8th ACM/IEEE Int. Symposium on Empirical Software Engineering
and Measurement, ACM, 2014, p. 36.

[9] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, J. Saraiva, Helping
programmers improve the energy efficiency of source code, in: Proc. of the 39th
Int. Conf. on Soft. Eng. Companion, ACM, 2017.

[10] S. A. Chowdhury, A. Hindle, Greenoracle: estimating software energy consump-
tion with energy measurement corpora, in: Proceedings of the 13th International
Conference on Mining Software Repositories, MSR, 2016, 2016, pp. 49–60.

[11] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, P. Ammann, Ecodroid: An
approach for energy-based ranking of android apps, in: Proc. of 4th Int. Workshop
on Green and Sustainable Software, GREENS ’15, IEEE Press, 2015, pp. 8–14.

[12] S. Hao, D. Li, W. G. J. Halfond, R. Govindan, Estimating mobile application
energy consumption using program analysis, in: Proc. of the 2013 Int. Conf. on
Software Engineering, ICSE ’13, IEEE Press, 2013, pp. 92–101.

[13] M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira, J. Saraiva, Products go
green: Worst-case energy consumption in software product lines, in: Proceedings
of the 21st International Systems and Software Product Line Conference - Volume
A, SPLC ’17, ACM, 2017, pp. 84–93.

[14] T. Yuki, S. Rajopadhye, Folklore confirmed: Compiling for speed= compiling for
energy, in: Languages and Compilers for Parallel Computing, Springer, 2014, pp.
169–184.

[15] G. Pinto, F. Castor, Y. D. Liu, Understanding energy behaviors of thread man-
agement constructs, in: Proc. of the 2014 ACM Int. Conf. on Object Oriented
Programming Systems Languages & Applications, ACM, 2014, pp. 345–360.

[16] A. E. Trefethen, J. Thiyagalingam, Energy-aware software: Challenges, opportu-
nities and strategies, Journal of Computational Science 4 (6) (2013) 444 – 449.

[17] L. G. Lima, G. Melfe, F. Soares-Neto, P. Lieuthier, J. P. Fernandes, F. Castor,
Haskell in Green Land: Analyzing the Energy Behavior of a Purely Functional
Language, in: Proc. of the 23rd IEEE Int. Conf. on Software Analysis, Evolution,
and Reengineering (SANER’2016), IEEE, 2016, pp. 517–528.

[18] S. Abdulsalam, Z. Zong, Q. Gu, M. Qiu, Using the greenup, powerup, and speedup
metrics to evaluate software energy efficiency, in: Proc. of the 6th Int. Green and
Sustainable Computing Conf., IEEE, 2015, pp. 1–8.

36



[19] I. Gouy, The Computer Language Benchmarks Game.
URL http://benchmarksgame.alioth.debian.org/

[20] M. Couto, R. Pereira, F. Ribeiro, R. Rua, J. Saraiva, Towards a green ranking
for programming languages, in: Proceedings of the 21st Brazilian Symposium on
Programming Languages, SBLP, 2017, pp. 7:1–7:8, (best paper award).

[21] M. Dimitrov, C. Strickland, S.-W. Kim, K. Kumar, K. Doshi, Intel R© power gov-
ernor, https://software.intel.com/en-us/articles/intel-power-governor,
accessed: 2015-10-12 (2015).

[22] M. Hähnel, B. Döbel, M. Völp, H. Härtig, Measuring energy consumption for
short code paths using RAPL, SIGMETRICS Performance Evaluation Review
40 (3) (2012) 13–17.

[23] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, D. Rajwan, Power-
management architecture of the intel microarchitecture code-named sandy bridge,
IEEE Micro 32 (2) (2012) 20–27.

[24] K. Liu, G. Pinto, Y. D. Liu, Data-oriented characterization of application-
level energy optimization, in: Fundamental Approaches to Software Engineering,
Springer, 2015, pp. 316–331.

[25] S. Shaphiro, M. Wilk, An analysis of variance test for normality, Biometrika 52 (3)
(1965) 591–611.

[26] D. Zwillinger, S. Kokoska, CRC standard probability and statistics tables and
formulae, Crc Press, 1999.

[27] K. Deb, M. Mohan, S. Mishra, Evaluating the ε-domination based multiobjec-
tive evolutionary algorithm for a quick computation of pareto-optimal solutions.,
Evolutionary Computation Journal 13 (4) (2005) 501–525.

[28] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: Nsga-ii, Trans. Evol. Comp 6 (2) (2002) 182–197.

[29] M. Woodruff, J. Herman, pareto.py: a ε − nondomination sorting routine,
https://github.com/matthewjwoodruff/pareto.py (2013).

[30] M. Mol, Rosetta Code.
URL http://rosettacode.org/

[31] M. Schulze, A new monotonic, clone-independent, reversal symmetric, and
condorcet-consistent single-winner election method, Social Choice and Welfare
36 (2) (2011) 267–303. doi:10.1007/s00355-010-0475-4.
URL https://doi.org/10.1007/s00355-010-0475-4

[32] T. D. Cook, D. T. Campbell, Quasi-experimentation: design & analysis issues for
field settings, Houghton Mifflin, 1979.

[33] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, J. Saraiva,
Energy efficiency across programming languages: how do energy, time, and mem-
ory relate?, in: Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering, ACM, 2017, pp. 256–267.

37

http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/
https://software.intel.com/en-us/articles/intel-power-governor
http://rosettacode.org/
http://rosettacode.org/
https://doi.org/10.1007/s00355-010-0475-4
https://doi.org/10.1007/s00355-010-0475-4
http://dx.doi.org/10.1007/s00355-010-0475-4
https://doi.org/10.1007/s00355-010-0475-4


[34] W. H. Li, D. R. White, J. Singer, Jvm-hosted languages: They talk the talk,
but do they walk the walk?, in: Proc. of the 2013 Int. Conf. on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, PPPJ ’13, ACM, 2013, pp. 101–112.

[35] K. Williams, J. McCandless, D. Gregg, Dynamic interpretation for dynamic
scripting languages, in: Proc. of the 8th Annual IEEE/ACM Int. Symposium
on Code Generation and Optimization, CGO ’10, ACM, 2010, pp. 278–287.

[36] V. St-Amour, S. Tobin-Hochstadt, M. Felleisen, Optimization coaching: Opti-
mizers learn to communicate with programmers, in: Proc. of ACM Int. Conf. on
Object Oriented Programming Systems Languages and Applications, OOPSLA
’12, ACM, 2012, pp. 163–178.

[37] A. Homescu, A. Şuhan, Happyjit: A tracing jit compiler for php, SIGPLAN Not.
47 (2) (2011) 25–36.

[38] S. Georgiou, M. Kechagia, P. Louridas, D. Spinellis, What are your programming
language’s energy-delay implications?, in: Proceedings of the 15th International
Conference on Mining Software Repositories, ACM, 2018, pp. 303–313.

[39] M. Couto, T. Carção, J. Cunha, J. P. Fernandes, J. Saraiva, Detecting anomalous
energy consumption in android applications, in: F. M. Quintão Pereira (Ed.),
Programming Languages: 18th Brazilian Symposium, SBLP 2014, Maceio, Brazil,
October 2-3, 2014. Proceedings, 2014, pp. 77–91.

[40] D. Li, S. Hao, W. G. Halfond, R. Govindan, Calculating source line level energy
information for android applications, in: Proc. of the 2013 Int. Symposium on
Software Testing and Analysis, ACM, 2013, pp. 78–89.

[41] F. Ding, F. Xia, W. Zhang, X. Zhao, C. Ma, Monitoring energy consumption of
smartphones, in: Proc. of the 2011 Int. Conf. on Internet of Things and 4th Int.
Conf. on Cyber, Physical and Social Computing, 2011, pp. 610–613.

[42] L. Cruz, R. Abreu, Performance-based guidelines for energy efficient mobile appli-
cations, in: Proceedings of the 4th International Conference on Mobile Software
Engineering and Systems, MOBILESoft ’17, IEEE Press, 2017, pp. 46–57.

[43] I. Manotas, L. Pollock, J. Clause, Seeds: A software engineer’s energy-
optimization decision support framework, in: Proc. of the 36th Int. Conf. on
Software Engineering, ACM, 2014, pp. 503–514.

38


	Introduction
	Measuring Energy in Software Languages
	The Computer Language Benchmarks Game
	Design and Execution
	Results
	Analysis and Discussion
	Is Faster, Greener?
	Memory Usage
	Continuous Memory Usage
	Energy vs. Time vs. Memory


	Energy Analysis on a Chrestomathy Program Repository
	Design and Execution
	Analysis and Discussion
	Conclusions

	Threats to Validity
	Related Work
	Conclusions

