80 research outputs found

    Anthropocentric-based robotic and autonomous systems: assessment for new organisational options

    Get PDF
    Text based on the paper presented at the Conference "Autonomous systems: inter-relations of technical and societal issues" held at Monte de Caparica (Portugal), Universidade Nova de Lisboa, November, 5th and 6th 2009 and organized by IET-Research Centre on Enterprise and Work InnovationResearch activities at European level on the concept of new working environments offers considerable attention to the challenges of the increased competencies of people working together with automated technologies. Since the decade of 1980 the development of approaches for the humanization of work organization, and for the development of participative organizational options induced to new proposals related to the development of complex and integrated automated systems. From such parallel conceptual development emerged the concept of “anthropocentric robotic systems” and quickly it covered also other fields of automation. More recently, the debate also covers issues related to working perception of people dealing with autonomous systems (e.g. Autonomous robotics) in tasks related to production planning, to programming and to process control. In fact, today one can understand the wider use of the anthropocentrism concept of production architectures, when understanding the new quality of these systems. In this chapter the author analyses the evolution of these issues related to governance of ICT applied to manufacturing and industrial services in research programmes strengthening very much the ‘classical’ concept of anthropocentric-based systems. It is emerging a new value of the intuitive capacities and human knowledge in the optimization and flexibilization of the manufacturing processes. While this would be a pre-condition to understand the human-robot communication needs, there is also a need to take into consideration the qualitative variables in the definition and design of robotic systems, jobs and production systems.Project CRUP/DAAD on “Technology Assessment of Autonomous Robotics” of FCT-UNL and ITAS-KI

    Desarrollo de una interfaz cerebro-ordenador orientada al control domótico mediante realidad virtual

    Get PDF
    La posibilidad de controlar dispositivos con la mente ha fascinado a la humanidad durante el último siglo. Los recientes avances en la neurociencia han contribuido al desarrollo de las primeras interfaces cerebro-ordenador (BCI), que son capaces de decodificar las intenciones de los usuarios en comandos externos a través de sus señales cerebrales. Esta tecnología unida a la realidad virtual (RV) tiene un gran potencial de desarrollo, ya que permite interactuar con dispositivos externos a través escenarios inmersivos. Esto podría mejorar la calidad de vida y la autonomía de las personas con discapacidad motora, al permitirles el control de dispositivos externos a través de las señales cerebrales. Siguiendo estas líneas, en este trabajo se realiza el diseño, el desarrollo y la evaluación de un sistema BCI, basado en señales de control c-VEPs, en un entorno virtual con el fin de controlar un reproductor de música. El diseño y desarrollo se implementa a través de los programas Unity y MEDUSA©. En cuanto a su evaluación, ésta se llevó a cabo con cinco sujetos de control y se obtuvieron unos resultados que muestran que el sistema desarrollado es fácil de usar, rápido y tiene una alta precisión (92,85%), que supera la de otros estudios realizados anteriormente.The ability to control devices with the mind has intrigued mankind for the last century. Recent progress in neuroscience has contributed to the development of the first brain-computer interfaces (BCI), which are able to decode users' intentions into external commands through their brain signals. This technology coupled with virtual reality (VR) has great growth potential as it allows interaction with external devices through immersive scenarios. This could improve the quality of life and the autonomy of motor-disabled people by allowing them to control external devices through their brain signals. Following these guidelines, the present study designs, develops and evaluates a BCI system, based on the control signals c-VEPs, in a virtual environment with the aim to control a music player. The design and development are implemented using Unity and MEDUSA© software. The evaluation was carried out with five control subjects and the results obtained show that the developed system is easy to use, fast and achieved a high accuracy (92.85%), which overcomes that of previous studies.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaMáster en Ingeniería Industria

    Application of Deep Neural Network in Healthcare data

    Get PDF
    Biomedical data analysis has been playing an important role in healthcare provision services. For decades, medical practitioners and researchers have been extracting and analyse biomedical data to derive different health-related information. Recently, there has been a significant rise in the amount of biomedical data collection. This is due to the availability of biomedical devices for the extraction of biomedical data which are more portable, easy to use and affordable, as an effect technology advancement. As the amount of biomedical data produced every day increases, the risk of human making analytical and diagnostic mistakes also increases. For example, there are approximately 40 million diagnostic errors involving medical imaging annually worldwide, hence rise a need for the development of fast, accurate, reliable and automatic means for analysis of biomedical data. Conventional machine learning has been used to assist in the analysis and interpretation of biomedical data automatically, but always limited with the need for feature extraction process to train the built models. To achieve this, three studies have been conducted. Two studies were conducted by using EEG signals and one study by using microscopic images of cancer cells. In the first study with EEG signals, our method managed to interpret motor imaginary activities from a 64 channels EEG device with 99% classification accuracy when all the 64 channels were used and 91.5% classification when the number of channels was selected to eight (8) channels. In a second study which involved steady-state visual evoked potential form of EEG signals, our method achieved an average of 94% classification accuracy by using two channels, skin like EEG sensor. In the third study for authentication of cancer cell lines by using microscopic images, our method managed to attain an average of 0.91 F1-score in the authentication of eight classes of cancer cell lines. Studies reported in this thesis, significantly shows that CNN can play a major role in the development of a computerised way in the analysis of biomedical data. Towards provision of better healthcare by using CNN in analysis of different formats of biomedical data, this thesis has three major contributions, i) introduction of a new method for EEG channels selection towards development of portable EEG sensors for real-life application, and ii) introduction of a method for cancer cell lines authentication in the laboratory environment towards development of anti-cancer drugs, and iii) Introduction of a method for authentication of isogenic cancer cell lines

    Ubiquitous computing and natural interfaces for environmental information

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas AmbientaisThe next computing revolution‘s objective is to embed every street, building, room and object with computational power. Ubiquitous computing (ubicomp) will allow every object to receive and transmit information, sense its surroundings and act accordingly, be located from anywhere in the world, connect every person. Everyone will have the possibility to access information, despite their age, computer knowledge, literacy or physical impairment. It will impact the world in a profound way, empowering mankind, improving the environment, but will also create new challenges that our society, economy, health and global environment will have to overcome. Negative impacts have to be identified and dealt with in advance. Despite these concerns, environmental studies have been mostly absent from discussions on the new paradigm. This thesis seeks to examine ubiquitous computing, its technological emergence, raise awareness towards future impacts and explore the design of new interfaces and rich interaction modes. Environmental information is approached as an area which may greatly benefit from ubicomp as a way to gather, treat and disseminate it, simultaneously complying with the Aarhus convention. In an educational context, new media are poised to revolutionize the way we perceive, learn and interact with environmental information. cUbiq is presented as a natural interface to access that information

    Animating the Ethical Demand:Exploring user dispositions in industry innovation cases through animation-based sketching

    Get PDF
    This paper addresses the challenge of attaining ethical user stances during the design process of products and services and proposes animation-based sketching as a design method, which supports elaborating and examining different ethical stances towards the user. The discussion is qualified by an empirical study of Responsible Research and Innovation (RRI) in a Triple Helix constellation. Using a three-week long innovation workshop, UCrAc, involving 16 Danish companies and organisations and 142 students as empirical data, we discuss how animation-based sketching can explore not yet existing user dispositions, as well as create an incentive for ethical conduct in development and innovation processes. The ethical fulcrum evolves around Løgstrup's Ethical Demand and his notion of spontaneous life manifestations. From this, three ethical stances are developed; apathy, sympathy and empathy. By exploring both apathetic and sympathetic views, the ethical reflections are more nuanced as a result of actually seeing the user experience simulated through different user dispositions. Exploring the three ethical stances by visualising real use cases with the technologies simulated as already being implemented makes the life manifestations of the users in context visible. We present and discuss how animation-based sketching can support the elaboration and examination of different ethical stances towards the user in the product and service development process. Finally we present a framework for creating narrative representations of emerging technology use cases, which invite to reflection upon the ethics of the user experience.</jats:p

    A virtual hand assessment system for efficient outcome measures of hand rehabilitation

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control

    European governance challenges in bio-engineering : making perfect life : bio-engineering (in) the 21st century : final report

    Get PDF
    In the STOA project Making Perfect Life four fields were studied of 21st century bio-engineering: engineering of living artefacts, engineering of the body, engineering of the brain, and engineering of intelligent artefacts. This report describes the main results of the project. It shows how developments in the four fields of bio-engineering are shaped by two megatrends: "biology becoming technology" and "technology becoming biology". These developments result in a broadening of the bio-engineering debate in our society. The report addresses the long term views that are inspiring this debate and discusses a multitude of ethical, legal and social issues that arise from bio-engineering developments in the fields described. Against this background four specific developments are studied in more detail: the rise of human genome sequencing, the market introduction of neurodevices, the capturing by information technology of the psychological and physiological states of users, and the pursuit of standardisation in synthetic biology. These developments are taken in this report as a starting point for an analysis of some of the main European governance challenges in 21st century bio-engineering
    corecore