10,547 research outputs found

    Both symbolic and embodied representations contribute to spatial language processing: Evidence from younger and older adults

    Get PDF
    Building on earlier neuropsychological work, we adopted a novel individual differences approach to examine the relationship between spatial language and a wide range of both verbal and nonverbal abilities. Three new measures were developed for the assessment of spatial language processing: spatial naming, spatial verbal memory, and verbal comprehension in spatial perspective taking. Results from a sample of young adults revealed significant correlations between performance on the spatial language tasks and performance on both the analogous (non-spatial) verbal measures as well as on the (non-verbal) visual-spatial measures. Visual-spatial abilities, however, were more predictive of spatial language processing than verbal abilities. Furthermore, results from a sample of older adults revealed impairments in visual-spatial tasks and on spatial verbal memory. The results support dual process accounts of meaning, and provide further evidence of the close connection between the language of space and non-linguistic visual-spatial cognition

    The Neuroscience of Mathematical Cognition and Learning

    Get PDF
    The synergistic potential of cognitive neuroscience and education for efficient learning has attracted considerable interest from the general public, teachers, parents, academics and policymakers alike. This review is aimed at providing 1) an accessible and general overview of the research progress made in cognitive neuroscience research in understanding mathematical learning and cognition, and 2) understanding whether there is sufficient evidence to suggest that neuroscience can inform mathematics education at this point. We also highlight outstanding questions with implications for education that remain to be explored in cognitive neuroscience. The field of cognitive neuroscience is growing rapidly. The findings that we are describing in this review should be evaluated critically to guide research communities, governments and funding bodies to optimise resources and address questions that will provide practical directions for short- and long-term impact on the education of future generations

    Annotated Bibliography: Anticipation

    Get PDF

    Domain-General Factors Influencing Numerical and Arithmetic Processing

    Get PDF
    This special issue contains 18 articles that address the question how numerical processes interact with domain-general factors. We start the editorial with a discussion of how to define domain-general versus domain-specific factors and then discuss the contributions to this special issue grouped into two core numerical domains that are subject to domain-general influences (see Figure 1). The first group of contributions addresses the question how numbers interact with spatial factors. The second group of contributions is concerned with factors that determine and predict arithmetic understanding, performance and development. This special issue shows that domain-general (Table 1a) as well as domain-specific (Table 1b) abilities influence numerical and arithmetic performance virtually at all levels and make it clear that for the field of numerical cognition a sole focus on one or several domain-specific factors like the approximate number system or spatial-numerical associations is not sufficient. Vice versa, in most studies that included domain-general and domain-specific variables, domain-specific numerical variables predicted arithmetic performance above and beyond domain-general variables. Therefore, a sole focus on domain-general aspects such as, for example, working memory, to explain, predict and foster arithmetic learning is also not sufficient. Based on the articles in this special issue we conclude that both domain-general and domain-specific factors contribute to numerical cognition. But the how, why and when of their contribution still needs to be better understood. We hope that this special issue may be helpful to readers in constraining future theory and model building about the interplay of domain-specific and domain-general factors

    A developmental model of number representation

    Get PDF
    We delineate a developmental model of number representations. Notably, developmental dyscalculia (DD) is rarely associated with an all-or-none deficit in numerosity processing as would be expected if assuming abstract number representations. Finally, we suggest that the "generalist genes” view might be a plausible - though thus far speculative - explanatory framework for our model of how number representations develo

    MORE THAN FINGER COUNTING: SHARED RESOURCES BETWEEN FINGER TAPPING AND ARITHMETIC

    Get PDF
    Thesis (Ph.D.) - Indiana University, Cognitive Science, 2011Arithmetic is a branch of mathematics upon which many other mathematical content areas are built. The study of the mechanisms underlying arithmetic is crucial for understanding cognition in other domains of mathematics, as well as higher-level cognition. Recent advances in the study of embodied cognition have yielded to a new interest in how mathematical thinking relates to our body and the sensorimotor system. Abundant behavioral, neuroimaging, and neuropsychological evidence have accumulated over the last two decades showing a relationship between number processing and sensorimotor processes. In addition, considerable evidence has been presented that suggest precursors of arithmetic skills in animals. This shows that arithmetic is not uniquely human and some of the relevant mechanisms may exist independent of language. In this dissertation a combination of behavioral and neuroimaging methods were used to explore the embodiment of arithmetic processing, with particular focus on the relation between finger movements and addition. In addition, how bodily measures (e.g. handedness, finger counting habits, finger tapping ability) interact with cognitive measures (e.g. math ability, digit span, spatial ability) was investigated. The results provide evidence for a finger-based representation of numbers, and show that bodily measures can predict elementary numerical skills

    Directional adposition use in English, Swedish and Finnish

    Get PDF
    Directional adpositions such as to the left of describe where a Figure is in relation to a Ground. English and Swedish directional adpositions refer to the location of a Figure in relation to a Ground, whether both are static or in motion. In contrast, the Finnish directional adpositions edellĂ€ (in front of) and jĂ€ljessĂ€ (behind) solely describe the location of a moving Figure in relation to a moving Ground (Nikanne, 2003). When using directional adpositions, a frame of reference must be assumed for interpreting the meaning of directional adpositions. For example, the meaning of to the left of in English can be based on a relative (speaker or listener based) reference frame or an intrinsic (object based) reference frame (Levinson, 1996). When a Figure and a Ground are both in motion, it is possible for a Figure to be described as being behind or in front of the Ground, even if neither have intrinsic features. As shown by Walker (in preparation), there are good reasons to assume that in the latter case a motion based reference frame is involved. This means that if Finnish speakers would use edellĂ€ (in front of) and jĂ€ljessĂ€ (behind) more frequently in situations where both the Figure and Ground are in motion, a difference in reference frame use between Finnish on one hand and English and Swedish on the other could be expected. We asked native English, Swedish and Finnish speakers’ to select adpositions from a language specific list to describe the location of a Figure relative to a Ground when both were shown to be moving on a computer screen. We were interested in any differences between Finnish, English and Swedish speakers. All languages showed a predominant use of directional spatial adpositions referring to the lexical concepts TO THE LEFT OF, TO THE RIGHT OF, ABOVE and BELOW. There were no differences between the languages in directional adpositions use or reference frame use, including reference frame use based on motion. We conclude that despite differences in the grammars of the languages involved, and potential differences in reference frame system use, the three languages investigated encode Figure location in relation to Ground location in a similar way when both are in motion. Levinson, S. C. (1996). Frames of reference and Molyneux’s question: Crosslingiuistic evidence. In P. Bloom, M.A. Peterson, L. Nadel & M.F. Garrett (Eds.) Language and Space (pp.109-170). Massachusetts: MIT Press. Nikanne, U. (2003). How Finnish postpositions see the axis system. In E. van der Zee & J. Slack (Eds.), Representing direction in language and space. Oxford, UK: Oxford University Press. Walker, C. (in preparation). Motion encoding in language, the use of spatial locatives in a motion context. Unpublished doctoral dissertation, University of Lincoln, Lincoln. United Kingdo

    Body representation difficulties in children and adolescents with autism may be due to delayed development of visuo-tactile temporal binding

    Get PDF
    Recent research suggests visuo-tactile binding is temporally extended in autism spectrum disorders (ASD), although it is not clear whether this specifically underlies altered body representation in this population. In the current study children and adolescents with ASD, and typically developing controls, placed their hand into mediated reality system (MIRAGE) and saw two identical live video images of their own right hand. One image was in the proprioceptively correct location (veridical hand) and the other was displaced to either side. While visuotactile feedback was applied via brushstroke to the participant’s (unseen) right finger, they viewed one hand image receiving synchronous brushstrokes and the other receiving brushstrokes with a temporal delay (60, 180 and 300ms). After brushing, both images disappeared from view and participants pointed to a target, with direction of movement indicating which hand was embodied. ASD participants, like younger mental aged-matched controls, showed reduced embodiment of the spatially incongruent, but temporally incongruent, hand compared to chronologically age-matched controls at shorter temporal delays. This suggests development of visuo-tactile integration may be delayed in ASD. Findings are discussed in relation to atypical body representation in ASD and how this may contribute to social and sensory difficulties within this population
    • 

    corecore