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Abstract
This special issue contains 18 articles that address the question how numerical processes interact with domain-general factors. We start
the editorial with a discussion of how to define domain-general versus domain-specific factors and then discuss the contributions to this
special issue grouped into two core numerical domains that are subject to domain-general influences (see Figure 1). The first group of
contributions addresses the question how numbers interact with spatial factors. The second group of contributions is concerned with factors
that determine and predict arithmetic understanding, performance and development. This special issue shows that domain-general (Table
1a) as well as domain-specific (Table 1b) abilities influence numerical and arithmetic performance virtually at all levels and make it clear
that for the field of numerical cognition a sole focus on one or several domain-specific factors like the approximate number system or
spatial-numerical associations is not sufficient. Vice versa, in most studies that included domain-general and domain-specific variables,
domain-specific numerical variables predicted arithmetic performance above and beyond domain-general variables. Therefore, a sole focus
on domain-general aspects such as, for example, working memory, to explain, predict and foster arithmetic learning is also not sufficient.
Based on the articles in this special issue we conclude that both domain-general and domain-specific factors contribute to numerical
cognition. But the how, why and when of their contribution still needs to be better understood. We hope that this special issue may be
helpful to readers in constraining future theory and model building about the interplay of domain-specific and domain-general factors.
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Numerical cognition encompasses a broad variety of cognitive and neural processes related to the perception,
understanding and manipulation of numerical content. Hence, when investigating numerical cognition, we are
not looking at an encapsulated cognitive module, supported by a single neural system but rather at a wide-
spread network of interrelated cognitive processes with complex neural underpinnings. Much like human
behaviour cannot be fully understood when leaving aside the social interactions and influences, we need to
understand to what extent the core numerical processes are influenced and/or mediated by domain-general
factors and other domains such as spatial skills and language.
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Domain-Generality Versus Domain-Specificity

Our current understanding of the terms domain-general and domain-specific factors has been shaped by
discussions about whether there are domain-specific modules in the mind (Fodor, 1983) and whether infants
enter the world with innately pre-specified core knowledge (for numerical cognition, see e.g. Baillargeon &
Carey, 2012; Dehaene, 2001; Rugani, Vallortigara, Priftis, & Regolin, 2015, but see Núñez, 2017; Patro &
Nuerk 2017, for critical valuation). Fodor, in his influential book ‘The Modularity of Mind’, proposed modules,
described by Elman et al. (1998) as ‘mental/neural systems that [..] are uniquely suited to and configured for a
particular task and no other task’ (page 36). Fodor listed nine key criteria that a module has to satisfy; domain-
specificity is one of those key criteria, i.e. a module per definition deals exclusively with a single type of
information. Ever since this proposal it has been debated whether modules exist. Language and face
recognition for example have been put forward as candidates for modules. Fodor also proposed central
systems that cut across modules, and called those structures domain-neutral. Today the term “domain-general
processes” is more commonly used for those structures and processes.

In Fodor’s definition modules need to be innately pre-specified. Along a similar vein, developmental
psychologists have proposed that infants possess innately pre-specified domain-specific core knowledge
(Dehaene, 2001; de Hevia, Izard, Coubart, Spelke, & Streri, 2014) which supports their early learning from
experience. For example, Feigenson, Dehaene, and Spelke (2004) postulated two core systems of numerical
representations, one system for representing large numerosities approximately and one system for
representing small numbers of objects exactly, that are already present in preverbal infants and non-human
animals.

‘Modularity’ and ‘domain-specificity’ have often been lumped together, but domain-specificity does not have to
imply innateness. Clearly, specified learned systems can also be domain-specific, e.g. cycling, typing, and
piano playing do not have to be innate (Elman et al., 1998). For the case of numerical cognition, it has also
been proposed that domain-specific modules are a product of neural recycling, i.e., of fast and automatic
learning and enculturation, which may start directly after or even before birth in humans (Verguts & Fias, 2004,
for a model; Patro, Nuerk, & Cress, 2016 for an enculturation account; Schleger et al., 2014, for magnitude
processing in fetuses). Furthermore, the term domain-specificity has been applied to at least five different
levels: domain-specific tasks, domain-specific behaviours, domain-specific representations, domain-specific
processing mechanisms and domain-specific genes (Elman et al., 1998). Articles in this special issue cover all
levels except the domain-specific genetic level.

More recent discussions suggest that the distinction between domain-general and domain-specific processes
might be too crude. In practice, it can be a matter of perspective. While for a researcher interested in numerical
cognition, symbolic number processing might be domain-specific and spatial skills might be defined as domain-
general (or at least domain-overlapping), for spatial cognition researchers spatial skills might be domain-
specific (see Cornu, Hornung, Schiltz, and Martin, 2017, this issue) and symbolic thinking might be seen as a
domain-general skill. At a more abstract level, the distinction between domain-general versus domain-specific
might be artificial, because different processes might be better conceptualised on a continuum, with processes
ordered from being relevant for fewer (but not only one) to more (but not all) domains (‘domain-relevance’, see
Karmiloff-Smith, 2015). Thus, the terms domain-general and domain-specific might represent theoretical and
rarely reached categorical endpoints on a continuum.
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This is also highlighted by the range of topics in this special issue (for an overview see Table 1a/1b and Figure
1). Most competencies fall somewhere in the middle of this continuum: they are important for more than one
domain, but not for all domains. For example while understanding of ordinality and magnitude processing
clearly is important for numerical processing, these two competencies are not unique to the number domain.
We can order letters, days of the week and process the size or magnitude of animals or space or time (see
Bueti & Walsh, 2009). This has led some researchers to question whether purely domain-specific
representations do actually exist. Cantlon, Platt, and Brannon (2009), for example, question the idea of a
domain-specific system solely devoted to numerical processing that is independent of other types of quantity
judgements.

Figure 1. Schematic of the specific examples (within the dotted ellipse) of domain-general factors (in bold print outside the
dotted ellipse) whose relationships to domain-specific numerical competencies (within the grey ellipse) were assessed in
this special issue.

Karmiloff-Smith (2015) in a developmental framework of domain-relevance suggests how the continuum of
domain-general to domain-specific processes might develop: the infant brain starts out with a number of basic-
level processing tendencies. Each of these tendencies might be more relevant to the processing of certain
different kinds of input over others, i.e. more relevant to a particular domain, and thus can become more
domain-specific over time. Dehaene and Cohen’s (2007) neuronal recycling hypothesis could be seen as a
potential neural explanation as to why some factors are more domain-relevant than others for a particular
domain. They propose that evolutionary-speaking recent cultural inventions such as reading, writing and
arithmetic are using evolutionarily older cortical circuits that were devoted to different but similar functions such
as spatial transformations, object and scene recognition. Evolutionary-speaking younger functions would then
share the same structural constraints as the original functions and this could provide an explanation for some
cross-domain interactions as well as for why some functions are more relevant to a particular domain.
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At a more fine-grained level, some skills might be more relevant for particular numerical tasks or
representations but less so for other numerical processes. For example, working memory capacity influences
complex addition, particularly if it includes a carry-procedure, more strongly than it does the retrieval of rote-
learned simple multiplication facts (Fürst & Hitch, 2000; Imbo, Vandierendonck, & De Rammelaere, 2007; Imbo,
Vandierendonck, & Vergauwe, 2007; Seitz & Schumann-Hengsteler, 2002; for comparable contribution of
verbal and spatial WM to subtraction and multiplication see Cavdaroglu & Knops, 2016).

The present special issue comprises 18 articles that address the question how numerical processes interact
with domain-general factors from different angles. To provide the reader with an overview, we subsumed the
contributions to this special issue under two core numerical domains with several subdomains (see Figure 1,
Table 1a/1b) that are subject to domain-general influences. First, a number of contributions address the
question how numbers interact with spatial factors. This includes the question how the visual system extracts
numerosity from a visual scene where items are distributed in space, how directional mappings of numbers to
space influence arithmetic operations, and how the spatial layout of the mental number line affects binary
choice behavior and whether motor trajectories provide a direct access to this mapping. Second, a pressing
question is what factors determine and predict arithmetic understanding and performance. This is important
from a theoretical point of view to better understand the cognitive organization of numerical competencies. It
also is of large practical importance because it can inform practitioners how to design educational curriculae
and remedy measures. This second theme contains contributions that investigate predictors of mental
arithmetic from a developmental perspective as well as in adults and special populations. Two studies
specifically address the question what factors are best targeted in training measures in order to improve
numerical competencies: domain-general or domain-specific factors.

The present results make it very clear that mental arithmetic is subject to influences from a broad variety of
domain-general factors. These include but are not limited to the following: mathematical language skills,
sustained attention, conceptual understanding and creativity. The importance of working memory appears to be
particularly controversial since some find that working memory training does not affect arithmetic performance
while others report improved numerical understanding after working memory training.

As can be seen from Figure 1, there are many different domain-general factors and domain-specific factors,
which have been associated with different spatial-numerical and arithmetic effects and capabilities. In Table
1a/1b we tried to summarize the findings. The domain-general factors can be found in Table 1a. The domain-
specific factors can be found in Table 1b. The numerical and arithmetic effects and capabilities can be found in
different columns. So, for example, the study by Gilmore et al. (2017, this issue) is located in the working
memory row and the arithmetic column, because the paper by Gilmore et al. investigated (among other factors)
the influence of working memory on arithmetic.

The names of the first authors of the studies are either depicted in bold or in italic font. Bold font means that this
study found an influence, while italic font means, this study did not find an influence. Often, there were different
analyses reported within the same paper. In those cases, bold/italic in the table refers to the most complex
analysis results (e.g., multiple regression instead of raw correlation). So, if a domain-general factor X had a raw
correlation with the target variable (e.g., arithmetic performance), but no influence in the multiple regression,
because this variance could be better explained by other variables in the study, then this factor X would be
italic, because it does not explain unique variance.
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What can be seen immediately from the overview in Table 1a/1b is that there is a mixture of bold (significant
influence) and italic (no significant influence) for virtually all variables investigated in our special issue. Often
there is even the same study in bold and italic in the same cell, because there was an influence of a specific
domain-general factor X in one condition or for one of several age groups, but not in another condition or
another age group. Sometimes outcomes depended on the target variable. For instance, Nemati et al. found an
influence of planning (Tower of London), but not of self-control on the accuracy of arithmetic, however, an
influence of self-control, but not of planning on response times for arithmetic.

At this point, it is very important to note that this does not mean that studies, which report opposite results (i.e.,
bold and italic names in the same cell), are necessarily contradicting each other. On the contrary, the studies
differ in multiple aspects. They often use different operationalisations of the underlying constructs, consider
different co-variates in the analyses, use different paradigms, stimuli and effects for the to-be-predicted target
variables, investigate different age groups, employ different designs (e.g., experimental, correlational,
interventions) and different uni- and multivariate analyses; in sum, they reflect the variety present in the field
studying domain-general and domain-specific influences on numerical processing. We will discuss this in more
detail later. However, what can be said after a short inspection of Table 1a/1b is that the result about the
influence of a particular domain-general factor in one paradigm, with one type of stimuli or effect of interest,
with a particular choice of target variables, for a particular age group in a particular design and with a particular
analysis can hardly be generalized to the field as such. Rather, we need the full picture and the full variety of
these manipulations to arrive at a more complete picture of the influence of domain-specific and domain-
general factors on numerical cognition.

Although Table 1a/1b may seem quite complex at first sight, it reflects of course a major information reduction
of the single studies to provide a rough overview. As always for such information reduction, some construct
names for domain-general and domain-specific factors can be controversial. Even more importantly, for some
cases, it can be discussed in which cell they should be located or not and even if the name should be in bold or
italic or both (especially, if multiple analyses are run as for instance in the paper by Purpura et al., 2017, this
issue). To get full insight, we, of course, recommend reading the papers. However, in the following, we will
briefly summarize the major findings of the contributions in a more detailed way than in Table 1a/1b. The
organization follows the above-described major domains in numerical cognition (as used in Table 1a/1b and
Figure 1).
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Table 1a

Domain-General Influences on Numerical Processing and Arithmetic Reported in the Studies in This Special Issue

Domain-general influence

Numerical and arithmetic effect/capability

Extension:

Approximate

Extension:

Exact

Direction:

Implicit

Cardinal

Direction:

Implicit

Operations Arithmetic

Numerical

Identification Counting

Arabic

Magnitude

Comparison

Working Memory Honoré Ramani

Honoré

Gilmore

Kroesbergen

Nematig

Purpura

Honoré

Nemati

Purpura

Ramani

Ramani Honoré Honoré

Executive Functions Nematig

Purpura

Nemati

Purpura

Intelligence Cornu Kroesbergen

Cornu

Attention Katz

McCrink

Katzd

Ashkenazi

Visuo-Spatial Processing Anobile

(Crollen)a
Cornu

(Crollen)

(Crollen)

Georgesb

Georges

Cornu

(Crollen)

Visuo-Motor Integration Cornu Cornu

Language Ashkenazi

Purpura

Purpura

Mathematical Languagec Purpura

Ordinality (non-numerical) Schröderf

Processing/Perceptual Speed Ashkenazi

Purpura

Face Recognition Alonso-Diaz

Self Control Nematig

Nemati

Self Regulation Nemati

Social Power Hubere

Huber

Creativity Kroesbergen

Socio-Economic Status Purpura

Note. Studies referenced by first author. Bold reference: Significant prediction/influence/intervention effect /analogous effect, when other
variables in the study were considered; italic reference: No prediction/influence/intervention effect /analogous effect, when other variables
in the study were considered. When several models were computed, we chose the best model in the manuscript (e.g., most variance
explained, best fit). Other models may come to different results.
aNote that Crollen et al. is a review of existing studies, not presenting new empirical data. Therefore, parentheses were used.
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bGeorges et al. examined correlations, regressions, moderations. One significant raw correlation disappeared in regression and moderation
analysis. In one moderation analysis an interaction between SNARC and arithmetic prevailed, but arithmetic itself did not predict SNARC.
cPurpura et al.: "Mathematical language has been classified in this study as a domain-general variable, but it should be noted that it also
highly overlaps with domain-specific skills as it is comprised of content-specific language."
dKatz et al. found attention correlated with OM effects in the non-symbolic, but not in the symbolic condition.
eHuber et al. found an influence of social power in a number line length estimation task in the "increase" condition, but not in the "decrease"
condition.
fSchröder et al. found non-significant correlations of non-numerical (weekdays) and numerical SNARC in three of four analyses. In the
remaining analysis, they observed p = .092, which would be significant, when tested one-sided.
gIn Nemati et al.'s paper Planning (Tower of London) predicted accuracy, but not RT, while Self-control predicted RT, but not accuracy.
Working memory was not a significant predictor in the regression, but was a predictor in the mediation analysis.

Table 1b

Domain-Specific Influences on Numerical Processing and Arithmetic Reported in the Studies in This Special Issue

Domain-specific influence

Numerical and arithmetic effect/capability

Extension:

Approximate

Extension:

Exact

Direction:

Implicit

Cardinal

Direction:

Implicit

Operations Arithmetic

Numerical

Identification Counting

Arabic

Magnitude

Comparison

Extension Approximate Purpurab

Kroesbergen

Purpura

Extension Exact Kroesbergen

Direction Implicit Cardinal Georgesa

Arithmetic Performance Georgesa

Counting Abilities Cornu Cornu

Knowledge of Arabic Numbers Cornu Cornu

Procedural Skills Gilmore

Conceptual Knowledge Ramani Gilmore

Ramani

Ramani

Ordering Macchi Cassiac

Macchi Cassia

Symbolic Magnitude Comparison Kroesbergen

Note. Studies referenced by first author. Bold reference: Significant prediction/influence/intervention effect /analogous effect, when other
variables in the study were considered; italic reference: No prediction/influence/intervention effect /analogous effect, when other variables
in the study were considered. When several models were computed, we chose the best model in the manuscript (e.g., most variance
explained, best fit). Other models may come to different results.
aGeorges et al. examined correlations, regressions, moderations. One significant raw correlation disappeared in regression and moderation
analysis. In one moderation analysis an interaction between SNARC and arithmetic prevailed, but arithmetic itself did not predict SNARC.
bPurpura et al. presents different response cart tree analyses for different age groups and for high and low performance prediction. Only
mathematical language was (almost) consistently predictive in all analyses.
cThe OM modulation was absent for size ordering, but present for ordering symbolic and non-symbolic sequences.
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On the Influence of Spatial Factors and the Association Between

Numbers and Space

The metaphor of the mental number line (MNL), a spatially ordered representation of numerical magnitude, is
often used to describe the mental representation of cardinal values and the interaction between representations
of number and space has been an active research area for decades now (Hubbard, Piazza, Pinel, & Dehaene,
2005; Van Dijck, Ginsburg, Girelli, & Gevers, 2015). Recently, a taxonomy of spatial-numerical associations
(SNAs; Cipora, Schroeder, Soltanlou, & Nuerk, in press) has been proposed that is helpful in the current
context to situate the different contributions to this special issue. The central distinction in this taxonomy is
based on non-directional (henceforth called extensions) vs. directional associations between numerical and
physical space. While an extension describes certain spatial qualities of an object (e.g., x is wide and high),
directionality is topological in nature, because it only refers to an object’s location within certain reference
frames (e.g., x stands to the left of y). Within non-directional SNAs a distinction is made between effects based
on spatial and numerical cardinal sizes on the one hand, and those based on spatial and numerical intervals
(i.e., distinguished parts of the physical or numerical whole) on the other. Within directional SNAs, implicit
activation of directional representation (e.g., in a parity judgment task) is distinguished from an explicit one
(e.g., counting of spatially aligned objects). Within each of these subcategories of directional SNAs, the coding
of cardinality, ordinality and functions form separate SNA instances.

According to this taxonomy, the approximate number system can be categorised as an extensive SNA since
the activation of an approximate numerosity is conceptualised as an activation of a magnitude range on the
MNL with the peak activation representing the most probable output to other cognitive systems. According to
the number sense hypothesis, numerical information is internally represented by an analogue magnitude code
in an approximate manner that allows for a numerical estimation of a set of items (e.g., a set of dots). The
analogue magnitude code is invariant to input modality, format, and to non-numerical stimulus aspects such as
density or the overall surface covered by the items. According to this approach, numerosity is a principal
feature of our environment that can be directly sensed, comparable to color, contrast, or brightness. A
concurrent model proposes that numerosity is derived indirectly from non-numerical stimulus dimension such
as density, for example (Morgan, Raphael, Tibber, & Dakin, 2014; see also Gevers, Cohen Kadosh, & Gebuis,
2016).

Anobile, Cicchini, Pomè, and Burr (2017, this issue) tested a straight-forward prediction of the indirect model:
When connecting individual items, numerosity estimates should increase due to more texture information in the
high frequency range. Contrary to this prediction, the current results reveal reduced estimates after connecting
individual items in a medium numerical range. When increasing the number of items, however, individuation
becomes more and more difficult and texture-density mechanisms come into play. This effect is accentuated by
connecting individual items. The results support the idea that approximate numerosity estimation is governed
by three different regimes; a subitizing regime for very small quantities from one to about four, an estimation
regime where individual items can be segregated, and a texture-density regime when the items in a set get too
crowded.

Huber, Bloechle, Dackermann, Scholl, Sassenberg, and Moeller (2017, this issue) tested whether size
estimations are influenced by social factors. Since participants were asked to adjust the length of a line in order
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to represent previously presented Arabic digits, this falls in the category of extensive SNAs with cardinal
magnitudes. Participants who had previously been associated with low social power overestimated line length
compared to a control group without social power manipulation. In contrast, participants who had previously
been associated with high social power were more accurate in their estimates. Together, this pattern of results
may be the result of differentially experienced task demands such that high perceived task demand in the low
social power group led to overestimation. On a more general note, these results provide support for the idea
that perceived social power influences how we perceive the world.

When the association between numbers and space entails the relative position of one object with respect to
another, Cipora and colleagues (in press) speak of directional SNAs. In a paradigm, where these associations
remain implicit, Schroeder, Nuerk, and Plewnia (2017b, this issue) examine the relation between numbers and
space by asking whether or not ordinal judgments of numerical and ordered sequences such as days of the
week share a common metric. By analysing individual differences, Schroeder and colleagues did not observe
strong evidence for a common construct. Rather, the correlations between corresponding SNARC coefficients
were overall low and even vanished after standardisation. From a psychometric point of view, this very low
construct validity suggests that the idea that different SNA for ordinal and cardinal metrics do not rely on one
and the same underlying construct. Georges, Hoffmann, and Schiltz (2017, this issue) directly address the
question whether implicit and explicit SNAs arise from a single predominant account or whether task-specific
coding mechanisms underlie these SNAs. They took the SNARC effect (spatial numerical association of
response codes; Dehaene, Bossini, & Giraux, 1993) in a parity judgment task (implicit) and a magnitude
comparison task (explicit) as a test bed. No correlation between the SNAs from these paradigms was observed.
Additionally, the implicit and explicit SNAs were predicted by different variables, namely arithmetic performance
and visualization profile, respectively. The authors conclude that visuospatial coding mechanisms contribute to
explicit SNAs only, hence supporting the distinction between these SNAs as proposed in the taxonomy of
Cipora and colleagues (in press).

While there is no doubt that representations of number and space interact, one question that remains
controversial is how the spatial layout of the hypothesized MNL can be assessed best. That is, what paradigm
can be used to obtain the best possible measure of the MNL metrics? Since the SNARC effect can be
explained by at least five alternative, not necessarily spatial accounts (for an overview, see Schroeder, Nuerk, &
Plewnia, 2017a, Figure 5), researchers recently shifted to alternative paradigms. In one such approach the
reach trajectories are recorded and the deviations between different conditions are sometimes analyzed as an
index for a penetration of the underlying cognitive representation. Song and Nakayama (2008), for example,
found that in a number comparison task manual movement trajectories deviated more with larger numerical
distance to the reference number compared to smaller numerical distances. These results were interpreted as
“direct evidence for a spatial number representation” (p. 1002). On a more general note, these results are
thought to reveal “information about internal states as they unfold over time” (p. 1002). Hence, the authors
assume a direct mapping between internal representations and the spatial layout of the reach.

Alternatively, one may conceive of reach trajectories as being modulated by the amount of response
competition. That is, reach trajectories to either of several and simultaneously competing targets may reflect the
confidence in the particular choice made, which in turn can be understood as the difference in accumulated
evidence for the present options. Alonso-Diaz, Gaffin-Cahn, Mahon, and Cantlon (2017, this issue) tested these
two hypotheses using (a) Arabic numerals and (b) facial expressions. The authors found that reach trajectories
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were equally sensitive to stimulus similarity (i.e. numerical distance or similarity of facial expressions). These
results support the domain-general response competition account and cast some doubt on the idea that the
features of the internal (and mostly unconscious) mental magnitude representation are directly mapped onto
external space and movements therein.

It becomes clear that we are still at the very beginning of our understanding of the contribution of domain-
general and domain-specific influences to directional space-number associations. While some papers in our
special issue suggest that numerical representations are part of one common and much more general mental
magnitude representation, others suggest that even within the numerical domain, cardinal and ordinal
associations or explicit and implicit magnitude associations are not part of one common construct. Clearly,
there is still much work ahead to build a framework which incorporates all these findings.

The combination of numerical information is thought to represent a directional SNA with implicit coding of
arithmetic functions (rather than magnitudes or ordinal sequences as in the paragraphs above). Combining
numerical quantities during mental arithmetic is believed to be influenced by elementary perceptual operations
such as attentional shifts (Fischer & Knops, 2014; Knops, Thirion, Hubbard, Michel, & Dehaene, 2009). This
may underlie a particular bias during addition and subtraction, called the operational momentum effect (OM).
OM describes the phenomenon that participants tend to overestimate the results of addition problems while
underestimating subtraction problems (McCrink, Dehaene, & Dehaene-Lambertz, 2007). During the
computation of the outcome, participants are thought to activate and attend different positions on the MNL, that
is, they move along the MNL. The OM is thought to reflect a certain over- and undershoot of movement, caused
by attentional shifts. McCrink and Hubbard (2017, this issue) investigate whether the OM effect is modulated by
the overall amount of available attentional resources. The authors found that the OM effect increased when
available attentional resources were limited by dividing attention between two concurrent tasks. They conclude
that the increase of OM results from a heightened use of arithmetic heuristics, such as ‘addition means larger’,
which have long been known in the history of word problems as the so called semantic consistency effects
(e.g., Daroczy, Wolska, Meurers, & Nuerk, 2015, for a review). In contrast, Katz, Hoesterey, and Knops (2017,
this issue) found that the operational momentum in non-symbolic multiplication and division was correlated with
reorienting attention in a sample of healthy adults; the higher the reorientation costs, the stronger the OM
effect. These results provide further evidence for a functional association between spatial attention and
approximate arithmetic, as stipulated by the attentional shifts account of OM. These conflicting results can be
seen as starting point for a more strategic and joint effort to investigate how domain-general processes
contribute to particular empirical phenomena. Finally, Macchi Cassia, Bulf, McCrink, and de Hevia (2017, this
issue) investigated the development and emergence of OM effects, i.e., whether 4-months-old infants are
subject to OM-like effects. Infants were habituated to sequences of objects that changed in one or several
quantitative dimension such as physical size or numerical quantity. At test, infants were presented with
sequences that consisted of items that were extrapolating the previously habituated dimensional sequence
(e.g., a sequence with objects of increasing size with individual sizes being larger than during habituation) or
went against this expectation (e.g., a sequence with objects of increasing size with individual sizes being
smaller than during habituation). Infants exhibited longer looking times (indicating surprise due to violated
expectations) only when the sequences combined violations on several dimensions simultaneously. When
manipulating only physical size or numerical quantity, no change in looking time was observed. These results
suggest that infants’ attention is guided towards concordant information from several dimensions within a visual
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scene. Alternatively, different dimensions may act together and separately add to the built-up of expectations in
time.

To sum up, the results show that numerical and spatial processes interact with each other. Yet, these spatial-
numerical associations are not a unitary construct. We need to differentiate between different regimes of
numerosity perception (subitizing, estimation, texture perception) that are governed by the overall number of
items in a scene and their spatial layout. Further, the proposed taxonomy provides a useful framework to
organize the different SNAs. Implicit directional associations between number and space need to be
dissociated from explicit ones, as shown for the SNARC effect in parity and magnitude judgment tasks,
respectively, and different numerical representations such as cardinality or ordinality need to be dissociated.
However, not only numerical attributes are associated with space, but also numerical functions. The operational
momentum effect provides an exciting test bed for investigating the interaction between numerical functions
(e.g. approximate arithmetic) and spatial capacities.

To sum up this section, first, our special issue shows the need for distinctions in the associations between
domain-specific number capabilities (cardinality, ordinality, functions) in their relation with the more domain-
general processing of space. Second, however, this special issue also seems to suggest that the number
magnitude system may be part of a more general mental magnitude system (see for example, Walsh, 2003). To
integrate such seemingly diverging findings is an important task for the future. We suggest that the integration
and differentiation of space-magnitude associations may depend on task, sample (age), experimental context
and the involvement of other domain-general factors. To distinguish the situations and processes, in which
SNAs are rather part of a general magnitude system, from those in which we need further differentiation even
within the numerical domain, remains a challenge for future research and theory and model development. We
hope that the current special issue helps to set the necessary constraints for this endeavor. Finally, our special
issue draws attention to one of the most challenging issues in experimental psychology, namely to critically
question to what extent the tasks and paradigms we deploy are indeed direct and valid measures of the
cognitive processes we aim to assess.

Predicting and Improving Arithmetic

(Early) prediction of arithmetic capabilities by more basic domain-specific factors (e.g., approximate number
system) or domain-general factors (e.g., working memory) has been a long-time dream of cognitive and
educational researchers and practitioners in arithmetic research. Identifying such building blocks and
cornerstones of arithmetic development and functioning would have important consequences for education and
intervention. Education – even much before formal schooling – could focus on mastering elementary building
blocks of arithmetic to improve arithmetic performance and learning at large. Moreover, diagnostics could
identify children who have trouble mastering the basic building blocks of arithmetic, before formal schooling,
and targeted interventions may then help to improve these building blocks of later arithmetic development and
the long-term outcome of those children. To identify such building blocks, prediction and intervention studies
are essential – most researchers seem to agree that both domain-specific and domain-general factors predict
(later) arithmetic performance. However, there is still no clear consensus on which of those factors are
fundamental to arithmetic performance and arithmetical development. As we will see, about half of our special
issue is devoted to the question of predicting and improving arithmetic performance and development.
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To begin with, the capacity to judge the ordinal relation between objects has recently been suggested to be an
important stepping stone for arithmetic performance. The paper by Vogel et al. (2017, this issue) focuses on the
relationship between serial order and arithmetic in adults. They measured adults’ arithmetic fluency and their
ability to judge whether Arabic digits, dot patterns and letters are ordered correctly by magnitude at two time
points. Adults’ reaction times on the symbolic order judgment task (Arabic digits) was an independent predictor
of arithmetic fluency over and above their reaction times on the non-symbolic judgment task (dot patterns) and
the letter order task. In line with findings from Lyons and Beilock (2011) and Lyons, Price, Vaessen, Blomert,
and Ansari (2014), this highlights that the understanding of the ordinal relationship between Arabic digits might
be foundational to arithmetic performance. However, alternatively, adults’ efficiency in dealing with Arabic digits
might be driving the relationship between both tasks, the serial order judgment of Arabic digits and the
arithmetic fluency task (Castronovo & Göbel, 2012). Indeed, in primary school children familiarity with the
Arabic digit symbol system is a significant predictor of arithmetic growth (Göbel, Watson, Lervåg, & Hulme,
2014). Future studies will need to include measures of both serial order and efficiency in the processing of
Arabic digits in adults and/or a measure of familiarity with the Arabic digit system in children in order to
disentangle whether ordinal understanding of Arabic digits or the ease of processing Arabic digits is a stronger
predictor of arithmetical development and performance.

Moving on from factors specific to the numerical domain, such as Arabic digit order, to domain-relevant skills,
Cornu, Hornung, Schiltz, and Martin (2017, this issue) investigated the relative importance of spatial skills in
kindergartners as longitudinal predictors of arithmetic and number line estimation. They differentiate between
skills in spatial orientation, in spatial visualisation and in visuo-motor integration. They found that number line
estimation in 5 year-old children was significantly predicted by their performance on the spatial orientation and
visuo-motor integration tasks four months earlier. In addition, Arabic number knowledge, spatial orientation and
visuo-motor integration were significant predictors of arithmetic performance four months later. The relationship
between spatial orientation and arithmetic was partially mediated through children’s number line estimation.
This study provides evidence of the usefulness of a more fine-grained approach showing that some but not all
spatial skills are important for early arithmetic development and that the importance of different spatial skills
even varies between different numerical tasks. It also highlights that the theory of spatial influences on
arithmetic performance and development is currently still underdeveloped. To the best of our knowledge, there
is no systematic taxonomy specifying which spatial representations and processes must be distinguished,
because they differentially influence arithmetic performance and/or development in general or even
differentially influence different numerical and arithmetic capabilities (but see Fischer, 2012, for a more general
conceptual framework).

One first step towards the development of such a taxonomy is taken by Crollen, Collignon, and Noël (2017, this
issue) by reviewing findings from several atypical populations with deficits in the visual or visuo-spatial domain:
early blind adults, adults with hemi-spatial neglect, children with low visuo-spatial skills, children with non-verbal
learning disorder and children with William’s syndrome. In their review, they ask the question whether and if so,
how, the specific deficits observed in these populations affect the number domain. Results vary largely between
these different atypical populations from seemingly no effects of early blindness on the development of spatial-
numerical associations to severe deficits or delays on a range of numerical tasks for children with William’s
syndrome. Future work now needs to develop a taxonomy leading to an overarching framework with clear
predictions about the relationships between specific spatial and numerical skills that can also account for the
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deficits in numerical representations and arithmetic performance observed in these populations with abnormal
(visuo-)spatial representations.

Several studies in this special issue took the laudable approach to investigate the relative contribution of
domain-specific and domain-general factors towards arithmetic and mathematical performance within the same
study. Purpura, Day, Napoli, and Hart (2017, this issue) were interested in predicting later mathematical
performance in pre-schoolers, particularly for low mathematical performance. They tested children on a large
battery of domain-specific and domain-general tasks including early numeracy, ANS, language and literacy
tests, mathematical language, executive functions and processing speed. In the test of mathematical language
children were assessed on the understanding of comparative (e.g. more, less) and spatial (e.g. near, far)
language. For younger children poor performance in mathematical language, print knowledge and response
inhibition was indicative of poor mathematical performance about five months later. For older children, it was
poorer performance on mathematics, mathematical language and definitional vocabulary. For young children
domain-general processes such as language and executive function actually allowed more accurate
classification for them than their performance on number-specific tasks. A clear outcome of this study is to
highlight mathematical language as a currently understudied, yet recently emerging potential candidate for
early training studies.

Gilmore, Keeble, Richardson, and Cragg (2017, this issue) investigated the effect of three domain-general
skills, procedural skill, conceptual understanding and working memory, on mathematical achievement within the
same study. As in previous studies, they found that in 5-6 year old children all three domain-general skills are
independently associated with mathematical performance. However, more importantly, they investigated the
relationship between those three domain-general skills and found that they interact: the impact of better
procedural skills on mathematical performance was higher for children who also had better conceptual
understanding and higher working memory capacity. In addition, their study showed large inter-individual
differences in children’s skill profiles on these three domain-general skills: children with similar scores in a
mathematical achievement test can show very different strengths and weaknesses in procedural skill,
conceptual understanding and working memory. These findings highlight how important it is to examine the
cognitive profile of children in more details in order to identify the type of support most likely to improve each
individual child’s mathematical performance.

Two further papers in this special issue investigated the role of working memory for mathematical performance
in the context of other domain-general factors. Kroesbergen and Schoevers (2017, this issue) focused on the
contribution of creativity and working memory to mathematical performance in 8-10 year-old children. Overall,
working memory, in particular verbal working memory, was significantly associated with mathematical
performance. Creativity was significantly related to performance on a standard mathematics test and a
mathematical creativity test. Children’s performance on the creativity test was predictive of mathematical
performance even when their working memory and number sense performance was taken into account. When
they split their sample of children into three groups by mathematical performance into 1) children with
Mathematical Learning Difficulties, 2) typically developing children and 3) mathematically gifted children,
creativity discriminated between typically developing children and mathematically gifted children with the
mathematically gifted children achieving a significantly higher creativity score. Interestingly, children’s visuo-
spatial WM discriminated between all three groups of children: the children with Mathematical Learning
Difficulties showed the lowest performance in spatial working memory, followed by the typically developing
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children. Mathematically gifted children showed the highest spatial working memory scores. In sum, this study
introduces a new domain-general factor predicting mathematical performance: creativity. It also confirms the
importance of working memory for mathematical performance in children.

In contrast, in Nemati, Schmid, Soltanlou, Krimly, Nuerk, and Gawrilow’s study (2017, this issue) on adults,
working memory was no longer significantly associated with their mathematical performance once other
domain-general skills were included. Planning capacities (as measured by the performance in the Tower of
London task) and self-control (as measured by self-report) predicted multiplication performance in
undergraduate students and working memory was no longer a significant predictor anymore, when executive
functions (planning) were considered. This finding is in line with the assumption that arithmetic fact retrieval in
adults primarily relies on recall from long-term memory, rather than the application of arithmetic procedures
(e.g., Campbell, 1995)

Finally, Ashkenazi and Silverman (2017, this issue), in large-scale sample (N = 1322) of college students,
investigated the influence of three further domain-general variables on mathematical capabilities: perception
speed, attention and reading variables. Employing structural equation modeling they observed effects of
perception speed and a modest effect of reading on mathematics performance. Sustained attention had some
impact on selected mathematical skills (arithmetic fact retrieval and procedural knowledge), while selective
attention (assessed by the attention network test) had no effect on mathematics. The authors concluded that
multiple domain-general skills have an influence on mathematic performance. However, their data also point to
the conclusion that not every domain-general variable affects every aspect of numerical and arithmetic
capabilities in the same way.

As we laid out in the introduction, prediction studies are essential to identify targets for early education,
instruction, and intervention. However, we also believe, there are some serious shortcomings currently in the
literature as whole. First, in our special issue alone over twenty different predictors were tested and many more
potential predictors are out there. In general, each study uses its own set of predictors. Consequently, different
studies reveal different sets of predictors, which are relevant for good (later) arithmetic performance or
arithmetical development. However, it is important to note that the results of a study do not only depend on the
predictors included, but also on the predictors not included. For instance, Nemati et al. (2017, this issue) found
correlations of working memory with arithmetic performance (albeit in adults). However, working memory failed
to be a predictor, when one executive function measure (namely planning) was included. Had Nemati and
colleagues not included planning, they would have published another study, which had suggested that working
memory itself (not as a possible part of planning) is the most relevant predictor.

This leads us to the second point: the power of prediction studies. Large-scale longitudinal studies are hard to
conduct and require a lot of effort. This is even more so the case for the age range for which finding predictors
is arguably most important and of most practical relevance: from kindergarten to school. Therefore, either the
sample size is often quite small for the number of predictors or the set of predictors is very limited. Both
solutions can lead to misleading results and this might be one of the reasons why different prediction studies
have often very different outcomes. What is needed, is a large-scale multi-center prediction study, which
incorporates a large number of children and all relevant domain-specific and domain-general predictors so far
found in the literature.

Knops, Nuerk, & Göbel 125

Journal of Numerical Cognition
2017, Vol. 3(2), 112–132
doi:10.5964/jnc.v3i2.159



Our final point is that the outcome measure is often either one of many available standardized mathematics test
or a curriculum-based test of mathematics. Those tests are often ‘umbrella tests’, i.e. measuring a large range
of numerical, arithmetical and mathematical abilities without an option to distinguish between them.
Consequently, those tests are frequently used without a model of its underlying representations and processes.
In numerical cognition, it is virtually undisputed nowadays that different (neuro-cognitive) representations and
networks are supporting different numerical processes and operations (e.g., Dehaene et al., 2003; Klein et al.,
2016). Just using one big melting pot variable most certainly leads to missing important specific (longitudinal)
relationships. For instance, using various, clearly specified outcome variables, Moeller, Pixner, Zuber,
Kaufmann, and Nuerk (2011) found that different predictor variables predict different outcome effects. In
summary, a better differentiation of both the predictor and the outcome variable/s as well as more clearly
defined models about the proposed relationship between predictors and outcome variable/s are needed. It may
also help to reconcile apparently different results, because such differences might not rely only on the
predictors included in a study, but also on the characteristics of the outcome variable/s.

Intervention Studies

Compared to prediction studies, intervention studies, in addition to their obvious practical implications, have an
important theoretical advantage. Prediction studies are by its very nature correlational (when they are
longitudinal over different time points) and all variables assessed are dependent variables. In contrast, in
intervention studies the variable of interest, e.g. type of training, is manipulated as independent variable and
therefore findings from intervention studies allow (cautious) causal rather than only correlational conclusions.
Like in every other study, this does not preclude the influence of confounded or mediating variables. However, if
a particular intervention leads to a training effect, this allows the conclusion that either the variable of interest
(the training) or a variable confounded with it were instrumental for the intervention outcome, e.g., for
improvement in arithmetic performance.

In this special issue, two papers evaluated the effect of working memory training on numerical and arithmetic
performance. Honoré and Noël (2017, this issue) trained 5-6 year old preschoolers on a visuo-spatial working
memory training program (Cogmed) for five weeks. There was a small effect directly after training on Arabic
number comparison and visuo-spatial working memory, but there was no effect of training on verbal working
memory, counting comparison of collections and addition. The effect of training on Arabic number comparison
and visuo-spatial working memory was not sustained ten weeks after the training. Ramani, Jaeggi, Daubert,
and Buschkuehl (2017, this issue) compared the effectiveness of two tablet-based interventions to a no
intervention control group in 6 year-old kindergartners from low income backgrounds: a domain-general (visuo-
spatial working memory) intervention and a domain-specific (number board game) intervention. They found no
effect of either training on children’s arithmetic performance and only limited improvement of working memory
performance for one of the three working memory measures for both trainings. But both interventions improved
children’s numerical magnitude knowledge, as assessed by the number line estimation task, with a significantly
larger effect for the number-specific training. These results suggest that domain-specific training is more
effective. Furthermore, they demonstrate the practicability of easy and comparably cheap, tablet-based
interventions for improving kindergarten children’s numerical understanding. This should encourage educators
and teachers to harness the benefit of these new techniques as they become more and more accessible.
However, in both intervention studies the effects of training were either non-existent, moderate or limited to
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specific outcome variables. This suggests that correlations observed in prediction studies do not easily
translate into learning success in intervention studies.

Summary and Conclusions

The papers in this special issue show that domain-general as well as domain-specific abilities influence
numerical and arithmetic performance virtually at all levels. This special issue thus makes it very clear that for
the field of numerical cognition a sole focus on one or several domain-specific factors, like the approximate
number system or spatial-numerical associations, is not sufficient. Vice versa, in most studies that included
domain-general and domain-specific variables, domain-specific numerical variables predicted arithmetic
performance above and beyond domain-general variables. Therefore, a sole focus on domain-general aspects,
such as, for example, working memory, to explain, predict and foster arithmetic learning is also not sufficient. In
the two intervention studies of this special issue, effects of domain-general interventions were weak or even not
existent. Therefore, by acknowledging the importance of domain-general factors for arithmetic we do most
certainly not advocate a restriction on domain-general factors. Rather, we are convinced that to understand
numerical and arithmetic performance, development and learning, the contribution of both domain-general and
domain-specific factors must be considered. However, these contributions may not simply be linearly additive or
even independent; rather their interplay and their interactions must be studied more thoroughly both
concurrently and longitudinally in future research. We believe that only then the full picture of arithmetic
performance, development and learning can be understood.

What is still missing in our view are thoroughly developed models that specify how and to which extent domain-
general and domain-specific factors contribute to numerical and arithmetical performance, development and
learning and how those factors interact. As shown in Figure 1 and Table 1a/1b, based on the contributions to
this special issue we can conclude that both domain-general and domain-specific factors contribute to
numerical cognition. But the how, why and when of that contribution still needs to be better understood. We
hope that this special issue may be helpful to readers in constraining future theory and model building about the
interplay of domain-specific and domain-general factors.
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