406 research outputs found

    Aerial LiDAR-based 3D Object Detection And Tracking For Traffic Monitoring

    Get PDF
    The proliferation of Light Detection and Ranging (LiDAR) technology in the automotive industry has quickly promoted its use in many emerging areas in smart cities and internet-of-things. Compared to other sensors, like cameras and radars, LiDAR provides up to 64 scanning channels, vertical and horizontal field of view, high precision, high detection range, and great performance under poor weather conditions. In this paper, we propose a novel aerial traffic monitoring solution based on Light Detection and Ranging (LiDAR) technology. By equipping unmanned aerial vehicles (UAVs) with a LiDAR sensor, we generate 3D point cloud data that can be used for object detection and tracking. Due to the unavailability of LiDAR data from the sky, we propose to use a 3D simulator. Then, we implement Point Voxel-RCNN (PV-RCNN) to perform road user detection (e.g., vehicles and pedestrians). Subsequently, we implement an Unscented Kalman filter, which takes a 3D detected object as input and uses its information to predict the state of the 3D box before the next LiDAR scan gets loaded. Finally, we update the measurement by using the new observation of the point cloud and correct the previous prediction\u27s belief. The simulation results illustrate the performance gain (around 8 %) achieved by our solution compared to other 3D point cloud solutions

    In Good Shape: Robust People Detection based on Appearance and Shape

    Full text link

    Fully Convolutional Network for Head Detection with Depth Images

    Get PDF
    Head detection and localization are one of most investigated and demanding tasks of the Computer Vision community. These are also a key element for many disciplines, like Human Computer Interaction, Human Behavior Understanding, Face Analysis and Video Surveillance. In last decades, many efforts have been conducted to develop accurate and reliable head or face detectors on standard RGB images, but only few solutions concern other types of images, such as depth maps. In this paper, we propose a novel method for head detection on depth images, based on a deep learning approach. In particular, the presented system overcomes the classic sliding-window approach, that is often the main computational bottleneck of many object detectors, through a Fully Convolutional Network. Two public datasets, namely Pandora and Watch-n-Patch, are exploited to train and test the proposed network. Experimental results confirm the effectiveness of the method, that is able to exceed all the state-of-art works based on depth images and to run with real time performance

    Detecting and tracking people in real-time

    Get PDF
    The problem of detecting and tracking people in images and video has been the subject of a great deal of research, but remains a challenging task. Being able to detect and track people would have an impact in a number of fields, such as driverless vehicles, automated surveillance, and human-computer interaction. The difficulties that must be overcome include coping with variations in appearance between different people, changes in lighting, and the ability to detect people across multiple scales. As well as having high accuracy, it is desirable for a technique to evaluate an image with low latency between receiving the image and producing a result. This thesis explores methods for detecting and tracking people in images and video. Techniques are implemented on a desktop computer, with an emphasis on low latency. The problem of detection is examined first. The well established integral channel features detector is introduced and reimplemented, and various novelties are implemented in regards to the features used by the detector. Results are given to quantify the accuracy and the speed of the developed detectors on the INRIA person dataset. The method is further extended by examining the prospect of using multiple classifiers in conjunction. It is shown that using a classifier with a version of the same classifier reflected in the vertical axis can improve performance. A novel method for clustering images of people to find modes of appearance is also presented. This involves using boosting classifiers to map a set of images to vectors, to which K-means clustering is applied. Boosting classifiers are then trained on these clustered datasets to create sets of multiple classifiers, and it is demonstrated that these sets of classifiers can be evaluated on images with only a small increase in the running time over single classifiers. The problem of single target tracking is addressed using the mean shift algorithm. Mean shift tracking works by finding the best colour match for a target from frame to frame. A novel form of mean shift tracking through scale is developed, and the problem of multiple target tracking is addressed by using boosting classifiers in conjunction with Kalman filters. Tests are carried out on the CAVIAR dataset, which gives representative examples of surveillance scenarios, to show the performance of the proposed approaches.Open Acces

    Efficient Pedestrian Detection in Urban Traffic Scenes

    Get PDF
    Pedestrians are important participants in urban traffic environments, and thus act as an interesting category of objects for autonomous cars. Automatic pedestrian detection is an essential task for protecting pedestrians from collision. In this thesis, we investigate and develop novel approaches by interpreting spatial and temporal characteristics of pedestrians, in three different aspects: shape, cognition and motion. The special up-right human body shape, especially the geometry of the head and shoulder area, is the most discriminative characteristic for pedestrians from other object categories. Inspired by the success of Haar-like features for detecting human faces, which also exhibit a uniform shape structure, we propose to design particular Haar-like features for pedestrians. Tailored to a pre-defined statistical pedestrian shape model, Haar-like templates with multiple modalities are designed to describe local difference of the shape structure. Cognition theories aim to explain how human visual systems process input visual signals in an accurate and fast way. By emulating the center-surround mechanism in human visual systems, we design multi-channel, multi-direction and multi-scale contrast features, and boost them to respond to the appearance of pedestrians. In this way, our detector is considered as a top-down saliency system. In the last part of this thesis, we exploit the temporal characteristics for moving pedestrians and then employ motion information for feature design, as well as for regions of interest (ROIs) selection. Motion segmentation on optical flow fields enables us to select those blobs most probably containing moving pedestrians; a combination of Histogram of Oriented Gradients (HOG) and motion self difference features further enables robust detection. We test our three approaches on image and video data captured in urban traffic scenes, which are rather challenging due to dynamic and complex backgrounds. The achieved results demonstrate that our approaches reach and surpass state-of-the-art performance, and can also be employed for other applications, such as indoor robotics or public surveillance. In this thesis, we investigate and develop novel approaches by interpreting spatial and temporal characteristics of pedestrians, in three different aspects: shape, cognition and motion. The special up-right human body shape, especially the geometry of the head and shoulder area, is the most discriminative characteristic for pedestrians from other object categories. Inspired by the success of Haar-like features for detecting human faces, which also exhibit a uniform shape structure, we propose to design particular Haar-like features for pedestrians. Tailored to a pre-defined statistical pedestrian shape model, Haar-like templates with multiple modalities are designed to describe local difference of the shape structure. Cognition theories aim to explain how human visual systems process input visual signals in an accurate and fast way. By emulating the center-surround mechanism in human visual systems, we design multi-channel, multi-direction and multi-scale contrast features, and boost them to respond to the appearance of pedestrians. In this way, our detector is considered as a top-down saliency system. In the last part of this thesis, we exploit the temporal characteristics for moving pedestrians and then employ motion information for feature design, as well as for regions of interest (ROIs) selection. Motion segmentation on optical flow fields enables us to select those blobs most probably containing moving pedestrians; a combination of Histogram of Oriented Gradients (HOG) and motion self difference features further enables robust detection. We test our three approaches on image and video data captured in urban traffic scenes, which are rather challenging due to dynamic and complex backgrounds. The achieved results demonstrate that our approaches reach and surpass state-of-the-art performance, and can also be employed for other applications, such as indoor robotics or public surveillance

    Pedestrian detection in far infrared images

    Get PDF
    Detection of people in images is a relatively new field of research, but has been widely accepted. The applications are multiple, such as self-labeling of large databases, security systems and pedestrian detection in intelligent transportation systems. Within the latter, the purpose of a pedestrian detector from a moving vehicle is to detect the presence of people in the path of the vehicle. The ultimate goal is to avoid a collision between the two. This thesis is framed with the advanced driver assistance systems, passive safety systems that warn the driver of conditions that may be adverse. An advanced driving assistance system module, aimed to warn the driver about the presence of pedestrians, using computer vision in thermal images, is presented in this thesis. Such sensors are particularly useful under conditions of low illumination.The document is divided following the usual parts of a pedestrian detection system: development of descriptors that define the appearance of people in these kind of images, the application of these descriptors to full-sized images and temporal tracking of pedestrians found. As part of the work developed in this thesis, database of pedestrians in the far infrared spectrum is presented. This database has been used in developing an evaluation of pedestrian detection systems as well as for the development of new descriptors. These descriptors use techniques for the systematic description of the shape of the pedestrian as well as methods to achieve invariance to contrast, illumination or ambient temperature. The descriptors are analyzed and modified to improve their performance in a detection problem, where potential candidates are searched for in full size images. Finally, a method for tracking the detected pedestrians is proposed to reduce the number of miss-detections that occurred at earlier stages of the algorithm. --La detección de personas en imágenes es un campo de investigación relativamente nuevo, pero que ha tenido una amplia acogida. Las aplicaciones son múltiples, tales como auto-etiquetado de grandes bases de datos, sistemas de seguridad y detección de peatones en sistemas inteligentes de transporte. Dentro de este último, la detección de peatones desde un vehículo móvil tiene como objetivo detectar la presencia de personas en la trayectoria del vehículo. EL fin último es evitar una colisión entre ambos. Esta tesis se enmarca en los sistemas avanzados de ayuda a la conducción; sistemas de seguridad pasivos, que advierten al conductor de condiciones que pueden ser adversas. En esta tesis se presenta un módulo de ayuda a la conducción destinado a advertir de la presencia de peatones, mediante el uso de visión por computador en imágenes térmicas. Este tipo de sensores resultan especialmente útiles en condiciones de baja iluminación. El documento se divide siguiendo las partes habituales de una sistema de detección de peatones: desarrollo de descriptores que defina la apariencia de las personas en este tipo de imágenes, la aplicación de estos en imágenes de tamano completo y el seguimiento temporal de los peatones encontrados. Como parte del trabajo desarrollado en esta tesis se presenta una base de datos de peatones en el espectro infrarrojo lejano. Esta base de datos ha sido utilizada para desarrollar una evaluación de sistemas de detección de peatones, así como para el desarrollo de nuevos descriptores. Estos integran técnicas para la descripción sistemática de la forma del peatón, así como métodos para la invariancia al contraste, la iluminación o la temperatura externa. Los descriptores son analizados y modificados para mejorar su rendimiento en un problema de detección, donde se buscan posibles candidatos en una imagen de tamano completo. Finalmente, se propone una método de seguimiento de los peatones detectados para reducir el número de fallos que se hayan producido etapas anteriores del algoritmo

    HUMAN DETECTION AND TRACKING ENHANCING SECURITY SYSTEMS AT PORTS OF ENTRY

    Get PDF
    The dissertation undertakes the critical application of establishing smarter surveillance systems to improve security measures in various environments. Human detection and tracking are two image processing methods that can contribute to the development of a smart surveillance system. These techniques are used to identify and detect moving humans in a surveyed area. The research enables the incorporation of personnel detection and tracking algorithms to enhance standard security measures that can be utilized at ports of entry where security is a major hurdle. This system allows authorized operators on any supported console to monitor and receive different alerts levels to indicate human presence.The presented research focuses on two human detectors based on the histogram of oriented gradients detection approach and the Haar-like feature detection approach. According to the conducted experimental results, merging the two detectors, results in a human detector with a high detection rate and lower false positive rate. A novel approach to use both detectors is proposed. This approach is based on a feedback messaging system that inputs parameters from both detectors to output better detection decisions. An object tracker complements the detection step by providing real-time object tracking. An alert system is also proposed to automatically report potential threats occurring in the surveyed area
    • …
    corecore