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Abstract

Detection of people in images is a relatively new field of research, but has been widely
accepted. The applications are multiple, such as self-labeling of large databases, security
systems and pedestrian detection in intelligent transportation systems. Within the latter,
the purpose of a pedestrian detector from a moving vehicle is to detect the presence of
people in the path of the vehicle. The ultimate goal is to avoid a collision between the two.
This thesis is framed with the advanced driver assistance systems, passive safety systems
that warn the driver of conditions that may be adverse.

An advanced driving assistance system module, aimed to warn the driver about the
presence of pedestrians, using computer vision in thermal images, is presented in this thesis.
Such sensors are particularly useful under conditions of low illumination.The document
is divided following the usual parts of a pedestrian detection system: development of
descriptors that define the appearance of people in these kind of images, the application of
these descriptors to full-sized images and temporal tracking of pedestrians found. As part
of the work developed in this thesis, database of pedestrians in the far infrared spectrum
is presented. This database has been used in developing an evaluation of pedestrian
detection systems as well as for the development of new descriptors. These descriptors use
techniques for the systematic description of the shape of the pedestrian as well as methods
to achieve invariance to contrast, illumination or ambient temperature. The descriptors
are analyzed and modified to improve their performance in a detection problem, where
potential candidates are searched for in full size images. Finally, a method for tracking the
detected pedestrians is proposed to reduce the number of miss-detections that occurred at
earlier stages of the algorithm.
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Resumen

La detección de personas en imágenes es un campo de investigación relativamente
nuevo, pero que ha tenido una amplia acogida. Las aplicaciones son múltiples, tales como
auto-etiquetado de grandes bases de datos, sistemas de seguridad y detección de peatones
en sistemas inteligentes de transporte. Dentro de este último, la detección de peatones desde
un vehículo móvil tiene como objetivo detectar la presencia de personas en la trayectoria
del vehículo. EL fin último es evitar una colisión entre ambos. Esta tesis se enmarca en los
sistemas avanzados de ayuda a la conducción; sistemas de seguridad pasivos, que advierten
al conductor de condiciones que pueden ser adversas.

En esta tesis se presenta un módulo de ayuda a la conducción destinado a advertir de
la presencia de peatones, mediante el uso de visión por computador en imágenes térmicas.
Este tipo de sensores resultan especialmente útiles en condiciones de baja iluminación.
El documento se divide siguiendo las partes habituales de una sistema de detección de
peatones: desarrollo de descriptores que defina la apariencia de las personas en este tipo de
imágenes, la aplicación de estos en imágenes de tamańo completo y el seguimiento temporal
de los peatones encontrados. Como parte del trabajo desarrollado en esta tesis se presenta
una base de datos de peatones en el espectro infrarrojo lejano. Esta base de datos ha
sido utilizada para desarrollar una evaluación de sistemas de detección de peatones, así
como para el desarrollo de nuevos descriptores. Estos integran técnicas para la descripción
sistemática de la forma del peatón, así como métodos para la invariancia al contraste, la
iluminación o la temperatura externa. Los descriptores son analizados y modificados para
mejorar su rendimiento en un problema de detección, donde se buscan posibles candidatos
en una imagen de tamańo completo. Finalmente, se propone una método de seguimiento de
los peatones detectados para reducir el número de fallos que se hayan producido etapas
anteriores del algoritmo.
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1
Introduction

The understanding of traffic is an important concern nowadays. There is wide agreement
that current trends in the number of vehicles will make traffic unsustainable at some

point in the future. Two are the main concerns with the current traffic systems: economic
and safety-wise. Traffic accidents are one of the main causes of deaths and permanent
physical disabilities in every country with an important presence of vehicles [192]. A reliable
traffic infrastructure is also an important factor in economies. The constant growth of the
number of vehicles is pushing the current roads to their flow limit. From both points of view,
the traffic architecture has to be improved. The scientific community is also participating
from this interest, with very interesting ideas as where the future of traffic will be. A
relatively new knowledge area, and an actively developed one, is the study of Intelligent
Transportation Systems (ITS). These systems focus both in traffic reliability and safety.
The solution proposed for both is to take over responsibilities from the human driver and
relocate them to an automatic system. These systems can integrate the information of
every vehicle on the road and synchronize their movements, obtaining a much more fluid
traffic. And because these systems can have a much wider sensorial information than a
single person can, the risk of an accident can be decreased.

Traffic safety is a factor whose importance has been increasing in recent years. The
infrastructure has improved, drivers are now subject to continuous awareness campaigns
and vehicles incorporate more safety measures. The result is a reduction in road accidents,
even if the number of vehicles has been in a rising trend for some time. Vehicles are more
secure and today the chances suffering an accident are smaller than once were, and even if
the accident occurs, the statistics reflects that the damage suffered by the passengers are
not as severe. This is due to the fact that these safety measures are aimed at protecting
the passenger compartment.

Driving takes place in an unpredictable environment. Therefore, designing safety systems
is easier if there is an understanding of what it is to be protected. The presence of obstacles,
their shape, and trajectory is information that the driver is expected to acquire and use to
prevent and accident. However, if there is a collision between the vehicle and an obstacle,
there exists a huge number of configurations in which this can occur, and the safety of the
obstacle is not guaranteed. By contrast, the inside of vehicle is a much more controlled
environment in which the position where the occupants can be is known. It is then possible
to study the damage that these people may suffer in an accident and try to mitigate it,
for example, placing airbags specifically where most important impacts happen. As for
outside-the-vehicle safety, the most fragile and least protected element are pedestrians.
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Unlike occupants of the passenger compartment of the vehicle, which have its structure to
partially absorb the energy of the impact, pedestrians do not have built-in safety systems.
So the odds of being killed in a traffic accident are much higher for pedestrians.

Safety outside of the vehicle has not been developed as much. Vehicles move in
environments that are unknown to the designers of safety systems. It is not possible to
anticipate the driving conditions, nor it is possible to predict the presence of obstacles in
the road, the curvature of the path, or surrounding traffic conditions at all times. Therefore,
the new safety systems must incorporate environmental perception. This capability will
allow a quicker reactions to unexpected events.

This thesis aims to provide a system for analysis of the driving environment capable of
detecting the presence of pedestrians in low visibility conditions. An artificial perception
system identifies pedestrians in front of the vehicle and determines whether there is any
risk that endangers the integrity of pedestrians as well as passengers.

1.1. Motivation

Every year 400 000 pedestrians are killed worldwide [155], more than 6000 in the
European Union only [35]. Reducing the reducing the number of mortal traffic accidents
is a challenging task, which will require the integration of several technologies, yet to be
fully developed. In this section, the most relevant circumstances under which accidents
involving pedestrians happen are reviewed. As an advance of the conclusions drawn from
the following argumentation it should be noted that pedestrian accidents usually involve
healthy, capable people in low illumination conditions.

The emphasis on road safety is a tendency which is growing. Consequences of traffic
accidents are, for example, the death of a pedestrian in traffic accidents per minute. They
also cause serious injuries to 10 million people a year. Poor traffic management also causes
significant economic losses. As an average, 10% of roads in Europe are affected by traffic
jams, causing losses of 50 billion in logistics each year, a 0.5% of European GDP [192].

The NHTSA or National Highway Traffic Safety Administration is the agency responsible
for the implementation of measures to improve traffic safety in the U.S.A. and, as such,
publish each year a collection of statistics related to traffic accidents [158]. This section
summarizes some of the conclusions reached on the basis of their data, as a generalization
of the traffic conditions in an important part of the world. However, the mere fact that the
U.S. collects so accurate statistics says that they have an advanced traffic infrastructure
and, as such, this data can not be extended to the entire population of the planet. Countries
with fewer resources have less traffic flow, but also have a worse infrastructure and an older
fleet. The number of accidents per vehicle is higher, but exact figures are not known.

The types of traffic accidents involving pedestrian, ranked by age pedestrian and location
are shown in table 1.1, distinguishing between those that have happened in intersections
and elsewhere. For each category, the total number of casualties in listed in the first column,
and the percentage in the second. It should be noted that approximately 75% of deadly
accidents have occurred outside the areas designed for pedestrians crossing.
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Age Location Total Chart
Intersection Nonintersection Unknown
# % # % # % # %

< 5 12 12.8 71 75.5 11 11.7 94 2.2
[5− 9] 8 11.8 56 82.4 4 5.9 68 1.58

[10− 15] 32 24.4 82 62.6 17 13.0 131 3.06
[16− 20] 42 14.9 194 68.8 46 16.3 282 6.58
[21− 24] 31 11.2 212 76.5 34 12.3 277 6.17
[25− 34] 77 12.9 453 75.6 69 11.5 599 14.0
[35− 44] 93 16.2 415 72.4 65 11.3 573 13.38
[45− 54] 149 18.7 563 70.6 86 10.8 798 18.64
[55− 64] 155 25.2 399 64.9 61 9.9 615 13.37
[65− 74] 120 33.2 202 56.0 39 10.8 361 8.43

[> 74] 178 38.3 255 54.8 32 6.9 465 10.86
Unknown 3 17.6 14 82.4 0 0.0 17 0.4
Total 900 21.0 2916 68.1 464 10.8 4280 100.0

Table 1.1: Pedestrians fatalities, by age and location (Data from [NHTSA,2010])

The introduction of safety measures in new vehicles, among other factors, is slowly
reducing the number of pedestrians injured or killed each year in traffic accidents. As
seen in table 1.2 there is a decline in the number of pedestrians fatalities each year in
traffic accidents. This decrease is greater that it may seem, since the number of vehicles
has had an historical upward trend. The cause of this reduction is, on the one hand, the
improvements in population awareness of traffic safety measurements, and, on the other on
the improvements in road infrastructure and safety systems of vehicles.

Year Pedestrian Pedalcyclist Other Total Chart
1994 5489 802 107 6398
1995 5584 833 109 6526
1996 5449 765 154 6368
1997 5321 814 153 6288
1998 5228 760 131 6119
1999 4939 754 149 5842
2000 4763 693 141 5597
2001 4901 732 123 5756
2002 4851 665 114 5630
2003 4774 629 140 5543
2004 4675 727 130 5532
2005 4892 786 186 5864
2006 4795 772 185 5752
2007 4699 701 158 5558
2008 4414 718 188 5320
2009 4109 628 151 4888
2010 4280 618 182 5080

Table 1.2: Nonmotorists fatalities between 1994 and 2010 (Data from [NHTSA,2010])

Pedestrians are vulnerable in road environments. The major causes of run over is a bad
use of the road on the part of the pedestrian. Among other causes, accidents happen when
the pedestrian is:
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Standing, lying, working, playing in the roadway.

Under the influence of drugs.

Crossing the road where it is not allowed.

Darting or running into road

Not visible (dark clothing, no lighting, etc.)

Ignoring traffic signs, signals, or officer.

The main factors leading to an accident are behavioral. The statistics of the occurrence
of those actions, where an accident is involved are listed in table 1.3.

Factors Number Percent Chart
Failure to yield right of way 976 22.8
In roadway improperly (standing, lying, working, playing) 793 18.5
Under the influence of alcohol, drugs, or medication 788 18.4
Darting or running into road 727 17.0
Not visible (dark clothing, no lighting, etc. 585 13.7
Improper crossing of roadway or intersection 557 13.0
Failure to obey traffic signs, signals, or officer 141 3.3
Physical impairment 99 2.3
Inattentive (talking, eating, etc.) 89 2.1
Entering/exiting parked/standing vehicle 49 1.1
Wrong-way walking 47 1.1
Emotional (e.g. depression, angry, disturbed) 47 1.1
Traveling on Prohibited Trafficways 37 0.9
Ill, blackout 17 0.4
Non-Motorist pushing vehicle 10 0.2
Asleep or fatigued 8 0.2
Vision obscured (by rain, snow, parked vehicle, sign, etc.) 8 0.2
Portable Electronic Devices 6 0.1
Other factors 171 4.0
None Reported 1,139 26.6
Unknown 34 0.8
Total 4,280 100.0

Table 1.3: Pedestrians fatalities, by related factors (Data from [NHTSA,2010])

If we analyze the data in table 1.1, distribution of mortality by age, we see that most
accidents involve pedestrian of ages between 25 and 65. Pedestrians in this age range largely
retain their mental and physical abilities intact. The main cause of accidents is due to
the fact that pedestrians cross the road at unauthorized places. Drivers do not expect the
presence of pedestrians and takes them longer to react, or fail to perceive the danger until
the accident has occurred.

Lighting conditions have a major influence on the number of traffic accidents. This
figure is particularly significant in the case of accidents involving pedestrians. With less
light it takes longer for a driver to perceive a pedestrian on the road. Another important
factor is exhaustion on the part of the driver. In this case the reaction time to a stimulus is
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much higher and chances of an causing an accident grow. Figure 1.1 divides fatal pedestrian
violations depending on the light conditions: day, night, and dawn or dusk. This type of
accident is more common in conditions of limited visibility, even though there are fewer
pedestrians and vehicles than during the day.

Night

44%

Dawn or Dusk

34%

Day

22%

Figure 1.1: Time of day in traffic involving pedestrians. Data from [NHTSA,2010]).

Similarly, table 1.4 shows the number of fatal accidents categorized by time of day. In
this case it is obvious that the number of accidents increases significantly at night, and has
its minimum in the central hours of the day.

Time of Day Day of Week Total Chart
Weekday Weekend Unknown

Midnight to 2:59 a.m. 204 8.2 352 19.6 0 0.0 556 13.0
3 a.m. to 5:59 a.m. 189 7.6 237 13.2 0 0.0 426 10.0
6 a.m. to 8:59 a.m. 326 13.2 73 4.1 0 0.0 399 9.3
9 a.m. to 11:59 a.m. 193 7.8 56 3.1 0 0.0 249 5.8
Noon to 2:59 p.m. 196 7.9 58 3.2 0 0.0 254 5.9
3 p.m. to 5:59 p.m. 341 13.8 109 6.1 0 0.0 450 10.5
6 p.m. to 8:59 p.m. 600 24.3 439 24.4 0 0.0 1,039 24.3
9 p.m. to 11:59 p.m. 413 16.7 471 26.2 0 0.0 884 20.7
Unknown 12 0.5 5 0.3 6 100.0 23 0.5
Total 2,474 100.0 1,800 100.0 6 100.0 4,280 100.0

Table 1.4: Pedestrians fatalities, by time of day and day of week (Data from [NHTSA,2010])

Data from the European Commission shows that pedestrians are specially vulnerable in
urban environments, with very few accidents ocurring in highways or in rural environments.
Table 1.5 shows the number of pedestrian casualties in European Countries.

From these statistics it is clear that pedestrians are especially vulnerable in urban
environments, especially at night. Poor lighting and exhaustion are the main causes of
traffic accidents involving pedestrians. Safety measures to prevent this kind of accidents
should focus on early detection of dangerous elements on the road, to reduce braking
distance. These safety measures are included in the Driver Assistance Systems, which are
introduced in section 1.2.
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Country Year Motorway Rural Urban Total Chart
Belgique/België 2011 4 34 73 111
Bulgaria 2009 0 135 63 198
Ceská Republika 2011 5 56 115 176
Danmark 2010 1 14 29 44
Deutschland 2011 32 154 428 614
Eesti 2009 0 12 11 23
Éire/Ireland 2010 4 21 19 44
Elláda 2011 8 40 175 223
España 2010 52 142 278 471
France 2011 26 143 350 519
Hrvatska 2011 0 4 67 71
Italia 2010 18 112 484 614
Kýpros - Kibris 2004 0 0 18 18
Latvija 2011 0 34 26 60
Luxembourg 2011 2 1 3 6
Magyarország 2010 13 59 120 192
Malta 2010 0 0 2 2
Nederland 2019 5 12 46 63
Österreich 2011 5 23 59 87
Polska 2011 8 483 917 1408
Portugal 2011 5 28 166 199
România 2011 4 150 593 747
Slovenija 2010 2 6 18 26
Slovensko 2010 2 38 86 126
Suomi/Finland 2011 1 12 28 41
Sverige 2009 3 16 25 44
United Kingdom(GB only) 2011 24 79 302 405
Total 2011 224 1808 4501 6532

Table 1.5: Pedestrian fatalities at 30 days in EU Countries (Data from European Commision [Care,
2011])
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1.2. Advanced Driver Assistance Systems

Advanced Driver Assistance Systems (ADASs) are active safety measures onboard
vehicles with a human driver. Such systems are known as active because, although at no
time taking control of the vehicle, their function is to prevent the accident. To do this, these
systems gather information from the environment, evaluating the possibility of occurrence
of hazardous events. In contrast, a passive safety system is one that tries to minimize the
damage while the accident is happening. The ADAS seek, among other information, signs
of drowsiness or inattention on the driver, obstacles on the way, and monitor the correct
position of the vehicle on the road. Drivers are responsible for controlling the vehicle, but
can receive this type of information to complete their cognitive limitations.

The industry has adopted some of these technologies, and is integrating them in com-
mercial products. Probably, the most commonly available are satellite navigation systems,
which provide autonomous geo-spatial positioning, and usually also traffic information.
Another technology which is now widely available are the Autonomous Cruise Control
Systems. These systems automatically adjusts the speed of the vehicle in order to maintain
a minimum safety distance with the vehicle ahead. In 1995 the Mitsubishi Diamante was
the first vehicle to offer such a capability, enabled by a laser rangefinder. Lane departure
warning systems have also a strong presence in commercial products. Dating to in 2000, the
introduction of the Iteris lane departure system, integrated in the Mercedes Actros trucks,
has led to this kind of ADAS to be commonly available nowadays. From 2008 manufacturers
such as BMW, Opel and Mercedes-Benz began offering Traffic Sign Recognition (TSR)
systems. To this date, several others have introduced these kind of ADAS, as Volkswagen,
Saab or Volvo. Driver Monitoring Systems were first introduced in the market by Lexus in
2006. The systems monitors the driver’s engagement in the task of driving by tracking the
the eyes. Obstacle avoidance is introduced as part of an active safety system, and usually
rely on laser or radar information. One of the first examples of these kind of systems was
introduced in the Mercedes S-Class in 2006. The system relies on radar information to
detect obstacles in the path of the vehicle. In case of imminent collision a partial automatic
breaking system is activated. In what is called by the industry Night Vision, several car
manufacturers are offering thermal imaging in their high end models. In 2000 the Cadillac
Deville was the first vehicle to be sold with this system. In 2004 Honda introduced a Legend
model equipped with a pedestrian detector based on temperature segmentation from a
thermal camera. The system require an ambient temperature below 30 degrees celsius in
order to properly function. More recently, Audi introduced an A8 model equipped with
a similar system. Automatic driving is also growing. An specially relevant case is the
issue of the first license for a self-driven car for in May 2012 to Google Inc. by the Nevada
Department of Motor Vehicles.

Active safety systems, in which the vehicle seizes control by a brief moment, also
benefits from the technology developed for ADAS. Specifically, pedestrian detection can
be integrated into systems known as Pre-Crash. In this case, the system takes control of
the vehicle, but only for a very limited time. They only begin to function when normal
reaction time on the part of the driver has been exceeded. In the case of prevention of run
over, these systems begin to operation when a collision is imminent or is already happening.
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These systems usually are unable to avoid the accident, but make its consequences less
severe.

Figure 1.2 shows the mortality rate relative to the speed of the collision based on
the data collected in [2], [170] and [177]. Generally, it can be seen that mortal collisions
are reduced sharply if the vehicle is moving with a speed of less than 40 km/h. A good
Pre-Crash system would slow down the vehicle to this speed just before impact. There is a
remarkable difference between a colision at 40 and 50 km/h as the probability of fatality
goes from 30% to 85% in the worst case scenario.
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Figure 1.2: Mortality rate relative to the speed of collision [Rosen et al., 2011.]

1.3. People safety in Intelligent Transportation Systems

Object recognition in images has become a very important topic in the fields of traffic
infrastructure and driving assistance system. Applications such as traffic signs recognition
[45] and obstacle avoidance [63] have gotten the attention of the industry for some time
now. The case of people detection is an exceptionally relevant case, as it leads to a number
of important applications, some of which strive for saving lives. Pedestrian recognition
in images is geared toward a variety of applications, which include safety focused road
infrastructures [201], driver assistance systems [91] and autonomous robotic vehicles [173].
It is also useful in security, be it for automatic surveillance [111] or people counting [233]
[130], including automatic recognition of people in low light conditions in unmanned aerial
vehicles aimed to rescue missions [147].

Pedestrian recognition in Intelligent Transportation systems is usually geared to improv-
ing pedestrian safety. Pedestrian protection systems can be classified in three categories:
infrastructure enhancements, passive and active detection. In the first one, infrastructure
design, pedestrian detection is not mandatory, but rather infrastructures should be de-
signed in way that minimizes the accidents by, for instance, limiting parking removing
on-street parking in residential areas [175]. Other infrastructure enhancements, that rely
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on pedestrian detection are, for instance flashing light warnings on pedestrian crosswalks.
Active and passive pedestrian protection require having vehicle-mounted sensors. Another
possibility is infrastructure-mounted sensors and a vehicle to infrastructure communication.
For reference, in [83] an extensive review of pedestrian protection systems is presented.

Safely driving is a challenging task for an human driver. The environment is not
fully controlled, so there is always an unknown probability of encountering an unexpected
obstacle. Pedestrians are a special case among obstacles the driver might encounter.
In urban scenarios, vehicles and pedestrians share the same ground so there is higher
probability of a collision than in highway traffic. It is a particularly dangerous situation
because pedestrians are much more likely to be hurt than the occupants of the vehicle, even
at low speeds. ADAS provide drivers with additional information relevant to the driving
task. These systems usually exploit on-board sensors that broaden what the driver is able
to perceive. There are a number of reasons why these sensors exceed the driver capacity.
The point of view of the driver, inside of the vehicle, may be incomplete due to occlusions
of the driveway, or because several attention points may be needed at the same time at
different locations. Another benefit of the use of ADAS is that the sensors can be designed
to acquire information not available to the driver senses.

However, detection of pedestrians from a moving vehicle is not trivial, as they can appear
with fairly different shapes, and in a random fashion. The use of computer vision to solve
this situations is justified as other approaches, such as lidar scanners, although delivering
very precise measurements of distance, doesn’t provide enough information to discriminate
between different types of obstacles. On top of that, vision is a non intrusive method.
On the downside, the performance of a computer vision application is very dependent on
the illumination conditions. There is a rich bibliography about pedestrian detection using
cameras in the visible range light. As for night driving, there are two possibilities: to
illuminate the scene with infrared leds and capture it with near infrared cameras [129],
or the use of thermal cameras that captures the emission of objects in the far infrared
spectrum.

Far infrared images have a very valuable advantage over the visible light ones. They do
not depend on the illumination of the scene. The output of those cameras is a projection
on the sensor plane of the emissions of heat of the objects, that is proportional to the
temperature. Tracking can greatly simplify the task of pedestrian detection and cope with
temporal occlusions or mis-detections. It can also be used to predict trajectory and time
left for collision between pedestrian and vehicle. Yet, this step is usually neglected in papers
describing far infrared pedestrian detector.

The use of far infrared cameras, besides all its advantages, is usually unable to cope
with every scenario. Infrared cameras are unable to replace visible light cameras, as they
present some disadvantages. As the outside temperature raises to high levels, the sensor’s
noise render the images useless for extracting distinctive features for pedestrian detection.
Besides, direct sunlight, no matter what temperature, affects infrared images, as reflection
on some surfaces make them appear hotter than they really are. The tendency is to integrate
infrared vision cameras with other sensors (e.g. radar, visible light images) in a system that
decides which information would be more useful under different circumstances.
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1.4. Thermal Imaging

Pedestrian detection in low illumination conditions requires a sensor which is able to
acquire information in the absence of illumination, but also are able to capture the shape
of a person. Thermal imaging offers both advantages.

Any object with a temperature above the absolute zero emits radiation in the infrared
range, as defined in the Plank’s wavelength distribution function. The wavelengths of these
radiations go from 3µm to 14µm, and are usually refer to as Thermal Infrared (TIR) range.
That range matches the emissions of object between 190K and 1000K [82]. The infrared
range goes from 0.7µm to 1000µm and encompasses several other regions or subdivisions.
The denominations of the infrared ranges varies depending on the field of study and the
authors. Table 1.6 shows an infrared range division as defined in [214]. In it, the infrared
spectra is divided based on the sensibility of common detectors.

Table 1.6: Infrared sub-divisions

Name Abbreviation λ (µm) Sensor
Near NIR 0.7 - 1.0 From human eye to Si
Short Wave SWIR 1.0 - 3 InGaAs
Mid Wave MWIR 3 - 5 InSb
Long Wave LWIR 7 - 14 Microbolometers
Very Long Wave VLWIR 12 - 30 Doped Silicon

In the field of ITS the term Far Infrared (FIR) is used indistinctly to refer to the Long
Wave Infrared (LWIR) [198] [23] [231] [163] [148] and others. The same range is denoted as
Thermal Infrared (TIR) in [91] and as Long Wave Infrared (LWIR) in [189]. In this work,
the term FIR is used when referring to the sensitivity range of a microbolometer.

Generally, there are two kinds of thermal cameras [176]:

Photon detectors are based on the photoeffect, which states that the the absorption
of photons in a material results in the transition of electrons to a higher energy level
and thus the generation of charge carriers. In the presence of an electric field these
carriers move, producing and electric current. This current is proportional to the
radiation absorbed by the material. These sensors are sensitivity to small variations
of scene temperature, given that their own temperature is kept low. Photon detectors
have to be refrigerated, if thermal noise is to be avoided.

Thermal detectors measure a physical property of the sensor’s material, related to its
temperature. This property is electrical resistance, in the case of the microbolometers,
or electrical polarization, in the case of ferroelectric detectors. The latter captures the
changes of temperatures in the scene by measuring the ferroelectric phase transition
in dielectric materials.

Microbolometers have several advantages over other thermal cameras. First of all, they
do not usually require refrigeration, thus reducing their volume, price and maintenance
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requirements. Moreover, their sensitivity is higher than the one a ferroelectric detector and
have largest pixel densities. The camera used in this work is a microbolometer with a range
sensitivity that goes from the 7µm to the 14µm.

1.5. IVVIResearch Platform

The Intelligent Vehicle based on Visual Information (IVVI ) is a research vehicle for
the development of advanced driver assistance systems based on computer vision. This
platform enables the testing of the developed algorithms in real driving environments, both
in urban and highway driving. The sensory system of the IVVIvehicle consists of a number
of cameras compatible with the 1394 standard for road signs detection and monitoring of
driver drowsiness, a sick lidar for segmenting obstacles based on discrete distances. A
stereo-based vision system is used for three-dimensional modeling of the driving environment
(mainly to infer the position of the vehicle relative to the road) and to calculate the vehicle
odometry using computer vision techniques. Detecting pedestrians in adverse lighting
conditions is performed by using thermal information from an Indigo Omega camera.

The developed pedestrian detection system is currently part of the IVVI
2.0
research

platform (Fig. 1.3). Other assistance systems being developed on it are:

(a) IVVI (b) IVVI
2.0

Figure 1.3: Experimental vehicles used in the work presented in this thesis.

1. Anti-Collision: Detects and informs the driver of obstacles in the trajectory of the
vehicle [153]. Figure 1.4 shows the obstacles segmented by the stereo-vision system.
These results are merged with low-level distance information from a lidar scanner.

2. Visual Odometry : Infers vehicle movement by cross-correlation of key-points belonging
to the ground plane [154]. Figure 1.5 shows the matching of ground keypoint found
in two consecutive images.

3. Speed Supervisor : Detection and recognition of traffic signs. The system looks for
speed traffic signs in its environment and alerts the driver if the speed of the vehicle
is over the limit [37] [36]. The visualization of the traffic sign detection system is
found in Fig. 1.6.
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(a) (b) (c)

Figure 1.4: Visual part of the detection system by [Musleh et al. 2010].

(a) (b)

Figure 1.5: Matching of key-points of the ground-plane as presented in [Musleh et al. 2012]

Figure 1.6: Traffic sign detection of [Carrasco et al. 2009]. Candidates are filtered by segmenting the
image based on hue. A neural network is use to recognize the specific kind of traffic sign.

4. Lane departure warning system: Detection and classification of road markings. The
driver is warned if the vehicle is about to cross a lane delimiter (Fig. 1.7). This
systems also monitors the blind spot, looking for overtaking vehicles.[43]

5. Drowssiness detection: The system monitors driver behavior, looking for signs of
fatigue or inattention. [78] [77]. Figure 1.8 shows a visualization of the night-time
somnolence monitor algorithm.
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(a) (b) (c)

Figure 1.7: Detection of road marks using the Hough transform as presented in [Collado et al. 2009];
(a) View from the camera perspective; (b) Inverse perspective; (c) Lines as points after applying the
Hough transform.

Figure 1.8: Somnolence monitoring as presented in [Flores et al. 2009]. Face and eyes are detected
in both day and night configurations. The rate of blinking accumulated over time constitutes an
indicator or somnolence on the driver.

1.6. Objectives

This thesis is framed within the ADAS context. The developed system provides infor-
mation to the driver about the presence of pedestrians on the road, analyzing information
gathered with a camera sensitive to the far infrared (FIR) or thermal infrared (TIR) spec-
trum. Such information, is beyond what a human driver is able to perceive. The presented
system, based on this kind of information, is able to detect pedestrians in conditions on
which it would not be possible for the human vision. At night, a human driver has less
visibility of the road ahead so, by the time the pedestrian is visible, reaction time has to be
much quicker. The detection system proposed in this thesis has features that exceed the
capabilities of the human vision. The use of a FIR camera allows to search for the heat that
the pedestrians emit in conditions that, otherwise, would be unfit for exploiting a system
based on visible light cameras, such as (and specially) night driving. As such, it does not
require any kind of active illumination and can perceive objects at greater distances than it
is possible with headlights. The system is also useful in adverse visibility conditions such
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as rain or fog. The driving task is still a responsibility of the human driver. The ADAS
monitor the exterior of the vehicle looking for situations that involve risk for people. These
systems feed the driver with pertinent information, allowing for quicker reaction times.

The objectives of this thesis are the following:

Understanding of the benefits and limitations of a FIR camera based on a low-
resolution non-refrigerated microbolometer.

Develop methods for selection regions of interest in the FIR images.

Develop a descriptor that can benefit from the exclusive characteristics of FIR imagery.

Asses the benefits of a tracking step to the overall detection performance.

Establish a database of pedestrians in FIR images that can be used as a benchmark
for detection algorithm in ITS applications.

1.7. Outline of the dissertation

This thesis is structured as follows. Chapter 2 reviews the relevant state of the art in
pedestrian detection. The content of this chapter focus on the different steps of a pedestrian
detection algorithm, i.e. preprocessing, selection of regions of interest, pedestrian descriptors,
classification methods and tracking algorithms. The most relevant methods used in VL
images are reviewed, along with methods applied exclusively to FIR imagery. In chapter 3
pedestrian recognition is treated as a classification problem. In it the characteristics of a FIR
image-based pedestrian dataset are discussed, including the methodology of acquisition and
sample selection. This chapter also focus on the features and methods used for classification
performance assessment. Two new descriptors for pedestrian recognition in FIR images is
also presented in this chapter. Chapter 4 focus on the problem of finding pedestrians in
full-sized images. In it, a through evaluation of classification methods applied in an sliding
window approach is presented. Benefits and drawbacks of this approach are commented,
based on the results of the evaluation. An approach to handle small pedestrians and a
scale approximation of features are presented. This chapter also covers initial research on
two topics of pedestrian detection: selection of ROIs and occlusion handling. Chapter 5
focus on algorithms for pedestrian tracking. The benefits of using a tracking step in the
pedestrian detection algorithm are further discussed. Conclusions and future work are
presented in chapter 6.
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State of the art

2.1. Overview

The main objective of a pedestrian detection system in ADAS is to avoid a traffic
accident and eventually, in case the accident is inevitable, to reduce the possible damages to
the passengers and pedestrians. Therefore, they require three phases: acquiring information,
processing it, and communicating relevant information to the driver. The system does
not take control of the vehicle, except in exceptional circumstances and for very small
time intervals. Driving continues to be a human responsibility. Therefore, ADAS can be
considered as an artificial copilot.

First, these systems need to acquire environment information. The different classes
of objects that the system is aiming to detect define the approach to follow to solve the
problem. Computer vision is usually the preferred technique, as these sensors are able
to provide much more information than others, such as laser or radar scanners. These
approaches may be extended by incorporating a set of priors provided by intelligent road
networks, based on communication between infrastructure and vehicles. This methodology
is intended to implement the foundations for a fully automatic driving. For an overview of
important topics in automatic driving applications refer to [8].

Driving assistance systems based on visual information are being well received for
several reasons. First, there is great potential information contained in images. From the
analysis of an image sequence the global state of surrounding traffic in complex situations
can be extracted. It also allows for obstacle detection by three-dimensional analysis of the
scene. Also, these obstacles can be classified, differentiating between cars [192], bikers and
pedestrians. Moreover, economic investment is much lower than other methods, such as
radar. The evolution of the cameras and processors, allow analysis of images with increased
resolution at lower prices.

Pedestrian detection is an extremely active research topic and new advanced techniques
are being presented every so often. Much of the research presented recently rely on
computer vision [83]. Visual information is rich in detail and allows not only to detect
generic obstacles but to recognize the object type. In order to efficiently recognize objects
in challenging scenarios, algorithms based on computer vision are evolving into more
complex computational models and usually are divided into several stages. This section
will summarize what are the most common and effective techniques. The methodology
followed in the design of a pedestrian detection system can be divided into six steps:
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Pre-processing: depending on the kind of sensor used, some systems require an
optional step of data pre-processing.

Search of regions of interest in the image: at this stage, the system looks for areas in
the image with high probability of containing a pedestrian. The aim is to reduce the
computational complexity in the later stages of the algorithm. This step is optional
and not all methods generate regions of interest, instead performing dense searches
on the entire image. Some methods apply a pre-classification within this step. This
approach removes from future steps of the algorithm regions unlikely to hold any
relevant information. Pre-classification methods are usually simple and fast, for
instance, filtering by symmetry or spatial location.

Description of regions: patches of images need to be encoded into a descriptor that
captures the information necessary to tell apart a pedestrian from any other object.
At the same time this information must allow generalization, as each pedestrian
present slight unique variations.

Classification: from the information contained in the extracted regions, a pattern
recognition algorithm makes the decision about whether it contains a pedestrian or
not.

Refinement: In this optional step, the resulting detections are re-evaluated, and false
positives discarded.

Tracking: from a set of images captured in sequence, the pedestrians future trajectory
can be anticipated. Tracking can also be used to improve the detection performance
by filtering isolated false detections and inferring the presence of a pedestrian when
the detector fails or because the pedestrian is momentarily occluded.

In this chapter, a review of pedestrian detection in images is presented. In it, the most
representative methods using Visible Light (VL) imaging are enumerated, while at the same
time, focusing in relevant techniques applied to Far Infrared (FIR) images.

2.2. Preprocessing

Preprocessing an image before applying a pedestrian detection algorithm may ease
subsequent steps of the algorithm. This step is optional but, when applied, is usually within
the following topics.

Histogram equalization This step attempts to enhance the information contained
within the dynamic range of the camera. Histogram equalization is applied to every
computer vision algorithm, at least at a very low level and within the camera hardware
by applying a pixel intensity transformation that approximates the sensibility curve of the
sensor to something more appealing to the human eye.



2.2. Preprocessing 17

FIR pedestrian detection algorithms that rely on segmentation of hotspots usually apply
an intensity transformation to the pixel information. This is due to the rapid changes in
dynamic range between images, so common in this kind of equipment. In [225], the authors
apply uniform distribution equalization followed by a clipping of darkest and brightest
pixels. Hotspots are later segmented from this pre-enhanced images. In [162] the authors
address the problem of dynamic range variation due to shifts in sensor temperature in
non-refrigerated microbolometers. A thermal calibration of the sensor simplifies that latter
step of hot-spot segmentation.

Camera calibration and pose estimation Calibration of intrinsic and extrinsic pa-
rameters is an essential step in any pedestrian detection algorithm [30], [51], especially those
depending of target tracking. Intrinsic parameters calibration involves an optimization
process to fit a set of coplanar visual features to their projections in the image. In [26] an
overview of the calibration process may be found. A variation of the previous method for
FIR imaging devices is presented in [162].

A common assumption is to consider that the ground in front of the vehicle is flat. If
that assumption holds, the relation between the floor plane and the image plane becomes an
homography. Monocular algorithms may infer an approximate value of the distance between
camera and pedestrian, also assuming that the pedestrian is standing on the ground plane.
As the vehicle moves the homography parameters has to be updated. To this end, three
methods have been proposed: inertial measurement units, monocular visual features and
v-disparity.

Estimating the pose of a monocular setup is challenging, as there is no depth information
available. Because of it, pose estimation is simplified by only considering variation in the
pitch and yaw angles. The roll angle is supposed to be negligible at any time as is the
steepness of the road. In [12] and [29] the pitch angle variations are calculated based
on the position of the horizon. Other methods, based on matching of visual features or
holistic image correlations between two consecutive images [24] make the assumption that
the whole scene captured by the camera lies within a single plane. In [100] the authors
demonstrate that 3D geometry can be estimated from monocular images by modeling the
interdependence of objects, surface orientations, and camera viewpoint.

Stereo-based systems provide a much more rich information of a scene. The flat-world
assumption is no longer needed as depth of objects may be accurately calculated. However,
by keeping that assumption, the slope of the road may now be easily calculated using the
v-disparity algorithm [120]. In it, Laybarade states that the slope may be calculated by
assuming that the ground is contained in a plane and that any other plane in the scene is
smaller. By horizontally projecting the disparity, the ground plane becomes a line, which is
detected using the Hough transform. This approach can be generalized to model complex
road surfaces, such as high order polynomial curves. A review of stereo preprocessing
methods used in pedestrian detection application is presented in [132].

Video Stabilization Video stabilization is another useful preprocessing step, specially
on systems that rely on tracking to detect pedestrians. In [24] the authors present an
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evaluation of monocular image stabilization techniques applied in automotive applications.
The existing algorithms are grouped into three different approaches:

Based on signature: a signature of each image in the video sequence is used to estimate
image shifts caused by vehicle pitch. Signatures are generated using the horizontal
edges histogram in [29]. In their work Broggi et al. states that this approach is
especially effective in FIR videos with high contrast.

Feature tracking: features are small regions in an image that may be uniquely
identified after a pose change of the camera. The features extracted from an image in
a sequence are cross-correlated with the ones extracted from the next frame. In the
most simple form, and assuming the whole scene is contained in a coplanar surface,
the pose change between two consecutive frames can be approximated by a simple
rototranslation transformation. If depth cannot be disregarded, a stereo approach
may solve the shortcomings of monocular approaches. An early review on fast features
for automotive applications may be found in [195].

Correlation tracking: the computational complexity of feature calculation and match-
ing has led to some authors to follow a holistic correlation approach [139]. Assuming
only a vertical and a horizontal shift of the camera between two consecutive frames,
a set of image correlations are computed by shifting the latter image in the u and v
axis a number of pixels between 1 and a maximum shift value s. The shifted image
that produces a better correlation is selected as the new frame of the stabilized video.
Though proven to be a robust approach in surveillance applications, the results in
automotive applications degrade due to both dynamic objects in the scene and the
ego-motion of the vehicle.

In [12] vehicle oscillations due to uneven pavement are compensated in FIR images
(Fig. 2.1). Four types of movements in the images are considered: perspective
movements, horizontal translation, vertical translation and vertical oscillations. The
stabilizer addresses the latter by evaluating the motion of horizontal edges. Any
abrupt oscillation in the position of those edges forces the stabilizer to shift the image
in the opposite direction.

(a) (b) (c)

Figure 2.1: In [Bertozzii et al. 2003a] a video stabilizer of FIR images is proposed. (a) Original FIR
images, (b) Horizontal edges, (c) Histogram correlation of two images.
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2.3. Selection of regions of interest

Object detection in cluttered scenes is a challenging task. The view contains a huge
amount of information, much of it irrelevant to the task at hand. Successive steps of
the detection algorithm specialize in telling apart to classes of objects: pedestrians and
everything else. These classifiers are usually processor-time-demanding, and they usually
take the same time to process a sample whether it contains a pedestrian or background.
However, by looking at the whole scene, it is obvious that there are parts of the image
that does not hold any useful information. These areas are easily discarded using a fast
classifier. There are many features on which the fast classifier can rely to discard some
part of an image, such as depth, motion, and, in the case of FIR imagery, temperature or
radiance. This results in a small number of regions a interest (ROI) in the image, thus the
latter classification step may run faster.

2.3.1. Stereo-based segmentation.

Stereoscopic vision,or simply stereo, involves combining two images captured from
coplanar sensors. By finding a correspondence between points in the two images, and the
distance between the sensors is possible to find the three-dimensional position of those
points.

The difference between the distance to the center of the image in each projection is
called disparity. In the case of two identical and parallel cameras this value is proportional
to the distance the object, and it can be calculated as Z = f ·T

xl−xr . Where Z is the distance of
the object; f is the focal length; T is the distance between the optical center of both sensors;
and d = xl − xr is the disparity, calculated as the difference between the x coordinate of
the projected point in the left and right images.

Stereo vision techniques are fairly common in visible-light computer vision algorithms
[237] [31]. Recently, Llorca et al. review the current state of the art on ROI selection using
stero vision in [132].

Some authors have incorporated stereoscopic vision techniques to FIR computer vision
[95]. Bertozzi et al. use an stereo pair of FIR cameras for pedestrian detection in [20] and
[11]. The proposed method is based on estimation of depth of warm clusters in the scene.
The procedure results in a set of ROIs that follows certain geometric restrictions. In [17]
and [13] this approach is extended by using a two stereo pair system, merging information
from visible and thermal infrared imagery.

An experimental analysis on FIR and VL approaches to pedestrian detection using stereo
vision is presented in [119] and [118]. The two stereo pairs used in this application are shown
in Fig. 2.2. Their candidate bounding-box algorithm involves several steps. For both stereo
pairs they perform a dense-stereo matching, processing two distinct disparity images. Then,
from each disparity image they process their corresponding u and v disparity, which are
histograms that bin the disparity values for each column or row in the image, respectively.
This approach allows to easily segment the largest plane in the image, supposedly the
ground plane, and thus any other object is subject to be an obstacle. Those obstacles
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that adhere to some geometrical restrictions constitute the list of ROIs to be further
process. An example of obstacles found in both kinds of images is shown in Fig. 2.3.
The experimental methodology followed in this work test unimodal detectors (using only
information from either VL or FIR images) and multimodal detections. The first set of
experiments demonstrate that stereo-based detection using unimodal imagery achieves high
detection rates both for VL and FIR images. They used histograms of orientation of FIR,
color and disparity. A second set of experiments prove that detection performance can be
significantly improved by combining color, disparity and infrared features.

Figure 2.2: Tetracular system used in [Krotosky and Trivedi, 2007a] made up of two VL and two FIR
cameras.

Motion-based segmentation Motion is a feature that can indicate the presence of
a pedestrian in a sequence of images [72] [97]. It is simple to implement, but ignores
pedestrians that are stopped, and its effectivity may be compromised by other moving
objects in the scene, such as tree branches. This method is often used in video surveillance
applications, in which the camera remains static. In the case of mobile applications, such as
ADAS, the motion of the vehicle makes detection of other moving objects a much greater
challenge.

Subtraction of images: this simple technique involves comparing two images taken
consecutively in a short space of time. If that time is short enough it can be assumed
that the only difference that will exist in the two images is because something in the
scene has moved. Differences are also expected due to the noise of the sensors.

Feature points: In this approach, point correspondences are searched very specific
features in both images. Those points located in different zones shall correspond to
images of moving objects. Normally, is usually applied stage textit clustering to
group the points and determine which belong solid body. In the case of pedestrians,
it is necessary to incorporate information from the dynamics of their anatomy, since
it can not be considered a rigid body.
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(a) (b)

(c) (d)

Figure 2.3: Example of stereo processing in [Krotosky and Trivedi, 2007a]. a) VL image with bounding
boxes surrounding obstacles with proper dimensions. b) FIR image. c) Disparity map computed from
the VL pair, with ground plane removed. d) Disparity map from the FIR pair.

2.3.2. Far Infrared Spectrum

There are two possibilities for nighttime pedestrian detection using computer vision.
Since there is not enough light to use algorithms based on visual information in the visible
range, an option is to illuminate the scene with infrared LEDs and capture images with
near-infrared sensitive cameras [89]. Or, to make use of thermal cameras that capture
the heat emission in the far infrared range. There are advantages to using far-infrared
cameras versus conventional ones. First, they do not depend on an external light source,
instead they project onto the sensor plane the heat emission of the objects so that the image
obtained is proportional to the temperature distribution in the scene. Most of the systems
developed make use of this feature by selecting regions of interest based on the presence
of hot spots [18] [19] [23] [156]. Another important feature is the presence of sharp edges
between the background and these hot items. In early work by Fang et al. an study on FIR
pedestrian segmentation is presented [70] [71]. In it, the authors review available features
for VL images and its application to FIR images, i.e. symmetry of vertical projection and
intensity histograms. Besides using thresholding techniques and edge detection Meis et al.
filter false positives based on symmetry, by calculating the local direction of gradients [141].
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2.3.3. Integration of visible-infrared imagery

Pedestrians present different properties depending on the type of camera used. Some
authors combine the information obtained from several vision systems that simultaneously
record the same scene. In the most widespread methodology, regions of interest found in
the far infrared images are studied in the visible range images [196] [189] [121]. In figure
2.4 the image registration of the system used in [189] is shown. In low light applications, in
which external light is insufficient for normal camera usage, near-infrared information is
combined with thermal infrared [198].

(a) VL image (b) FIR image (c) Combination of VL and
FIR images

Figure 2.4: Image registration of the system used in [St-Laurent et al., 2007]

The most straight-forward technique for object segmentation in FIR images is to
binarize the image based on a grey-level threshold. Classic thresholding techniques [165]
[113], make way to more complex algorithms. In [39] a multi-level thresholding technique
for segmentation specifically targeted at thermal images is presented. The survey in [38]
covers entropy thresholding techniques.

2.3.4. Sliding Window approach

The sliding window approach for candidate selection consists on an exhaustive search of
the image. Thus, methods following this approach do not rely on previous segmentation
steps, instead selecting all possible candidates in an image. The window selection does not
depend on the image content but rather on geometrical restrictions. First, the window shape
is selected based on the kind of object to detect. For pedestrian detection, these windows
usually have a rectangular shape, with a constant width-height ratio. For other problems,
such as face detection, a square window shape is used instead. The second parameter is
window density, or spacing between windows. Finally, multi-resolution detection is achieved
by scaling the sliding window, or the original image.

In [168] the authors introduce one of the first sliding window detectors, by exhaustively
selecting small patches of the image and encoding them into Haar-wavelet descriptors.
Those descriptors are then fed to a Support Vector Machine for classification. On later
work by Viola and Jones [202], the main ideas of this approach are extended, focusing on
computing speed gains, and applied to a face detection problem. They demonstrate that
discrete Haar wavelets may be efficiently computed using an integral representation of an
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image. Instead of using a large set of features, they use Adaboost to automatically select
only best performing features. Their detector uses a cascade structure to quickly discard
regions.

Sliding window detector were popularized with the introduction of the Histograms of
Orientations detector [49]. In it, the authors propose encoding each candidate window into
a dense array of histograms of gradient-weighted orientations, an idea that had proved to
produce robust discrete features [133].

Following the introduction of the HOG descriptor it was established in [238] that large
speed gains could be achieved by pre-computing integral histograms [172]. This method
tries to address one of the main drawbacks of the sliding window approach, that is, the slow
computation times due to the vast number of potential candidates. A number of methods
have been introduced since then to the same end [215], [236]. The number of candidates
can be drastically reduced by applying a segmentation algorithm, however sliding windows
tend to outperform segmentation [93] or keypoint based algorithms [123], [181] for small
pedestrians.

2.4. Silhouette Matching

In its simplest form, silhouette matching involves correlating a binary shape model with
a pre-computed template. In [31], the authors propose matching an edge map with an
upper-body binary pattern by simple correlation. This pattern is obtained from averaging
a number of sample shapes, and is scaled to three different sizes.

Gavrila et al. propose in several articles using the distance transformation of the edge
image and computing a pairwise similarity measure with a set of shape examples, in a
coarse-to-fine manner. [87], [85], [88], [84], [86].

Edgelets and Shapelets Edgelets features encode local shape as a set of silhouette
oriented features. These consist of small connected chains of edges [218] This approach
was extended in [220] and [221] to handle multiple viewpoints. Wu and Nevatia also use
edgelets as local shape features in FIR images in a pedestrian detection problem [235].

Shapelets are shape descriptors discriminatively learned from gradients in local patches.
In [178] propose to use AdaBoost to model. Later, in [59], boosting was again used to
combine multiple shapelets.

In [131] a hierarchical multi-feature detector, called granularity-tunable gradients parti-
tion (GGP), is proposed. Their descriptor properties range from deterministic description
(edgelet) to statistical representation (histogram of orientations).

Snakes Active contours, also known as Snakes, are deformable curves which can evolve
on an image to delineate the boundaries of an object. There are different methods to fold a
snake, but generally requires defining an energy related to the position of the edges in the



24 2. State of the art

image. The snake try to evolve seeking positions of lower energy. Restrictions may also be
added to make it more or less rigid and not be segmented.

Applied to pedestrian detection, once the snake has attached to the contour of the object,
it may be determined whether the shape is similar enough to a person. This technique is
relatively old, finding one of its first applications in the article by Kass et al. 1988 [112].
Subsequently, other authors have used active contours for pedestrian classification [213] [6]
[98].

FIR Silhouette Templates Recognition of the silhouette in far infrared images usually
depends on the temperature distribution of the human body. Such systems rely on non-
deformable models, which include sufficient information to adapt to the many shapes of
the pedestrian class. It is a simple, but has proven to be very robust in comparison with
other approaches. One of the first examples that uses a recognition method based in the
shape of the silhouette can be found in [156], with a similar development in [33] and [19].
In [137] a hierarchical template-based classifier for FIR pedestrians is proposed.

2.5. Pedestrian Descriptors

Pedestrian descriptors are projections of an image sample containing a pedestrian in a
feature-space. These descriptors are used in a subsequent classification step to determine if
the sample belongs to one of the two following classes: pedestrians or non-pedestrians.

2.5.1. Holistic Methods

Haar-like Features One of the first successful pedestrian descriptors, Haar wavelets,
were introduced in [164] and used in a pedestrian detection problem. Later, Papageorgiou
and Poggio apply the same approach in a general detection problem in [168]. An extended
set of Haar-like features were later introduced in [125]. A representation of some the
Haar-like filter is depicted in Fig. 2.5. Viola and Jones use them in their detector [203] [204],
which achieves higher framerates because of the use of integral images and its rejection-
cascade structure. Jones apply a similar approach in a pedestrian detector for surveillance
applications [107]. Haar features were also used in combination with distance-transform
in [137] on FIR imagery. In [191] Haar-like features are used to detect pedestrians in FIR
images from an automotive platforms, employing an implementation that focus on real-time
performance. The flow chart of the system is shown in Fig. 2.6.

Discrete Feature Points Feature points are small spatial areas in an image that are
persistent in different views of the same scene. Descriptors are parameterizations of those
feature points, so that each can be uniquely defined, being clearly distinguishable from
other similar points. The simplest kind of descriptor are corners, image areas with high
values for the second order derivatives. A comprehensive study on the use of corners as
descriptors may be found in the work of Harris [96].
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 2.5: Examples of simple Haar-like filters. (a) to (g): Edge features. (h) to (n): line features

Figure 2.6: Flow chart of the FIR pedestrian detection system proposed in [Sun at al., 2011]. They
use Haar-like features in an AdaBoost learning framework. In order to reduce the number of ROIs,
they first extract points of interest in the image and search for pedestrians only in the neighborhood
of the detected keypoints.

By themselves, corners are not good descriptors. They can not uniquely define a point
in the image, since all corners resemble one another. Building upon Harris work, other
authors have developed different types of descriptors. Lowe’s SIFT descriptor [135] [133]
[134] is a specially relevant one. The main insight of this descriptor is the following: a
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maxima or minima appearing in the same image area in different scale spaces should be
repeatable in different scales. Orientation invariance is achieved by encoding the gradient
around each feature point in a histogram of orientations. This descriptor is meant to be
invariant to the scale, rotation, perspective and illumination. The main idea of the SIFT
descriptor has been further developed by other authors, resulting in new descriptors, such
as SURF [7]. In earlier work, Shashua et al. [182] proposed a similar representation for
characterizing spatially localized parts for modelling pedestrians.

Besbes et al. also use SURF features, this time in FIR images from a camera mounted
in a moving vehicle. They use an SVM as classifier and a hierarchical codebook of scale and
rotation-invariant SURF as the discriminative feature [22]. Their implementation prove to
be partially immune to difficult recognition situations, such as occlusions.

Histograms of Orientations The HOG descriptor, as introduced by Dalal and Triggs
in [49], is generic in nature and can be used to classify any type of object, but it is in the
people detection topic where it has found a widespread use. Its operation is inspired by
SIFT [133], defining the shape of an object as a dense grid of histograms of orientation,
instead of using them as discrete descriptors around a feature point. Insofar as the descriptor
resembles a trained model, it is decided whether or not the image contains a pedestrian. In
the original implementation, it uses a support vector machine (SVM) for linearly separating
pedestrian and non-pedestrian classes. Figure 2.7 illustrates a HOG descriptor of a cropped
sample image containing a pedestrian, as well as the SVM weights of the trained model.

This approach has had an influence on many descriptors since. In [238] the authors
propose using HOG features with an Adaboost learning algorithm, for faster detection rates.
In [50] the authors propose a spatial selective method that removes less important informa-
tion out of the HOG feature vector. They report achieving slightly better performance than
the original detector by adding to the feature vector multi-level information. In [207] HOG
dimensionality is reduced by applyin a locality preserving projection. In [226] the R-HOG
feature is proposed, which creates binary patterns from the HOG features extracted from
two local regions, thus reducing memory requirements.

Some authors propose encoding pedestrian contours as histograms of orientation. A
geometric active contour model is used in [211] to track the silhouette of a pedestrian, which
is encoded as HOG features, extracted on a set of points located on a narrow band around
the contour. In [229] histograms of orientations are computed by analyzing the diffusion
tensor fields of the suggestive contour extracted from different viewpoints of a 3D model.

Computation speed is a relevant factor in the intelligent vehicles field. There have been
some efforts to implement optimized versions of the HOG detector that can run in real
time [215]. In [234] and [215] two different HOG GPU implementations are presented. A
more recent GPU implementation of the HOG descriptor is described in [227].

HOG features have been used in many object detection applications, such as cyclists
[109], traffic signs [233] [166] [232], general purpose object detection for service robotics
[61], gesture recognition [110] and even fabric defect inspection [183].

The HOG descriptor has been successfully tested in pedestrian detection in infrared
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images [190] [235] [14] [235] [144]. Ambient temperature has a big impact on pedestrian
appearance, specially if they wear clothing with varying degrees of thermal insulation.
In [163] a preprocessing step is applied to the candidates, before computing the HOG
descriptor, which compensates for variations in clothing temperature using vertically-biased
morphological closing.

However, and regardless the popularity of HOG features, its performance on very large,
general purpose, databases is proving to be limited. In [194] the authors explore the
representation capabilities of the HOG descriptor, concluding that an impostor image can
be morphed into an image sharing the same HOG representation as the target object, while
retaining the initial visual appearance.

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.7: HOG descriptor. (a): Average gradient of the INRIA Pedestrian Database training set.
(b): Maximum positive SVM weight of each descriptor cell. (c): Maximum negative SVM weight of
each descriptor cell. (d): Cropped image sample. (e): Illustration of its HOG descriptor. (f): Positive
weight normalized descriptor. (g): Negative weight normalized descriptor. Source: [Dalal and Triggs,
2005]

Other descriptors There are a number of works describing pedestrian descriptors in
images. Notably, in [181], the authors evaluate the performance of the descriptors Shape
Context and LocalChamfer. Other methods do not take into account any real-time operation
restriction. Among them is the approach adopted in [167], which classifies objects according
to an optimization of a swarm of particles. In this case, the descriptors are densely calculated
and processing speed is lower than real time systems.

Local Binary Patterns (LBP) are a fast and straightforward descriptor that need little
resources for its computation. Some authors, focusing on real-time detection performance,
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use LBP as a stand-alone descriptor. In [223] LBP is used in a pedestrian-detection problem
in FIR images. Representation of a pedestrian in a FIR image using multiblock-LBP is
shown in Fig. 2.8.

Figure 2.8: Representation of a pedestrian in a FIR image using multiblock-LBP [Xia at al., 2011].

2.5.2. Part-based descriptors

Part-based detectors are based on many descriptors, for the different parts of the human
body, as opposed to holistic methods. The simplest part-based methods, rely on manually
annotating different parts of interest. In [149] four independent detectors are trained, for
head, legs and both upper limbs. On a second stage the four parts are combined in a linear
SVM. Similarly, in [182], a higher number fixed parts is proposed. Each part classifier is
treated as weak classifier in an AdaBoost approach. There are many examples of part-based
detection that follows the same paradigm [218], [145], [65]. Wu and Nevatia [217] propose
using edgelets as features of four body parts (full body, head-shoulder, torso, and legs) and
three view categories (front/rear, left profile, and right profile) in an Adaboost learning
method.

In previous methods, the positions of pedestrian parts are manually annotated. Intu-
itively, parts containing limbs or heads should contain relevant information. In [210] objects
are represented as flexible constellations of rigid parts. Parts are computed and selected
in an unsupervised manner. This work is extended in by learning scale-invariant object
models using entropy-based features

Methods that automatically select parts, such as latent SVM [74] [75] prove regions
other than head and limbs may also contain discriminative information. Felzenszwalb et al.
propose data-mining hard negative samples, combined with an iterative learning method,
that optimize the position of pedestrian parts. The detector is based on a root filter and
many part filters, at double the resolution. This imposes a limit on the minimum size a
pedestrian has to have in order to be detected. In [169] the authors propose using a similar
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part-based detector for large pedestrians, switching to a holistic approach for small ones.
Felzenszwalb et al. use HOG features as the pedestrian descriptor, while also stating that
their method should work with other kinds of features. This was explored in [57] by using
Haar-like features.

In [197] human pose is estimated discriminatively using structure learning. After
the most likely pose is identified, the authors use as the classifier an SVM fed with local
histograms of oriented gradients and local PCA of gradient. They state that pose estimation
significantly improves the accuracy of the detector for people in configurations that are
very uncommon, such as riding a bicycle.

Wu et al. address the problem of detecting partially occluded pedestrians by using an
assemble of part detector, learned by boosting a number of weak classifiers which are based
on edgelet features [217]. Possible occlusions are integrated into a joint probability model
based on the responses of detectors parties.

In [1] the authors address the issue of pedestrian detection in cluttered images by
using a subtractive clustering attention mechanism based on stereo vision. Candidates are
selected based on a nondense 3-D geometrical representation. Using a parts-based approach
the authors claim that the detector is able to deal with variability in pose, illumination,
occlusions, and rotations.

While local part-based detectors are able to handle occlusions, holistic methods achieve
better results in normal conditions. A combination of both approaches is presented in [128],
where the authors combine local parts templates with a global template-based scheme,
using a Bayesian optimization scheme.

2.5.3. Multi-feature Methods

Pedestrian descriptors can be combined to include in a single feature vector comple-
mentary information. There many examples of this approach in the literature. In [222] the
authors combine HOG, edgelet and covariance features, achieving better results that any of
any those descriptors on their own. Local Binary Patterns (LBP) [159] were combined with
HOG in [208]. A variation of LBP, local tertiary patterns, are used with HOG in [103].
Walk et al. [205] add to the multi-feature vector colour self-similarity and motion features.

Another approach that focus on combining different kinds of information may be found
in [59]. In their work a channel is defined as a registered map of the original image, where
the output pixels are computed from corresponding patches of input pixels by applying a
linear or non-linear transformation to the original image. As example channels, they propose
using LUV color channels, grayscale, gradient magnitude and histograms of orientations, as
shown in Fig. 2.9. All selected channels can be computed using the integral image paradigm.
This approach is extended in the Fastest Pedestrian Detector in the West detector [58],
which approximates features at nearby scales for efficient multi-scale detection in full-sized
images.
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Figure 2.9: Integral Channel Features as described in [Dollár et al., 2009a]: Gradient histograms,
gradient magnitude and LUV channels. All these features can be computed using integral images,
thus having an efficient computation.

2.6. Classification

There are a number of classification methods that have been applied to the problem of
pedestrian classification using local spatial features. Among them boosting and support
vector machines should be highlighted.

Boosting The principle of Boosting is that it is possible to learn a good classifier from
many weak classifiers, where week a classifier is defined a classifier with a level of accuracy
only slightly better than chance. In the boosting family of classifiers each weak classifier or
a subset of the total, is evaluated iteratively, assigning a weight depending on how many
times they appear in the training set and how well they classify by themselves. The main
advantage of these algorithms is usually its fast performance while classifying a new sample.
This approach needs only a limited number of descriptors to discard an image. At any stage,
after evaluating only a subset of weak classifiers, a negative result terminates the algorithm,
so it is not necessary to calculate the remaining features. In [81] a good introduction to
Boosting algorithms may be found. Viola and Jones apply a boosting algorithm called
Adaboost to learn objects from a large set of weak classifiers. In their application, Haar-like
features are used as the weak classifiers [203]. Tuzel et al. [199] [200] modify the boosting
framework to work on Riemannian manifolds. They use local covariance as features, which
are vector space independent.

Wang et al. use the HOG feature in [209] but, instead of using a linear kernel SVM, they
threshold the histogram of orientations of each cell and use the results as weak classifiers.
They state that the resulting detector has similar performance as the original Dalal-Triggs
implementation in the INRIA database, while being much faster.

Support Vector Machines SVM is a classification algorithm which separates the
feature space using a hyperplane in higher dimensional space. The projection of higher
dimensional data often make them more easily separable. The algorithm selects a plane
such that the spacing between classes is maximized. This plane can be defined just with
the elements of each class that are closer to this, known as support vectors.

The use of SVM for feature-based pedestrian detector was popularized by the success of
the HOG descriptor [49]. In their implementation they use a linear kernel. However, other
SVM kernels have been proposed and used in feature-based object detection. In [62] the
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authors review SVM kernels for detecting objects based on an unordered set of discrete local
descriptors. They test different combinations of kernels (Matching kernel, Bhattacharyya
kernel, Kernel Principal Angles) and descriptors (SIFT, JET [180], Image Patch). In [138]
the HIKSVM is introduced, which uses an approximation to the histogram intersection
kernel. The computational efficiency of this approach allows for the use of complex kernels
in almost real-time. Owechko et al. propose an efficient search mechanism of features based
on swarm intelligence [167]. In their implementation they demonstrate the use of a particle
swarm optimization algorithm to this end, and apply it to a FIR pedestrian database.

2.7. Verification and Refinement

Some systems use an additional refinement step to disregard false positives using a
method complementary to the classification step. The techniques used tend to look for simple
cues of pedestrian geometry. For instance, a vertical symmetry check is performed in [31],
where the authors use vertical edges to discard detections that are non-symmetric around
the central vertical axis. Regarding pedestrian refinement in FIR images, some authors
use a 2D [12] or 3D model matching [15], [32] as well as vertical symmetry [13] to verify
detections. Another validation method involves crosschecking results from independent
detections in two images of a stereo pair. In [88], [86] the authors verify detections by cross
correlating the silhouette extracted in both stereo images.

Verification is sometimes used after the tracking step. Temporal integration of the
detections is used in [79], where the same authors extends the work in [86] by analysing
the gait pattern of pedestrians walking perpendicular to the movement of the vehicle. In
[99] gait analysis is performed in FIR images, this time by applying a markov network that
can discriminate open and close legs of a pedestrian being tracked. Verification methods
involving tracking assume that the pedestrian is not occluded in most the frames. If gait
pattern recognition is applied, the algorithm also needs to accurately detect the legs. Other
multi-frame refinement methods use even more cues other than gait pattern recognition,
such as motion tracking [182].

Classification methods relying on the sliding window methods usually show multiple
detections for the same pedestrian. Detection windows neighbouring the ground truth
window usually output a high score classification. In this case, the refinement step involves
clustering detections into just one, in a process known as non-maximum suppression (NMS).
Mean shift [44] is used in [48] to select just one of the detections of the multi-scale clusters
around pedestrians. Another NMS algorithm commonly applied to pedestrian detection is
Pairwise Max (PM) [74]. It involves rejecting detections that overlaps with any other with
a higher score in the classification step

2.8. Tracking

Tracking can greatly simplify the detection of pedestrians. If the detection algorithm
has a low failure rate it is usually more productive to add a tracking stage to the algorithm,
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rather than trying to find a method that provides perfect hit rates. Tracking has other
advantages, as being able to predict the pedestrian future trajectory, locating the pedestrian
in the case of temporary occlusion, and selecting ROIs based on those predictions. However,
there is a lack of literature that addresses the subject of tracking infrared pedestrians.

2.8.1. Kalman

The most common solution in VL systems is to use a Kalman filter to determine the
position, as applied in [114] and [224]. In [80], the authors propose using two Kalman filters,
separating lateral and longitudinal motion. Another approach followed in [16] and [23] uses
a Kalman filter to track the ROI position in the image, in the second case using an Inertial
Measurement Unit (IMU) to include the egomotion of the vehicle into the filter. Other
authors have used variations of this method as the Extended Kalman Filter (EKF) [108]
[206] and Unscented Kalman Filter (UKF) [142].

2.8.2. Particle Filters

Particle filters, also known as Sequential Monte Carlo (SMC) methods, estimate posterior
density of the state-space by implementing the Bayesian recursion equations. Introduced in
[92], particle filters provide a solution for estimating non-linear non-Gaussian transforma-
tions, which do not rely on local linearization, as the Extended Kalman Filter does. The
main drawback of this techniques is its computational complexity.

Particle filters have become a popular technique for tracking pedestrians in images.
Many different cues have been proposed to that end. In [23], the authors propose tracking
silhouette, stereo and texture of pedestrians in a three-dimensional space, using a particle
filter.

The Conditional Density Propagation algorithm (Condensation), as introduced in [171],
detects and tracks the contour of objects in a cluttered background. It is an application of
the Sequential Importance Resampling algorithm (SIR) proposed in the original article by
Gordon et al. The Condensation algorithm is used in [171] to track a silhouette model of
pedestrians, which consists of Euclidean transformation and deformation parameters. In
[53] this approach is extended to work from a moving vehicle.

In [4] the authors feed the classifier only with regions of interest generated by the particle
filter tracker. Colour cues are used in [122] to track in a space-time volume the trajectory
of the object. Chateau et al. propose using using statistical learning algorithms [40] as a
likelihood observation function of a particle filter. This approach is able to simultaneously
detect and track objects. Their work include two demonstration of said idea: one using an
SVM as the classifier, the other using Adaboost.

Particle filters are computational expensive. Some attempts have been made to speed
up computation by, for instance, parallelizing the execution in graphics processing units
[136].
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2.8.3. Other techniques

Surveillance systems, where the camera is in fixed position, often rely on image differences
or optical flow [104] to track objects. A graph matching-based pedestrian tracking algorithm
is presented in [47], aimed to pedestrian surveillance application in FIR images. A similar
approach for pedestrian tracking in FIR images is suggested in [46] . First images are
segmented based on motion, using a generalized expectation-generalization algorithm. Then
pedestrian tracking is formulated as a matching problem on weighted bipartite graphs. For
a classic review of object tracking in images refer to [228].

Tracking pedestrians from a moving vehicle is more challenging and more advanced
techniques has been developed. Some authors track discrete descriptors belonging to a
pedestrian, using a recursive algorithm such as Mean Shift. Within a search window the
centroid of the contained points is calculated. Then the center of search window is placed
over the previously calculated centroid, and the new centroid is calculated. The process
ends when the difference between the new and the old centroid is below a threshold. Xu
et al. use Mean Shift in their article Pedestrian detection and tracking with night vision
[224]. Swarm intelligence, a family of biological-inspired algorithms, has been used to track
pedestrians in [157]. In it the authors describe a Bacterial Foraging Optimization algorithm
used to track a part-based pedestrian model.

Occlusions and camera movement are major challenges in pedestrian tracking. A
pedestrian may be occluded by objects in the scene of by other pedestrian. The research
presented in [219] address this issue by proposing a part-based tracking technique. The
pedestrian model is a joint representation of four body parts and a full body descriptor.
Detections are matched between frames, so that two detections are matched if the detection
response is similar. If there isn’t a correspondence detection are tracked using the meanshift
algorithm.

Finally, detectors that use active contours to identify pedestrians [185] allow the snakes
calculated on the previous images to evolve in the new ones. The same authors propose
in [184] the use of multiple tracking algorithms. Their tracking system first use a head
detector to initialize the trackers. After that, pedestrian are tracked using an active shape
tracker and a region tracker, which splits and merges multiple hypothesis.

2.9. Other Important Issues

2.9.1. Sensors and Fusion

It may be intuitively appreciated that images contain a large amount of information.
Features in images that can be used to differentiate objects include texture, two-dimensional
geometry, colour and motion in the case of image sequences. It also includes contextual
information about the size and geometry of known objects. Other visual systems also allow
obtaining distance information, in the case of stereo pairs, or temperature, in the case of
FIR cameras. However, the same richness of information that makes them so useful for the
task of detecting pedestrians makes it particularly challenging.
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The disadvantages of using visual information include, among others, the problems
associated with illumination, background complexity and target complexity. The latter
disadvantage is particularly true in the case of dynamic objects. People are highly variable
in appearance due to the degrees of freedom of their anatomy and the variation of texture
and colour of clothing. In pictures FIR temperature fluctuations also adversely affect the
performance of detection algorithms.

The information extracted from different sensors can complement each other. Laser
scanners can provide an accurate distance map and are widely used in scene segmentation
and obstacle detection. Though less reliable than laser scanners, radar is also used in ITS
applications, specially under difficult weather conditions [42]. Sensor fusion usually follows
one of the following approaches: low level, on which ROIs are generated by combining the
sensors information, or high level, on which each sensor independently generates ROIs,
which are later combined.

Premebida and Nunes propose a system encompassing three sources of information: a
laser scanner is used to cluster and track objects, an sliding window pedestrian detector
in VL images validates the clusters generated by the laser scanner [174]. This approach is
expanded in [173] by adding contextual information obtained from a semantic map of the
roads. An example of the output of their pedestrian detector system, and the experimental
platform used in their experiments can be seen in Fig. 2.10. In [72] a laser scanner is
combined with a FIR camera, using a Kalman Filter to fuse detections.

(a) Regions of interest (b) ISRobotCar

Figure 2.10: Regions of interest generated using a laser rangefinder, presented in [Premebida and
Nunes, 2013]. The experiments where conducted in the ISRobotCar, in Coimbra, Pt.

Radar is fused with VL and FIR images in [146] . In their two-step method, a set of
ROIs are generated by the radar sensor and later checked by the vision systems.

In [119] a stereo VL and a monocular FIR camera are used together. Regions of interest
are extracted from a disparity map and evaluated using VL, FIR and disparity information.
In [17] pedestrians are independently detected in two stereo system. The resulting detections
of the VL and FIR stereo systems are then fused together based on the percentage of
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overlapping and their distance in world coordinates. A positive detection then requires
that both systems generate a ROI for the same pedestrian. Other authors propose the
generation of ROIs based on temperature segmentation in FIR images and the analysis of
said ROIs in visible images [196] [189] [121]. In [41] FIR images are segmented by seeded
region groing of warm areas. Then VL and FIR images are fused together. Detection results
prove to be better than any of the FIR and VL detectors on their own.

2.9.2. Applications

There are two main applications of pedestrian detectors in ITS: ADAS and automatic
driving. In both cases, a complete application would feed location and trajectory of the
detected pedestrians to a decision module that determines if any action is necessary. In
the ADAS case, the final step of the system has to promptly communicate the driver any
dangerous situation in an unobtrusive way. In the case of automatic driving, the speed and
trajectory of the vehicle has to be updated based on the presence of pedestrians in the
path.

For an overview of how detectors are incorporated into full automotive systems that
utilize stereo, scene geometry, tracking, or other imaging modalities (e.g. [86], [1], [5], [67],
[216]), we refer readers to [83], [54] and [91].

2.10. Other surveys in pedestrian detection and recognition

Pedestrian detection in images is a very broad topic. This review of the state of the
art tries to highlight the most representative research in each of the described sections.
However, readers may want to refer to the following surveys. Each covers the state of the
art on pedestrian detection, and other topics, from different perspectives and up to the
date of publication.

Vision-based intelligent vehicles: State of the art and perspectives [21].

Pedestrian detection for driving assistance systems: Single-frame classification and
system level performance [182].

Vision Technologies for Intelligent Vehicles [10].

Pedestrian protection systems: Issues, survey, and challenges [83].

Pedestrian detection: A benchmark [60].

Monocular pedestrian detection: a survey [66].

Study on pedestrian detection and tracking with monocular vision [94].

The Applications and Methods of Pedestrian Automated Detection [101].

Survey on Pedestrian Detection for Advanced Driver Assistance Systems [91].
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Pedestrian detection: An evaluation of the state of the art [56].

Backgroundless detection of pedestrians in cluttered conditions based on monocular
images: a review [186].

Thermal cameras and applications: a survey [82].



3
Classification

3.1. Introduction

In this chapter the classification of pedestrians in FIR images is addressed. Classification
is defined as the decision of wether a a fixed set of cropped images belongs to the pedestrian
or the background classes. Classification differs from detection in that, in the latter, the
pedestrian have to found in full-size images. Other aspects, such as the procedure for the
selection of regions of interest and non-maximum suppression methods must be considered.
Any detection algorithm must have a classification algorithm to keep or discard the selected
windows. By improving the classification methods, the overall detection process is also
improved.

Most of the recent research in pedestrian pattern recognition is based on visible light
(VL) images. FIR images share some key characteristics with their VL images counterparts.
They both are 2D representations of a scene captured by redirecting electromagnetic waves
by means of a lens, light in the first case and infrared radiation, which is proportional to
the objects temperature, in the second. Some of the key ideas on pedestrian classification
in VL images can be extended to work on FIR images, exploiting common characteristics of
both, or adapt them to take benefit of the different kinds of information provided by FIR
images. Mobile vision applications, such as ADAS, relying on microbolometer sensors have
some intrinsic difficulties, for instance their sensitivity curve of an uncooled microbolometer
sensor changes very quickly with minimum changes of its temperature [73].

There are several examples in the literature of systems that exploit FIR images to detect
pedestrians in night driving. Most of them rely on temperature segmentation. The main
objective of this work is to develop a classification algorithm that can achieve high recall
rates and low miss rates in a temperature un-biased database. That is, the database has no
information about the temperature of the sensor, nor of the environment. The gray-level
of the FIR images used represent the relative temperature of the objects, but absolute
temperature is not known.

The results in this chapter are based on a new public dataset of cropped pedestrian
images, captured with a low resolution, uncalibrated, non-refrigerated microbolometer
sensor from a static or moving vehicle. Those images where captured under a different
illumination and temperature conditions, including warm summer.
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3.1.1. Chapter Structure

This chapter is structured as follows.

Characteristics of the FIR image-based pedestrian dataset are discussed in sections
3.2, including the methodology of acquisition and sample selection, as well as useful
statistics.

In section 3.4 a classification scheme based on the histogram of oriented phase
congruency to detect pedestrians in infrared images is presented. The phase congruency
theory, on which our Histogram of Oriented Phase Energy (HOPE) descriptor is
based is fully explained in section 3.4.1. The procedure for the descriptor extraction
and the classification procedure are further described in sections 3.4.2. The impact
on the classification performance of the different descriptor parameters is discussed
on section 3.4.3. The classifier parameters are evaluated in section 3.4.4. In section
3.4.5 the impact of noise on the classification performance is evaluated. This section
also presents results on a multi-scale version of the descriptor.

In 3.5 the Int-HOPE descriptor is presented. This descriptor integrates different
sources of information in a Random Forest Classifier. The selected features can be
computed using the integral image paradigm.

In section 3.6 an analysis of several well known VL pedestrian classifiers applied to FIR
images is presented: Principal Component Analysis (PCA), Local Binary Patterns
(LBP) [159], and Histogram of Oriented Gradients (HOG) [49]. All descriptors are
tested using a number of pattern recognition methods. Comparative results are
further discussed in this section.

Finally, conclusions and future work are presented in section 3.7.

3.2. Classification Dataset

One of the contributions of this work is our pedestrian classification dataset, which
consists of FIR images collected from a vehicle driven in outdoors urban scenarios. The
dataset was recorded in Leganés, Spain and Coimbra, Portugal. Images were acquired with
an Indigo Omega imager, with a resolution of 164× 129 pixels, a grey-level scale of 14 bits.
The camera was mounted on the exterior of the vehicle, to avoid infrared filtering of the
windshield.

3.2.1. Pedestrian Datasets

The availability of publicly released datasets for pedestrian classification has been a key
element that helped advances in the ITS area. It provides a way for researchers to test and
benchmark new classification algorithms in a way that can be directly compared with other
works. It is also useful for replicating experiments performed by other research groups.
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Regarding pedestrian classification in VL images, there exists a reasonable number of
benchmark datasets publicly available, such as: MIT [168], CVC [90], TUD-det [3], INRIA
[49], DC [151], ETH [68] and Caltech [60]. For an overview of recent work on pedestrian
classification on these datasets, we refer to [91], [64] and [56]. In the case of FIR images,
there is a lack of a complete pedestrian dataset that could serve as a tool to benchmark
new features and methods.

In this domain, datasets are usually divided into two types: classification and detection
datasets. In the first one, a fixed set of cropped windows containing pedestrians and
background is provided, while detection datasets consist on full images with annotated
locations of pedestrians. Usually, a subset of full-frames, with no positives (pedestrians), are
provided for negative examples extraction. The method for background sample extraction
varies from one author to the other, so the classifiers are not really trained on the same
data.

A classification dataset is useful for approaches based on the sliding window paradigm.
This detection technique consists on analyzing an image by shifting a fixed sized window in
the horizontal and vertical axis. This approach can be extended to a multi resolution search
by incrementally resizing the original image. Each window analysis becomes independent
from all the others and, as such, the detection turns into a classification problem. Improving
the classifier performance would also improve detection performance. The classification
performance is usually expressed in terms of miss rate vs. false negative rate per window,
while per frame is more suitable for detection performance.

In [151] introduced the DC classification dataset is presented. It consists of 4000 up-right
pedestrian and 25000 background samples captured in outdoor urban environments. All
of them are resized to 18 × 36 pixels. In their work, Munder et al. evaluate Haar [168],
PCA and LRF [105] in combination with neural networks and Support Vector Machine
(SVM) classifiers. From their results it can be concluded that the size of the dataset is
a key element in improving the classification performance. For the extraction of a large
number of background images they apply bootstrapping [193] techniques. The dataset
is split into 3 train and 2 test subsets, for cross-validation purposes. In [49] Dalal et al.
presented the INRIA dataset, which is still widely used nowadays. It consists on 2478

128×64 cropped images of people for training, and 566 for testing, along with full images for
negative extraction. The images were selected from a collection of photographs acquired in
urban and rural scenes, and not initially thought to serve as a dataset for driving assistance
systems. More recently, Dollar et. al introduced in [60] the Caltech Detection Dataset, as
well as a benchmark of several pedestrian detection algorithms. Their results were further
extended in [56]. This dataset contains approximately 250k labelled pedestrians within
several video sequences acquired from a moving vehicle in urban traffic.

Based on the methodology followed by the mentioned datasets, a new FIR pedestrian
dataset has been created and made publicly available1. The results derived from this
study are based on this dataset. The LSI FIR pedestrian dataset is divided in two parts,
classification and detection. The Classification Dataset contains a preset of cropped images
of positives (pedestrians) and negatives (background), rescaled to the same dimensions.

1http://www.uc3m.es/islab/repository
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The Detection Dataset contains full size images and labels indicating the position and
dimensions of each pedestrian. Table 3.1 synthesize some important characteristics of the
mentioned pedestrians database in VL as well as the OSU thermal pedestrian database
and the LSI FIR pedestrian dataset.

Table 3.1: Pedestrian databases. The first 13 databases are built with images in the visible light (VL)
spectrum. Their information is extracted from [Dollár et al., 2012] . The LSI and OSU databases
contain images in the FIR spectrum.
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MIT VL 924 - - - - - 128 128 128 2000
USC-A VL - - - 313 - 205 70 98 133 2005
USC-B VL - - - 271 - 54 63 90 126 2005
USC-C VL - - - 232 - 100 74 108 145 2007
CVC VL 1000 6175 - - - - 46 83 164 2007
TUD-det VL 400 - 400 311 - 250 133 218 278 2008
Daimler-CB VL 2.4k 15k - 1.6k 10k - 36 36 36 2006
NICTA VL 18.7k 5.2k - 6.9k 50k - 72 72 72 2008
INRIA VL 1208 1218 614 566 453 288 139 279 456 2005
ETH VL 2388 - 499 12k - 1804 50 90 189 X 2007
TUD-Brussels VL 1776 218 1092 1498 - 508 40 66 112 2009
Daimler-DB VL 15.6k 6.7k - 56.5k - 21.8 21 47 84 X 2009
Caltech VL 192k 61k 67k 155k 56k 65k 27 48 97 X 2009
OSU FIR 984 - 284 - - - 30 35 40 X 2005
LSI FIR 10.2k 1.6k 4.5k 6k 4.8k 4.2k 30 60 120 X 2013

Recorded images were manually annotated, were each pedestrian is labelled as a
bounding box. Fig. 3.1 shows some cropped-image examples of positives and negatives of
the classification dataset. Original images with annotations are also available, so cropped
samples can be generated with any padding around the bounding boxes.

Number of samples The dataset comprises 81592 14 bit one channel images, divided
in 16152 positives and 65440 negatives. The train set contains 10208 positives and 43390
negatives, while the test set contains 5944 positives and 22050 negatives. The train and test
sets were independently recorded on different dates. Full-size images are also available, in
case the training algorithm requires context information, or a hard-negative bootstrapping
technique is needed.

Aspect ratio Out of the annotated images, the bounding boxes are resized to a constant
aspect ratio (w/h) = 0.5 by changing their width (w) appropriately. Figure 3.2 contains
histograms for height, widths and areas of positive and negative bounding boxes. The height
of positive bounding boxes has a maximum between of 40 and 80 pixels. Those bounding
boxes refer to pedestrians standing between 10m and 20m from the camera. Pedestrians
appear up to 50m. Any bounding box below 10 pixels in height is ignored. The remaining
bounding boxes are resized to 64× 32 pixels using bilinear interpolation.



3.2. Classification Dataset 41

Figure 3.1: Example cropped-images of the classification dataset. The two upper rows contains
examples of pedestrians acquired under different temperatures and illumination conditions. The lower
rows contain randomly selected windows from images containing no pedestrians. For visualization
purposes the contrast has been enhanced.



42 3. Classification

0 20 40 60 80 100 120 140 160

0

200

400

Height (pixel)

#
sa
m
p
le
s

Positives height

(a) Positives height histogram

0 20 40 60 80 100 120 140 160

0

200

400

600

Height (pixel)

#
sa
m
p
le
s

Negatives height

(b) Negatives height histogram

0 10 20 30 40 50 60 70 80

0

200

400

Width (pixel)

#
sa
m
p
le
s

Positives width

(c) Positives width histogram

0 10 20 30 40 50 60 70 80

0

200

400

600

Width (pixel)

#
sa
m
p
le
s

Negatives width

(d) Negatives width histogram

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3·104
0

500

1,000

Area (pixel2)

#
sa
m
p
le
s

Positives Area

(e) Positives area histogram

0 0.2 0.4 0.6 0.8 1 1.2 1.4·104
0

2,000

4,000

6,000

Area (pixel2)

#
sa
m
p
le
s

Negatives Area

(f) Negatives area histogram

Figure 3.2: Histograms of bounding boxes sizes and areas for positive and negative samples of the
train dataset.

Density Images were acquired from the usual point of view of the driver. As such,
pedestrians appear more often in the centre of the image as shown in Fig 3.3, which
represents the logarithmic density of the centres of the bounding boxes. In the case of
negative samples, the bounding boxes are randomly selected, so the centres appear all over
the image, with less density near the borders.

3.3. Probabilistic models

This work has its foundation in the research presented in [99] about FIR pedestrian
detection. It was established in [156] that pedestrians can be detected in images by
correlating them with a precomputed model. That model is the result of averaging the gray
level values of a set of thresholded images, or of a derived function. The main insight of this
idea is that, under certain conditions of temperature, pedestrians have a higher gray-level
value than their background. Also, the color of clothing is not a factor to consider, contrary
to what happens in VL images. Variations of this approach have been explored in [18],
[23], [19] and others. Hilario propose computing the probabilistic models by averaging
a binarized version of the pedestrian. The threshold selected is based on the histogram
distribution of a set of background samples. By setting this threshold to T = µ+ 3σ, where
µ is the mean gray-level value and σ its standard deviation, brighter (hotter) pixels of the
image are set to one and darker (cooler) pixels are set to zero.
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(a) Positives on
Train Dataset

(b) Negatives on
Train Dataset

(c) Positives on Test
Dataset

(d) Negatives on
Test Dataset

Figure 3.3: Centres of bounding boxes for positives of the train and test dataset on a logarithmic
scale.

The work in this section, propose a variation of those previous works, where the
discriminant factor is not the gray level of the image, but the temperature of the object.
By thresholding the image based only on gray-level information, a probabilistic model
approach cannot adapt to every possible scenario. For instance, on a hot summer day,
under direct daylight, pedestrian appear darker than the background. Figure 3.4 shows
infrared images under different illumination and temperature conditions. If this is the
case, the thresholding process would not correctly segment the pedestrians. Another issue
with non-refrigerated microbolometers is that the gray level of its images, while being
proportional to the temperature of the object, also relies on the temperature of the sensor.
As such, in order to measure temperature with this kind of sensor, a radiometric calibration
is necessary.

The gray level of each pixel of infrared images represents the amount of heat that the
sensor captures at that point. The camera sensibility to external radiancies changes in a
way that is also function of the flux of radiance coming from inside the camera, as a result
of its temperature. The output of the camera is function of the sensor’s and the object’s
temperatures, among other parameters. As the sensor heats up the apparent temperature
of an object also rises. The segmentation based on temperature relies then in a calibration
process that relates sensor temperature with object temperature. Since the system only
looks for pedestrians, the sensor have been calibrated focusing on a good detection of the
lower and upper temperatures of the human body, and also for the average temperature of
the head. Since the temperature of the sensor is a known value it is possible to calibrate
the sensor sensitivity, relating the temperature of a gray body with gray levels on the
image. The resulting curve is an approximation that, as mentioned before, only takes into
consideration the temperature of the target object and the temperature of the sensor. The
gray level value of the pixels of the sensor also depends on the distance of the object and
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(a) Reflection of direct sunlight
against a brick wall (28◦C).

(b) Cold winter scene (5◦C).

(c) Scene under heavy clouds
(12◦C).

(d) Summer night scene (15◦C).

Figure 3.4: Infrared images under different illumination and temperature conditions.

the absorption factor of the atmosphere. However, these parameters can be considered very
small for short distances such as the range of pedestrian detection. Another factor, that
have not been considered is the gain of the sensor itself. The camera will be more sensitive
to a particular wavelength.

Figure 3.5 represents the overall sensibility curve obtained. Three sensibility curves are
precomputed for the higher and lower temperatures of the head and the lower temperature
of the body. Within the work temperature of the camera the sensibility can be approximated
to a cubic function of the sensors temperature.

In this approach images are thresholded and only objects within normal pedestrian
temperatures are taken into account. The image can contain objects with a temperature
higher than the human body, such a heated parts of a vehicle. Therefore, warm areas
of the image are extracted based on their apparent temperature, neglecting objects with
temperatures that doesn’t match those of the human body.

Pedestrians in FIR images presents a particular distribution of the body temperature.
Usually the pedestrians head and legs are the parts of the body that emits more heat, being
their apparent temperature barely lower than their real one. Chest and arms are more
often covered by thicker clothes, specially in winter, therefore their apparent temperature
is usually only a little higher than that of the background. The border’s definition is higher
if the difference between the pedestrians and the backgrounds temperature is significant.
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Figure 3.5: Gray Level of three constant temperatures of the human body plotted against the sensor
temperature.

Driving at night, pedestrians in images of a far infrared camera present very pronounced
edges, and the distribution of their pixels intensities can easily be separated from that
of the background. For daylight scenarios the temperature-distribution approach is less
effective as the difference in temperature between pedestrian and background is smaller.

The model shown in Fig. 3.6 was calculated from a set of samples with temperature
information, which have been thresholded using equation 3.1.

Figure 3.6: Average value of thresholded pedestrian samples.

The classification score of the test samples is the value of the gray scale correlation with
some precomputed models.

B(x, y) =

{
1, if φt2(I(x, y), ts) ≥ I(x, y) ≥ φt1(I(x, y), ts)

0, otherwise
(3.1)

Where φt is the calibration curve of the bolometer for temperature t, ts is the temperature
of the sensor, t1 is the lower body temperature of the pedestrian and t2 is the upper
temperature. The models are created by computing the mean value of each pixel of the
binarized train subset. Equation (3.2) returns the value of each pixel M(x, y), being
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Btr(x, y) the selected samples.

M(x, y) =

N∑
i=0

Btr(x, y)

N
(3.2)

where N is the number of samples in the train subset.

The score of a sample is calculated by means of a normalized correlation (eq. (3.3)).

c =

∑m
x=1

∑n
y=1(I(x, y)− Ī)(M(x, y)− M̄)√(∑m

x=1

∑
y=1(I(x, y)− Ī)2

)(∑m
x=1

∑
y=1(M(x, y)− M̄)2

) (3.3)

where Im,n is each pixel of candidate ROI, Mmn is each pixel of the model; Ī and M̄
are the mean value of the sample and the model, respectively.

The results of the correlation with the test subset of the FIR pedestrian database is
plotted in Fig. 3.7. This results suggest that this kind of approach is effective in FIR
images. However this approach also presents some drawbacks. As mentioned before, as the
temperature of the camera rises, the gray-level image of the same scene changes. As this
temperature gets higher the error of the calibration curve also grows, which would degrade
classification results.

The conclusions drawn from this work led to the proposal of a descriptor that is invariant
to contrast and illumination.
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Figure 3.7: Detection Error Trade-off curve of the correlation with the probabilistic models.

3.4. Histograms of Oriented Phase Energy

The images from microbolometer-based cameras reproduce the magnitude of heat
emission by the scene objects that hit the sensor plane. The main advantage over visible
light cameras is that there is no need of any illumination in the scene, so they can be used
in total darkness or, as in this case, while driving at night. In any case, FIR images contain
relevant information even in sunny and hot conditions. The work presented in this section
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aims to provide a classification method for pedestrians in FIR images that is independent
from ambient temperature.

This kind of cameras usually are sensible in a much wider spectrum than their VL
counterparts, and this sensibility is greatly determined by the sensor’s own temperature.
The variation of this temperature shifts the image histogram in a way that is both non-linear
and dependent of the specific sensor being used. The quality of far infrared images can
easily degrade as the external temperature rises. In the case of pedestrian detection the
challenge is even greater, as there is a wide range of appearances a pedestrian can have due
to the different kinds of clothes worn throughout the year.

Usually, pedestrian classification algorithms are based on edges information. During the
development of this Thesis it has been found that simple gradients in far infrared images are
not enough to satisfactorily define the shape of pedestrians. This is due to the much wider
infrared spectrum, compared with visible light. Another difficulty is that the sensitivity
curve of an uncooled microbolometer sensor changes very quickly with minimum changes of
its temperature. To overcome these challenges, a contrast invariant descriptor for object
detection is proposed.

The features should be invariant to illumination, scale and contrast. The theory of
phase congruency in signal analysis provides such an invariance. The resulting features are
proportional to the local symmetry in a way that does not depend on the image contrast.
As such, the resulting edges are not biased by the temperature difference between them
and the background. Because these features do not depend on the contrast or the object
temperature the resulting magnitude is also invariant to the temperature of the sensor.

Fig. 3.8 is an example comparing the resulting magnitude image of points with high
phase congruency and the gradient of the image, both applied to a far infrared image.
The most prominent edge in fig. 3.8c is that between the buildings and the sky. Intensity
gradients also depend on magnification, making it difficult to identify small objects. Local
normalization is applied in Fig. 3.8d, where there can be appreciated some information
loss, compared with the results of phase congruency, in figure 3.8b, where symmetric areas
have the same importance, despite of their contrast.

In this chapter, a new descriptor for pedestrian classification in FIR images is introduced,
one that encodes the image as blocks of local histograms of phase congruency.

3.4.1. Phase Congruency

Phase congruency was first proposed as a biologically inspired vision model of mam-
malians in [150]. The main insight is the notion that points in a waveform representing
lines or edges are those where the Fourier components are in phase with each other. A
point i a signal with all of its Fourier components in phase will achieve a phase congruency
score of one, while it none of them are in phase, the score would be zero. This measure
is independent of the magnitude of the signal so it is invariant to changes in illumination
and/or contrast. The sample shape of an object in two different images with different
illumination will produce closely the same results. Phase congruency is used as a feature
in some works. Kovesi proves in [116] that phase congruency can be use to extract line
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(a) Original Image. (b) Phase Congruency.

(c) Gradient. (d) Locally Normalized Gradient.

Figure 3.8: Examples of phase congruency and gradient of an infrared image.

and point features from images. In his work, Kovesi extends the original definition to 2D
signals. In [230] phase congruency is used as a feature vector the iris of the human eye.
The discriminative function is the Euclidian distance of the phase congruency response.

In this section the properties of phase congruency are reviewed and its application in a
pedestrian detector in FIR images is justified.

Features of high phase congruency values are those in which a wide range of their Fourier
components are in phase. Those features are invariant to variations in image illumination,
as will be illustrated in this section. In a one-dimensional signal those are points in the
signal with a high slope or at peaks. Decomposition of smooth areas has its frequencies
spread over a wider range, thus being its phase congruency score lower.

In order to calculate the phase congruency of a signal, a set of frequencies are extracted
from it using a set of filters with the same amplitude spectrum, but shifted in the phase
spectrum. Each of these filter extract the information at a narrow range of frequencies.
Because the filters have to be used over a complex signal, they have to be complex too. In
this case, a set of Gabor filters. An example of a one-dimensional Gabor filter is represented
in Fig. 3.9. The even part of the filter is a sine curve and the odd part a cosine. Both
signals are convoluted with a Gaussian of the same variance.

The real and imaginary parts of the one-dimensional Gabor filter are given by equations
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Figure 3.9: Real and imaginary parts of a Gabor filter in one dimension.

3.4 and 3.5.

O = sin(2πw0x) · 1

σ ·
√

2π
eφ (3.4)

E = cos(2πw0x) · 1

σ ·
√

2π
eφ (3.5)

Where wo defines the center frequency, µ is the mean, σ is the standard deviation and
φ is:

φ =
−(x− µ)2

2σ2
(3.6)

The amplitude of the signal at the frequency of the filter is the square mean of the
convolution of the signal with the odd and even filter (equation 3.7) ,

An(x) =
√

(S(x) ∗On)2 + (S(x) ∗ En)2 (3.7)

where S(x) is the signal at point x, En the even Gabor filter and On the odd one, n is
the index of the frequency to be extracted.

The phase of the signal is given by equation 3.8.

φn(x) = arctan(S(x) ∗On, S(x) ∗ En) (3.8)

Because a convolution in the spatial domain is a product in frequency, the filters can be
applied to the signal once it is transformed to its Fourier decomposition. After applying all
the filters the weighted mean of phase for each point in the signal is calculated. This value
maximizes equation 3.9 and determines the phase congruency score, as defined in [117],

PC(x) =
W (x)

∑N
n=1An(cos(φn(x)− φ̄)− | sin(φn(x)− φ̄)|)∑

nAn
(3.9)
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Where N is the number of frequencies to be extracted and (φn − φ̄) is the the deviation
of each phase component from the mean, and W (x) is a sigmoid function that penalizes
low frequency spreads. In order to avoid noise, small local energy values are set to zero.

Fig. 3.10 shows the scale and contrast invariance properties of phase congruency. Figures
3.10a and 3.10b are two synthetic signals with equal shape but different scale. Specifically,
the second signal has an amplitude 1000 times greater than the first one. Their phase
congruency amplitude (Fig. 3.10f) is exactly the same. Figures 3.10g and 3.10h are two
similarly shaped signals with different scale. The difference in shape simulates the response
of the same edge with different levels of gain and contrast. Notice that the phase congruency
amplitude (Fig. 3.10l) is almost exactly the same for both.

The analysis of images extends the signal processing to two dimensions. The one-
dimensional filters described previously can be extended into two dimensions by simply
applying a Gaussian spreading function across the filter perpendicular to its orientation.
The resulting signal has exactly the same phase as the original as the transfer function of
a Gaussian is also a Gaussian. As before, local information of frequencies is extracted by
applying symmetric and antisymmetric Gabor filter to the Fourier transformed image.

This filter is formed by simply applying a Gaussian perpendicular to the sine and cosine
parts of the one-dimensional signal. The Gaussian function doesn’t affect the phase of the
signal, only its amplitude. In order to minimize the spatial extent of the filter in the images
log-Gabor filters are used in this work, as described in [76].

The main difference with one-dimensional filters is that each of these two-dimensional
filters only extracts a fixed orientation of the image features. The solution is to convolve
the image with a set of filters with different orientations for each frequency. Fig. 3.11
contains an example of rotated filters. The upper row represent the real part of five filters
for the same frequency, each rotated θ = {π6 , π3 , π2 , 2π

3 ,
5π
6 , π}. The lower rows represent the

imaginary part of the same filters.

Each orientation contributes to the result at the given frequency proportionally to its
energy. The result is a weighted sum that includes information at a wide range of possible
orientations. As with the one-dimensional filter, the amplitude for each orientation is the
square mean of the odd and even filtered images.

From the set of orientation images, phase congruency is calculated as indicated in
equation 3.9.

3.4.2. Descriptor specifications

The pedestrian descriptor here presented follows the approach of encoding the shape
of an object as a packed grid of SIFT-like blocks. The local information is extracted by
dividing the image in sets of small spatial regions, called cells. Each cell contains a number
of contiguous pixels of an image. For each cell an histogram is extracted. The combination
of all of the histogram forms the feature vector of the image.

Fig. 3.12 represents the magnitude and orientation of the phase congruency of an image
containing a pedestrian. In fig. 3.12c the orientation of each pixel, from 0 to 2π radians is
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Figure 3.10: Scale and contrast invariance properties of phase congruency. Figures (a) and (b) are
two synthetic signals with equal shape but different scale. Their phase congruency amplitude (h) is
exactly the same. Figures (g) and (h) are two similarly shaped signals with different scale. The phase
congruency amplitude (l) is almost exactly the same for both.
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Figure 3.11: Four different orientations (θ) of filters for the same frequency λ. The filter rotates to
captures image variations in different directions between θ = 0 and θ = 2π.

scaled from black (0) to white (1).

(a) (b) (c) (d)

Figure 3.12: (a) Original image. (b) Magnitude of phase congruency. (c) Gradient orientation. (d)
Representation of the descriptors packed into grids.

The local feature representation allows more flexibility for small variations in the shape
of changing objects, such as pedestrians. The fact that these features are also invariant
to image contrast means that they can produce satisfactory results in a wider range of
temperatures.

The histogram of each cell is the concatenation of the summatories of magnitudes for
each orientation, as defined by equation 3.10.

hc =

nn

k=0

cs∑
x=0

cs∑
y=0

M(i, j) ·Ok(i, j) (3.10)

where the concatenation operator
f
denotes concatenation of cells bins, Ok is the thresholded

orientation image with pixels values equal to 1 if O(i, j) = k, zero otherwise, and M is the
maximum covariance moment (eq. 3.11).

M =

n∑
i=1

PC2
i +

√(
n∑

i=1

PC2
i · sin (2θi)

)2

+

(
n∑

i=1

PC2
i · cos (2θi)

)2

n
(3.11)

Where PCi is the phase congruency for the Gabor filter with rotation θi, and n is the
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number of rotations.

The orientation image O is calculated as:

O = arctan(∗)
(
∂I

∂y
,
∂I

∂x

)
(3.12)

Where ∂I/∂y and ∂I/∂x are the vertical and horizontal gradients using
[
1 −1

]T and[
1 −1

]
as filters and the function arctan(∗)(a, b) is equivalent to arctan

(
a
b

)
, but preserving

the orientation between −π and π. The range of the orientation image O is discussed in
section 3.4.3

The orientation image O is indexed into n values, corresponding to the division into
equal angle ranges from 0 to π (eq. 3.13), where n is the number of bins in the orientation
histogram, and {k ∈ Z|1, n}.

O(x, y) = i∀
(

(k − 1) · π

n+ 1
< O(i, j) < k · π

n+ 1

)
(3.13)

The descriptor is the concatenation of the h× w cell histograms, d =
fw·h
c=0 hc.

3.4.3. Evaluation of Descriptor Parameters

The final descriptor depends on the parameters selected to create the phase congruency
magnitude, the cell size, the number of bins of the histogram and its range. The parameters
are selected based on the classification performance of a Support Vector Machine (SVM).
Best parameters where selected by training one classifier for each combination of parameters
within a range. Results are plotted as Detection Error Tradeoff (DET) curves, which plot
the influence of a particular parameter while all the others are fixed to their standartd value.
The classifiers are evaluated based on the miss rate at 10−4 False Positives Per Window
(FPPW). The default parameters are:

Scales = 4

Orientations = 5

Cell Size = {5× 5}

Histogram bins = 9

Crop Size = {64× 32}

Radial Basis Function SVM kernel.
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Number of scales Indicates the number of frequency segments to be extracted by the
Gabor filters. For each scale a pair of Gabor filters with spread λmin · δλn is created, where
n ∈ [1, Ns], Ns is the number of scales selected. The minimum wavelength is heuristically
set to λmin = 2.0 and the step to δλ = 2.05. Figure 3.13 shows performance of the classifiers
for Ns = {2, 3, 4, 5, 6, 7, 8} scales. Performance peaks at N = 4 scales. In order to prevent
border artifacts, samples are cropped from the full-size images with a padding of, at least,
p = λmin · δλNs . For the standard number of scales used, n = 4, this padding is set to
p = 20 pixels.
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Figure 3.13: DET curves of the HOPE descriptor created with different numbers of Gabor scales.
Legend states Miss Rate (MR) at 10−4 FPPW.

Number of orientations For each scale the filters are rotated to a number of angles to
extract information at different rotations. Figure 3.14 shows performance of the classifiers
for No = {2, 3, 4, 5, 6, 7, 8} orientations. The peak performance is at 5 orientations. In
that case the Gabor filters are rotated by θ = {0, 2π

5 ,
4π
5 ,

6π
5 ,

8π
5 } radians. Interestingly,

results are only slightly better than the worst performance at 2 orientations. Those two
orientations are normal to each other and seem to comprise most of the information.
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Figure 3.14: DET curves of the HOPE descriptor created with different numbers of Gabor orientations.
Legend states Miss Rate (MR) at 10−4 FPPW.
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Cell Size The samples are split into square, non-overlapping regions called cells. On
each cell a histogram is calculated. In Fig. 3.15 the DET curves show the performance
of the classifier for for different square cells sizes of s = {3, 4, 5, 6, 7, 8, 9, 10} pixels. Small
cells capture very fine details, however it is difficult to generalize that kind of information.
Furthermore, small cells result in long feature vectors and longer training and evaluation
times. Large cells encode the shape in a coarse manner, disregarding some information. We
found that a good compromise is a cell size of s = {5× 5} for {64× 32} pedestrians.
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Figure 3.15: DET curves of cell sizes of the HOPE descriptor. Legend states Miss Rate (MR) at 10−4

FPPW.

Histogram orientations binning The cells are quantized into weighted histogram
where the bin index is determined by the gradient orientations and weighted by the phase
congruency magnitude. The minimum number of bins of the histogram of orientations for
each cell has an important impact on classification performance, as shown in Fig. 3.16,
where DET curves for B = {3, 6, 9, 12, 14} histogram bins are plotted. Twelve bins over the
default nine bins improves marginally the classification, just 0.39% at 10−4 FPPW, but
this means a longer descriptor and more memory allocation.
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Figure 3.16: DET curves of the HOPE descriptor with different number of histogram bins . Legend
states Miss Rate (MR) at 10−4 FPPW.
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Range of histogram Orientation quantization splits the orientation range into B bins,
between the minimum and maximum value. The selection of this range has an impact on
classification performance. Three ranges of orientations are evaluated: signed orientation,
in the [−π, π] range O360◦ = O, unsigned mirror orientation: O180◦ = O− + π, unsigned
absolute orientation O180◦ = |O|. Figure 3.17 shows a representation of folding a 12 bin
histogram into the three mentioned ranges. Notice that the histograms of those folds are
quite different from one another. The unsigned orientation methods preserve the original
orientation information. The mirror method wraps the orientation in the [0, π] range by
shifting the orientations with a negative value by π radians. The abs methods, wraps the
orientations in the [0, π] range by taking the absolute value of the orientations.

The results of the above mentioned methods are very similar to each other. Pedestrians
in FIR images are darker or lighter that their background depending on the ambient
temperature and the kind of clothing wearing. As images in the database were acquired in
very different scenarios, binning the histogram with O360◦ only slightly improve classification,
in this case.
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Figure 3.17: Orientations of a 4×4 spatial cell. (a) Signed orientation, in the [−π, π] range: O360◦ = O.
(b) Unsigned orientation: O180◦ = O− + π. (c) Orientation can also be wrapped in the [0, π] range by
O180◦ = |O|. Subfigures (d), (e), (f) represent their respective histograms by splitting the orientation
range into 12 bins.

Normalization of blocks of adjacent cells The effect of normalization is shown in
Fig. 3.18. The DET curves represent the classification performance for two normalization
approaches: no normalization and L2 normalization, as described in equation 3.14, where c
if the histogram of a center cell and cb is the concatenation of the histograms of four of
its surrounding neighbors. In order to normalize each cell against all of their 8 neighbors,
the L2 normalization processed is performed on four blocks of 4× 4 cells, resulting in four
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normalization per cell. This process also results in a descriptor four times longer. It is
worth remarking that cell normalization does not have a significant impact on performance.
This is because the phase congruency map is in itself a normalized magnitude, as opposed
to gradient. This property is specially useful as shown in section 3.5, where the Int-HOPE
descriptor is presented.

c′ =
c√∑b=B
b=1 cb

(3.14)
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Figure 3.18: DET curves of different cell normalizations of the HOPE descriptor. Legend states Miss
Rate (MR) at 10−4 FPPW.

3.4.4. Evaluation of the Classifier Parameters

In this section the classification method used to select the descriptor parameters is
explained.

SVM classification calculates the boundary between two classes by searching the hyper-
plane that maximally separates the training set in a high-dimensional space. The boundary
is defined by a subset of the training sample called the Support Vectors. The training set
xk is mapped in a high dimensional space defined by a function φ. The decision function in
equation 4.22 is optimized so that y(x) maximizes the distance between the nearest point
(xi) and the hyperplane.

y(x) = wT · Φ(x) + b =

nx∑
i=1

ny∑
j=1

m∑
l=1

wijlΦl(cij) + b (3.15)

Where w is normal to the hyperplane, b is the bias and b
||w|| is the perpendicular distance

from the hyperplane to the origin. Φ(dij) ∈ Rm is the corresponding histogram of gradients
in the high-dimensional space of the descriptor, with m cell bins, at pixel dij . Φ is the
kernel function that is used to project the samples. In this evaluation three different kernels
have been tested: linear, quadratic and radial basis function. The sample is assigned to
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one of the two classes by thresholding the decision function, where a sample with an score
y(x) > b is classified as a pedestrian, and as background otherwise.

Number of positive samples in the train dataset The training data set contains N
samples x{k} = (x1, · · · , xN ), manually classified and assigned a binary label l = {−1, 1}.
Each one of this vector samples is a concatenation of the histograms of all the bins in
the cropped image. The number N of samples can affect the performance of the classifier
as too many input vector can over-fit the decision plane over the training set, becoming
less effective with a wider representation on pedestrians. Figure 3.19 shows the impact on
performance of incrementally adding more positive samples to the classifier.
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Figure 3.19: DET curves of of the HOPE descriptor trained with a different number of samples.
Legend states Miss Rate (MR) at 10−4 FPPW.

SVM kernel The classifier performance will also rely on the initialization of the SVM.
We first consider, as our base classifier, a one-norm, soft-margin support vector machine
with a Gaussian Radial Basis (RBF) kernel function. Over the best sets of parameters, the
best classifier overall classifier is searched for, by varying the kernel function.

The SVM kernels that have been tested with the database are linear, quadratic and
RBF. The best results have been achieved using a RBF, though a simple quadratic kernel
performs almost as good and needs less time to compute. The results are shown in Fig.
3.20.

Search of Hard Negatives Dataset images not containing pedestrians where densely
scanned looking for false positives, known as hard negatives. In an iterative procedure, any
detection classified as pedestrian by the SVM is added to the negative train dataset. A new
classifier is then trained. This procedure is repeated several times until the classification
performance degrades.

Fig. 3.21 shows that classification gets slightly better after two rounds of retrain with
hard negatives. After that, some saturation can be observed.
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Figure 3.20: DET curves of of the HOPE descriptor trained with different SVM kernels. Legend
states Miss Rate (MR) at 10−4 FPPW.
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Figure 3.21: DET curve of classifiers after iteratively searching for hard negatives and retraining.
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Number of Negatives Additionally, the impact on classification performance of naively
varying the number of negative examples on the train set is assessed. Figure 3.22 shows that,
for the HOPE SVM-Rbf classifier, the performance gets significantly better by increasing
the number of train negatives. Figure 3.23 shows the relation between the number of the
number of negatives on the training set and Miss Rate at 10−4 FPPW in the test set. That
relation follows an exponential curve. Though it is expected that adding more negatives
will results on even better classification performance, a very big number of samples used for
training may lead to over-fitting. It should be also considered that using a large number of
samples for training increase significantly the training time.
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Figure 3.22: DET curve of the HOPE SVM-Rbf classifier trained with an increasing number of
negatives. Legend states Miss Rate (MR) at 10−4 FPPW.
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Figure 3.23: Curve fitting of the relation between number of negatives on the training set and Miss
Rate at 10−4 FPPW in the test set. Notice that, from n = 20000 onwards, adding more samples has
little impact on classification performance.

3.4.5. Other considerations

This section concludes the evaluation of the HOPE feature. In it, a multi-resolution
feature approach, Pyramidal HOPE, is covered. Finally, the impact of noise is assessed.
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Pyramidal HOPE 2 This descriptor can be extended by including multi-resolution
features, as the Pyramid HOG descriptor does in [25]. The image is divided into increasingly
finer spatial grids, where for each original cell cw ∈ R

w×w, with w = 5, a new multi-resolution
descriptor is calculated (equation 3.16).

cm =
cw1

w1
‖ cw2

w2
‖ cw3

w3
(3.16)

The new descriptor is a concatenation of the original with the upper and lower scales.
In this implementation w1 ∈ R

3×3, w2 ∈ R
5×5 and w3 ∈ R

7×7. Fig. 3.24 is an example
visualization of a three-scale descriptor around a keypoint.

Scale1

Scale2

Scale3

Figure 3.24: Descriptors at different scales around the same keypoint

Fig. 3.25 show the DET curves for single scale and multi resolution HOPE. An small
improvement can be observed.
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Figure 3.25: Comparison of the results with the single scale and the multi resolution HOPE descriptor.
Legend states miss rate at 10−4 FPPW

2Unless otherwise stated the results presented in following sections of this work represent only single-scale
features.
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Impact of noise Phase congruency is known to be especially sensitive to noise level
in the image. The impact of noise on the classification task is evaluated by adding a
synthetic Gaussian noise to the dataset. The added noise follows a normal distribution
N (µ, σ), with mean µ = 0 and variance σ = {10−9, · · · 10−3}. Fig. 3.26 shows a noisy
positive sample with increasing values of Gaussian noise variance added, along with its
phase congruency magnitude response. Subsequently, classification results after applying a
de-noising preprocessing are discussed.
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10−4
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10−3

Figure 3.26: First Row: Positive sample with Gaussian noise added. Second Row: Phase Congruency
Magnitude Response.

The HOPE-Rbf classifier is trained again for each noise level added to the dataset. Its
results are plotted in a DET curve, as shown in Fig. 3.27. Noise variance levels up to
σ = 10−6 seems to have hardly any impact on the classification task. For σ = 10−5 the
classifier degrades to an acceptable miss rate of 23.3% at 10−4 FPPW. From this point
onward results deteriorates quickly, with a miss rate of 48.86% at 10−4 FPPW for σ = 10−4.

A denoising preprocessing step improves classification performance in cases where the
Gaussian noise variance is high. Two different approaches has been used to denoise the
images: a median filter and a Wiener filter. A median filter, with a 3 pixel neighborhood,
is applied to the noisy samples as shown in Fig. 3.28.

The noisy samples, after applying a Wiener filter [126] with a {5×5} pixel neighborhood,
are shown in Fig. 3.29.

The Wiener filter estimates the local mean (equation 3.17) and variance (equation 3.18)
around each pixel, where u is the horizontal coordinate of the pixels in the {5× 5} pixel
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Figure 3.27: Classification DET curves for different amounts of syntethic Gaussian Noise. Classification
of noisy samples achieves an acceptable hit rate for Gaussian noise with variance σ ≤ 10−5.
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Figure 3.28: First Row: Noisy samples reconstructed with a Median filter. Second Row: Phase
Congruency Magnitude Response.
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10−3

Figure 3.29: First Row: Noisy samples reconstructed with a Wiener filter. Second Row: Phase
Congruency Magnitude Response

neighborhood, and v the vertical coordinate.

µ =
1

N ·M ·
u=5∑
u=1

v=5∑
v=1

α(u, v) (3.17)

σ2 =
1

N ·M ·
u=5∑
u=1

v=5∑
v=1

α2(u, v)− µ2 (3.18)

The Wiener filter is expressed as:

b(n1, n2) = µ+
σ2 − ν2

σ2
(α(u, v)− µ) (3.19)

Where µ2 is the average noise variance of all pixels in the image, and {N,M} is the
local neighborhood of each pixel.

The results after applying the Wiener filter (Fig. 3.30) and the median filter (Fig. 3.31)
suggest that the classification task has a generally better performance after denoising with
the median filter for samples with a high noise variance. Classification seems to degrade
slightly for low-noise samples, specially for the Wiener filter. For extreme values of noise,
the preprocessing step has no effect. In these cases, a human expert achieves no better
results.
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Figure 3.30: Classification DET curve for the database denoised with a Wiener filter.
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Figure 3.31: Classification DET curve for the database denoised with a Median filter.
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3.5. Integral Features

There are a number of issues concerning the representation of an object as grid of local
features. In the first place, not all of those features have the same importance. Some of
them do not add any relevant information. However, a dense feature representation requires
that all of them have to computed. This means that samples take the same time to compute,
notwithstanding the fact that some could be easily discarded based on some key local
features. The second point is that the descriptor may benefit of complementary information
contained in the original image. This is solved by creating multi-feature descriptors. Finally,
an efficient implementation is necessary to achieve high frame-rates, a required condition in
ADAS.

This section addresses all those three issues. In it, a new descriptor is proposed, which
uses different kinds of information in a multi-feature manner. All the features can be
efficiently computed using the integral image paradigm [203]. The classification is sped up
by using a forest of decisions approach. This classifier will be denoted as Int-HOPE.

Integral Features Every pixel in an integral image is the summation of the pixels above
and to the left of it in the original image. This allows to rapidly calculate summations
over square regions of the image. The integral image approach has been widely used for
the purpose of feature calculations. In the original paper, Viola and Jones use the integral
image to compute sums of small regions of the image, which are then compared with a set
of Haar-like filters. A method for computing local histograms, based on an integral image,
is discussed in [172].

The Int-HOPE descriptor can also be computed using integral images, because it is
based on a grid of local histograms, that do not need to be normalized. Descriptor relying
on a normalization step, as HOG does, need to compute the local feature and its neighbor
before applying the normalization, defeating the purpose of using an integral image.

Feature Combination It is well stablished in the literature that combining features of
complementary information may lead to a more robust classifier. Dollar et al. present
an evaluation of the performance of combining several sources of information that can
benefit from the integral image approach in [59]. Among them, they propose using integral
histograms of not-normalized gradients.

The features subject to evaluation in this section are the following. The gray-level
of an image contains all information contained in it. The raw information is hard to
generalize, however, in combination with other features it may lead to a better classification
performance. Figure 3.32a shows a sample of the positive train dataset. After rendering
its integral image, a sampled-down version of it is computed, as shown in Fig. 3.32b. The
representation of the features for the example image is shown in Fig, 3.32c, where each
pixel of the resampled image is a feature. The dimensions of the gray channel is d/s, where
d = (w, h) is the dimension of the original image, and s is the size of the cell. The second
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feature is the phase congruency magnitude as calculated in equation 3.11. The third feature
is the gradient G of the image (equation 3.20).

G =

√(
∂I

∂y

)2

+

(
∂I

∂x

)2

(3.20)

The two remainder sets of features are the histograms of oriented phase energy (Fig.
3.33) and the histogram of oriented gradients (Fig. 3.34). In both cases, each bin of the
histograms is a feature.

(a)
Origi-
nal

(b)
Gray

(c) PC (d)
Gradi-
ent

Figure 3.32: Descriptor computed using the integral image.

Figure 3.33: HOPE features. Each channel is a bin of the histograms

Figure 3.34: Histograms of gradient magnitude. Each channel is a bin of the histograms.

Random Forests The concept of Random Forests (RF), as introduced in [28], propose
constructing a classifier from multiple decision trees. Each decision tree is a weak learner,
that exploit a random set of samples from the training set. The number of samples is N ,
the same as the training set has, but selected with replacement, that is, a percentage of
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them are not selected and others are selected multiple times. At the root of each tree, a
small set of m < N features are randomly selected. The one that provides the best split is
selected. This procedure is repeated in successive nodes, until the maximum tree depth
is reached. While testing, a decision tree outputs the class of the samples, in this case,
pedestrian or background.

A random tree tends to overfit data to the training set. A collection of trees can better
generalize the data by using a majority voting strategy. A set of trees are trained using the
same procedure as the original one. Their results are combined to form a strong learner by
summing the outputs of each individual tree. The class that is awarded with more votes is
selected. The confidence of this output is the percentage of votes that the class has got.

The Random Forest Classifier used in this section is trained with 200 trees, each of
which uses a maximum of 425 samples. The number of features used at the node split
decision level varies depending on the length of the feature vector. In general, that number
is √nf , where nf is the length of the feature vector.

3.5.1. Square, non-overlapping features

The evaluation of several combinations of the cited sets of features is presented in this
subsection. Ten features, or combinations of features, are tested using a Random Forest
Classifier and an AdaBoost Classifier. Results are plotted as DET curves in Figs. 3.35 and
3.35.
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Figure 3.35: Integral Channels (Random Forest Classifier). Legend states Miss Rate (MR) at 10−4

FPPW.

The sets of features have been:

Gray
PC: Phase Congruency Magnitude

Gradient
HOPE: Histograms of Oriented Phase Energy

Hist: Histograms of Orientation

Gray+PC
Gray+Gradient
Gray+PC+HOPE: Int-HOPE

Gray+Gradient+Hist
All: Gray+PC+Gradient+HOPE+Hist
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Figure 3.36: Integral Channels (Random Forest Classifier). Legend states Miss Rate (MR) at 10−4

FPPW.

Feature Performance As expected, the worst performing feature has been the gray level,
with a miss rate of 93% at 10−4 FPPW (MR 0.93) for the 8× 8 cells descriptor. Combining
the PC feature with the gray level yields similar results as the Hist feature, with MR 0.14

and MR0.19 respectively, while the Gray+Gradient feature achieves MR 0.6, a performance
similar to the PC alone (MR 0.5). Using only the gradient, the performance degrades, with
a MR 0.78. Comparing the two approaches based on integral histograms, using 6 histogram
bins, it is clear that HOPE features achieves better results than Hist, with MR 0.06 and MR
0.19 respectively. As expected, combining the gray level, PC and HOPE features produce a
better classifier than the Gray+Gradient+Hist, as the individual features perform better.
The Gray+PC+HOPE achieves MR 0.03, a similar result as the one obtained training the
dense HOPE feature with an Rbf kernel SVM. The Gray+Gradient+Hist achieves MR
0.087. Interestingly, combining all the features degrades miss rate at 10−4 FPPW by 1%,
when compared with the Gray+PC+HOPE feature. The latter descriptor will be refereed
to from now on as Int-HOPE.

Cell size and orientation binning The election of the cell size have a significant impact
for some of the descriptors. The results of the classification using 8× 8 cells are plotted
in Fig. 3.35. When compared with the results of the 4 × 4 descriptors (Fig. 3.36), it is
clear that reducing the cell size benefits features based on gray-level, gradient and phase
congruency. In the latter case, the miss rate at 10−4 FPPW goes from MR 0.55 to MR
0.33. A less important improvement is observed in the case of gradient. For small cells, the
gray-level feature achieves similar results as the gradient feature. However, features based
on histograms degrade slightly for small cells. Nevertheless, the combination of all features
get significantly better for 4× 4 cells, going from MR 0.04 to MR 0.026.

Packing the histograms into 9 bins instead of 6 does not have a relevant impact on
performance. Features based on histograms have similar results with those histogram sizes,
both for eight and four pixel cells. Other features behave the same way in both cases,
though the results differ slightly due to the random sampling of features.
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Adaboost The proposed collection of features have been also tested using an AdaBoost
approach. Real AdaBoost is used, as described in [179], with a maximum of 50 iterations.
Figure 3.37 shows the DET curves of the classifiers, using AdaBoost. The results seem to
correlate with the ones obtained using Random Forests, but results are not as good. For
the best (Gray + PC + HOPE) the miss rate of the AdaBoost classifier at 10−4 FPPW is
a 5% higher.
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Figure 3.37: Integral Channels (Adaboost). Legend states Miss Rate (MR) at 10−4 FPPW.

3.5.2. Rectangular, overlapping features

Features based on Integral Images allow to quickly compute a response at any rectangular
location of an image, with any size, with the same computational demands as computing a
square feature. Descriptors based on grids of non-overlapping cells define accurately the
shape of the object. Each one of those cells include information of a specific part of the
object. However, the choice of these parts is based on intuition and not on the certainty
that they are the most representative ones. Other parts of the samples may contain more
relevant information, which is missed in the feature-grid approach. In this section this
notion is put to test by randomly selecting a large number of rectangular features from the
samples. At each decision node of the decision trees, the most representative features are
selected by cross-validating them with the subset of unused samples.

Results are plotted in Fig. 3.38, where each subfigure represent the results with a
different number of features per channel. The set of features have width and height randomly
chosen between 5 and 10 pixels. The number of histogram bins is set to 6. The range
of feature sizes allows to capture both fine details and coarse shape. The results are
congruent with the ones in the previous section, as features not based on histograms have
similar performance as in the fine-grid experiments (Fig. 3.36). However, features based on
histograms do not get in par with the grid-based approach until the number of samples per
channel is 1000. For the Int-HOPE descriptor, this means a bag of 8000 features.

The importance of each feature, as selected by the decision trees, is represented in Fig.
3.39. Lighter areas correlate with regions of greater importance. For plotting those figures,
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Figure 3.38: DET curves of the random rectangular features. For these experiments the number of
histogram bins is set to 6. Legend represent Miss Rate (MR) at 10−4 FPPW.
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each time a feature is used by any node of the forest of decision that corresponding area is
incremented by one gray-level. For visualization purposes, the range of the figures have
been rescaled between the minimum number of hits (darkest areas) and the value of the
most used feature (lightest area). From inspecting these figures, it seems that the most
relevant single feature is the phase congruency, while the least used seem to be the gradient.
It should be noted that the HOPE and Hist features are made up from 6 orientation bins.
As such, the importance of the overall descriptor is the sum of their bin images.

(a) (b) (c)

(d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (ñ)

Figure 3.39: Representation of feature importance in the random rectangular descriptor. Each pixels
is scaled between 0 (least important) and 1 (most important). The subfigures represent the following
feature vector: a) Gray-level; b) PC; c) Gradient; d)-i) HOPE; j)-o) Hist

3.6. Comparative Results

In this section, other descriptors are tested with the LSI Far Infrared Pedestrian Dataset,
in order to compare their results with the descriptors previously presented.
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3.6.1. Classification Methods

Five kinds of classification methods have been used: SVM, Naïve Bayes Classifier
(NBC), Quadratic Discriminant Analysis (QDA), Neural Networks (NN) and Adaboost.
The parameters selected for the different classifiers are discussed in the sequel.

Support Vector Machines Concerning SVM [34], two different kernels were used for
benchmarking: a linear classifier, hereafter called SVM-Lin, and a radial basis function
(RBF) kernel, designated by SVM-Rbf. In this implementation the radial Gaussian function
kernel K(x, y) = e−γ‖x−y‖

2

has a scale parameter γ = 1.

Naïve Bayes Classifier NBC [106] is designed for use when features are independent of
one another within each class, but it appears to work well in practice in other circumstances.
Naive Bayes classification is based on estimating the conditional probability of the feature
vector given the class.

Discriminant Analysis Linear Discriminant Analysis [140] is used as a linear classi-
fication model in terms of dimensionality reduction. Considering a two class separation
problem the D-dimensional input vector x can be projected down to one dimension as
y = wTx, where w is the components weight vector. Selecting appropriate weights, the
feature space can be projected over the dimension that maximally separates both classes.
Over this projection a threshold wo is selected, where values y ≤ −w0 are classified as
pedestrians, whereas values y > −w0 are classified as background. In this implementa-
tion the coefficient matrix of the boundary equation is quadratic thus, the discriminant
analysis takes a quadratic form, designated QDA. The pedestrian and background classes
are assumed to be normally distributed. The multivariate normal densities are fitted with
covariance estimates stratified by group.

Neural Network A NN pattern recognition scheme [102] is used with a two-layer feed-
forward network, with ten hidden and one output sigmoid neurons (Fig. 3.40). The network
is trained with scaled conjugate gradient backpropagation. The overall network function
follows equation 3.21, where σ is the sigmoid function, rnk is the output ranking, w are
the feature weights, N is the number of inputs and M is the maximum number of linear
combinations of the N inputs.

rnk(x,w) = σ

 M∑
j=1

w
(2)
j h

(
N∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
0

 (3.21)

Adaboost Real AdaBoost is used, as described in [179]. The key idea is that the combined
response of a set of weak classifiers can build a strong one, improving the performance
that a complex classifier alone would have. Iteratively, Adaboost selects a threshold that
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Figure 3.40: Two layered neural network with ten hidden and one output sigmoid neurons. The inputs
f1 · · · fn are the histogram bins.

best separates each feature set xi in one of the classes yi, applying a higher weight to
misclassified samples. In this implementation the maximum number of iterations is set to
50. The final ranking of each feature vector is rnk =

∑N
i=1 xi(fi). In the case of HOG and

HOPE, each bin in the orientation histograms is treated as a weak feature.

3.6.2. Features

The classification is treated as a supervised pattern recognition problem. Given a set of
samples manually labelled by an expert D = {{x1, y1}, · · · , {xn, yn}}, where xi ∈ Rd is a
feature vector and yi ∈ {±1} is a binary label, which establishes its belonging to one of the
two classes C1 and C2, a decision function is optimized.

In this section the feature selection is discussed, along with implementation details.

Histograms of Oriented Gradients The Histogram of oriented gradients has been
tested, using 5 × 5 pixel cells. The magnitude of the gradient is linearly interpolated to
the two closest orientations. Additionally, each point is bi-linearly interpolated to the
neighboring cells. Each cell is then normalized four times with the surrounding cells. Within
each cell a 9 bin histogram of orientation between 0 and π radians is calculated. Using
unsigned histograms do not improve performance, as shown in section 4.3.2. The resulting
descriptor, which closely resembles the Dalal and Triggs version, will be denoted as HOG.
Fig. 3.41 represents the DET curves of the described HOG descriptor trained with the
LSI far infrared pedestrian database. The DET curves for unnormalized histograms of
orientations are plotted in Fig. 3.41b.

HOPE The HOPE descriptor encodes a grid of local oriented histograms extracted from
the phase congruency of the images, which is computed from a bank of Gabor filters. This
descriptor do not use spatial interpolation or cell normalization, as the HOG descriptor
does. Results of the HOPE descriptor trained with different classification methods are
plotted in Fig. 3.42.
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Figure 3.41: DET curves of the HOG descriptor. a) Normalized histograms; b) Unnormalized
histograms. Legend states Miss Rate (MR) at 10−4 FPPW.
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Figure 3.42: DET curves of the HOPE descriptor. Legend states Miss Rate (MR) at 10−4 FPPW.
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Local Binary Patterns LBP, as introduced in [159], represent the image as a similarity
vector of each pixel with their surroundings. This descriptor encodes information as a binary
number, where for each pixel, the neighbors with a gray value higher or equal contribute
with a one in their position in the binary number, otherwise a zero. Each sample is divided
in 3x3 pixel non-overlapping cells.

The value of the LBP descriptor of a pixel (xc, yc), as represented in Fig. 3.43 is given
by equation 3.22. Results of the LBP descriptor trained with different classification methods
are plotted in Fig. 3.44.

LBPP,R =
∑P−1

p=0 s(gp − gc) · 2p , s(x) =

{
1 if x ≥ 0

0 otherwise
(3.22)

1 0 1

0 1

0 1 1

Figure 3.43: Example of an LBP descriptor
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Figure 3.44: DET curves of the LBP descriptor. Legend states Miss Rate (MR) at 10−4 FPPW.

PCA We treat PCA [140] eigenvectors as a grey-level feature vector. The initial motivation
for applying this approach is that PCA tends to disregard small details at high frequency,
as seen in Fig. 3.45, while FIR images usually have poor levels of detail, as they present
softness due to motion blur, especially at low resolutions. We retain the 30 most significant
eigenvectors, that is, those with the largest eigenvalues. Figure 3.46 shows the DET curves
of the PCA descriptor for several classification methods.

Feature Concatenation Descriptor fusion is explored as feature vector concatenation
[127]. The resulting feature vector concatenating two descriptors D1 ∈ Rm and D2 ∈ Rn is
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(a)
Eig(1)

(b)
Eig(2)

(c)
Eig(3)

(d)
Eig(4)

(e)
Eig(5)

Figure 3.45: First 5 eigenpedestrians

a new higher dimension feature vector D = D1
f
D2 ∈ Rm+n, which holds different kinds of

complementary information, which can improve the overall performance. Dimensionality is
kept low by removing linearly dependable features by means of a discriminant analysis.

3.6.3. Discussion of the Comparative Results

From the presented results, it can be observed that approaches based on local orientated
histograms, such as HOG and HOPE, get better results than PCA or LBP. The best
performing feature seems to be HOPE, with a miss rate of 0.06 at 10−4 false positives (FP)
for the SVM-Lin classifier, followed by HOG with a miss rate of 0.18 at 10−4 FP. With an
RBF kernel performance improves up to 0.03% miss rate at 10−4 FP in the case of HOPE .

Regarding feature combination, we have used an SVM-Lin to assess the impact of the
features in the classification performance. Both LBP and PCA, does not improve significantly
classification when merged with other features. Combining the HOPE descriptor with
HOG significantly increases detection rate. This means that both extract complementary
information. This is a particularly interesting result, as there are many descriptors that
have HOG as part of their feature vectors. If that is the case, adding this descriptor would
increase the performance of the classifier, though this would depend on the particular
problem at hand.

Concerning the classification methods, SVM-Rbf generally has the best performance
followed by SVM-Lin. LDA classifier performs almost as good, or better than Linear SVM
for the HOG and HOPE descriptors. The NBC showed the worst performance, except for
LBP features.

3.6.4. Statistical Significance of the Results

Statistical significance is assessed with McNemar’s approximate test [55]. It is used to
compare two classifiers at a particular value of bias. To determine wether classifier (C1) is
significantly better than (C2), the χ2 statistic is is used (equation 3.23).

χ2 =
(|n01 − n10| − 1)2

n01 + n10
(3.23)
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Figure 3.46: DET curves of the PCA descriptor. Legend states Miss Rate (MR) at 10−4 FPPW.
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Figure 3.47: DET curves of the combination HOG and HOPE descriptors. Legend states Miss Rate
(MR) at 10−4 FPPW.
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Figure 3.48: DET curves of the combination of LBP with HOG and HOPE descriptors. Legend states
Miss Rate (MR) at 10−4 FPPW.
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Figure 3.49: DET curves of the combination of PCA with HOPE descriptors. Legend states Miss
Rate (MR) at 10−4 FPPW.

where n01 is a number of cases misclassified by C1 and classified correctly by C2, and n10

is a number of cases misclassified by C2 and classified correctly by C1. The null hypothesis
H0 states that the performance of both classifiers is the same. H0 may be rejected if χ2

falls below a probability of 5%, i.e. χ2
1,0.95 ≥ 3.841459. If that is the case, it can be assumed

that one classifier performs significantly better than the other.

Table 3.2 contains χ2 values for every pair of classifiers used. The bias of all classifiers
has been b = 0, after rescaling, as it is the value that maximally separates both classes.
From these results it can be concluded that the null hypothesis can be rejected for all
classifier pairs.

Table 3.2: Results of the McNemar’s approximate significance test for every pair of classifiers. The
value expressed in the table’s fields is χ2, as stated in equation 3.23

HOGLin HOGRbf HOPELin HOPERbf LBP PCA
HOGLin 0 247.1 81.5 342.1 1852.9 1508.6
HOGRbf 247.1 0 51.6 11.5 2825.5 2443.7
HOPELin 81.5 51.6 0 108.0 2427.6 2056.1
HOPERbf 342.1 11.5 108.0 0 2980.8 2596.7
LBP 1852.9 2825.5 2427.6 2980.8 0 23.8
PCA 1508.6 2443.7 2056.1 2596.7 23.8 0

3.7. Conclusions and Discussion

In this chapter, a variation of the probabilistic template scheme for pedestrian clas-
sification in FIR images is presented. From a set of cropped samples containing images,
and with information about the sensors temperature, a probabilistic template is created by
averaging the thresholded samples. The main purpose of this method is to add invariance
to ambient temperature to this scheme. Similar methods usually rely on image statistics to
select a fixed threshold. In a non-refrigerated microbolometer the results degrade as the
temperature rises, because the histogram of the image shifts with sensor temperature.
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In this chapter a new descriptor for classification of pedestrians in far infrared images
has been presented. This approach exploits information from low resolution, uncalibrated,
non-refrigerated microbolometer sensors. The main application of the system is to be used
on night-time images, though the performed tests prove that good performance can be
achieved in a wide range of temperature and illumination conditions.

Several combinations of descriptor and classification methods have been tested in a
new FIR dataset. By our best knowledge this is the first complete FIR based pedestrian
classification and detection dataset publicly available for benchmarking, in the area of ITS.
The classification scheme here presented has been tested as part of a detector, using an
sliding window approach.

Though Phase Congruency is known to be vulnerable to noise, results suggest that the
detector here presented can cope with fairly high levels of noise.

From the experimental results reported in the previous sections it can be concluded that
histogram based features perform best than LBP or PCA features. In terms of classification
methods, SVM achieved the best performance. The RBF kernel can significantly reduce
misclassifications compared with a linear kernel, but is more computationally demanding.
This is a critical factor in computer aided transportation applications.

The combination of the HOPE and HOG features into a single descriptor considerably
increases performance. This may be useful in detectors that have histograms of gradients
as part as a multi-feature classifier.

Finally, a qualitative inspection of misclassified samples suggests that ambient tempera-
ture has a determinant impact on performance. Sequences collected at a high environment
temperature or under direct sun light present the most false positives, and also the highest
miss rate. A qualitative evidence of this issue is shown in Fig.3.50 where we present
examples of misclassified positives and negatives. Other sources of misclassification are
motion blur, which in FIR images appear frequently, and pose variation. False positives
appear mostly in negative examples with a high vertical symmetry.

(a) False negatives (b) False positives

Figure 3.50: Misclassified samples. (a) False negatives due to low resolution, motion blur and pose
variation. (b) ExaFalse positives of areas with a high vertical symmetry.

This chapter also cover a new descriptor that exploits a majority voting scheme of
randomly selected weak classifiers based on features computed with integral images. The
resulting classifier, Int-HOPE has slightly better performance than HOPE, and the Random
Forest Classifier used is quicker in training and testing than the SVM used for the holistic
descriptor.
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The results presented in this chapter suggests that FIR images are a very useful source
of information for pedestrian classification and detection, having similar performance to
that found in state of the art in VL images, with advantage in low visibility applications.
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4
Detection

4.1. Introduction

Pedestrian detection is defined as finding the position of an a priori unknown number
of pedestrian on a set of full images. Detectors usually are composed of two steps. The
first one is the selection of regions of interest in the image, which can be silhouette-based
or rectangular. Silhouette-based approaches attempt to segment pixels belonging to the
object of interest. In practice, most detectors follow the bounding box approach, where
the position of the pedestrian is defined as a rectangular region, that also contain part of
the background. Methods that select rectangular regions often follow the sliding window
approach, a dense search at many scales of the image.

The most straightforward approach when densely scanning an image is to create one
model for the N scales at which the detector should search. A more common approach is
to train just one model and resize the image N times, in an image pyramid. This may lead
to different detection rates at each scale. When up-sampling an image to match the model
size, small objects appear blurry and without detail. If the image is down-sampled, some
its information is lost. The detector would then achieve its best performance if the model
size encompasses both rich detail and blurry shapes. Variations of this two approaches
have been proposed. In [58] suggest that features at nearby scales can be approximated.
This leads to only a fraction of images (N/K) in the pyramid to be computed. Features
computed from the pyramid images are then used to approximate the features at nearby
scales. With less images to process, the detectors can be greatly accelerated. In [9] the
inverse concept is suggested. Instead of resampling a subset of images and approximate
features at nearby scales, they propose using a single image scale and training a set of N/K
models. Each model is tuned to accept responses from K sizes.

The second step of a detection algorithm is the classification of those regions. Using
an sliding window leads to one score for every position of the sliding window. A good
detector would render higher scores for windows that are spatially close to a pedestrian,
and lower scores as the window is slid away. In an exhaustive search, each pedestrian is
contained in multiple windows, so by thresholding the score, one pedestrian may cause
multiple detections. A third optional step in the algorithm is to group detections that are
spatially close to one another. The two most common methods used in pedestrian detection
are Pair-Wise max suppression and mean-shift.

A typical workflow of a pedestrian detector is shown in Fig. 4.1. Two searching
paradigms are depicted in it: dense search, as explained before, and selection of regions
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of interest. Image areas that likely contain pedestrians are extracted, and then fed to the
classifier.

Image
Data

Search of
Regions

of Interest

Dense
Search

Image
Pyramid

Model
Pyramid

Classifier

Non
Maximum
Suppresion

Output

Figure 4.1: Flow chart of a pedestrian detector in images.

4.1.1. Chapter Structure

This chapter is structured as follows.

Section 4.2 introduces the LSI Detection Database.

Section 4.3 contains an extensive experimental study on detection performance in
FIR images, following an sliding window approach. The election of parameters such
as non-maximum suppression overlap, and ROI density is discussed. The experiments
have been conducted using the LSI Database as well as the OSU database. From
the evaluation, it is has been highlighted that the HOPE descriptor fails specially on
small pedestrians.

Section 4.4 tackles with of detection of small pedestrians. In it, a method for
approximating the features of up-sampled image to the original image is presented:
for each upscaled image, an specific bank of gabor filters is used to computed the phase
congruency feature. The minimum frequency of those filters is shifted, proportionally
to the scaling of the image.

In section 4.5 the opposite concept is proposed. Features in the central scale are
approximated to upscaled images. The purpose of this is to reduce the computational
time of the algorithm.

Finally, conclusions and future work are presented in section 4.7.

4.2. Detection Dataset

The detection dataset contains the original images from which the classification dataset
are extracted, along with manual annotations of the pedestrian’s positions.
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The detection dataset was acquired in 13 different sessions, each containing a varying
number of images. It comprises 15224 14-bit one-channel images, with dimension 164× 129

pixels. The train set contains 6159 images, and the test set contains 9065 images. A
representative subset of the Detection Dataset is depicted in figure 4.2

Each session occurred at a different location and with different illumination and tem-
perature conditions. Out of those sessions 6 were used to extract the Train set, leaving
the remaining 7 for Test set. This ensures that Train and Test are independent from one
another. The temperature at which they were shot, which in turn affects the grey level
and the histogram spread, causes the most important difference in appearance between
sequences. Fig. 4.3 contains the histogram of the mean grey level value of the Train and
Test Detection Databases.

Only images having pedestrians with more than 20% of the area of the original bounding
box occluded behind other obstacles are considered in this evaluation.

4.3. Sliding Window Approach

In this section, the HOPE-Lin descriptor is evaluated using a sliding window approach.
A constant-sized window is slid over the image. At each location the classifier computes
an score of similarity with a pedestrian. This process is repeated at several scales in
an image pyramid to detect pedestrians at a range of distances from the camera. The
descriptor is evaluated based on its detection accuracy, that is, In the remainder, the
evaluation methodology is described. The presented descriptor is the compared with the
best performing classifiers tested in the classification database, Int-HOPE and HOG-Lin.
Results with an Rbf kernel are omitted, as the computation of the descriptor scores is too
demanding for a detection problem.

4.3.1. Evaluation methodology

Selection of Regions of Interest For multi-resolution detection purposes the input
image is resized to N scales per octave, from one octave up to one octave down, in an image
pyramid. A rectangular, single-aspect ratio, window spatially scans the image at all scales
(Fig. 4.4).

Pascal Criteria The detection task will be evaluated by the Pascal Criteria [69], plotting
results in DET curves. Detections are considered true or false positives based on the area
of overlap with ground truth bounding boxes. To be considered a correct detection, the
area of overlap ao between the predicted bounding box Bp and ground truth bounding box
Bgt must exceed 50% by the equation 4.1, as depicted in Fig. 4.5.

ao =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

(4.1)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: Subset of the Pedestrian Detection Dataset.
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(a) Train Database (b) Test Database

Figure 4.3: Histogram of mean gray level of the images in the Train and Test Databases.

Scale1

Scale2

Scale3

ROI{w, h}

Figure 4.4: Sliding Window approach.

GroundTruth(Bgt)

Detection(Bp)

Overlap(ao)

Figure 4.5: Overlapping area of Ground Truth and Detection.

Arguably, this criteria is more significant in an object detection framework for general
purposes. In the specific area of obstacle avoidance in ADAS, the exact location of the
pedestrian is rarely needed. Likewise, having multiple detections per pedestrian do not
interfere with the warning system. For a detector to be effective it should render at least one
detection per pedestrian, even with coarse detection accuracy. However, the Pascal Criteria
has been adopted by the ITS community as the standard for measuring the performance of
detection algorithms. A restrictive criteria encourages the development of better detectors.
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Non-Maximum Suppression For each pedestrian, it is usual that more than one de-
tection appear in the neighbourhood around the ground truth bounding box. If two or
more detections match the same ground truth bounding box, only the one with the higher
score would be considered a true positive. Other overlapping detections are considered
false positives. To minimize the number of repeated detections, a greedy non-maximum
suppression (NMS) algorithm, pairwise max (PM) suppression [74], is applied to all bound-
ing boxes. It selects iteratively detections with higher scores than their neighbourhood,
discarding detections with lower scores over an overlapping percentage. This overlap is
again calculated with equation 4.1. Fig. 4.6 shows an example of multiple detections for the
same pedestrians. Figure 4.6a shows the rectangular bounding boxes that have achieved a
classification over the threshold. In Fig. 4.6b the result after applying the NMS algorithm
is shown. Only the best bounding boxes remain. This example is shown to illustrate the
concept. Effectively, the NMS algorithm is applied to all bounding boxes, whatever their
classification scores are.

(a) NMS off (b) NMS on

Figure 4.6: Example of non maximum suppression of multiple detections for each pedestrian.

4.3.2. Results using the LSI dataset

Scales per Octave The number of scales per octave affects the detection rate, as well
as the computation time of the detector. Figure 4.7 shows that the detection rate gets
considerably lower by using two scales per octave, instead of one. By increasing the number
of scales only a small improvement is found. In order to balance the detection performance
and the computation time, two scales per octave will be used in the remainder of the
evaluation.

Impact of Pedestrian size Pedestrian size has a big impact on detection results. Pedes-
trians standing far away from the vehicle appear at a lower resolution on the image and,
as because of that, have lower detection rates. The impact of pedestrian resolution is
experimentally assessed by varying splitting the test images, based on the presence of
pedestrians within a height range. It the image contains a pedestrian taller, or shorter that
the considered height range, it is not included for evaluation. Figure 4.8 shows the the
results of splitting the images into the following ranges: very small pedestrians (h ≤ 25),
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Figure 4.7: DetectionScale.

small pedestrians (25 < h ≤ 35), medium pedestrians (25 < h ≤ 55), large pedestrians
(55 < h ≤ 85) and very large pedestrians (h > 85). Figure 4.8 shows the detection rates
for these subsets. The main conclusion that can be drawn is that small pedestrians get
significantly worse performance. By only considering pedestrian in the medium subset
of larger, it is clear that detection rates get significantly better. These results led to an
evaluation to find the cause of this behavior and provide a solution that improves the
results in small pedestrians. The methodology developed and the conclusions extracted are
presented in section 4.4.

10−1 100

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

False positives per image (FPPI)

F
a
ls
e
n
e
g
a
ti
v
e
ra
te

(m
is
s)

DET curves

h < 25 (MR 0.73852)
25 < h < 35 (MR 0.16234)
35 < h < 55 (MR 0.056622)
55 < h < 85. (MR 0.10573)
h > 85 (MR 0.091837)

Figure 4.8: Miss rate at 10−1 FPPI for the detector in the Small, Medium and Large and Very Large
Test Subsets.

Spatial accuracy An accurate pedestrian detector, do not only have to only have to
render a high true positive rate and a low false positive rate, but also be accurate on the
location of the pedestrian. The standard methodology to establish if a detection is correct
is the one described in the Pascal Challenge, which requires that the detection overlaps by
at least ov = 0.5. In Fig. 4.9 the DET curves for different overlap threshold are showed. It
can be concluded that loosing the overlap threshold do not have a significant impact in
miss rate over 0.3 at 10−1 FPPI. Increasing the threshold deteriorate the overall detector, a
fact that is specially evident for overlapping thresholds ov ≥ 0.7. These two facts indicate
that the spatial accuracy of the detector is limited by the scanning window density.
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Figure 4.9: Pascal Overlap Criteria.

Comparative Results For reference, in Fig. 4.10 the DET curves of the best performing
detectors, as described in chapter 3, are plotted, using an NMS overlap of ao = 0.5. The
Int-HOPE descriptors used have histograms of 6 bins and 8× 8, and 4× 4 cells receptively,
and it has been trained with 200 trees. The HOG detector has been trained with the Linear
SVM classifier, and results for signed and unsigned orientations are included, which are
virtually identical. Rbf kernels have been omitted from evaluation, as its computational
complexity is unfit for a detection problem, least high end processors or GPUs are available.
Based on these results it might seem that there is a correlation between classification and
detection results.
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Figure 4.10: Detection DET Curves after applying the PM NMS algorithm with an overlap threshold
of ao = 0.5. Legend states Miss Rate (MR) at 0.1 FPPI.

4.3.3. Results in the OSU Database

Additionally, the HOPE descriptor has been tested against the OSU Thermal pedestrian
Database (fig. 4.11). This dataset contains a small number of images, grouped into
10 different sequences, acquired from a static location and in similar temperature and
illumination conditions. An exception is sequence number 3, where images were captured
at a higher ambient temperature is higher than in the rest. The imaging device used to
acquire this dataset is of ferroelectric nature. As such, it suffers from the halo effect. Bright
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objects have around them an area that is falsely identified as having a low temperature.

In this experiment, HOG-Lin and HOPE-Lin are trained using the Train subset of the
LSI classification database. For each sequence in the OSU database a DET curve is plotted.

The evaluation methodology used is identical as the one explained earlier, except in the
selection of ROIs. The images in the OSU database were captured from a static camera and
have a constant field of view. The camera position limits the range of sizes that pedestrians
can have in the images. In this case, it is preferable to use an evaluation methodology more
suited to a video surveillance system. Instead of searching for pedestrians with all possible
heights, the ROI size is restricted to only include pedestrians between a minimum and a
maximum size. Two different configurations have been used, called Dense and Sparse. In
the Dense process, a pyramid of four scales with minimum scale ms = 1.6 and a stepping
scale of ss = 1.1 is created. The Sparse method, extracts only one scale at s = 1.6.

For each ROI selection method, two sets of experiments are conducted. In the first one,
the detector are trained using the LSI database. In the second, the detectors are trained
using images in the OSU database. For reference, other methods using the same database
as a benchmark include [52] and [124].

(a) (b)

Figure 4.11: Processed images from the OSU Thermal Pedestrian Database.

Trained on the LSI database The detectors used in this section have been trained
on the LSI database using the same methodology as explains in chapter 3. Results of the
HOPE descriptor are plotted in Fig. 4.12, and results of the HOG descriptor in Fig. 4.13. It
is clear that results for both are much better than in the LSI database. This indicates that a
detector trained on microbolometer images can be successfully used in ferroelectric devices,
when used at low temperatures. For higher temperatures, the halo effect of the ferroelectric
devices, not present in microbolometer images, degrades considerably the results.

The ROI density do not seem to have any significant impact on detection performance.
Dense methods improves detection by just an average miss rate of 1% at 0.1 FPPI.

Trained on the OSU database In this experiment, the two same detectors are trained
using images from the OSU database. For each sequence to be tested, positive and negative
samples are extracted from the other nine sequences. This ensures that the same image
is never user for training and testing the same detector. Nevertheless, as background
is unchanged between sequences, the classifiers tend to be over-fitted for this particular
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Figure 4.12: DET curves for the 10 sequences of the OSU database, using the HOPE detector trained
on the LSI database.
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Figure 4.13: DET curves for the 10 sequences of the OSU database, using the HOG detector trained
on the LSI database.
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database. Background samples are randomly selected from images containing pedestrians.
The maximum overlap admissible to have a background samples with a pedestrian is
ov = 0.3.

Results of the HOPE descriptor are plotted in Fig. 4.12, and results of the HOG
descriptor in Fig. 4.13. As expected, both detectors achieve better results when trained
with images from the OSU database. It should be noted that results for sequence 3 do not
get considerably better. Every other sequence was acquired at low temperatures, making
their appearances quite different from the ones in sequence 3. The solution to achieve better
results on that particular sequence would be to add to the training set with similar images.
However, future improved classifiers in FIR images, should be able to cope with this order
of generalization.
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Figure 4.14: DET curves for the 10 sequences of the OSU database, using the HOPE detector trained
on the OSU database.
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Figure 4.15: DET curves for the 10 sequences of the OSU database, using the HOG detector trained
on the OSU database.
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4.3.4. Latent-SVM

In chapter 3 it was stated that the addition of multi-resolution information to a descriptor
based on histograms of orientation can help to improve classification results by adding
into one model both coarse shape and fine detail. Intuitively, finer grained descriptors
retain more details, so classification should benefit from it. However, due to non-rigid
deformations of pedestrians, and noise in the images, the overall classification scores for
high resolution descriptors are low. To overcome this limitations, and others, Felzenszwalb
et al. introduced in [74] and [75] their latent SVM detector. In this section, it is shown
that the Latent-SVM approach can also be applied to FIR images.

This classification method relies on a set of filters: a low resolution root filter and a set
of high resolution part filters that define a hidden or latent structure. The location of the
parts of the pedestrian that best define its presence on the image, their size and quadratic
cost function coefficient are the latent variables z. While training, the exact location of the
ground truth bounding box of positive examples is also a latent variable. This allows for
auto-correcting mistakes made while labeling the dataset. As such, this kind of approach
cannot be trained using a traditional classification database, but it is instead trained using
full-sized images with annotations.

The score of a filter m over a sample x is calculated as the sum of the score of a root
filter r plus the sum over all parts y of the maximum score of each part minus the cost of
the parts c (eq. 4.2) The cost function for each part is minimum at a specific location of
the root filter. If the part is found at any other location it is penalized.

s(m,x) = s(r, x) +
∑

y∈parts
max
y

(s(p, y)− c(p, x, y)) (4.2)

The detection is treated as a binary classification problem in a sliding window approach.
Given a training set D = {{x1, y1}, · · · , {xn, yn}}, where xi ∈ Rd is a feature vector and
yi ∈ {±1} is a binary label, each region of interest of the image is assigned a score,

fβ,Z(x) = max
z∈Z(x)

β · Φ(x, z) (4.3)

where x is the region of interest, z are latent values, and β is a vector of model
parameters. The function Φ(x, z) is the feature vector assembled from the root and parts
filters. β should then minimize

1

2
‖ max
i=i,...,k

β‖2 + C

n∑
i=1

max(0, 1− yi · fβ,Z(xi)) (4.4)

where k is the number of components in the model, and the second term determines
the softness of the SVM margin.

The training process can be divided into two parts. The first one trains a root filter
of low resolution descriptors by warping positive samples to simulate a large number of
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human poses. The original method considers pose variation by a mixture of models, i.e.
pedestrian heading to the left or to the right. The score of a sample would then be the
maximum over the set of models. In our implementation, only one model is used.

To assess the impact on performance of part based detection, two descriptors have
been trained using the Latent-SVM approach: HOG and HOPE. Detection performance is
evaluated using the same methodology explained in section 4.3.1, except for the following:
for each scale computed in the image pyramid, an additional scale is added with double
the resolution, in order to extract the part models. The latent-SVM models for both the
HOG and HOPE descriptors have been trained using the same parameters. They have been
initialized for k = 8 latent parts and root filters with (6× 6) cells. Fig. 4.16 represents the
filters trained with the HOG descriptor and Fig. 4.17 the filters trained with the HOPE
descriptor.

(a) Root
Filter

(b)
Parts

Figure 4.16: Latent SVM filters using HOG features.

(a)
Root
Filter

(b)
Parts

Figure 4.17: Latent SVM filters using HOPE features.

The DET curves in Fig. 4.19 compares the performance of root, latent and parts
detectors for the HOG and HOPE descriptors.

From these results some initial conclusions may be extracted. In the first place, the
performance of the root filter improves the results of a naively trained classifier. This leads
to the conclusion that warping positive samples is a relevant step in the algorithm, and one
that could be easily implemented in the training algorithm of the descriptors described in
chapter 3. However adding the part models seem to degrade them slightly. In low resolution
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Figure 4.18: Detection DET Curves of Latent-SVM HOG after applying the PM NMS algorithm.
Legend states Miss Rate (MR) at 0.1 FPPI.
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Figure 4.19: Detection DET Curves of Latent-SVM HOPE after applying the PM NMS algorithm.
Legend states Miss Rate (MR) at 0.1 FPPI.
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images, such as the ones presented in this database, latent parts are hard to find in the
smallest objects because they are computed at twice the resolutions as the root filter and
as such, much of the information is lost. The evaluation of the performance of the part
based approach would need a new database, of higher resolution images.

4.4. Small pedestrians

In section 4.3.2 it was stablished that the detector achieves worse detection rates for small
pedestrians, than it does for large pedestrians. This may be explained by considering that
small pedestrians appear blurry when upscaling the images to search for small candidates.
Object borders in up-sampled images extend over a wider spatial range that in images
resized to a scales smaller than s = 1. This result in a high intra-class variance. The
classification module, upon which the detector relies, has been trained with pedestrians that,
in most cases, have a height greater that 40 pixels, as shown in chapter 3. Therefore, a linear
classifier tends to separate the most common appearance. This match approximately to the
appearance of pedestrian extracted in the original scale, in the detection problem. There
are possible approaches that address this issue: gather an over-complete database that
equally represent all possible appearance and training several models, possibly with different
descriptors, for the different subclasses, or modify the descriptor to better generalize the
intra-class variability. In stead of that, in this section the following contribution is proposed:
to approximate features at different scales to the appearance that would have the object if
it was extracted from the central scale.

Phase congruency features extracted from different scales of the image pyramid can be
approximated to the central scale by modifying the log-Gabor filters used to calculate them,
as will be demonstrated in the remainder. Figure 4.20 illustrates this concept. Figures
4.20a and 4.20b represent the phase congruency magnitude of a cropped window containing
a pedestrian, separated by one octave. Both features have been procesed with the original
bank of log-Gabor filters. Figure 4.20c represent the phase congruency magnitude of the
same image as Fig. 4.20b, calculated with the new bank of log-Gabor filters, for a scale of
s = 2. The result intuitively resembles more the higher resolution image.

The bank of filters are calculated scale-wise by shifting the minimum wavelength so
that, for instance, a low resolution pedestrian appears with shaper borders in the phase
congruency image. The amount of this phase shift is different in each scale is proportional
to its distance to the original scale s = 1. This statement is experimentally validated in the
remainder.

A definition of a log-Gabor filter is expressed in equation 4.5, where G(ω) is the value
of the filter for frequency ω, ω0 is the center wavelength of the sinusoid, and k/ω0 remains
a constant for all the filters.

G(ω) = exp

(
−1

2

(log(ω/ω0))2

(log(k/ω0))2

)
(4.5)
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(a) 64×32 (b) 32×16, λ (c) 32 × 16,
λ/s

Figure 4.20: Example of small pedestrian

The frequency of the filter at scale s is:

ω0,s =
1

λ0,s
=

1

λ0 ·∆λ(s−1)
(4.6)

where λ0 is the minimum wavelength, ∆λ is the distance between filters in the phase
spectrum and s is the scale of the filter.

To compare the similarity of the phase congruency features, a set of cropped images
containing a pedestrian at different scales, and with different λs have been compared using
the Peak Signal-to-Noise Ratio (PNRS) magnitude (eq. 4.7).

PSNR = 10 · log

 1√∑M−1
i=0

∑N−1
j=0 (C0(i, j)− Cs(i, j))2

 (4.7)

Where C0 is the cropped image at scale s = 1 and Cs is the cropped phase congruency
cropped image calculated with a shifted minimum frequency. The figure 4.21 represents the
value of PNSR, varying the value of ωs. Each of the subfigures represents the similarities
between the original scale and the new scale, where s > 1 represent up-sampled pedestrians.
For down-sampled pedestrians, this approximation is not needed, as once rescaled the
appearance is similar to a pedestrian in the central scale. Notice that, as the pedestrian
gets smaller (incresing s) the wavelength have to be shifted to smaller values. For values of
s > 2 it was not possible to confirm if the approximation holds, as the maximum height of
a pedestrian in the database is within the first octave.

The minimum wavelength that has been found to maximize the appearance of phase
congruency features at different scales, when compared with the original scale has been
equation 4.8. Arguably, raising the wavelength frequency can set the central filter close to
the Nyquist frequency or beyond it. If that is the case, aliasing artifacts arise in the images.
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Nevertheless, shifting the bank of filters overall improves detection rates.

ω′0,s =
s

λ0 ·∆λ(s−1)
(4.8)
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Figure 4.21: PSNR of a range of values of the minimum wavelength for different scales.

The results of applying this feature approximation in the HOPE detector to upscaled
images in the pyramid are shown in Fig. 4.22. The miss rate is consistently reduced for
every value of FPPI. This approach do not need additional computation time, as the banks
of filters only need to be calculated once. Notice that descriptors are computed at all scales
in the pyramid.
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Figure 4.22: Feature approximation.
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4.5. Scale Approximation

The feature approximation presented in the previous section can be reversed, in the
sense that, instead of approximating the appearance of scale s to resemble the central scale,
the latter can be approximated to the appearance of scale s. The main purpose of this
method is to reduce the computation time. In stead of up-sampling an image and then
computing its phase congruency score, the latter can be computed directly on the original
images and then be resized, after some modifications to the bank of log-Gabor filters have
been applied. This reduces the computation time of the detection algorithm, as processing
the phase congruency of large images is time consuming. By applying this method, the
largest image to process would have the same size as the central scale. Effectively, this
method is only used in images that would have required to be up-sampled. For large
pedestrians, the original image is still down-sampled and phase congruency is computed on
the smaller-sized image. Computing the phase congruency on the original image and then
downsampling the image to computed the descriptor is still possible, but doing so would
defeat the purpose of reducing the computation time.

As before, the minimum wavelength of the bank of log-Gabor filters is shifted for each
scale needed. This shift maximizes the appearance of the phase congruency image computed
on the original images to the phase congruency that would have if computed on a resized
version of the same image.

It has been found that the minimum wavelength that minimizes the error can be
approximated to (eq: 4.9). Figure 4.23 represent the PSNR for a set of υ values.

ω′′0,s =
1

υ ·∆λ(s−1)
=

s2

λ0 ·∆λ(s−1)
(4.9)

The error for this approximation is found to be:

e =

√√√√∑S
i=1

((
s2
i − arg maxυ PSNR(I0, Is, υ, s)

)2)
S

= 0.0219 (4.10)

Where s is the scale in the image pyramid, S is the total number of scales, PSNR is the
peak signal-to-noise function, I0 is the phase congruency image computed at scale s = 1,
with a minimum wavelength of υ, which is the parameter to be optimized, and Is is the
phase congruency image at scale s. This error is calculated within the upper octave. For
larger values, the approximation does not hold, and new banks of filters may be needed, for
instance, to approximate s = 2 to scales s > 2.

This method is tested using the HOPE-Lin descriptor as a benchmark. The detection
evaluation process follows the same methodology as explained before. The detection DET
curves for the original definition of the HOPE descriptor and the scale approximation
version are plotted in Fig. 4.24. While slightly degrading performance, this approximation
closely resembles the original results, using a fraction of the time. On average, using this
method requires 58% of the processing times, for the scales per octave tested in section
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Figure 4.23: Scale approximation

4.3.1. This time only takes into account the time to process the descriptor, not the time
that takes the classfication.
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Figure 4.24: Scale approximation.

Finally, the scale approximation algorithm is sumarized in algorithm 1.
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Algorithm 1 Scale approximation
Require: s in Scales in Pyramid

Precomputed the log-Gabor filters
for s do

if s > 1 then
compute log-Gabor filters with ω′′0,s, where ω′′0,s = s2

λ0·∆λ(s−1)

else
compute log-Gabor filters with ω′0,s, where ω′0,s = s

λ0·∆λ(s−1)

end if
end for
Detection
for s do

if s > 1 then
Compute phase congruency on original image
Resample phase congruency image by s.

else
Resample image by s.
Compute phase congruency on resampled image.

end if
end for
Compute descriptor
Classifify
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4.6. Improving the performance

Pedestrian detection is a very broad area, with many topics involved. Two of the most
relevant ones that hasn’t been discussed yet in this dissertation are generation of regions of
interest and occlusion handling. In this section, some notions about those topics, derived
from initial research, are proposed.

4.6.1. Selection of Regions of Interest

Detecting pedestrians in images involves identifying regions of the image that have
characteristics consistent with belonging to a person. Specialized classifiers are able to
distinguish the target object from the background, or other similar objects. One of the most
common approaches, and the one followed in section 4.3, consists of an exhaustive search,
applying the classifier at every position in the image. However, intuitively it is easy to see
that large area of the images do not contain relevant information. Applying a complex
classifier to those irrelevant areas of an image is a waste of time, a very important factor in
ADAS. In this section two methods for selecting regions of interest (ROI) are proposed.

4.6.1.1. Selection of regions of interest by temperature segmentation.

Far infrared images have a very valuable advantage over the visible light ones. They do
not depend on the illumination of the scene. The output of those cameras is a projection on
the sensor plane of the emissions of heat of the visible objects, which is proportional to their
temperature. Some authors have develop classification methods based on the temperature
distribution of the human body. In chapter 3 a method for classifying pedestrians in FIR
images, based on temperature templates was proposed. In this section, the described
methodology for thresholding images based on object temperature is used to extract regions
of interest. The outline of the algorithm is as follows. The FIR images are thresholded
based on the temperature of the human head. The position in the image of the top the
extracted blobs is reprojected to world coordinates and, assuming that the ground is flat a
ROI is generated in the image. These ROIS are rectangular and with constant aspect ratio.
In order to project between image an ground coordinates the projective model has to be
defined, which follows.

Projective model The camera is modeled as a pin-hole. The intrinsic parameters are
know and so is the position and orientation of the camera. The world system of coordinates
O is placed on the ground plane, moving along with the vehicle and so does the camera
position O′ (Fig. B.3).

The position of the pedestrian is modeled as a gaussian distribution in the xy plane of
the ground. To determine accurately its distance to the camera, the homography of the
ground plane onto the sensor is calculated for each frame. The projection of a 3D point in
the image plane can be done if it is known its relative position to a certain plain. In this
case, the camera position relative to the ground plane is known and can be assumed that it
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Figure 4.25: Reference system of world and camera coordinates.
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is constant. A more detailed explanation of the system setup can be found in section annex
B. The rotation of the camera is known via a three degrees gyroscope. The homography
function is stated in equation 4.11,

UV
S

 = M ·

R ·
XY
Z

+

txty
tz

 (4.11)

M =

fu 0 cu
0 fv cv
0 0 1

 (4.12)

R = Rx ·Ry ·Rz (4.13)

Rx =

1 0 0

0 cos(α+ ∆α) sin(α+ ∆α)

0 − sin(α+ ∆α) cos(α+ ∆α)

 (4.14)

Ry =

cos(β + ∆β) 0 − sin(β + ∆β)

0 1 0

sin(β + ∆β) 0 cos(β + ∆β)

 (4.15)

Rz =

 cos(θ + ∆θ) sin(θ + ∆θ) 0

− sin(θ + ∆θ) cos(θ + ∆θ) 0

0 0 1

 (4.16)

where fu and fv are the focal lengths of the lens in the u and v directions; (cu, cv)

is the optical center of the sensor in point O′ of figure B.3 , R is the rotation matrix
around the three axis x, y, z and t if the translation vector of the optical center of the
camera from the coordinates origin. The camera is located directly above of the ground.
Its coordinate system is imaginary and correlated with the axis of the camera. Because
of it, the translations in the xy plane are always zero (tx = ty = 0). The only translation
is the distance of the optical center to the ground tz. Initially, the rotation of the sensor
plane is α = π

2 , β = π and θ = 0. Using an IMU the increments of the angles (∆α, ∆β,
∆θ) are updated every frame. U and V are the image homogenous coordinates. The true
pixel coordinates are u = U

S and v = V
S .

The results of the projection of a world point in the image plane are specially sensitive
to variations of the skew angle ∆α (See figure B.3). In the presented system this angle is
know for each capture frame with the help of an gyroscope with three degrees of freedom
attached to the same base as the camera.

Most of the time, while driving in urban environments, the roll angle is close to zero. If
that restriction can be applied, the projection is greatly simplified.
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(a) Original Image. (b) Hotspots. (c) Regions of Interest.

Figure 4.26: Selection of regions of interest.

u = cu −
fu · wx

tz · sin(∆α)− wy · cos(∆α)
(4.17)

v =
tz
(
cv cos

(
π
2 + ∆α

)
+ fv sin

(
π
2 + ∆α

))
− wy

(
fv cos

(
π
2 + ∆α

)
− cv sin

(
π
2 + ∆α

))
tz cos

(
π
2 + ∆α

)
+ wy sin

(
π
2 + ∆α

)
(4.18)

where fu and fv are the focal lengths on the u and v directions of the image; cu and cv
are the coordinates of the center of the image; cu and cv are the image coordinates from
the upper left corner. These four parameters are measured in pixels. tz is the height of the
camera over the ground.

4.6.1.2. Extraction of warm areas.

Extraction of the warm areas is done by thresholding the image in two phases: the
first one tries to extract the heads of the pedestrians in the images; the second, the whole
pedestrian silhouette. Objects within the normal temperature of the human body are
thresholded. The threshold selection process was discussed in chapter 3. The result is a
binarized image, containing blobs that can represent parts of the human body, specially
heads and hands (figure 4.26). Since this first step searches for the pedestrian head, those
blobs that are not in the upper half of the image are ignored. Those blobs that are not
within some geometric restictions are also excluded.

Once the head candidates have been selected, a first set of regions of interest are
generated. The highest point of the head is also the top of the box, while the lowest point
is at the closest point of the ground at that resolution. This way, the whole body of the
pedestrian is included in the box, if there is any (figure 4.26c).

At this point only the position of the head in the image is know, thus these bounding
boxes have to be big enough to contain any pedestrian, no matter what height. A first
approach is to suppose that the head is at a height h from the ground plane on which
the pedestrian is standing. The distance of the pedestrian to the camera (wy) is given by
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Figure 4.27: Search of the pedestrian inside the previously calculated ROI.

equation (4.19), where wz is the camera distance to the ground plane, v is the position of
the top of the region of interest, in image coordinates, h is the height of the pedestrian
and fv is the vertical focal length. The base of the region of interest is calculated with
equation (4.18), for this new distance. The width of the bounding boxes is set to be 1/2 of
the height.

wy =
fv(h− wz)
v − cv

(4.19)

The regions of interest generated from the original image are now binarized with a
threshold of t1, that is the lower temperature established for the human body. Since most
pedestrians height is less than 190cm, h is set to 200cm. The distribution of temperatures
inside the ROI for most pedestrians will only seize a fraction of it. The window is then
resized, keeping the same proportions, assuming that the lowest part of the pedestrian are
the feet, and that those are resting on the flat ground ahead the vehicle (figure 4.27).

4.6.1.3. Selection of ROIS by edge density

In this section a fast way to discard areas with low probability of containing a pedestrian
is detailed. The outline of this method is as follows. First, a set of regions of interest is
created as rectangular boxes with a aspect ratio of 1/2. To avoid searching for pedestrian in
unlikely areas some geometric restrictions are applied. Only pedestrians on the ground plane
and inside the trajectory of the vehicle are looked for. Knowing the intrinsic parameters of
the pin-hole modeled camera and its position and orientation over the ground plane it is
possible to establish an homography projection of the ground plane over the sensor plane.
The regions of interest are created at fixed ranges of distances to the camera. The world
system of coordinates is placed on the ground plane, moving along with the vehicle and so
does the camera position.

The phase congruency score for every pixel in the image is determined by equation 3.9.
Regions of the image without significant phase transitions have a low phase congruency
score. On the other hand, regions with high scores are spatially distinguishable from its
neighbors. Smaller regions with constant phase congruency values are more likely to contain
useful information of borders belonging to pedestrians (Fig. 4.28). The relevance of each
pixel is set to be the inverse of its distance to the closer border. To evaluate the weight of
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each pixel a watershed segmentation [143] is performed over the distance transform of the
magnitude image of the phase congruency. As an example, Fig. 4.28d contains a watershed
segmentation of the distance transform image (Fig. 4.28c).

As explained before, the pixels of the watershed image have a weight based on the size
of the blob they belong to. Bigger blobs have lower weights, as they are smooth areas with
less important information. The score of each region of interest is the sum of the weight of
every pixel in it, normalized by the size of the ROI (equation 4.20).

S =

∑w
x=0

∑h
y=0 φx,y

w · h (4.20)

Where S is the score of the ROI, w is the width, h is the height and φx,y is the weight of
each pixel. If the score of the box is below a certain threshold, that region can be ignored
and won’t be fed to the classifier. In Fig. 4.28e only the surviving ROIs with a high score
are represented. Only this reduced subset will be further processed, thus reducing the
processing time.

4.6.2. Part-based detection

This approach presents an initial research on part based detection. The outline of
which is as follows: on heavily occluded pedestrians full-body detector usually have low
detection rates. However, the parts that are still visible can give a hint of the presence of
the pedestrian. This approach suggests combining the responses of parts in a Markov Logic
Network (MLN) that then decides if there are enough detected parts for the sample to be
considered a pedestrian. In practice a matrix of non-overlapping histograms of orientation
are used as features for the parts. Two approaches have been tested: building a predefined
set rules, and letting the Logic Network seek iteratively relations among all possible rules.
The resulting weights allow inferring the presence of pedestrians from incomplete samples
by looking for hidden part structures, outperforming rigid models looking for complete
objects, in the case of heavily occluded pedestrian.

Regarding the application of MLNs to pedestrian detection, Oliveira et al. presented in
[160] a Lidar-based system, immune to partial segmentation of data. The system infers
the relationship of the sub-segments and their context. In [161] their work is extended
in a multisensory scheme that fuse visual information with Lidar data, based on spatial
relationship of parts-based classifiers, via a MLN.

Markov logic networks (MLN) are a first order knowledge base, based on a set of logic
rules that define the occurrences of events or the relations or conditionality between them.
Each logical formula fi has an associated weight wi, which is trained using discriminative
learning [187] from a labeled database, and assumed to have equal prior probability. Thus
each logical statement is no longer binding, but the events they that imply will be more
likely to be true based on its weight.

The network models the joint distribution of the events. In this case, events are binary
variables that answer whether sample is positive or not. If any of these formulas are true,
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the network implies that the detection is positive. The probabilistic inference that responds
to the query isPedestrian is calculated on the minimum subset of events using the Lifted
Belief algorithm [188]. In equation 4.21, the joint probability of the events given their
responses to the logic formulation is defined as the normalized exponential product of the
formula-weight.

P =
e(
∑
i wifi)

Z
(4.21)

Where wi are the weights, fi are the set of logic formulae, and Z is the normalization
factor.

The detection window is divided into subparts and an SVM is trained for each one (Fig.
4.29). In the MLN, a positive detection of a part would imply that the query isPedestrian
is true.

For each cell in the pedestrian descriptor an SVM classifier calculates the boundary
between the pedestrian and background classes by searching the hyperplane that maximally
separates the training set. The SVM is trained with a subsample of the train dataset,
on which pedestrians have a lateral occlusion between 0 and 50%. Pedestrian and non-
pedestrian images are resized to have the same dimensions. The decision function in
equation 4.22 is optimized so that yk(x) maximizes the distance between the nearest point
(xi) and the hyperplane. The linear discriminant function is:

yk(x) = wT · Φ(xk) + bk =

nx∑
i=1

ny∑
j=1

m∑
l=1

wijlΦl(cij) + bk (4.22)

Where w is normal to the hyperplane, bk is the classification bias of part k, and bk
||w|| is the

perpendicular distance from the hyperplane to the origin. Φ(cij) ∈ Rm is the corresponding
histogram of gradients with m cell bins, at pixel cij . Φ is the kernel function that is used
to project the samples. In this evaluation a linear kernel has been used. The sample is
assigned to one of the two classes by thresholding the decision function, where a sample
with a score of y(x) > bk is classified as a pedestrian and as background otherwise.

Each pedestrian part classifier (y(pgi)) is evaluated by the area under the ROC curve
(auc). Only those with an auc over a threshold (thr) are used to calculated the MLN weights.
For each pedestrian classifier with auc > thr, the bias is selected by calculating the optimal
operating point of the ROC curve, that is, the one on which the curve intersect with the
line with slope

S =
c(P |N)− c(N |N)

c(N |P )− c(P |P )
· N
P

(4.23)

Where c is the cost of misclassifying one sample as a member of the opposite class,
and P=TP+FN and N=TN+FP are the total number the positive and negative samples,
respectively.
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(a) Original Image. (b) Phase congruency. (c) Distance transform.

(d) Watershed Clustering. (e) Regions of Interest.

Figure 4.28: Selection of ROIS by edge density.
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Figure 4.29: Descriptor blocks of pedestrian parts. For each block an SVM classifier is trained.
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Fixed set of First Order Logic rules The knowledge base is made from one rule for
each part classifier of a sample, plus a rule for the full-body detector. If a part is classified
as pedestrian-part the network imply that the sample is a pedestrian.

∀w, Body(w) ⇒ isPedestrian(w), ∀i ∈ np
∀w, isParti(w) ⇒ isPedestrian(w), ∀i ∈ np

Where np are the set of parts that have classifiers with an area under the roc curve
auc > thri, isParti(w, t) is true if part i of window w if classified as positive. Figure 4.30
shows the relative classification weight of pedestrian parts on the FIR database.

Figure 4.30: Relative classification weight of pedestrian parts scaled in wp = {0, 1}.

Structure Learning The set of logic rules can be automatically learned from the ground
truth database, along with their respective weights. The relation between each possible
combination of clauses is tested and added to the set of rules if there exist statistical
significance. This approach is used to detect incomplete pedestrians, be it because they are
occluded of because only part of it falls inside the image. Figure 4.31 shows a representation
of a latent structure made up from five parts for left-side occluded pedestrian. Occlusion
percentage is calculated as depicted in Fig. 4.32. The result is a MLN trained to find latent
structures of heavily occluded pedestrians. In this implementation, clauses are found using
a beam search algorithm [115].

The following results are based on set of bounding boxes containing occluded pedestrian,
cropped from the full-sized images, and resized to a common size. The test dataset has
been divided into five subsets based on the percentage of lateral occlusion. Figure 4.33
represents the true positive rate plotted against the false positives per image on the FIR
database. Those are the results of applying the part-based model, where Fig. 4.33a are
results of using the fixed set of logic rules, and Fig. 4.33b represent the results of the latent
structure. For reference, Fig. 4.34 represents the roc curve of full body classification on the
FIR database for different percentages of occlusion. It can be appreciated that, for large
values of occlusion, classification degrades. In both part-based detection approaches, the
classification results get significantly better for large values of occlusion, while it is slightly
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Figure 4.31: Occlussion

Occluded area(ao)

Figure 4.32: Occluded area of the region of interest.

worse than the full-body approach for samples on which most or all of the pedestrian
is visible. That being said, detection rates of largely occluded pedestrian are still not
comparable with full body samples.

Figure 4.35 represents the roc curves of each individual SVM trained on a part of the
pedestrian. Only roc curves with an area under the curve auc > thr are plotted.

4.7. Conclusions and Discussion

In this chapter a detection framework for pedestrian detection in FIR images is presented.

In section 4.2 the LSI FIR pedestrian detection dataset is presented. It is made from
sequence of FIR images captured from a static or moving vehicle is urban environments.
The images comes with annotations, where pedestrians are labeled as rectangular bounding
boxes of constant aspect ratio. The database is intended to be used as benchmarking for
new detectors of pedestrians in FIR images. It is also released with the idea to be useful for
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on the fixed set of rules for different
percentages of occlusion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve

False posit ive rate

T
ru

e
p
o
si
ti
v
e
ra

te

Body + Parts (5) Auc = 0.9768
Body + Parts (10) Auc = 0.9638
Body + Parts (15) Auc = 0.9327
Body + Parts (18) Auc = 0.8474
Body + Parts (20) Auc = 0.7760

(b) Roc curve of logic inference of latent
structure for different percentages of
occlusion.

Figure 4.33: Roc curves for occluded pedestrians using a full model and part based detection based
on logic inference. Legend states occlusion and area under the curve (auc).

training new descriptors that need context information and cannot be trained on a classic
classification database, thus it is divided in a train and a test subsets.

The detection framework and the evaluation methodology used to evaluate the pedestrian
detectors are also discussed in this chapter. From the results it can be concluded that FIR
images contain useful information for the task of detecting pedestrian. Even in challenging
images of the detection dataset, such as the ones captured on hot summer days, the presented
descriptors achieve high detection rates. These results may lead to reconsidering the role
assigned to FIR cameras, as night vision devices. A detection system that is independent
of external illumination conditions, and that is able to properly detect pedestrians both
in day or night, is a very useful addition to an ADAS system. The experimental study
of detection performance in full-size images suggest that there is correlation between the
per-window results of the classifiers and their per-image performance.

The results presented in the evaluation section has led to a methodology that addresses
the issue found on detection of small pedestrians. After resizing the image, in order to find
small pedestrians, those appear with poor detail and spread borders, which makes their
appearance quite different from that of a larger pedestrian. The propose solution is to
computed the HOPE descriptor using a shifted version of log-Gabor filters that approximate
the appearance of small pedestrian to that found on pedestrians in the central scale of the
image pyramid. The application of the described method improves detection rates at all
values of FPPI.

Computing the phase congruency of the images in the scale pyramid takes a large
fraction of the time needed to compute the descriptor. In this chapter, a method for
reducing that time is presented. In stead of computing it on the up-sampled images of
the pyramid, it is processed on the central scale by using a new set of shifted log-Gabor
filters, and then resampled. The results of this approximation closely match the ones of the
original HOPE descriptor, while considerably reducing the computation time.

This chapter also addresses two important topics on pedestrian detection in images:
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Figure 4.34: Roc curve of full body classification for different percentages of occlusion. Legend states
occlusion and area under the curve (auc).
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Figure 4.35: Roc curves of the best performing part classifiers. Only parts classifiers with an area
under the curve auc > thr are plotted.
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ROI generation and occlusion handling. The presented ideas in these areas constitute initial
research, and will be further developed. In the section of ROI generation, two methods for
selecting interesting parts of the images have been described. In the first one, pedestrians
are segmented by their apparent temperature. The second is based on edge density. From
the phase congruency computed at the central scale, areas that do not hold enough detail
are discarded. The main purpose of a ROI algorithm is to reduce the computation time
of the overall detector. An evaluation of the computation time has been stablished as
future research. That same section also propose a method for improving the classification of
occluded pedestrians. A Markov Logic Network is used to infer the presence of a pedestrian
based on the responses of a full-body descriptors and its parts. The initial results presented
suggest that this method improves detection in largely occluded pedestrians. However, as
future research, a through evaluation of its merits should be done.

Other topics that will be addressed in future research are the following. In [58] it is
demonstrated that features, such as histograms of orientation can be calculated in one
image and then be approximated to nearby scales. This idea can be applied to the phase
congruency scale approximation presented in this chapter. The resulting algorithm would
then not need to resample the approximated phase congruency to calculate the descriptor.
In stead of that, the descriptor would be computed in the approximated phase congruency
image and then be approximated to the equivalent descriptor at a different scale. This
would make unnecessary to resample the image, and thus the time to process the image
pyramid could be greatly reduced. This procedure would be specially useful in the case
of the Int-HOPE descriptor, which can benefit from both techniques. Finally, a new line
of research will be to combine different detector, that achieves better detection rates for
different pedestrian size.
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5
Tracking

Tracking is defined as the identification of a particular pedestrian in a sequence of
images. There are many advantages to the use of a tracking step in any pedestrian detection
system. First, the pedestrian’s future trajectory can be anticipated, a concept of great
interest to the topic of ADAS. By integrating the movement information from a set of
consecutive frames it is possible to infer the speed and direction of the pedestrian. The
position of the pedestrian in the immediate future may be used as a preemptive warning to
the driver. Furthermore, the position of the pedestrian can be refined by filtering abrupt
variations in its trajectory.

Tracking can also be used to improve the detection performance. False positives happen
when an object, that may resemble the shape of a pedestrian, is incorrectly identified as
being one. Those mis-detections are usually isolated and are not repeated in successive
frames. A tracking algorithm can disregard not recurring detections, reducing the number
of false positives. Another benefit of using a tracking algorithm is the reduction of false
negatives. A detector may sporadically fail to correctly identify a particular pedestrian in
a number of frames. A tracking algorithm may be able to infer that it is still there, thus
reducing the number of false negatives. Similarly, a pedestrian being momentarily occluded
behind an object is still of interest and should be detected. Without tracking there is no
way to tell those occluded pedestrians are really there.

Figure 5.1 shows a pedestrian detected in a subset of images captured in a sequence.
Every detection is displayed as a bounding box that enclose the body of the pedestrian.
In Fig. 5.2 the predictions of the pedestrians after updating are shown. Notice that each
individual pedestrian is enclosed in a bounding box with a persistent color. In the fourth
frame a occluded pedestrian is still labeled, though there has not been a positive detection
for that image. In the same image, an incomplete pedestrian, falling partially outside the
image is still detected.

Tracking involves estimating the state of the position of a pedestrian from measurements
in successive images. The kalman filter uses a series of measurements observed over time.
It can also cope with noisy measurements and mis-detections. The resulting predictions of
the state tend to be more accurate than an isolated measurement. A thorough explanation
of the kalman filter can be found in [212]. In this section the kalman filter is used to track
the coordinates of the bounding box of the detected pedestrian in the previous step. Other
tracking methods, such as Particle Filters have been considered but discarded due to their
computational complexity.
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Figure 5.1: Detections

Figure 5.2: Predictions
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5.1. Kalman Filter Variables

Initial conditions The state x̂ is a six-dimensional gaussian vector with covariance P ,
made up from the coordinates of the upper left corner of the bounding box and its height
(u, v, h) and their velocities (δu, δv, δh) as stated in equation 5.1. The initial state is the
coordinates of the first detected bounding box with zero velocity (equation 5.2). Initially
the covariance matrix of the state is heuristically set to be equation 5.3.

x̂ =
[
u δu v δv h δh

]
(5.1)

x0 =
[
u0 0 v0 0 h0 0

]
(5.2)

P0 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(5.3)

5.1.1. Time Update

5.1.1.1. Static Model

Tracking pedestrians from a moving vehicle imply tracking their position in the image,
which changes due to two factors: the movement of the pedestrian and the ego-motion of
the vehicle. The latter is usually unavailable in pedestrian datasets. If that is the case, the
following assumption has to be made: if the acquisition time is small enough, the motion of
the vehicle between two consecutive measurements is accounted for in the measurement
noise. As such, the time update model is set to be:

x̂−k = Ax̂k−1 + wk (5.4)

Where A is the state transition model (equation 5.5). Assuming constant velocity, the
position in time k is the one in k − 1 plus its increment between updates.

A =



1 1 0 0 0 0

1 0 0 0 0 0

0 0 1 1 0 0

0 0 1 0 0 0

0 0 0 0 1 1

0 0 0 0 1 0


(5.5)
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5.1.1.2. Motion Model

In this section, the time update process using IMU information and the Unscented
Transform (UT) is explained.

For every time increment k− 1|k the state of the filter is updated. There are two reason
the state changes between two measurement: the motion of the pedestrian and the motion
of the vehicle. This movement may be simplified as a roto-translation transformation (φrt)
of the coordinate axis of the vehicle on the xy plane: a translation ∆ty in the y and a
rotation ∆θ around the yaw axis. The motion model is represented in Fig. 5.3. The
translation and rotation are measured with an IMU device.

y

x

y′

x′

∆ty

∆θ

Figure 5.3: Representation of the movement of the vehicle between two consecutive frames. The
perspective of the object, represented as a circle, changes due to a roto-translation of the camera.

After the roto-translation the coordinates of the bounding box have to be updated.
Equation 5.6 is the new state after applying the transformation φrt, where uc (equation 5.7)
and uv (equation 5.8) are the updated coordinates of the upper left corner of the bounding
box. Since the height of the pedestrian is unknown, the height of the bounding box is set
to be the same as before plus δh. This approximation holds for the tested sequences, while
driving in urban environments.

x̂′k−1 = φrt(x̂k−1) (5.6)

uc =
(cu

2fv + fu
2fv − cufv(u+ (h/4))) sin(∆θ) + cu∆tyfu(v + h− cv) + fufvu cos(∆θ)

(cufv − fv(u+ (h/4))) sin(∆θ) + ∆tyfu(v + h− cv) + fufv cos(∆θ)
− w

2
+ δu (5.7)
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vc = cv − h−
fv

fu fv cos(∆θ)
cv fu−fu (v+h) −∆ty + fv sin(∆θ) (cu−(u+(h/4)))

cv fu−fu (v+h)

+ δv (5.8)

The overall time update is defined in equation 5.9, where k is the update step, B is
the control model and u is the control input. The process noise w is a gaussian vector
with mean zero and covariance Q (equation 5.10), where q is heuristically set to q = 10−4.
There is no control over the movement of the pedestrian, thus the control input is set to
ck−1 =

[
0 0 0 0 0 0

]T .
x̂k = x̂′k−1 +Bck−1 + wk−1 (5.9)

Q =



q 0 0 0 0 0

0 q 0 0 0 0

0 0 q 0 0 0

0 0 0 q 0 0

0 0 0 0 q 0

0 0 0 0 0 q


(5.10)

The described time update transformation is highly non-linear, which breaks one of
the conditions to use the Kalman Filter equations. The Unscented Kalman Filter (UKF)
[108] extends the general Kalman filter to non-linear transformations of a random variable
without the need of linearization, as the Extended Kalman Filter (EKF) does [206]. The
UKF achieves better results than the EKF for highly non-linear transformations with
approximately the same computational demands.

The Unscented Transformation propagates the random variable across the non-linear
system using a minimal set of deterministically chosen weighted sigma points. The mean
and variance of the transformed variable are accurate up to the second order of Taylor
series expansion.

For an augmented random variable of dimension n with mean x̄ and covariance P the
sigma points χ are in equation 5.11.

χ0 = x̄

χi = x̄+
√

(n+ λ)P i = 1, . . . , n (5.11)

χi = x̄−
√

(n+ λ)P i = n+ 1, . . . , 2n

where λ = α2(n+ κ) is an scaling factor that determines how much spread are sigma
points around the mean x̄. In this case the values of α and κ are heuristically set to α = 0.01

and κ = 200.

The selected weighted sigma points are propagated though the non-linear function f
and the mean and covariance of the state are approximated.
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For each sigma point, two weights are calculated, wc and wm in equation 5.13.

wc0 =
λ

n+ λ
+ 1− α2 + β (5.12)

wm0 =
λ

n+ λ
(5.13)

wmi = wci =
1

2(n+ λ)

Where β = 2, as noise is initially considered to follow a Gaussian distribution.

Once the selected sigma points are propagated though the non-linear function f (equation
A.31), weights wm are used to approximate the mean (equation A.32) and wc to approximate
the covariance (equation A.33) of the state.

γi = f(χi) i = 0, . . . .2n (5.14)

x̂k|k−1 =
2n∑
i=0

wmi γi (5.15)

Pk|k−1 =

2n∑
i=0

wci [γi − x̂k|k−][γi − x̂k|k−1]T (5.16)

5.1.2. Measurement Update

The measurement update equation is 5.17. The measurement ẑ is the three-dimensional
vector of the bounding box location (u, v, h), where (u, v) are the coordinates of the upper
left corner of the bounding box and h is the height of the box, measured in pixels.

ẑk = Hx̂k + vk (5.17)

The measurement model, denoted as H in equation 5.18, remaps the six-dimensional
state vector to the three-dimensional measurement vector. The measurement v is a gaussian
vector with zero mean and covariance R (equation 5.19), where r is heuristically set to
r = 4.

H =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 (5.18)



5.2. Detection Matching 123

R =

r 0 0

0 r 0

0 0 r

 (5.19)

The remaining steps of this approach follows the same equations as the original Kalman
Filter. For brevity, those equations are stated in section A.1.3.

5.2. Detection Matching

A detection may be considered to be the tracked pedestrian if it minimizes the Munkres’
assignment algorithm [152]. The cost of assigning a detection to a kalman filter is defined
by the square Mahalanobis distance between the state and the measurement in equation
5.20.

d(z) = (z −Hx)T · 1

HPHT −R (z −Hx) (5.20)

The cost of assignment is thresholded, so if any measurement has a distance d(zi) > thr
it is set that d(zi) = ∞. In this implementation the threshold is set to thr = 20. After
assignment, three sets of predictions are generated:

Pr: is the set of detections that have been matched with any of the tracked pedestrians.

U : is the set of kalman filters that have not found a match among the last set of
measurement. This set does not undergo a measurement update. The fact that there
has not been a positive match may be due to an isolated mis-detection or to the
disappearance of the pedestrian from the field of view of the camera. An internal
counter of every member of this set is incremented by one. If it reaches a maximum
value of ku it is removed from tracking. If it is again found in future assignment steps,
that counter is set to zero. In the experimental section of this chapter this maximum
number of consecutive mis-detections is set to ku = 5.

N is the set of detections that have not found a match among the kalman filters. This
may be due to a new pedestrian or to a false positive. A new kalman filter is created
for every member of the N set. However, those kalman filters are not yet assigned
the designation of pedestrian but instead are labeled as uncertain. The kalman filter
is moved to the Pr set once it is detected in a minimum of kn consecutive frames.
In the experimental section of this chapter this minimum number of consecutive
mis-detections is set to kn = 5.

5.3. Experimental Results

The presented tracking algorithm has been tested in five sequences of the LSI database.
The experimental results section is divided into several special cases: multiple non-occluded
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pedestrians, multiple occluded pedestrians and tracking of pedestrians from a moving
vehicle. The evaluation methodology used in this section is the same as the one described
in chapter 4. A detection is considered positive if it overlaps in more than ov = 0.5 with an
annotated ground truth bounding box. The performance of the overall pedestrian detectors
is assessed by comparing the Precision-Recall (PR) curves of the detectors with an without
the tracking algorithm. For visualization purposes, the detections are projected and plotted
on the xy plane of the ground. Raw detections from the detector are plotted as blue dots.
Predictions of the filter are plotted with different colors, one for each individual pedestrian.

5.3.1. Non-occluded Pedestrians

Sequence #1 Figure 5.4 shows a subset of sequence #1. In it, two pedestrians walk
heading getting further from the camera and eventually turning around and coming back.
The detections, projected on the ground plane are plotted in Fig. 5.5.

(a) Frame 150 (b) Frame 200 (c) Frame 250

(d) Frame 300 (e) Frame 350 (f) Frame 400

Figure 5.4: Samples of tracking test sequence # 1
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(a) Unfiltered tracks
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(b) Filtered tracks

Figure 5.5: Pedestrian detections projected on the ground plane (sequence # 1).
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In Fig. 5.6 the PR curves for tracked and untracked detections are plotted. It should be
noted that there are not precision values for all possible recall values. This is because the
threshold for a detection to be considered a pedestrian is set deliberatively high. Though
the miss rate is rather high, the number of false positives is set to a low value. The tracking
algorithm removes the remaining false positives, which appear in a non-recurring fashion.
The tracking algorithm is also able to infer the presence of the pedestrian, disregarding the
sporadic mis-detections. Interestingly, for this particular sequence the average precision
after the tracking algorithm is AvPR = 1.
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Figure 5.6: Pedestrian detections projected on the ground plane (sequence # 1).

Sequence #2 Figure 5.7 shows a subset of sequence #2. This particular sequence was
shot in daylight on a hot day. It should be noted that the number of false positives is
greater than in sequence #1, as can be seen on the left side of figure 5.8. The area where
there is a greater density of false positives match an area of the image under direct sunlight.
The high decision threshold means that difficult pedestrians are missed, as can be seen in
Fig. 5.7e.

In Fig. 5.6 the PR curves for tracked and untracked detections are plotted. The
application of the tracking algorithm actually make results worse for low recall values, due
to frequent mis-detections appearing in the same area.

5.3.2. Occluded Pedestrians

In this subsection a more challenging scenario, pedestrian tracking under occlusion, is
considered. The two following examples contains pedestrian crossing in front of each other.

Sequence #3 Figure 5.10 shows a subset of sequence #3, shot in front of a busy zebra
cross, with pedestrians crossing the street in both directions. From the filtered tracks in Fig.
5.11 it is noticeable that, though the algorithm is able to track each individual pedestrian,
their positions in the 3d world are not accurate. Though by analyzing the sequence it is
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(a) Frame 300 (b) Frame 400 (c) Frame 500

(d) Frame 600 (e) Frame 700 (f) Frame 800

Figure 5.7: Samples of tracking test sequence # 2

−5 0 5
5

10

15

20
Pedestri an pro je c t i ons

x (m)

y
(m

)

(a) Unfiltered tracks
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(b) Filtered tracks

Figure 5.8: Pedestrian detections projected on the ground plane (sequence # 2).

evident that the pedestrians follows a rectilinear path, the projected detections have errors
of several meters.

Figure 5.12 shows the PR curves for the filtered and unfiltered detections. It shows that
the precision remain higher for most of the recall range in the filtered sequence.
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Figure 5.9: Pedestrian detections projected on the ground plane (sequence #2).

(a) Frame 0 (b) Frame 50 (c) Frame 100

(d) Frame 150 (e) Frame 200 (f) Frame 250

Figure 5.10: Samples of tracking test sequence # 3

Sequence #4 Figure 5.13 shows a subset of sequence #4. In it two pedestrians walk in
complex trajectories falling several times out of the field of view of the camera.

The PR curve in Fig. 5.15 shows that filtering the detection allows for every pedestrian
to be detected, as there is a value of precision for a value of recall of one. However, the
overall precision rate degrades. This is due to the filter following the pedestrians once they
leave the field of view of the camera. Each tracker allows for the pedestrian to be missing
for ku frames. The ground truth bounding boxes are only annotated for visible pedestrians,
so predictions falling outside the image are considered as false positives.
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(a) Unfiltered tracks
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(b) Filtered tracks

Figure 5.11: Pedestrian detections projected on the ground plane (sequence # 3).
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Figure 5.12: Precision-Recall curves of filtered and unfiltered tracks (sequence # 3).

5.3.3. Motion Model

Sequence #5 Figure 5.16 shows a subset of sequence #5. In it, a pedestrian walking
towards the camera is tracked from a moving vehicle.

Figure 5.17 shows the raw detections as well as the predictions of the filter using the
static and the dynamic model. In Fig. 5.17a there can be seen large gaps in the pedestrian
position. Those are not so evident after applying the static filter (Fig. 5.17b). When
the pedestrian is close to the camera, the displacement of the detection window is more
pronounced between two consecutive frames.

In Fig. 5.18 the PR curve of sequence #5 is shown. The overall precision of the
filtered detections is higher than the unfiltered ones. It is to be noted that the average
precision for the static and motion models is the same. While driving at low speeds in
urban environments the movement of the vehicle between two consecutive frames is small
enough for the static model to apply. As seen in Fig. 5.17 the static motion filter loses
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(a) Frame 100 (b) Frame 200 (c) Frame 300

(d) Frame 400 (e) Frame 500 (f) Frame 600

Figure 5.13: Samples of tracking test sequence # 4
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(a) Unfiltered tracks
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(b) Filtered tracks

Figure 5.14: Pedestrian detections projected on the ground plane (sequence # 4).
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Figure 5.15: Precision-Recall curves of filtered and unfiltered tracks (sequence # 4).

(a) Frame 40 (b) Frame 50 (c) Frame 60

(d) Frame 70 (e) Frame 80 (f) Frame 90

Figure 5.16: Samples of tracking test sequence # 5
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the pedestrian and a new filter is created for the same pedestrian. However, there is a
correct detection for all intermediate frames because, though the location of the detection
bounding box is slightly misplaced, it still overlaps with the ground truth bounding box.

Sequence #6 Figure 5.19 shows a subset of sequence #6. The sequence was recorded
from a moving vehicle and two special situations may be found in it. The first one is the
approximation to a zebra cross, where multiple pedestrians are crossing the street or waiting
to cross it on the sidewalk. While crossing, the pedestrians are occluded by other vehicles
stopped at the zebra cross. The second part of the sequence involves driving around a
roundabout. The lateral movement of the camera causes a ghosting effect on the images,
lowering the detection accuracy of pedestrians walking on the sidewalk. In Fig. 5.20 the
pedestrians detections are projected on the ground plane. The motion model is specially
helpful in tracking pedestrians while the vehicle is driving around the roundabout. While
the vehicle is driving straight, both models behave the same way.

In Fig. 5.21 the PR curves of sequence #6 are shown. The average precision is highest
for the motion model filter. However it is evident that, in any case, the average precision is
low. This is due to two reasons. First, pedestrians remain occluded for a long time, while
the ground truth annotations assert that they are still there. Secondly, there are a large
number of small pedestrians that are mis-detected due to the ghosting effect caused by the
lateral movement of the camera.

5.4. Conclusions

In this section the tracking step of the pedestrian detection algorithm has been presented.
An Kalman FIlter has been used to track moving pedestrians from a static or moving
vehicle, based on the coordinates of the bounding boxes generated by the detector. Only
detections with a high SVM score are used to track pedestrians, which increases the number
of false negatives. However, experiments shows that the tracking step of the algorithm is
able to successfully track a pedestrian, even though there may be isolates mis-detections.
The tracking algorithm is also able to filter out false positives, by disregarding erratic
detections. In some occasions, this approach may also degrade the detection performance.
A pedestrian is removed from the tracking stack if there is no matching detection in a
number of consecutive images. Before it is removed, the tracking algorithm is inferring its
position from previous information, which may no longer apply. Also, for a detection to
be included in the pedestrian stack, there needs to be a minimum amount of consecutive
detections. This keeps the number of false positives low, but also increases the number
of false negatives. These issues may be solved by applying a different methodology to
the evaluation of the results. In ADAS systems, the most important factor is to fed the
driver with pertinent and timely information. An study on reaction times of the driver
is proposed as a future work. This study will allow for a refined evaluation methodology,
where a detection will be considered correct if the information provided to the driver is
useful in preventing an accident, and incorrect if there is no need for the driver to act.
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Figure 5.17: Pedestrian detections projected on the ground plane (sequence # 5). a) Unfiltered tracks;
b) Filtered tracks (Static Model); c) Filtered tracks (Dynamic Model).
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Figure 5.18: Pedestrian detections projected on the ground plane (sequence # 5).
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(a) Frame 80 (b) Frame 100 (c) Frame 120

(d) Frame 620 (e) Frame 640 (f) Frame 660

Figure 5.19: Samples of tracking test sequence # 6

−10 −5 0 5 10
5

10

15

20

25

30

35

40

45

50
Pedestri an pro je c t i ons

x (m)

y
(m

)

(a)

−10 −5 0 5 10
5

10

15

20

25

30

35

40

45

50
Pedestri an pro je c t i ons

x (m)

y
(m

)

(b)

−10 −5 0 5 10
5

10

15

20

25

30

35

40

45

50
Pedestri an pro je c t i ons

x (m)

y
(m

)

(c)

Figure 5.20: Pedestrian detections projected on the ground plane (sequence # 6). a) Unfiltered tracks;
b) Filtered tracks (Static Model); c) Filtered tracks (Dynamic Model).



134 5. Tracking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
r
e
c
is
io
n

Precision - Recall

Filtered Dynamic Model (AVPR 0.28884)
Filtered Static Model (AVPR 0.23504)
Unfiltered (AVPR 0.27468)

Figure 5.21: Pedestrian detections projected on the ground plane (sequence # 6).
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Conclusions and Future Work

Pedestrian detection in computer vision is a challenging task. Though it is a research
field that can be dated a few decades back, the interest on it is still growing. There are a
large number of topics involved, some which are yet not quite solved. Pedestrians present
an extraordinary variation in shape, size, clothing, and temperature. The development of
classification schemes that can efficiently separate pedestrian from background is one of
the more active areas. Others include occlusion handling, tracking and machine learning
algorithms.

This thesis is framed within the topic of pedestrian detection in FIR images, which is
a relatively new area in this field; one is not as developed as computer vision using VL
imagery. Both present similarities: the same variability of shapes, sizes and distances to
the camera are present. However, there are also few key differences the most important
of which is the illumination need. The image from a FIR camera present magnitude that
is proportional to the temperature of the scene. As such, there is no color information
and texture is less noticeable but have the great advantage of being able to work without
external illumination. There are also drawbacks to the application of FIR cameras to
pedestrian detection in ITS. The most immediate of which is budget-related. Though the
prices of these kinds of cameras are getting lower they are still expensive, when compared
with a VL camera. For the purpose of object recognition there are a number of issues
derived from the use of these cameras, namely, the relation between contrast of the image
and ambient temperature, or the blurring effect seen on hot objects due to camera motion
and the clothing, which also adds variability to the appearance.

The objective of a pedestrian detection in an ADAS scheme is to alert the driver of
dangerous situations. The driver would then have more reaction time, and an accident may
be avoided.This thesis aims to provide a system for analysis of the driving environment
capable of detecting the presence of pedestrians by means of a micro-bolometer camera,
with sensitivity in the far infrared range of the spectrum. An artificial perception system
identifies pedestrians in front of the vehicle and determines whether there is any risk that
endangers the integrity of pedestrians as well as passengers. In practice, the mere presence
of a pedestrian in the field of view of the camera is considered as a dangerous sign.

The structure of this document follows one of the most used detection paradigms. It is
divided in classification techniques, the application of those techniques to full-sized images
and temporal tracking of the detected pedestrians. It also contains an evaluation of the
techniques in the state of the art, which focus on techniques developed in the topic of
pedestrian detection, be it using FIR or LV images.
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The term classification, in this work, has been loosely used to express the combination
of a descriptor and a machine learning algorithm to give a similarity score to a cropped
image that may, or may not contain a pedestrian. The first work developed in this topic
has been a variation of the probabilistic template scheme for pedestrian classification in
FIR images. As discussed before, the output of a FIR camera based on a microbolometer
changes with variations of its internal temperature. In order to assess if a cropped sample
contains a pedestrian or any other object, a probabilistic template based on temperature is
used. The main purpose of this method is to achieve invariance to ambient temperature.
Though achieving surprisingly good results, for such a straightforward method, the next
part of the classification chapter focus on the development of a descriptor with invariance
to contrast but that also defines the shape of a pedestrian in a more descriptive manner.

The new descriptor, which has been dubbed as HOPE, has its foundation on the
histograms of gradients descriptors, which was originally though to work on VL images,
although it has been probed that its application to FIR images is also possible. This
descriptor addresses contrast invariance by applying a normalization of neighboring his-
tograms. The proposed descriptor addresses two requirements of a pedestrian detection in
FIR images. In the first place, the descriptor follows the scheme of encoding the shape of
the underlying object as a grid of histograms of orientation, thus encoding the shape in a
descriptive manner. The second objective is to make it invariant to contrast and changes
in illumination. Instead of using the gradient of the image, a different feature should be
used, one that is intrinsically invariant to contrast. The phase congruency feature has been
chosen because, unlike gradient or local energy, this feature will render the same magnitude
for the shape of an object in two images with different illumination. Particularly, the values
are alway in the [0− 1] range, where a point where all its Fourier component are in phase
will produce a 1. A point where none are in phase will produce a 0. This response is
repeatable across different images of the same object captured under varying conditions of
contrast or illumination. The various parameters on which the descriptor relies have been
tested and discussed, focusing on the most relevant ones.

One of the contributions to this work is the LSI Far Infrared Pedestrian Dataset.
This collection of images is released with the hope that it may be useful to develop new
algorithms for pedestrian detection in FIR images. The database contains a large number
of labeled images, where each pedestrian is represented as rectangular box of fixed ratio. It
has been recorded at different location, and with different illumination and temperature
conditions, both statically and from a moving vehicle. The sequences captured with the
car moving have been taken in real urban traffic environments. These include different
actions, for example, pedestrian crossing traffic lights, other vehicles on the road and
occluded pedestrians walking on the sidewalk. Regarding pedestrian databases, different
sources of information may increase the performance of a detector, by fusing data from
multiple sensors. As future work, the LSI Pedestrian Dataset will be expanded to include
data from other sensors, such a visible cameras, stereoscopic systems (both VL and FIR),
rangefinder measurements, and contextual information, such location of the vehicle (GPS)
and accelerations (IMU).

The presented database was used to compare different descriptors, which are commonly
used in VL images. The experiments suggest that the approaches based on histograms of
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orientation work best, for the samples used.

This chapter also includes an evaluation of simple features that can be computed using
the integral image paradigm. These evaluation relies on the paradigm of the random forests
classifiers. The integral features used were combined with each other to train a set of
classifiers. From the results, it has been concluded that phase congruency is a relevant
feature on its own, and outperforms gradient or gray-level. In some of the experiments it
even shows better performance than histograms of un-normalized gradients. The results are
based on two sets of experiments: non-overlapping square features and random rectangular
features. By comparing both of them it is clear that the election of a grid of square features
captures the shape of the pedestrian precisely. Adding a large number of random features
do not significantly increase the performance.

The results presented in this chapter suggests that FIR images are a very useful source
of information for pedestrian classification with advantage in low visibility applications.
However, a qualitative inspection of misclassified samples suggests that there are some
issues to be taken into account in future research, namely, motion blur, pose variation and
occlusion handling.

This work proceeds to a detection framework, where the ideas developed in the classifi-
cation chapter are put into practice in full-size images. The chapter presents the evaluation
methodology followed to asses the performance of the presented descriptors. From the
results it can be concluded that FIR images contain useful information for the task of
detecting pedestrian. Even in challenging images of the detection dataset, such as the ones
captured on hot summer days, the presented descriptors achieve high detection rates. These
results may lead to reconsidering the role assigned to FIR cameras, as night vision devices.
A detection system that is independent of external illumination condition, and that is able
to properly detect pedestrians both in day or night, serves is a very useful addition to
an ADAS system. The experimental study of detection performance in full-size images
suggest that there is correlation between the per-window results of the classifiers and their
per-image performance. As proof of concept, the Latent-SVM detector has been tested in
the detection dataset. This detector trains the models in two parts: first positive samples
are warping, creating a much larger training dataset. This approach help the classifier to
adapt to pose variation. In the second part, hidden structures of parts are searched in
a double-resolution version on the descriptor. This methodology is generic in the sense
that, a wide range of descriptor can benefit from it, specially if they encode shape as local
histograms. The experiments performed showed that this approach can be successfully be
adapted to work on, and also to use another descriptor, FIR images. The results, however
suggest, that the performance of this classifier should increase, be the images larger. As
future work, the evaluation of this approach on a larger-image database is proposed.

The results presented in the evaluation section has led to a methodology that addresses
the issue found on detection of small pedestrians. After resizing the image, in order to find
small pedestrians, those appear with poor detail and spread borders, which makes their
appearance quite different from that of a larger pedestrian. The proposed solution is to
compute the HOPE descriptor using a shifted version of log-Gabor filters that approximate
the appearance of small pedestrian to that found on pedestrians in the central scale of the
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image pyramid. The application of the described method improves detection rates at all
values of FPPI. Computing the phase congruency of the images in the scale pyramid takes
a large fraction of the time needed to compute the descriptor. In this chapter, a method
for reducing that time is presented. In stead of computing it on the up-sampled images of
the pyramid, it is processed on the central scale by using a new set of shifted log-Gabor
filters, and then resampled. The results of this approximation closely match the ones of
the original HOPE descriptor, while considerably reducing the computation time. The
integral features presented in the classification chapter be calculated in one image and then
be approximated to nearby scales. This idea can be applied to phase congruency scale
approximation presented in this chapter. The resulting algorithm would then not need
to resample the approximated phase congruency to calculate the descriptor. In stead of
that, the descriptor would be computed in the approximated phase congruency image and
then be approximated to the equivalent descriptor at a different scale. This would make
unnecessary to resample the image, and thus the time to process the image pyramid could
be greatly reduced. This procedure would be specially useful in the case of the Int-HOPE
descriptor, which can benefit from both techniques.

This chapter also addresses two topics on pedestrian detection in images: ROI generation
and occlusion handling. The presented ideas in these areas constitute initial research, and
will be further developed in the future. In the section of ROI generation, two methods for
selecting interesting parts of the images have been described. In the first one, pedestrians
are segmented by their apparent temperature. The second is based on edge density. From
the phase congruency computed at the central scale, areas that do not hold enough detail
are discarded. The main purpose of a ROI algorithm is to reduce the computation time
of the overall detector. An evaluation of the computation time has been stablished as
future research. That same section also propose a method for improving the classification of
occluded pedestrians. A Markov Logic Network is used to infer the presence of a pedestrian
based on the responses of a full-body descriptor and its parts. The initial results presented
suggest that this method improves detection in largely occluded pedestrians. However, as
future research, a through evaluation of its merits should be done.

Finally, the work proceeds to the last stage of the proposed algorithm: temporal
tracking of targets. A Kalman Filter has been used to track moving pedestrians from a
static or moving vehicle, based on the coordinates of the bounding boxes generated by
the detector. Only detections with a high SVM score are used to track pedestrians, which
increases the number of false negatives. However, experiments shows that the tracking
step of the algorithm is able to successfully track a pedestrian, even though there may be
isolates mis-detections. The tracking algorithm is also able to filter out false positives, by
disregarding erratic detections. In some occasions, this approach may also degrade the
detection performance. A pedestrian is removed from the tracking stack if there is no
matching detection in a number of consecutive images. Before it is removed, the tracking
algorithm is inferring its position from previous information, which may no longer apply.
Also, for a detection to be included in the pedestrian stack, there needs to be a minimum
amount of consecutive detections. This keeps the number of false positives low, but also
increases the number of false negatives. These issues may be solved by applying a different
methodology to the evaluation of the results.
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In ADAS systems, the most important factor is to fed the driver with pertinent and
timely information. An study on reaction times of the driver is proposed as a future
work. This study will allow for a refined evaluation methodology, where a detection will
be considered correct if the information provided to the driver is useful in preventing an
accident, and incorrect if there is no need for the driver to act.
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A
Introduction to the Kalman Filter

and its derivates

The Kalman filter (KF) is widely used in tracking and estimation tasks, given its
simplicity and robustness. However, its relaibility depends heavily on the linearity of the
model. Traditionally, if the the system present a large nonlinearity the Extended Kalman
Filter (EKF) used instead, which is a linearization of the system around the working
point, so the Kalman filter equations can be applied. However, experience shows that its
implementation is complicated and is reliable only in a few cases. To compensate for the
shortcomings of the EKF, Julier and Uhlman proposed in [108] the Unscented Kalman
Filter (UKF). Besides being much more robust for high nonlinearities, system noise can be
non-Gaussian, a major constraint imposed by the EKF. For an overview of the KF and the
EKF refer to [212]

A.1. The Kalman Filter

A.1.1. Constraints

The Kalman filter creates a model of the system state that maximizes the posterior
probability, given a series of measurements. In this case the a posteriori probability is
the final probability, once all measurements from start to the present moments have been
acquired. To apply it, the system must meet certain restrictions:

Lineal: The system at time k can be expressed as a matrix multiplied by the state
at time k − 1. Nonlinear systems can not be expressed using matrix algebra. This
condition is never fulfilled in practice, however the Kalman filter is effective for low
nonlinearities of the system and measurement instruments.

Measurement Noise: The measurements provided by the sensors always have an
uncertainty involved. The Kalman filter imposes that the sensor noise has to be white,
i.e. not correlated in time. That is, the noise level will not increase or decrease from
one measurement to the next.

Process Noise: The Kalman filter imposes that it has to be Gaussian. It is the most
important restriction and usually the first that is not met. The Kalman filter is
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based on the accumulation of information over time by multiplying the state, which
is defined as a Gaussian distribution. If the noise is not Gaussian (or pretty close to
it) the results would be unpredictable.

It should be noted here that some of these restrictions do not apply to UKF. One of its
main advantages is that it allows systems with non-Gaussian noise. It is also adaptable to
systems with high nonlinearity.

A.1.2. Principles

Given two measurements of the same variable, captured with two different sensors, these
can be parameterized as a mean and variance associated with it, i.e. a Normal or Gaussian
distribution. The mean is the measurement of each sensor, and the variance would be
an estimate of the quality of the sensor. The better the sensor the smaller would be this
variance. Figure A.1 shows two Gaussian distributions for two measurements with different
mean and standard deviation.
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Figure A.1: Gaussian distributions, representing the measurements of two different sensors of the
same variable.

A.1.2.1. One Dimensional Example

The probability distribution function (PDF) of a Gaussian in one dimensional space is
defined in equation A.1

p(x) =
1

σ
√
2π

e

[
− 1

2(
x−x̄
σ )

2
]

(A.1)

Where the probability of x depends just on the mean (x̄) and the variance (σ) of the
PDF.
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The fundamental property on which the Kalman Filter is based is that the combined
probability of two Gaussian distributions is another Gaussian distribution. The equation
A.2 is the combined probability distributions of the measurements of both sensors.

p12(x) =
1

σ1

√
2π
· 1

σ2

√
2π
· e
[
− 1

2

(
x−x̄1
σ1

)2
]
· e
[
− 1

2

(
x−x̄2
σ2

)2
]

(A.2)

Again the combined probability is only dependent on the mean and variance of the
two measurements. The results is, indeed, another Gaussian distribution with mean and
variance other than above.

The mean of this new Gaussian is at its maximum. It is calculated as the point of the
distribution where the first derivative becomes zero (equation A.3). A Gaussian is never to
have a value of zero probability for any value of x, thus there is only one point with zero
derivative: its mean.

dp12

dx

∣∣
x̄12

= −
[
x̄12 − x̄1

σ2
1

+
x̄12 − x̄2

σ2
2

]
· p12(x̄12) = 0 (A.3)

As the probability of x can never be zero, the term of equation A.4 must be equal to
zero in order to annul the derivative.

x̄12 − x̄1

σ2
1

+
x̄12 − x̄2

σ2
2

= 0 (A.4)

In this way we can solve for the average of the combined probability, which will be a
function of the mean and variance of the two measurements. The new mean and variance
are defined in equations A.5 and A.6, respectively.

x̄12 =

(
σ2

2

σ2
1 + σ2

2

)
x1 +

(
σ2

1

σ2
1 + σ2

2

)
x2 (A.5)

σ2
12 =

σ2
1σ

2
2

σ2
1 + σ2

2

(A.6)

Given a new measurement, the state estimate depends on that measurement and on the
prior state, as that defined in equations A.7 y A.8.

x̂2 = x̂1 +
σ̂1

2

σ̂1
2 + σ2

2
(x2 − x̂1) (A.7)

σ̂2
2 =

(
1− σ̂1

2

σ̂1
2 + σ2

2

)
σ̂1

2 (A.8)
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Where both terms include the update gain K (equation A.9).

K =
σ̂1

2

σ̂1
2 + σ22

(A.9)

It can then be defined a new state, which is a function of de update gain K (equations
A.10 y A.11)

x̂2 = x̂1 +K(x2 − x̂1) (A.10)

σ̂2
2 = (1−K) σ̂1

2 (A.11)

Fig. A.2 show the optimum state of the systems, given those two measurements.
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Figure A.2: The combination of two Gaussian distribution is also Gaussian.

A.1.2.2. Dynamic Systems

In case the system is dynamic all information available about how it changes in time
must be included in the filter. This information can be of three types.

Dynamic System information . It is derived from what we expect the measurement
to be, given the last measurement. Any system to use the Kalman filter must have a defined
model which, as mentioned, must be non-linear.

Control Information . In controlled systems, such as robots, the output of the system
can be changed by applying a control action. In that case, the system evolves due not only
to its intrinsic dynamics but also depending on the control input. For example, if a robot
moves at a constant speed and sends the order to accelerate, it is expected that its position
in the next moment is different than it would be if it had not received that order.
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Random Noise . Finally, the system is allow to have a random temporal evolution,
knowing that there will be a noise associated with the process and with the acquisition
stage.

A.1.3. Equations.

The recursive Kalman filter algorithm is summarized in Fig. A.3. It comprises a state
prediction stage and a measurement update stage. In summary, Fig.A.3 includes the
equations of each of the stages.

Update

Prediction

Innovation -

Predicted
Measurement

Current
Measurement

System
Model

Measurement
Model

x̂t+1|t+1

x̂t|t

ŷt+1|t

ŷt+1

x̂t+1|t

Figure A.3: Recursive Kalman filter algorithm.

A.1.3.1. Prediction

Given a system state x̂t|t a prediction step ot the mean (equation A.12) and variance
(equation A.13) is performed. In equation A.12, A is the update matrix that summarizes
temporal evolution model of the system, from the instant k− 1 until time k. The matrix B
tranforms the control input u, if any, to the appropriate output.

The variance is updated with the same model (equation A.13). Any non-linearity is
included in this update within the error Q of P covariance.

x̂−k = Ax̂k−1 +Buk−1 (A.12)
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Figure A.4: Kalman filter equations.

P−k = APk−1A
T +Q (A.13)

A.1.3.2. Measurement Update

Upon collecting a new measurents, the state is updated, taking into account the difference
between the expected and actual measurements. The Kalman gain Kk relates the difference
between the measured and the estimated states. Note that it is assumed that the state is
proportional to the measurement.

Kk = P−k H
T (HP−k H

T +R)−1 (A.14)

x̂k = x̂−k +Kk(zk −Hx̂−k ) (A.15)

Pk = (I −KkH)P−k (A.16)

The matrix R has an influence on the behavior of the filter. If its value is high, the
filter will tend to give more importance to the system model so it would have an smaller
reaction to new measurements. In the case where R is small, the filter would have a quicker
reaction to the state measurement update.

Figures A.6 y A.6 are two examples of the behavior of a Kalman filter (green line), for
the same measurements (red crosses) but with a different R matrix.
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Figure A.5: Behaviour of the Kalman filter for large values of R.

Figure A.6: Behaviour of the Kalman filter for small values of R.

A.1.4. Kalman Filter Variants

The Kalman filter relies on restrictions that are not always met. There are hardly any
linear systems on which to use the filter. Therefore other techniques have been developed
which preserve the basic operation of the Kalman filter, extending its use to non-linear
systems, or Gaussian noise.

Fig. A.7 is a linear representation of the propagation of a random variable with Gaussian
noise through a linear system. It can be seen that the output distribution is also Gaussian.
This property does not occur if the system is not linear, as shown in Fig. A.8.

Figure A.7: In a linear system, if the input is Gaussian noise, the output will as well be.
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A.1.4.1. Extended Kalman Filter

The Extended Kalman Filter (EKF) has been traditionally used in nonlinear systems.
The algorithm is identical to the original, except that a linearization step is performed for
each iteration of the matrices A (eq. (A.18)) and H (eq. (A.20)).

The modified EKF equations are:

Update the state to current time

x̂−k = f(x̂k−1, uk−1) (A.17)

Update the error to current time

Ak =
δf

δx
|x̂k−|k− ,uk (A.18)

P−k = APk−1A
T +Q (A.19)

Kalman Gain
Hk =

δh

δx
|x̂k|k− (A.20)

Kk = P−k H
T (HP−k H

T +R)−1 (A.21)

Estimation of the state with new measurement

ỹk = zk − h(x̂−) (A.22)

x̂k = x̂−k +Kkỹk (A.23)

Error update
Pk = (I −KkH)P−k (A.24)

A.2. Unscented Kalman Filter

The Unscented Kalman Filter (UKF) [108] extends the Kalman filter in highly nonlinear
transformations of a random variable without linearization, as does the Extended Kalman
Filter (EKF). This is particularly useful in the information acquisition process by a visual
system. Therefore, the use of UKF over EKF is justified. Moreover, because it is not
necessary to calculate the Jacobian, its computation requires significantly less time, while
at the same time achieving better results.

The Unscented Kalman Filter propagates a random variable through a nonlinear system
using a minimal set of sigma weighted points. The mean and variance of the variable after
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Figure A.8: In a non linear system, for a Gaussian input, the output distribution is not a Gaussian.

Figure A.9: If the systems is fairly linear the propagated veriable can be aproximated to a Gaussian.

Figure A.10: Linearization around the working point.
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processing is accurate, at least to the second order of the Taylor expansion series. Fig. A.11
the propagation of a random variable through a nonlinear system using EKF and UKF is
represented. It also represents the propagation of a large number of samples (sampling).
As it can be seen, the distribution of the variable is much more accurate in the case of UKF
comparing the results with those of the EKF.

Figure A.11: Visual representation of UKF, EKF and sampling approaches (Eric A. Wan and Rudolph
van der Merwe).

For a random variable x of dimension n with mean x̄ and covariance P , the points
sigma are:

χ0 = x̄ (A.25)

χi = x̄+
√

(n+ λ)P i = 1, . . . , n (A.26)

χi = x̄−
√

(n+ λ)P i = n+ 1, . . . , 2n (A.27)

where n + λ = α2(n + κ) is a scaling factor that determines the extent to which the
sigma points are scattered around the mean x̄.

Each sigma point is asigned a weight:

wc0 =
λ

n+ λ
+ 1− α2 + β (A.28)

wm0 =
λ

n+ λ
(A.29)

wmi = wci =
1

2(n+ λ)
(A.30)
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Once the selected points are propagated through the nonlinear function g (equation
A.31), these weights are used to approximate the new mean and covariance (equations A.32
and A.33).

γi = f(χi) i = 0, . . . .2n (A.31)

ȳ =
2n∑
i=0

wmi γi (A.32)

Py =

2n∑
i=0

wci [γi − ȳ][γi − ȳ]T (A.33)

The following models represent the equations used for tracking object in world coordi-
nates from a moving platform.

A.2.1. Prediction.

In this step the movement of the object may be implemented as an update of a simple
Kalman filter, given the period of observation is relatively small. The movement of the
object is modeled as uniform and rectilinear in the interval between two measurements.
The real acceleration (which will always be non-zero, but small) and any non-linearity is
included in this update within the error Q of covariance P . As mentioned above, the object
position is simplified as the position of its centroid. Thus, the filter tracks a single point
moving in a three dimensional space, and which always lies in the same plane.

x̂t+1 = M ·Rh · xt + th (A.34)

Pt+1 = M · Pt · (M)t +Q (A.35)

It is expected that the object is moving with constant velocity rectilinear. This model
is expressed in equation A.36, where for each measure, the prediction of the state for the
next instant is the current state plus the distance traveled over the sampling time.

M =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 (A.36)

The vehicle motion is modeled as a combination of a translation in the ground plane
(th) and a rotation around axis z, perpendicular to that plane. The matrix Rh rotates the
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relative position between vehicle and pedestrian, and the direction of the velocity vector.
Information relative to the rotation angle β of the vehicle is known from the fusion of GPS
and gyroscopes data. This way the movement of the vehicle, and hence that of the camera,
can be compensated and the actual movement of the pedestrian is isolated.

Rh =

[
Rp 0

0 Rv

]
(A.37)

Rp = Rv =

[
cos(−∆β) −sin(−∆β)

sin(−∆β) cos(−∆β)

]
(A.38)

The process noise matrix is given by the equation A.39, where (ax, ay) is the acceleration
of the vehicle.

Q =


a2
xt

3

3
a2
xt

2

2 0 0
a2
xt

2

2 a2
xt 0 0

0 0
a2
yt

3

3

a2
yt

2

2

0 0
a2
yt

2

2 a2
yt

 (A.39)

A.2.2. Measurement Update

The measures of the position of the object are determined via a a pin-hole model are
non-linear. The mean and covariance of the state prediction are used to generate the
sigma points as explained above. These points are spread over function f . This function is
non-linear and a suitable candidate to use the Unscented transformation, since the results
obtained with the EKF for such applications can sometimes deteriorate quickly.

γit = f(χit−1) (A.40)

As explained in the section B the coordinates on the image of an object resting on the
ground plane can be determined knowing the position of the camera relative to the plane
where the object is.

The set of sigma points propagate through the system, using equation B.7 to project
them on the image plane.

The position measurements are derived from the coordinates in the image, while the
velocity remains constant as the object motion model. Since the velocity can not be observed
directly, it can be assumed to be independent of the image coordinates.

The new sigma sigma points are used to obtained the mean and covariance prediction
(equations (A.32) and (A.33)).

Finally, the new state is calculated. The last measure y is included in this last step to
update the state. The difference between the measure and this prediction is weighted by
the Kalman gain (K).
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Pxy =
2n∑
i=0

2n∑
j=0

wci,j [χi,t|t−1 − x̂t|t−1][γi,t|t−1 − ŷt|t−1]T (A.41)

K = PxyP
−1
y (A.42)

x̂t = x̂t−1 +K(y − ŷt−1) (A.43)

Pt = Pt−1 −KPyKT (A.44)
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B
Vision System.

B.1. Calibration of the camera parameters.

The camera is the sensor by which the information is collected from the environment.
As such, we need a model by which to obtain a relationship between the three-dimensional
world in front of the camera and capture the two-dimensional image captured by the sensor.

In this case, the projective model used is the pinhole camera, wherein the camera optics
are reduced to a point at the focal length of the sensor. The actual behavior of any lens is
a bit different, however. In a pinhole camera, the small aperture allows for very little light
to pass on to the sensor, so exposure times tend to be very long. To allow for more light,
optics usually uses multiple lenses. Light passes through the lenses in a different way as
modeled in the pinhole camera, making them more complicated geometrical models, and
also introduce distortions in the images.

By calibration, it is possible to obtain the parameters which model the major distortions
of the lens and thereby correct them.

Fig. B.1 represents the pinhole model. Each object point of a tridimensional object is
projected on the sensor plane with a straight line that passes trough a point at a distance
f from the sensor.

(a) Pinhole model. (b) Inverted pinhole model.

Figure B.1: Pinhole projective model.
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B.1.1. Intrinsic parameters.

The projective geometry and the distortion parameters of the optic system are modeled
by calibrationg the intrinsic parameters.

B.1.1.1. Projection Matrix

The projection matrix of a pinhole lens (equation B.1) relates the position of a point in
the three-dimensional world coordinates with the pixel in the image that represents that
point.

M =

fu 0 cu
0 fv cv
0 0 1

 (B.1)

fx: focal length, in pixels, axis x.

fy: focal length, in pixels, axis y.

cx: distance in pixels of the optical center from the x axis origin.

cy: distance in pixels of the optical center from the y axis origin

In a perfect lens the focal lengths in both axes (fx and fy) would be equal. However, it
is to be expected a slight difference because of the difficulty of manufacturing a lens whose
curvature is exactly equal for both axes, and because the optical axis is often not perfectly
perpendicular to the sensor. The optical center (cx, cy) should coincide with the center of
the sensor (u2 ,

v
2 ), but often the lenses are not properly aligned.

B.1.1.2. Distortion Parameters

The distortions in the images are produced mainly because it is easier to fabricate
spherical lenses instead of parabolic ones [27]. This results in radial distortions, the most
common of which is the barrel kind. In this, the points are projected farther from the
optical center than it should, and this is displacement is accentuated for points located
further away from the center. As a manifestation of the same physical principle, if the
distortion projects points closer to the center than it should, the distortion received the
name of pincushion.

Equation (B.3) gives corrected coordinates of one point of the image, given the radial
distortion parameters, k1, k2 y k4.

xcorrected = x · (1 + k1 · r2 + k2 · r4 + k4 · r6) (B.2)

ycorrected = y · (1 + k1 · r2 + k2 · r4 + k4 · r6)
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The tangential distortion is due to the optical axis of the lens not being perfectly
perpendicular to the sensor. To correct it equation B.4 is applied, where p1 and p2 are
tangential distortion parameters.

xcorrected = x+ [2p1 · y + p2 · (r2 + 2x2)] (B.3)

ycorrected = y + [2p2 · x+ p1 · (r2 + 2y2)]

B.1.1.3. Chessboard pattern

The calibration has been done with the Caltech Camera Calibration Toolbox for Matlab
[26]. The calibration algorithm relies on extracting the corners of a chessboard pttern under
several views. The geometry of the pattern is perfectly defined by the dimensions of the
boxes. A recursive optimization algorithm fits the calibration parameters to the theoretical
projection model of the lens.

This method is a very common one for calibrating VL cameras. In far infrared images
it is not so simple, because there is no temperature difference between black and white
paper and, as such, a normal pattern seems to be of a uniform gray and corners are
indistinguishable.

To calibrate the camera parameters from far infrared images using the Caltech Toolbox
a special pattern was made out of an aluminum foil (see Fig. B.2). It is still a chessboard,
where the black squares are covered with acrylic paint, and the white one are aluminum.
Polished metal surfaces reflect most of infrared radiations., therefore, pointing skyward,
aluminum will appear to be much cooler than painted squares. The resulting images have
enough contrast to extract the corners, so that the rest of the calibration is equivalent to
that followed with a normal camera.

(a) Aluminum chessboard pattern in
FIR.

(b) Aluminum chessboard pattern
in VL.

Figure B.2: Aluminum chessboard pattern for FIR cameras calibration.
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B.1.2. Extrinsic parameters.

The extrinsic parameters calibration is carried out by taking images of the ground in
front of the camera. On it marks have been made at known distances. Given these distances
and the fact that all marks are in the same plane it is possible to obtain the extrinsic
parameters. Similarly to the intrinsic calibration, the extrinsic parameters are optimized
in an iterative process that compares the theoretical projection with the actual one. The
process stops when the error between the two falls below a limit.

B.2. Projective Geometry of the World into the Image.

Given the parameter calibration, as explained in section B.1, the intrinsic characteristics
are assumed perfectly known, as is the position and orientation of the sensor plane in
the world. The world coordinate system origin is in the ground plane, the camera being
positioned in the z axis (see Fig. B.3).

Figure B.3: Coordinate reference system of world and camera.

The virtual projection of a point in a three-dimensional space in the image plane can be
calculated knowing its relative position to the ground plane, which is constant and equal to
h. Using the pinhole model to project the scene objects in the image plane requires knowing
the intrinsic parameters of the camera, such as the horizontal and vertical focal lengths (fu,
fv) and the center of the image (cu, cV ). A point with world coordinates (wx, wy, wz) is
projected into the image with homogeneous coordinates (U, V, S) with equation (B.4).

Image =

UV
S

 = M ·R · (World− T ) (B.4)

where M is the pinhole projection matrix (see equation (B.1)), T is the translation of
the camera over the ground plane and World is the matrix of coordinates in the world of
the position of the projected object. The first two of these coordinates indicate the position
within a two-dimensional plane. The third should always be 1.
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R is the rotation of the ground coordinate system to the coordinate system of the camera
(equation (B.5)), which is shown in figure B.3. The three rotation angles are α = π/2,
β = 0 and γ = π. These angles may vary during the course of the car due to vibrations
and vehicle inertia when cornering (roll) or braking (pitch).

R = Rα ·Rβ ·Rγ = (B.5)

=

1 0 0

0 cos(α) sin(α)

0 − sin(α) cos(α)

 ·
cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

 ·
 cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1



W − T =

wxwy
1

−
0

h

0

 =

 wx
wy − h

1

 (B.6)

To simplify the calculations, and since the point is always contained in the same plane,
the projection matrix can be expressed as an homography, as in equation (B.7).

H = M ·W =

fu 0 cu
0 fv cv
0 1 0

 · [R1 R2 T
]

(B.7)

Where R1 and R2 are the first and second columns of the rotation matrix (B.5).

Finally, and since the image projection is expressed in homogeneous coordinates, the
position in the image is

u =
U

S
(B.8)

v =
V

S
(B.9)

B.3. Projection of the points of the image into the world

In section B.2 it has been explained how to project of a three-dimensional point in the
world towards the image plane, knowing one of its coordinates, the height in this case. This
relationship is defined as an homography matrix H. This same projection also works in
reverse, so that one can determine the world position of a point from its position in the
image. To do this reprojection (equation (B.10)) inverse of matrix H is calculated.

World = H−1 · Image (B.10)
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B.4. Calibration of the gain curve of a microbolometer.

For applications based on the temperature of the object in the image, the microbolometer
sensor must be calibrated.

In the case of a person, the skin surface can be approximated to a gray body, thas is, a
body that emits heat in proportion to its temperature and does not reflect radiation of its
environment. The emission would be equivalent to a fraction of the black body for that
temperature. From the Stephan-Boltzmann equation (B.11) it is derived that the flow
of energy transmitted per unit of surface depends not only on the temperature of the object
but also on the temperature of the sensor.

φ = ε · δ · (T 4 − T 4
sensor) (B.11)

Where,

φ : Flow of energy per unit of surface.

ε : Emission factor of the body relative to a black body.

δ = 5, 67 · 10−8 W
m2·K4 : Stephan-Boltzmann constant.

T : Temperature of the object.

Tsensor : Temperature of the sensor.

The gray level value of the pixels of the sensor also depends on the distance of the
object and the absorption factor of the atmosphere. However, these parameters can be
considered very small for short distances such as the range of pedestrian detection. Another
factor, which should be considered is the gain of the sensor itself. The camera will be more
sensitive to a particular wavelength.

Since the temperature sensor is a known value it is possible to calibrate the sensor
sensitivity, relating the temperature of a gray body with gray levels on the image.

The camera sensor is an uncooled microbolometer, and produces images with a depth
of 14 bits. Not being cooled, the gray level varies with the temperature sensor. Figure
B.4 represents the sensitivity curve obtained in the calibration. Sensitivity curves have
been obtained for three representative temperatures of the human body: the maximum
and minimum temperature of the head and the minimum temperature of the body. Curves
can be approximated, within the operating temperature range of the camera, to a third
degree polynomial curve.
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Figure B.4: Gray level of three constant temperatures of the human body, against temperature of the
sensor.
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