
Detecting and Tracking People in
Real-time

by
Amanjit Dulai

A Thesis submitted in fulfilment of requirements for
the degree of Doctor of Philosophy and Diploma of

Imperial College London

November 2013

Communications and Signal Processing Group
Department of Electrical and Electronic Engineering

Imperial College London

Abstract

The problem of detecting and tracking people in images and video has been the subject

of a great deal of research, but remains a challenging task. Being able to detect and

track people would have an impact in a number of fields, such as driverless vehicles,

automated surveillance, and human-computer interaction. The difficulties that must be

overcome include coping with variations in appearance between different people, changes

in lighting, and the ability to detect people across multiple scales. As well as having high

accuracy, it is desirable for a technique to evaluate an image with low latency between

receiving the image and producing a result.

This thesis explores methods for detecting and tracking people in images and video.

Techniques are implemented on a desktop computer, with an emphasis on low latency.

The problem of detection is examined first. The well established integral channel features

detector is introduced and reimplemented, and various novelties are implemented in

regards to the features used by the detector. Results are given to quantify the accuracy

and the speed of the developed detectors on the INRIA person dataset. The method is

further extended by examining the prospect of using multiple classifiers in conjunction.

It is shown that using a classifier with a version of the same classifier reflected in the

vertical axis can improve performance. A novel method for clustering images of people

to find modes of appearance is also presented. This involves using boosting classifiers

to map a set of images to vectors, to which K-means clustering is applied. Boosting

classifiers are then trained on these clustered datasets to create sets of multiple classifiers,

and it is demonstrated that these sets of classifiers can be evaluated on images with only

a small increase in the running time over single classifiers.

The problem of single target tracking is addressed using the mean shift algorithm.

Mean shift tracking works by finding the best colour match for a target from frame to

ii

iii

frame. A novel form of mean shift tracking through scale is developed, and the problem

of multiple target tracking is addressed by using boosting classifiers in conjunction with

Kalman filters. Tests are carried out on the CAVIAR dataset, which gives representative

examples of surveillance scenarios, to show the performance of the proposed approaches.

Acknowledgements

I would first like to thank my supervisor Dr. Tania Stathaki for her guidance and

patience throughout the past four years. I am also grateful that she has allowed me to

pursue research in an area that I have found difficult, but ultimately rewarding.

I would also like to thank Dr. Nelson Yung for hosting me at the University of Hong

Kong during one summer, and Dr. Henry Ngan for helping me settle in.

I am thankful to the many friends I have made within the Communications and

Signal Processing Group, particularly Dahir, Harry, Marc, Cyrus, Ali and Zaid.

I must also thank my mum for her continued support throughout my studies, and

my sisters Mindy and Kiren.

I am very fortunate to have been supported by the University Defence Research

Centre (UDRC) throughout my studies.

iv

Contents

Abstract ii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables xi

Statement of Originality xii

Copyright Declaration xiii

List of Symbols xiv

List of Abbreviations xvi

1 Introduction 1
1.1 Objectives . 3
1.2 Motivation . 4
1.3 Original Contributions . 5
1.4 Thesis Outline . 5

2 Background 7
2.1 Object Detection . 7

2.1.1 Person and Pedestrian Detection 10
2.1.2 Evaluation Methodology . 12
2.1.3 The INRIA Person Dataset . 13

2.2 Tracking . 14
2.2.1 Kernel-Based Tracking . 14
2.2.2 Recursive Bayesian Filters . 20

2.3 Conclusions . 27

3 Detecting People in Images 29
3.1 Features . 29

3.1.1 Image Filtering . 30
3.1.2 Gradient Channels . 30
3.1.3 CIELUV Channels . 33
3.1.4 Channel Features . 33
3.1.5 Summary . 35

3.2 Learning a Detector . 36

v

CONTENTS vi

3.2.1 AdaBoost . 36
3.2.2 Decision Trees . 39
3.2.3 Implementation Issues . 47
3.2.4 Summary . 49

3.3 Running a Detector . 49
3.3.1 Image Rescaling . 50
3.3.2 Padding Integral Histograms . 50
3.3.3 Resizing Bounding Boxes . 51
3.3.4 Non-maximum suppression . 51
3.3.5 Summary . 52

3.4 Results . 53
3.4.1 Default Settings . 54
3.4.2 Image Filtering . 55
3.4.3 Orientation Bin Layout . 57
3.4.4 Normalising Gradient Channels . 58
3.4.5 Contrast Sensitive Features . 59

3.5 Improving the Speed of Boosting Classifiers 60
3.5.1 Constant Rejection Thresholds . 61
3.5.2 Results . 61

3.6 Discussion and Summary . 64

4 Using Multiple Detectors 67
4.1 Using Reflected Classifiers . 67

4.1.1 Results . 68
4.1.2 Classifier Speed . 70
4.1.3 Summary . 71

4.2 Using Multiple Classifiers . 71
4.2.1 K -means clustering . 71
4.2.2 Applying Clustering to Image Windows 73
4.2.3 Training Multiple Classifiers . 77
4.2.4 Calibrating Classifiers . 80
4.2.5 Results . 80
4.2.6 Classifier Speed . 85

4.3 Discussion and Summary . 85

5 Tracking People in Video 87
5.1 Mean Shift Tracking . 87

5.1.1 Mean Shift Tracking Through Scale 89
5.1.2 Results . 94

5.2 Tracking Multiple Targets . 96
5.3 Discussion and Summary . 100

6 Conclusions and Future Work 101
6.1 Summary and Concluding Remarks . 101
6.2 Future Work . 103

Bibliography 106

List of Figures

1.1 The extent of an object is often represented by bounding boxes. (a)
Ground truth annotations of bounding boxes are shown in yellow. (b)
Bounding boxes output by one of the detectors developed in this thesis
are shown in green. 2

2.1 A sliding window classifier will have a fixed resolution, represented by the
green rectangle on the left. To detect objects at multiple resolutions, the
input image is rescaled multiple times with an interpolation algorithm,
and the classifier is run at multiple overlapping positions on each rescaled
image. 10

2.2 The Parzen window is a simple kernel density estimator for one dimen-
sional data. In this figure, the data points that have been observed are
plotted along the bottom axis as crosses. Gaussian kernels, shown by the
dotted red lines, have been placed at each data point. The sum of these
kernels, shown in blue, gives an estimate of the probability distribution
that generated the points. 14

2.3 An example of using mean shift to find the nearest mode. Here, the points
xi ∈ R2 are shown by blue crosses. The starting point for the mean-shift
procedure, y0 is at the top left, and Equation 2.7 is iterated until the
mean-shift vector mg(y) is less than 0.01. The red circles show the values
of y, and the red lines show mg(y). The uniform kernel given by Equation
2.11 has been used for g, and its position at each iteration is shown by
the dotted gray lines. Results for two different values for the bandwidth
h are shown. 17

3.1 The binning process can be (a) contrast insensitive (shown for mb = 6),
where gradients that go from light to dark or from dark to light regions
are treated in the same way if they have the same orientation, or (b)
contrast sensitive (shown for mb = 12) where there are separate bins for
gradients with the same orientation, but different contrast directions. . . . 31

3.2 Gradient features are generated from the process shown above. First,
images are smoothed with a binomial filter. Gradient filters are then
applied to each colour channel in the x and y directions. These results are
used to calculate the magnitude and orientation of the gradients, which
are used to construct gradient orientation channels. Gradient orientation
channels can be contrast sensitive, or contrast insensitive. 32

vii

LIST OF FIGURES viii

3.3 A channel feature is the sum over a rectangular area within a channel,
shown on the far left. The four corners of the channel feature are shown
as coloured circles. Integral histogram entries are equal to the sum of
all entries from the top left hand corner down to the position of the
histogram entry. Thus, four integral histogram entries can be combined
as illustrated on the right to give the value of a channel feature. 36

3.4 (a) A stump classifier takes an input image I, evaluates a feature g, com-
pares this against a threshold θ, and then returns a label based on the
polarity q. Returning a label can be seen as selecting a branch. (b) A
decision tree is composed of multiple stump classifiers, and is therefore
capable of more complex classifications. 40

3.5 The training time for a boosting classifier plotted against the number of
rounds of boosting. As can be seen, Algorithm 3 consistently outperforms
Algorithm 2. For all training runs in this graph, training parameters were
fixed so that U = 30000, n = 7288, V = 255 and stump classifiers were
used as weak classifiers. 47

3.6 (a) An image. (b) The original image downscaled with nearest neighbour
interpolation. (c) The original image convolved with a box filter prior to
downscaling with nearest neighbour interpolation. Smoothing with a box
filter substantially improves results. 51

3.7 The output bounding boxes from a detector shown in green (a) before
non-maximum suppression and (b) after non-maximum suppression. It
can be seen that non-maximum suppression greatly reduces the number
of bounding boxes. 52

3.8 Result for the default settings given in Tables 3.1 and 3.2 for the (a)
INRIA person dataset and (b) the ETH pedestrian dataset. 55

3.9 The results for four different classifiers trained with different filtering
settings, and tested each with four different sets of parameters. The four
different training parameter settings are (a) box filtering and binomial
filtering of length 3, (b) no box filtering and binomial filtering length 3,
(c) box filtering and no binomial filtering and (d) no box filtering and no
binomial filtering. 56

3.10 An alternative layout for (a) contrast insensitive orientation bins and (b)
contrast sensitive bins. 57

3.11 Results on the INRIA dataset for (a) bin layout 1 and (b) bin layout 2. . 58
3.12 The results on the INRIA dataset under different normalisation schemes. . 59
3.13 The results for different feature sets are shown. Each detector is trained

with 60000 features rather than the default of 30000. 60
3.14 The results for the default classifier from Section 3.4.1 run with constant

rejection thresholds of different values on the INRIA dataset. 62
3.15 Some example results from the detector in Section 3.4.5 that uses gradient

features only. (a) A large crowd of people, where most instances of people
have been detected. There is a large false positive in the upper left portion
of the image. (b) An example with one false negative, for the person that
is second from the left. (c) A person on a bicycle is successfully detected,
along with a person in the background. There is one false positive in
the background. (d) A person riding a bicycle and facing away from
the camera is successfully detected. (e) Several fully visible people are
detected correctly. (f) Two people standing close together are detected
successfully. 66

LIST OF FIGURES ix

4.1 The results on the INRIA dataset for several classifiers compared against
their “joint” versions described by Equation 4.1 with θreject = −10. The
classifiers are (a) the default classifier from Section 3.4.1, (b) the clas-
sifier from Section 3.4.3 with 8 orientation bins, (c) the classifier from
Section 3.4.3 with 12 orientation bins, (d) the classifier from Section 3.4.4
with normalised gradient orientation features, (e) the classifier from Sec-
tion 3.4.5 which uses only contrast sensitive and contrast insensitive fea-
tures and (f) the classifier from Section 3.4.5 which uses all feature types. 69

4.2 The average image for different clusters. (a) The average of all the posi-
tive training images used. (b) and (c) show the averages for the clusters
obtained with the default trees classifier using the Euclidean distance,
and (d) and (e) show the same results when using the Hamming distance.
(f) and (g) show the averages for the clusters obtained with the cieluv

trees classifier using the Euclidean distance, and (h) and (i) show the
same results when using the Hamming distance. (j) and (k) show the
cluster averages obtained with the default stumps classifier using Eu-
clidean distance and (l) and (m) show the cluster averages when using
the Hamming distance. (n) and (o) show the cluster averages obtained
with the cieluv stumps classifier using the Euclidean distance and (p)
and (q) show the same results when using the Hamming distance. 76

4.3 The average image for different clusters when K = 3. (a), (b) and (c)
show the cluster averages obtained using the default trees classifier
using the Euclidean distance, and (d), (e) and (f) show the same results
using the Hamming distance. (g), (h) and (i) show the cluster averages
obtained using the default stumps classifier and the Euclidean distance,
and (j), (k) and (l) show the same results using the Hamming distance.
(m), (n) and (o) show the cluster averages obtained using the cieluv

trees classifier and the Euclidean distance, and (p), (q) and (r) show the
same results using the Hamming distance. (s), (t) and (u) show the cluster
averages obtained using the cieluv stumps classifier and the Euclidean
distance, and (v), (w) and (x) show the same results using the Hamming
distance. 78

4.4 The average image for different clusters whenK = 5. (a) shows the cluster
averages obtained using the default trees classifier using the Euclidean
distance, and (b) shows the same results using the Hamming distance. (c)
shows the cluster averages obtained using the default stumps classifier
using the Euclidean distance, and (d) shows the same results using the
Hamming distance. (e) shows the cluster averages obtained using the
cieluv trees classifier using the Euclidean distance, and (f) shows the
same results using the Hamming distance. Finally, (g) shows the cluster
averages obtained using the cieluv stumps classifier using the Euclidean
distance, and (h) shows the same results using the Hamming distance. . . 79

4.5 The results on the INRIA dataset for several classifiers trained on clus-
tered datasets, with and without calibration, and with θreject = −10.
The classifiers are sets of classifiers trained on clusters created using the
cieluv trees classifier with (a) K = 2, (c) K = 3 (e) and K = 5, and
sets of classifiers trained on clusters created using the default trees

classifier with (b) K = 2, (d) K = 3 (f) and K = 5. 82

LIST OF FIGURES x

4.6 The results on the INRIA dataset for the calibrated classifiers from Fig-
ure 4.5 combined with the default classifier from Section 3.4.1. Each figure
shows the results for the default classifier (under the moniker “Baseline”),
one of the classifiers trained on clustered data, and the combination of
the two. 83

4.7 Examples of the results from the set of detectors trained on positive
images clustered using the default trees classifier with K = 5. The
bounding boxes are colour coded to show which classifier they correspond
to, with the correspondence shown in (a), (b), (c), (d) and (e). 84

5.1 The difference of Gaussians kernel. 90
5.2 Using the difference of Gaussians method with mean shift for scale de-

tection: (a) The original image in RGB space. (b) w(I,x), the back-
projection image. (c) A diagrammatic representation of the difference
of Gaussians kernel. The red region represents negative values, and the
blue represents positive values. (d) A kernel that is too small has been
superimposed on w(I,x). Many values fall in the red region, leading to
a smaller value of w̃(I,yj , s) (e) A kernel that is the correct size. The
vast majority of the target is in the blue region, creating a large value for
w̃(I,yj , s) (f) A kernel that is too large. Though the target is in the blue
region, the peak is shallower, and so w̃(I,yj , s) will be smaller. 91

5.3 A cross-section through the kernel kR(‖x‖2). This kernel is used to per-
form mean shift style iterations in scale. 93

5.4 The proposed method for tracking through scale. As with Figure 5.2, the
red regions are negative, and the blue positive, but this time we consider
the kernel given by Equation 5.12. (a) Most of the values fall in the
positive region, resulting in λ > 0 (b) The non-zero values of w(I,x)
are roughly equally distributed between the positive and negative regions
of the kernel, resulting in λ ≈ 0 (c) The majority of non-zero values of
w(I,x) fall in the negative region of the kernel, leading to λ < 0. 94

5.5 Examples of tracking through scale. (a) A person is tracked as they walk
towards a camera. The kernel grows larger as they get closer. (b) A person
in a group walks towards the camera. Note that there are inaccuracies in
the first two frames shown due to background distractions. As the target
walks into a clearing, the scale estimate improves. 95

5.6 Results of running the classifier from Chapter 3 with Kalman filtering on
the same images from the CAVIAR dataset that were used in Figure 5.5.
(a) The detector is able to detect most of the people present in the images.
(b) The detector is again able to most instances, but there is a false
positive in the final frame. 99

List of Tables

2.1 A table showing a breakdown of the INRIA training and test sets in terms
of positive and negative images, and the number of annotated instances
of people. 13

3.1 The default settings used for training a detector. 54
3.2 The default settings used for running a detector on images. 54
3.3 A table showing the time taken in seconds per 640 × 480 pixel image

for various classifiers from this chapter with different constant rejection
thresholds. 63

3.4 A table showing the time in seconds for each individual stage of the overall
detection algorithm. The first three columns show the time taken for the
first three stages of the detector, which are unaffected by the value of
θreject. The last six columns of the table show the timing results for the
last two stages of the detector for three different values of θreject. 64

4.1 A table showing the time taken in seconds per 640 × 480 pixel image
for different classifiers with their reflected counterparts, with different
constant rejection thresholds. 70

4.2 A table showing the time taken in seconds per 640 × 480 pixel image
for different sets of multiple classifiers, with different constant rejection
thresholds. 85

5.1 The percentage of missed detections on a 600 frame sequence from the
CAVIAR dataset using the proposed mean-shift method and the boosting
classifier from Chapter 3. 96

xi

Statement of Originality

I declare that this thesis is my own work. Where other sources of information have been

used, they have been acknowledged. This thesis was not and will not be submitted to

any other institution to fulfil the requirements of a degree.

xii

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build

upon it. For any reuse or redistribution, researchers must make clear to others the

licence terms of this work.

xiii

List of Symbols

(·)T Transpose

‖ · ‖ Euclidean norm

∗ Convolution operator

R The set of real numbers

p(·) Probability distribution

K Kernel function in Chapters 2 and 5

H Bandwidth matrix in Chapters 2 and 5

k Kernel profile function in Chapters 2 and 5

G Shadow kernel in Chapters 2 and 5

mg(x) Mean shift vector at x

w Mean shift weights

zt Measurement vector at time t

xt State vector at time t

F Process model matrix

H Observation model matrix

E[·] Expectation operator

I A m1 ×m2 × 3 RGB image

Ic A m1 ×m2 RGB image channel

I(j, k, c), Ic(j, k) An image entry at column j, row k, and chan-
nel c

Gc
x A m1×m2 gradient image for the x-direction

Gc
y A m1×m2 gradient image for the y-direction

Gmag(I) A m1 ×m2 gradient magnitude image

xiv

List of Symbols xv

Gθ(I) A m1 ×m2 gradient orientation image

Ψc(I, j, k),Ψ(I, j, k, c) Gradient histogram entry at column j, row k,
and channel c

Λc(I, j, k),Λ(I, j, k, c) Integral histogram entry at column j, row k
and channel c

Φ(I) A m1 ×m2 ×m3 feature map

Φc(I) A m1 ×m2 feature map channel

Φ(I, j, k, c),Φc(I, j, k) A feature map entry at column j, row k and
channel c

ρ A vector of parameters for a feature

g(I,ρ) A feature value

g(I) A vector of features from image I

γ A quantised feature value

Γ(I) A vector of quantised features from image I

y Label

S A training set

D(i) Weight for training example i

ε Error for weak classifier

h A weak classifier

f A boosting classifier

α Weak classifier coefficient

Θu Set of thresholds for feature u

SI Image training set

Sg Feature training set

SΓ Quantised feature training set

H(I) Score from a classifier on an image I

α(I) Vector of weak classifier responses for I

q̂ Reference colour histogram

p̂(I,y) Colour histogram of I in region centred on y

BC Bhattacharyya coefficient

List of Abbreviations

AdaBoost Adaptive Boosting

CCTV Closed Circuit Television

CIE International Commission on Illumination

CIELUV CIE 1976 (L*, u*, v*) colour space

DET Detection Error Trade-off

EKF Extended Kalman Filter

HOG Histogram of Oriented Gradients

NMS Non-Maximum Suppression

RAM Random Access Memory

RGB Red-Green-Blue

SVM Support Vector Machine

UKF Unscented Kalman Filter

xvi

Chapter 1

Introduction

The idea of creating machines that possess intelligence is one that has captured the

imagination of a variety of thinkers, from philosophers to engineers. The widespread use

of computers has revolutionised nearly every aspect of day to day life, and has led to the

ability to capture, store and process more information than ever before. Computer vision

is the field of research that concerns the intelligent processing of visual information, and

has had considerable success in applications such as industrial inspection [1], character

recognition [2] and even the adjudication of sporting events [3]. However, for many

challenging problems, existing algorithms are not capable of achieving anything close

to the accuracy that could be achieved by a typical person engaging in a similar task.

Worse still, the best performing algorithms are usually slow to run, as improving the

accuracy involves increasing the computational cost of a technique.

One task that has been the focus of a great deal of research is that which shall be

referred to in this thesis as object detection. This is the problem of finding the location

and extent of all instances of a particular object class within an image. An object’s

class in this context is a noun or other description that encompasses a variety of objects

possessing some degree of visual similarity, such as “person”, “car” or “bike”. Different

classes will display different degrees of internal similarity, and some will be easier to

detect than others. The extent of an object instance is typically estimated with a

bounding box, which is simply a rectangular region within an image containing an object

instance. Figure 1.1a shows bounding boxes for the object class “person” that have

been annotated manually for the purpose of creating a ground truth. Figure 1.1b shows

1

2

(a) (b)

Figure 1.1: The extent of an object is often represented by bounding boxes. (a) Ground
truth annotations of bounding boxes are shown in yellow. (b) Bounding boxes output
by one of the detectors developed in this thesis are shown in green.

bounding boxes output by one of the detectors developed in this thesis. As can be seen,

an object detector must negotiate several difficulties, such as cluttered backgrounds,

partially overlapping object instances and variations in object pose. It is important

to note that object detection as defined here is different from the problem of finding

a particular object within an image, as the former problem requires the detection of a

broad class of objects, while the latter requires the detection of only a single specific

object.

Another problem of great interest is that of object tracking. The precise definition

of this problem varies depending on the scenario under consideration. In a situation

where there is only a single target to be tracked, there are a number of methods that

work by finding the best match for a target from frame to frame. However, the problem

can also be formulated as a filtering problem, where the aim is to estimate a target’s

position over time given noisy measurements and some prior knowledge concerning the

target’s motion. Furthermore, in multi-target tracking, multiple measurements are gen-

erated per time instant, and measurements corresponding to a single target must be

associated across time. It is important to point out that in both of the previously men-

tioned formulations of the tracking problem, it is assumed that a method for generating

measurements is available. In other applications where tracking is used, such as radar

and sonar, obtaining measurements is relatively straightforward. However, in computer

vision, if we wished to obtain measurements for a specific class of objects (for example,

1.1. OBJECTIVES 3

the position and extent of all people within an image), we need a solution to the object

detection problem. Thus, the problem of object tracking is closely related to that of

object detection.

1.1 Objectives

This thesis examines the problem of being able to detect and track people in images

and video in real-time. The objective is to experiment with and develop techniques for

detection and tracking with a particular emphasis on speed and accuracy.

For detection, the aim is to develop techniques that are capable of achieving results

that are better than the widely used Histogram of Oriented Gradients (HOG) detector

[4] as measured by the Caltech Pedestrian Detection Benchmark [5] on the INRIA Person

Dataset, details of which are given in Sections 2.1.2 and 2.1.3. Another aim is to ensure

that the proposed techniques are able to evaluate a 640× 480 pixel image in less than a

second on a desktop computer. While other platforms such as field programmable gate

arrays or graphics processing units could be considered, desktop computers are cheaper

and more widely available. The scope of this thesis is limited to the detection of people

who are standing upright or are in near upright positions, and are mostly visible. Only

instances of pedestrians that are larger than 32×96 pixels are considered, as instances at

smaller resolutions are more difficult to detect due to the loss of discriminative informa-

tion. A technique must be able to detect instances of people within an image at multiple

scales and arbitrary translations, as shown in Figure 1.1, and must be able to cope with

variation in appearance and background clutter. For this purpose, the integral channel

features detector [6] is used as a starting point, as it has been demonstrated to achieve

the latency requirements mentioned earlier. A number of novelties are introduced, and

investigations into the effect of altering the features for the detector are presented, in

terms of the impact on accuracy and speed. It is also shown that multiple detectors can

be used to improve accuracy.

For tracking, the aim is to develop methods that are capable of working in real-time,

and coping with issues such as changes in scale, and variation in appearance. For this

purpose, the mean shift algorithm is used. Mean shift tracking works by finding the best

match for a target based on a colour histogram similarity metric. A novel method for

1.2. MOTIVATION 4

mean shift tracking through scale is developed. Multiple target tracking with boosting

classifiers is also examined. Tests are carried out on the CAVIAR dataset, which gives

a good representation of surveillance scenarios.

1.2 Motivation

Being able to detect and track people in real-time would have a variety of applications.

It would open up a number of new possibilities for Closed Circuit Television (CCTV),

such as being able to estimate the number of people passing through an area in a certain

window of time, or collecting statistics on the trajectories travelled by people. Tracking

people is often a prerequisite for other problems in visual surveillance, such as person

identification [7], gait recognition [8] and behaviour analysis [9].

Another emerging area of application is in driverless vehicles and driver assistance

systems. The use of computer vision in automotive applications has grown dramatically

in recent times, and some pedestrian and cyclist detection systems are now incorporated

into vehicles available to the public [10]. Driverless vehicles have now begun to emerge

as a viable technology [11], [12], [13], and need to be able to detect where people are in

relation to the vehicle’s position in real-time to avoid collisions.

Being able to track people in real-time would also have applications in the field of

human-computer interaction. Altering the methods that people use to interact with

computers has been a strong trend in consumer electronics over the past few years

[14]. Existing techniques have limited range or require expensive hardware [15]. The

techniques explored in this thesis are designed to work over several scales, and use images

captured by standard RGB cameras which are cheap and ubiquitous.

Finally, techniques that are able to detect and track people in real-time could be

generalised to work on other object classes, such as vehicles. Different object classes

will possess different aspects of visual variation, and this must be taken into account

when implementing a technique. For example, the appearance of vehicles varies greatly

depending on the angle from which they are viewed, and so vehicle detectors often

incorporate multiple detectors for different view angle ranges [16], but the viewing angle

is less of an issue when training a pedestrian detector. By extending object detection to

other classes, it becomes possible to exploit the context of an object to aid detection [17].

1.3. ORIGINAL CONTRIBUTIONS 5

For example, in a system that detects both pedestrians and vehicles, it is possible to

exploit the spatial relationships that exist between these classes to improve the detection

accuracy.

1.3 Original Contributions

The following original contributions are made in this thesis:

• An investigation into the effects of altering the layout of orientation bins for gra-

dient features, and using contrast sensitive features in a variety of combinations

with other features in boosting classifiers is presented in Chapter 3.

• The idea of using boosting classifiers in conjunction with their vertically reflected

counterparts is presented in Chapter 4.

• The use of the weak classifiers within a boosting classifier to map images to vectors

summarising visual information, and then clustering these vectors to find modes

of appearance for people is presented in Chapter 4.

• The idea of combining multiple boosting classifiers trained on clustered image sets

is outlined in Chapter 4.

• A novel method for mean shift tracking through scale is presented in Chapter 5,

which works by using a novel kernel to interleave scale space mean shift iterations

with spatial iterations.

1.4 Thesis Outline

An outline of the content of this thesis is now given. Chapter 2 covers the necessary

background in the fields of detection and tracking. There is a large body of literature

for both of these fields, and so there is a focus on reviewing research related to the

approaches used in later chapters. For detection, techniques involving machine learning

are reviewed, and for tracking, kernel based methods and recursive Bayesian filters are

explained.

1.4. THESIS OUTLINE 6

Chapter 3 explores the problem of detecting people in images. The integral channel

features detector is introduced, and is used as a starting point to address the problem.

This detector uses image gradients and colour features, and is trained using the Ad-

aBoost algorithm. Practical issues surrounding the implementation of the detector are

explored, and a detailed method for accelerating the training process is given. Results

are presented on the INRIA person dataset, and the effect of a variety of novelties is

explored. These include altering the layout of the orientation bins for gradient orienta-

tion features, normalising the gradient orientation features under different schemes, and

using contrast sensitive features in a variety of combinations with other features.

Chapter 4 investigates the potential of using multiple boosting classifiers in conjunc-

tion. First, the idea of reflecting a boosting classifier in the vertical axis is presented,

and it is shown that combining a reflected classifier with its original version can yield

improvements in performance, without causing a significant reduction in speed. Next,

it is shown that positive training images can be clustered by mapping them to vec-

tors constructed from the outputs of the weak classifiers within a boosting classifier,

and then applying the K-means algorithm. This creates clusters of images with similar

visual characteristics. Boosting classifiers can then be trained on the images in these

clusters and combined together to create sets of classifiers. Results for this approach are

presented, and it is shown that combining classifiers can lead to improved accuracy over

the single classifier approach, with only a small increase in the time taken to evaluate

an image.

Chapter 5 examines the problem of tracking people in video. Mean shift tracking is

introduced, and a novel method of mean shift tracking through scale is presented. This

method relies on the use of a novel kernel, which can be used to calculate mean shift

iterations in scale space in fewer operations than two other popular methods. Results

are presented on the CAVIAR dataset. The problem of tracking multiple targets is also

briefly addressed, by using boosting classifiers to detect targets and Kalman filters for

smoothing.

In Chapter 6 the work that has been presented is summarised, and conclusions are

drawn. Also, ideas for future research that could expand upon this thesis are suggested.

Chapter 2

Background

In this chapter, literature relevant to the material in this thesis is reviewed. First, the

general problem of object detection is considered, and the role of machine learning in

this problem is examined. Then, existing methods of person and pedestrian detection

are reviewed. The next section covers evaluation methodologies for object detection,

and this is followed by a section describing the data used for training. Literature on

the problem of object tracking is covered next, and approaches based on the mean shift

algorithm and recursive Bayesian filters are examined. The last section concludes the

chapter by highlighting the limitations of existing techniques for detection and tracking,

and suggesting directions for research.

2.1 Object Detection

To detect all instances of a specific object class within an image, it must be known

what visual features indicate the presence of the object class. This can be deduced from

images of the object class. One possible approach to this problem is to use template

matching, where we measure the similarity of regions of an image to a template, or

set of templates. While such methods have been used to detect object classes such as

pedestrians [18], template based methods usually fail to capture the large variation in

appearance of an object class, and suffer from the fact that their running time is linear

in the number of templates.

An alternative approach is to use machine learning, which involves using image data

to find a function that maps an image to a label that indicates the absence or presence of

7

2.1. OBJECT DETECTION 8

an object class. Machine learning has been applied successfully to many problems where

data is readily available for training, such as speech recognition [19], natural language

processing [20], and user preference prediction [21]. In all of these areas, it would be

difficult for a person to manually design a solution to the problem, and so it seems

natural to use data to characterise what the solution should be. A key requirement is

that a learned solution must be able to generalise beyond the data that was used to

train it. For example, a person detector must be able to detect people that were not

a part of its training set. Computational learning theory [22] analyses what kinds of

guarantees can be made in regard to generalisation, but this topic will not be explored

in this thesis.

Machine learning comprises a number of different algorithms and approaches for

different problems. Typical problems include classification, regression, and clustering

[23]. Object detection corresponds to the problem of classification, and if there is only

one object class, the problem becomes binary classification. There are a variety of object

detection methods that use machine learning, but many of these techniques conform

to a general framework. Let (I, y) be a training example where I is an image and

y ∈ {−1,+1} is a binary label indicating the absence or presence of the object class

of interest. A training example with the label +1 is referred to as a positive example,

and the label −1 indicates a negative example. Typically, we begin with a training set

S = {(I1, y1), . . . , (In, yn)}, where all of the images in the set share the same dimensions.

The two main aspects of most object detectors are a feature set and a learning algorithm.

Features are generated by applying a transformation Φ to the input images I. The

purpose of using features is twofold. The first aim is to reduce the dimensionality of

the input data to make training and testing tractable, and so the dimensionality of

Φ will typically be an order of magnitude less than that of I. The second aim is to

extract discriminative information from the input data. There are a variety of methods

to accomplish this, such as image filters [24] and self-similarity measures [25], but the

most widely used features rely on image gradients. Examples of popular features include

the scale invariant feature transform [26] and the HOG feature transform [4].

Various different learning algorithms are available for training object detectors. Neu-

ral networks [27] were among some of the earliest techniques, but their use declined due

2.1. OBJECT DETECTION 9

to problems with overfitting and the computational cost of training. Recently however,

with the advent of deep learning [28], neural networks have become more popular, and

have achieved some of the best results in the field of object detection [29]. However,

they remain slow to train, and often require graphics processing units to accelerate the

training process, which are outside the scope of this thesis. Support Vector Machines

(SVMs) have been very popular in object detection [30]. Training an SVM corresponds

to solving a convex optimisation problem, and such problems have been studied in great

depth [31]. As a result, a range of efficient training algorithms exist, and there is always

a global optimum solution to the training problem. SVMs are often used with kernels,

which allow the classifier to be non-linear in the original feature space. However, kernel

SVMs have a much greater computational cost when performing classification over linear

SVMs, and so linear SVMs remain popular in computer vision problems. An important

generalisation of SVMs are structural SVMs, which allow training for learning problems

with structured output labels [32]. An example of such a problem is human pose estima-

tion, where instead of binary output labels, an output label for a human would consist

of the locations of various keypoints that estimate a person’s pose [33]. Random forests

[34] have become popular in recent times for object detection in depth imaging [15],

and have been modified to create Hough forests, which have been used for pedestrian

detection [35]. Random forests are fast to train, but various parameters such as the

depth and number of trees must be set correctly to achieve good performance. Boosting

algorithms have also been used for object detection [36]. These algorithms work by

training a series of weak classifiers, with each individual weak classifier performing little

better than chance on the classification task. However, the weak classifiers are trained

sequentially, so that the next classifier in the sequence compensates for the deficiencies

of the previous classifiers. Therefore, an additive combination of these weak classifiers

results in a strong classifier. The actual type of weak classifier used for the algorithm

is left as a choice for the user. As many weak classifiers are trained by a boosting al-

gorithm, a simple form of weak classifier is often chosen to reduce the overall training

time. Examples of classifiers that are often used include decision trees [37], look up ta-

bles [38], and linear discriminants [39]. Boosting classifiers perform well at classification

tasks, but the training process is often slow, and can consume large amounts of memory.

2.1. OBJECT DETECTION 10

...

Apply Interpolation

Figure 2.1: A sliding window classifier will have a fixed resolution, represented by the
green rectangle on the left. To detect objects at multiple resolutions, the input image
is rescaled multiple times with an interpolation algorithm, and the classifier is run at
multiple overlapping positions on each rescaled image.

There are several popular boosting algorithms [37], and one of the most widely used is

Adaptive Boosting (AdaBoost) [40].

When training an object detector in the manner that has been described, the detector

will be able to classify images that are the same dimensions as those in the training set.

To find instances within an image, it is necessary to apply the classifier at multiple scales

and translations on the input image. This is achieved by rescaling the image several

times, and applying the classifier at positions arranged on a two dimensional grid, as

shown in Figure 2.1. Classifiers that work in this way are often referred to as sliding

window classifiers. In this thesis, the term window will be used to refer to an image or

a region within an image that has the same dimensions as the images in the training set

of a detector. After running a sliding window classifier on an image, any object instance

that has been detected will normally be enclosed by multiple bounding boxes. Each

instance should only be marked by a single bounding box, as shown in Figure 1.1, and

the process of reducing the multiple bounding boxes to a single bounding box per target

is known as non-maximum suppression.

2.1.1 Person and Pedestrian Detection

One of the earliest works on pedestrian detection used Haar wavelets in combination with

a SVM classifier [41]. A major step forward was to design improved features based upon

histograms of image gradients computed over a grid of cells, with the feature vectors

from each cell being normalised with respect to neighbouring cells [4]. These features

2.1. OBJECT DETECTION 11

were also combined with a SVM classifier. HOG features, as they are known, became

widely adopted in the field of object detection. HOG features have also been used with

other classification algorithms such as AdaBoost [42]. In other work, detection accuracy

has been improved by combining HOG with other features such as local binary patterns

[43] or colour similarity features [25]. A further development of the HOG-SVM approach

uses an extended set of HOG features in conjunction with principal component analysis

for reduced dimensionality, along with a new variant of the SVM known as the latent

SVM [44]. The latent SVM allows a parts based detector to be trained, with the parts

as latent variables. The parts are able to move relative to each other, greatly increasing

the flexibility of the classifier. Whereas most classifiers score an example based on its

appearance, the classifier presented in [44] computes a score based on appearance and

spatial arrangement of parts. The parts based latent SVM framework has become very

popular due to its consistently high performance in a series of object detection challenges

[45]. It has been further extended to create the grammar model framework [46], where

a set of rules can be used to create multiple deformable classifiers. In order to train

these multiple deformable classifiers, a new type of classifier known as the weak label

structural SVM, was developed.

While SVMs have been popular for person detection, another line of research has

pursued the use of boosting classifiers. One approach is to combine an AdaBoost classi-

fier, with decision trees as weak classifiers, with features computed from image gradients

and the CIE 1976 (L*, u*, v*) colour space (CIELUV) [47]. The speed of such a classifier

can be greatly increased by approximating the feature values over certain scales, so that

features only have to be computed for a small number of rescaled images [48]. Further

improvements in speed can be achieved by using a validation set to tune the parameters

for a set of cascade classifiers that can communicate information from neighbouring re-

gions of the input image [49], making it possible for the detector to process frames at a

resolution of 640× 480 at over 30 frames per second. Another approach to accelerating

detection is to train classifiers for different scales, so that features are only computed

for a single image [50].

2.1. OBJECT DETECTION 12

2.1.2 Evaluation Methodology

An important issue is being able to gauge the performance of different object detection

algorithms. The normal protocol for evaluating the performance of a detector trained

on a data set is to have a separate test set which has a ground truth. The performance

on this test set is then measured relative to the ground truth. If there is a common test

set for a group of classifiers, it is possible to compare their performance. Ideally, we may

wish the detectors to also share the same training set as well. In object detection, errors

arise from failing to detect instances of an object (false negatives), or from detecting

instances where none are present (false positives). Typically, we find that there is a

trade-off between the two types of errors. If our detector produces real valued scores for

each detection window, then it is possible to visualise and measure this trade-off using

a precision-recall curve [45] or a Detection Error Trade-off (DET) curve [4].

The use of standardised testing and training sets is now widespread throughout the

computer vision community. This approach was popularised for person detection by the

public release of the INRIA person dataset [51], which accompanied the work presented

in [4]. In this work, detectors were evaluated on the INRIA person test set using DET

curves. These curves plot the miss rate on the y-axis against the number of false positives

per window on the x-axis. The miss rate MR is defined as:

MR =
false neg.

true pos. + false neg.
(2.1)

where the quantities on the right hand side of the equation are the number of false neg-

ative windows and true positive windows. This methodology was adopted by a number

of subsequent publications [52], [53], [43]. However, several issues have been raised with

this approach. Plotting DET curves as described only evaluates the performance of a

detector on the basis of windows, and not on the basis of entire images. This means

that the evaluation takes place prior to non-maximum suppression. It has been shown

that the performance measured per window does not necessarily reflect the performance

measured per image [6]. Another issue is that there are ambiguities as to how the metrics

should be calculated. Some authors only use a randomly selected subset of the negative

test set when computing the number of false positive per window, but this obviously

2.1. OBJECT DETECTION 13

Negative Images Positive Images Number Of
Annotated People

Training Set 1218 614 2416

Test Set 453 288 1126

Table 2.1: A table showing a breakdown of the INRIA training and test sets in terms of
positive and negative images, and the number of annotated instances of people.

means results cannot be compared if different random subsets were used [51]. To address

these issues, an alternative methodology has been suggested which involves plotting the

miss rate against the number of false positives per image, along with standardised scripts

to calculate these metrics and new ground truth annotations [6]. The authors of these

scripts also evaluated the performance of more than a dozen methods for pedestrian

detection using these metrics on the INRIA person dataset, the ETH pedestrian dataset

[54], the TUD Brussels pedestrian dataset, the Daimler pedestrian dataset [55], and the

Caltech pedestrian dataset [56]. Since then, more detectors have been added to the

Caltech Pedestrian Detection Benchmark [5], and at the time of writing, over thirty

detectors have been evaluated. In order to benchmark the detectors developed in this

thesis, the scripts for this framework are used.

2.1.3 The INRIA Person Dataset

The INRIA person dataset [51] is a widely used set of images for training and testing

person detection algorithms. It consists of fixed training and test sets, each of which

are comprised of positive images which contain instances of people, and negative images

which do not contain people. The instances vary in size and appearance. All images that

contain instances of people are annotated with bounding boxes to denote the position

and size of each person.

Table 2.1 gives a breakdown of the test and training sets in terms of positive and

negative images, and the number of annotated instances in each set. It should be noted

that the number of annotated people is larger than the number of positive images, as

several people may appear in a single image. Also, the actual number of unique instances

in the positive training set is 1208, but these are mirrored in the vertical axis to double

this figure.

As well as including annotations for all instances of people in the test and training

2.2. TRACKING 14

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

Data Value

P
ro

ba
bi

lit
y

E
st

im
at

e

Figure 2.2: The Parzen window is a simple kernel density estimator for one dimensional
data. In this figure, the data points that have been observed are plotted along the
bottom axis as crosses. Gaussian kernels, shown by the dotted red lines, have been
placed at each data point. The sum of these kernels, shown in blue, gives an estimate
of the probability distribution that generated the points.

sets, the INRIA person dataset also includes cropped and normalised images of all the

annotated instances of people. These cropped images are 64 × 128 pixels, where each

person is 32 × 96 pixels with a border around them. There are no cropped negative

images, but these can be easily produced from the provided negative images.

Throughout this thesis, person detectors will be trained using the cropped positive

images from the INRIA training set, along with randomly cropped negative images

from the INRIA training set. Testing will use the 288 uncropped positive images in

the INRIA test set, in accordance with the Caltech evaluation methodology outlined in

Section 2.1.2.

2.2 Tracking

An extensive review of tracking techniques in computer vision is given in [57]. For

the purposes of this thesis, two broad approaches to the problem are examined. These

approaches are kernel methods (specifically the mean shift algorithm) and recursive

Bayesian filters.

2.2.1 Kernel-Based Tracking

Kernel-based tracking methods are derived from the field of kernel density estimation,

which deals with the problem of estimating a probability distribution from observations

2.2. TRACKING 15

drawn from the distribution. The simplest such estimator is the Parzen window [58],

where the distribution is approximated by placing a kernel function (typically a Gaussian

function) at the position of each observation, as shown in Figure 2.2. Formally, this gives

the kernel density estimate for a multivariate distribution as

p̂(x) =
1

N

N∑
i=1

KH(x− xi), (2.2)

where N is the number of observations drawn from the d dimensional distribution, and

xi ∈ Rd, i = 1, . . . , N are the observations. This is simply a result of placing kernels

centered on the data points, and KH is given by

KH(x) = |H|−1/2K(H−1/2x), (2.3)

where H ∈ Rd×d is a bandwidth matrix which is used to apply affine transformations

(scaling, rotation, and/or skew) to the kernel, and K is a kernel function satisfying the

conditions [59] ∫
Rd
K(x)dx = 1∫

Rd
xK(x)dx = 0

lim
‖x‖→∞

‖x‖dK(x) = 0∫
Rd

xxTK(x)dx = cKI

(2.4)

where cK is a constant. In many situations, it is adequate for the bandwidth matrix H

to be the identity matrix multiplied by a constant h squared. Also, the kernel function

can take a number of forms [60], but a popular approach is to make it radially symmetric

by relating it to a profile function k through the equation K(x) = ckk(‖x‖2) where ck is

a normalisation constant. These two conditions result in Equation 2.2 being simplified

to

p̂k(x) =
ck
Nhd

N∑
i=1

k

(∥∥∥∥x− xi
h

∥∥∥∥2
)
, (2.5)

Under the conditions that lead to Equation 2.5, it is possible to derive an algorithm that

allows us to iteratively find the nearest mode of the density estimation from a given point

x. This algorithm is known as the mean shift procedure, and it is a method of gradient

ascent. The derivation begins by calculating the gradient of the density estimation,

2.2. TRACKING 16

where g(x) = k′(x) (assuming k is differentiable)

∇p̂k(x) =
2ck

Nhd+2

N∑
i=1

(x− xi)g

(∥∥∥∥x− xi
h

∥∥∥∥2
)

=
2ck

Nhd+2

(
N∑
i=1

g

(∥∥∥∥x− xi
h

∥∥∥∥2
))

︸ ︷︷ ︸
p̂g(x)

2ck
cgh2

∑N
i=1 xig

(∥∥x−xi
h

∥∥2)∑N
i=1 g

(∥∥x−xi
h

∥∥2) − x

︸ ︷︷ ︸

mg(x)

,

(2.6)

where mg(x) ∈ Rd is the mean shift vector and p̂g(x) is kernel density estimation with

the kernel G (described by profile function g). The kernel G is referred to as the shadow

kernel of K [61] (the relation between these kernels is explored later). Equation 2.6 has

no closed form solution for x, but by setting the left hand side to zero, we obtain the

following iterative method of calculation

yj+1 =

∑N
i=1 xig

(∥∥∥yj−xi
h

∥∥∥2)
∑N

i=1 g

(∥∥∥yj−xi
h

∥∥∥2) (2.7)

where x has been replaced by yj+1 on the left hand side and yj on the right hand side

to emphasise that this is an iterative procedure. This equation tells us that the next

position in the gradient ascent procedure can be calculated at the previous position. The

difference between two consecutive position estimates is the mean shift vector mg(x).

Equation 2.6 can be rearranged to show that the mean shift vector is given by

mg(x) =

∑N
i=1 xig

(∥∥x−xi
h

∥∥2)∑N
i=1 g

(∥∥x−xi
h

∥∥2) − x =
h2cg∇p̂k(x)

2ckp̂g(x)
(2.8)

which clearly shows that the mean shift vector is proportional to the density gradient

estimate with kernel K. Hence, the mean shift vector always points towards the nearest

mode of the distribution, and it can be used iteratively to travel to this mode using

Equation 2.7, which is iterated until mg(yj) is less than some small threshold. Details

on the convergence of the algorithm are given in [60]. An illustrative example is shown

in Figure 2.3. We can now reinterpret the kernel density estimate in Equation 2.8

2.2. TRACKING 17

(a) h = 10 (b) h = 18

Figure 2.3: An example of using mean shift to find the nearest mode. Here, the points
xi ∈ R2 are shown by blue crosses. The starting point for the mean-shift procedure,
y0 is at the top left, and Equation 2.7 is iterated until the mean-shift vector mg(y) is
less than 0.01. The red circles show the values of y, and the red lines show mg(y).
The uniform kernel given by Equation 2.11 has been used for g, and its position at
each iteration is shown by the dotted gray lines. Results for two different values for the
bandwidth h are shown.

as representing a single kernel evaluated at many points (rather than multiple kernels

evaluated at a single point), and the position of the kernel is moved with each mean

shift iteration. It is also noteworthy that the kernel density estimate can be viewed as a

convolution, in which case the mean shift procedure gives an efficient way of finding the

local mode of a certain type of convolution surface. Typical kernels include the normal

kernel, the Epanechnikov kernel and the uniform kernel, which are respectively given by

the following equations

KN,h(x) = cN,hexp

(
−1

2

∥∥∥x

h

∥∥∥2) , (2.9)

KE,h(x) =

cE,h

(
1−

∥∥x
h

∥∥2) ‖x‖ ≤ h

0 otherwise

, (2.10)

KU,h(x) =

cU,h ‖x‖ ≤ h

0 otherwise

, (2.11)

2.2. TRACKING 18

where cN,h, cE,h and cU,h denote normalisation constants. It can be easily shown that

the Gaussian kernel is its own shadow kernel. The uniform kernel is the shadow of the

Epanechnikov kernel. Thus, finding the local mode of a kernel density estimate where

Epanechnikov kernels are used is done by performing mean-shift with the uniform kernel,

which simply results in a normalised mean.

The equation for mean shift given earlier is for the general case where the points

xi are randomly drawn from a distribution. The mean shift procedure looks for where

these random points are most dense. For image processing, these points will actually be

the pixels, which are uniformly distributed on a grid (which would result in the mean

shift vector being zero), so the equation is modified to introduce a weighting function

yj+1 =

∑
xi∈X

xiw(xi)g

(∥∥∥∥yj − xi
h

∥∥∥∥2
)

∑
xi∈X

w(xi)g

(∥∥∥∥yj − xi
h

∥∥∥∥2
) , (2.12)

where the nature of the weighting function w(xi) is dependent upon the particular

algorithm, and X is the support of the kernel g
(∥∥x−xi

h

∥∥2).

The first mean shift based tracking technique was the Continuously Adaptive Mean

Shift (CAMSHIFT) algorithm [62]. Given the position and scale of a target in the first

frame of a video sequence, this algorithm works by first taking a colour histogram of

the target in the Hue, Saturation and Value (HSV) colour space. In subsequent frames,

pixels are replaced with their corresponding values from the colour histogram (this is

the weighting function for Equation 2.12 in this instance). This leads to pixels that are

likely to be part of the target being assigned high values, while other pixels are assigned

low or zero values. Then, mean shift is performed in the spatial domain using a uniform

rectangular kernel.

A very popular mean shift tracking algorithm was derived in [63]. In this paper, it

is proposed that a target is represented by a colour histogram (the target model) that

is calculated in the first frame given the initial target position and scale. In subsequent

frames, the best target candidate is found by maximising the Bhattacharyya coefficient

which measures the similarity between the target model and a candidate model. It is

shown that the linear Taylor series representation of the Bhattacharyya coefficient takes

2.2. TRACKING 19

the form of a convolution surface, and so the mean shift procedure can be used to find

the local mode of this surface (which will probably correspond to the target position,

assuming that it is not moving extremely quickly). Tracking through scale is achieved

by running the tracker at three different scales (the current scale, a smaller scale, and a

larger scale), and then selecting the solution with the highest Bhattacharyya coefficient.

The previous two mean shift tracking algorithms are fairly typical in that they use

only colour information and do not take into account the spatial distribution of colour.

This can be considered both an advantage and disadvantage, as it enables mean shift

trackers to deal with deformations of the target, which can cause other trackers to break

down (for example, consider the many articulations of the human body, and the difficulty

associated with creating a tracker capable of handling all possible poses). However, this

also means that these trackers will fail in situations where the target’s colours are not

distinct from their surroundings (for example, consider tracking any target in greyscale

or black and white). A very general framework for mean shift tracking is derived in [64],

where it is shown that spatial kernels can be introduced to enforce soft constraints on the

spatial arrangement of colours. This is done by creating a kernel estimate that takes the

form of a product of two kernels, one for colour, and another for space. Adjusting the

bandwidth of either kernel allows for a trade off between considering spatial information

and allowing for deformations of the target. Interestingly, the authors prove that some

popular algorithms are in fact special cases of this framework, such as the sum of squares

tracker (which has zero spatial kernel bandwidth) and the algorithm presented in [63]

(which has infinite spatial kernel bandwidth). However, the spatial kernels result in a

large increase in the number of computational operations needed over the mean-shift

algorithm from [63].

The problem of tracking through scale for mean shift style trackers is non-trivial,

and has been explored in more depth in [65], where a method is developed based on

Lindberg’s theory of feature scale selection [66]. However, the method requires the

generation of multiple normal kernels for each frame, which once again requires many

more operations by an order of magnitude than the normal mean-shift algorithm.

There has been much research into the relation between mean shift and Newton style

iterative methods. In [67] an alternative to mean shift is derived using Newton style

2.2. TRACKING 20

iterations, and it is shown that these iterations can converge in a single step. In [68], it

is proved that mean shift can be viewed as a form of quadratic bound optimisation, and

that performing mean shift with a piece-wise constant kernel is equivalent to Newton’s

method. Other work focuses on recovering other types of motion using kernels. It is

shown in [69] that kernel based methods can be used to track the articulated motion of

limbs.

2.2.2 Recursive Bayesian Filters

Recursive Bayesian filters include methods such as the Kalman filter [70] and particle

filters [71]. These techniques are also often referred to as state space methods.

The formulation of the tracking problem in the recursive Bayesian framework is as

follows. It is assumed that we receive a sequence of noisy measurements zt (t = 0, ..., n)

over time of a target’s state, from which we wish to infer the true state xt. In the

cases considered here, the observation zt is a vector which represents a noisy estimate

of the target’s position, and the state xt is usually an estimate of the true position

and velocity. The solution is to compute the posterior distribution p(xt|z1:t) where

z1:t = {z1, z2, ..., zt}, and to then use this distribution to estimate the true state, usually

by taking the conditional expectation E[xt|z1:t].

In this dynamic system, we have a process model, which dictates how the state

evolves over time, and a measurement model, which explains how the measurements are

related to the state. These are given by

xt = f(xt−1, vt), (2.13)

zt = h(xt,nt), (2.14)

where vt is the process noise, and nt is the observation noise. For example, if an object

that is falling under the force of gravity is being tracked, then f would apply Newtonian

dynamics to calculate xt from xt−1. If the observations zt are the target’s position,

and the state vector contains both the target’s position and velocity, then h may be a

function that projects xt to a vector of lower dimensionality. In the special case where

f and/or h are linear functions, they are represented by matrices F and H.

2.2. TRACKING 21

The following assumptions are made:

1. The states follow a first order Markov process. This means

p(xt|x1:t−1) = p(xt|xt−1). (2.15)

This assumption explains the form of the process model, Equation 2.13.

2. The observations are independent given the states. This means

p(zt|xt, A) = p(zt|xt), (2.16)

where A is any set of random variables that does not include zt and xt.

These assumptions can be used to derive an expression for the posterior distribution as

shown below

p(xt|z1:t) =
p(z1:t|xt)p(xt)

p(z1:t)

=
p(zt, z1:t−1|xt)p(xt)

p(zt, z1:t−1)

=
p(zt|z1:t−1, xt)p(z1:t−1|xt)p(xt)

p(zt|z1:t−1)p(z1:t−1)

=
p(zt|z1:t−1, xt)p(xt|z1:t−1)�����p(z1:t−1)���p(xt)

p(zt|z1:t−1)�����p(z1:t−1)���p(xt)

=
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
. (2.17)

Equation 2.17 can be viewed as an equivalent of Bayes’ theorem for this time varying

process. The likelihood is given by p(zt|xt), while the prior is p(xt|z1:t−1). The denom-

inator is sometimes referred to as the evidence, and is only required for normalisation,

as p(zt|z1:t−1) =
∫
p(zt|xt)p(xt|z1:t−1)dxt. The prior can be calculated by

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1, (2.18)

which can be proven using the Chapman-Kolmogorov equation [72]. The distribution

p(xt|xt−1) is given by the process model, and is often referred to as the transition density.

Equations 2.18 and 2.17 can be used iteratively to obtain estimates of the posterior

2.2. TRACKING 22

distribution, without storing the entire history of states or measurements. Equation

2.18 is referred to as the prediction stage, as it projects what the state is likely to be

before an observation is made. This is used to calculate the posterior in Equation 2.18,

which is referred to as the update stage. The update stage incorporates the observation

through the likelihood distribution. The posterior is then used to estimate the current

state x̂t|t, usually by taking the expectation. It will then be used to calculate the prior

for the next stage, and the process continues to repeat itself in this fashion.

Due to the need to evaluate integrals, the recursive Bayesian filtering problem does

not always have a closed form solution. In situations where the underlying distributions

are discrete, grid-based methods [71] can be used to give optimal situations. For the

continuous case, an optimal solution exists when the transition, likelihood and initial

state densities are Gaussian, and the process and measurement models are linear, leading

to the following alternative process and observation models

xt = Fxt−1 + vt, (2.19)

zt = Hxt + nt, (2.20)

where F and H are matrices and vt and nt are normally distributed random variables

with zero mean. When these conditions are met, it can be shown that the posterior

and prior densities will also be Gaussian, as the posterior density will be the normalised

product of two Gausssians, and the prior will will be the convolution of two Gaussians

[23]. The optimal solution for these conditions is the Kalman filter [73]. As a Gaussian

distribution is completely described by its mean and covariance matrix, the Kalman filter

estimates these parameters, and the Kalman estimate of the state is simply the mean of

the posterior distribution. The prediction equations for the mean and covariance are

x̂t|t−1 = Fx̂t−1|t−1, (2.21)

Pt|t−1 = FPt−1|t−1F
T + Q, (2.22)

where x̂t|t−1 is the prior state estimate (the mean of the prior distribution), x̂t−1|t−1 is the

previous Kalman estimate (the mean of the posterior at the previous time step), Pt|t−1

is the prior covariance matrix estimate, Pt−1|t−1 is the previous covariance estimate and

2.2. TRACKING 23

Q is the process noise covariance matrix (the covariance of vt). The update equations

for the mean and covariance are

x̂t|t = x̂t|t−1 + Kt(zt −Hx̂t|t−1), (2.23)

Pt|t = Pt|t−1 −KtHPt|t−1, (2.24)

where x̂t|t is the Kalman estimate (the mean of the posterior for this time step), zt is

the measurement, Pt|t is the covariance of the posterior at this time step, and Kt is the

Kalman gain, which is given by

Kt = Pt|t−1H
T(HPt|t−1H

T + R)
−1
, (2.25)

where R is the observation noise covariance matrix. Thus, for initialisation the Kalman

filter requires an initial estimate of the state x̂0, and estimates of Q and R. The estimates

of Q and R can have a large role in determining the behaviour of the Kalman filter.

There are several well known extensions to the Kalman filter designed to deal with

non-linear tracking. Unlike the Kalman filter, these techniques are not optimal. The first

and simplest of these is the Extended Kalman Filter (EKF) [74]. The EKF is identical

to the Kalman filter, except that it is designed for situations where the state transitions

and measurement model are non-linear, and are represented by Equations 2.13 and 2.14

rather than Equations 2.19 and 2.20. The solution is to take the local linearisation of

the functions f and h, which gives the Jacobian matrices

F =
∂f

∂x

∣∣∣
x̂t−1|t−1

, (2.26)

H =
∂h

∂x

∣∣∣
x̂t|t−1

. (2.27)

As the EKF is often sub-optimal, its exact behaviour is unpredictable, and usually

depends on the nature of the non-linear functions f and h. In situations where these

functions can be well approximated as linear functions on a time scale comparable to the

one in which the observations are made, the EKF can give good performance. However,

for highly non-linear models, the EKF usually performs poorly. Also, there are issues

due to the fact that a non-linear function of a Gaussian variable is not itself normally

2.2. TRACKING 24

distributed, and therefore the EKF simply fits a Gaussian to this undetermined distribu-

tion. This leads to poor performance when the underlying distribution is multi-modal.

Another sub-optimal adaptation of the Kalman filter is the Unscented Kalman Filter

(UKF), also known as the sigma point filter [75]. The UKF is in a sense similar to particle

filtering (which will be explained later) in that it seeks to approximate the posterior

distribution as a weighted set of samples, known as sigma points. However, the UKF

chooses the sigma points deterministically, while the particle filter uses random sampling.

Also, the UKF uses far fewer sigma points (2k + 1, where k is the dimensionality of x)

than the typical number of particles used by a particle filter. The UKF has been found

to outperform the EKF in many scenarios [76]. It can estimate the posterior mean and

covariance correctly up to the second order Taylor series coefficient for all non-linearities.

The filter works by calculating a set of sigma points Xit−1 as follows

X0
t−1 = x̄t−1, (2.28)

Xit−1 = x̄t−1 + (
√

(L+ λ)Pt−1)i i = 1, ..., L, (2.29)

Xit−1 = x̄t−1 − (
√

(L+ λ)Pt−1)i−L i = L+ 1, ..., 2L, (2.30)

where x̄t−1 is the mean, λ is a scaling parameter and (
√

(L+ λ)Pt−1)i is the ith row or

column of the matrix square root of (L+λ)Pt−1. The intuition behind this methodology

is that the columns of the covariance matrix of a Gaussian can be seen as vectors

representing the principal axes of variance for the distribution, and so the points are

taken at the peak of the Gaussian and along a contour of constant probability. The

points collectively characterise the distribution quite well if it is Gaussian or close to

being Gaussian, but badly if it is multi-modal. The sigma points are propagated through

the non-linear process model (Equation 2.13) to obtain the points Xit, which are then

used to calculate the mean and covariance by

x̄t =

2L∑
i=0

WiX
i
t, (2.31)

P̄t =

2L∑
i=0

Wi(X
i
t − x̄t)(X

i
t − x̄t)

T + Q, (2.32)

where the weights are W0 = λ/(d+ λ) and Wi = 1/2(d+ λ).

2.2. TRACKING 25

As has been mentioned, extensions to the Kalman filter to deal with non-linear

systems are sub-optimal. A better approach is particle filtering. The particle filter seeks

to approximate the posterior distribution by a set of weighted samples

p̂(xt|z1:t) =
1

Ns

Ns∑
i=1

w̃itδ(xt − xit), (2.33)

where Ns is the number of particles, w̃it is the weight associated with sample xit and

i = 1, ..., Ns is the sample index number. The weights are normalised so that
∑

i w̃
i
t = 1.

This approximation can then be used to decide where the target is, for example, by

calculating an approximation of the expectation

E[xt|z1:t] ≈
1

Ns

Ns∑
i=1

w̃itx
i
t. (2.34)

The issues that need to be addressed are how the particles are drawn, and how the

weights are calculated. To approximate the posterior using standard Monte Carlo tech-

niques, a very large number of samples could be drawn from the posterior, and the

samples could be weighted uniformly. However, this is completely impractical, as the

posterior could be very complex, and computers can only practically generate random

numbers from a few standard distributions. The solution is to use importance sampling

[23], which allows for the approximation of a distribution p(·) by drawing samples from a

different distribution q(·), referred to as the proposal, or importance distribution. These

samples can be used by weighting them to account for the difference between p(·) and

q(·). The unnormalised weights are derived below

E[xt|z1:t] =

∫
xt
p(xt|z1:t)
q(xt|z1:t)

q(xt|z1:t)dxt

=

∫
xt
p(z1:t|xt)p(xt)
p(z1:t)q(xt|z1:t)

q(xt|z1:t)dxt

=

∫
xt
wt(xt)

p(z1:t)
q(xt|z1:t)dxt, (2.35)

2.2. TRACKING 26

where the weights are given by wt(xt) = p(z1:t|xt)p(xt)
q(xt|z1:t)

. This leads to the approximation

E[xt|z1:t] =
1

p(z1:t)

∫
xtwt(xt)q(xt|z1:t)dxt

=

∫
xtwt(xt)q(xt|z1:t)dxt∫

p(z1:t|xt)p(xt) q(xt|z1:t)
q(xt|z1:t)

dxt

=

∫
xtwt(xt)q(xt|z1:t)dxt∫
wt(xt)q(xt|z1:t)dxt

≈
∑Ns

i=1 x
i
tw

i
t∑Ns

i=1w
i
t

≈
Ns∑
i=1

w̃itx
i
t, (2.36)

where the normalised weights are w̃it =
wit∑Ns
j=1 w

j
t

.

It can be shown [71] that if the proposal density is chosen to satisfy the factorisation

q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1), then the weights can be updated recursively

using the formula

wt = wt−1
p(zt|xt)p(xt|xt−1)
q(xt|x1:t−1, z1:t)

. (2.37)

Thus, the choice of proposal density q(xt|x1:t−1, z1:t) is one of the major decisions when

creating a particle filter. One of the popular choices is to use the transition density

p(xt|xt−1), which then simplifies Equation 2.37 to wt = wt−1p(zt|xt). Another is to use

the likelihood distribution as the proposal density. The unscented particle filter [77] uses

a UKF to create the proposal density for a particle filter.

The form of particle filter that has been derived up to this point is fairly generic, and

suffers from a few serious practical problems. The main problem is that of degeneracy,

where the weights of the particles fall to low values over time, signifying that the samples

are in regions of low probability. It has been proved that over time the variance of

the weights can only increase [78]. It has also been proven that the optimal proposal

distribution to minimise this variance is p(xt|x1:t−1, z1:t), though in many situations, it is

impractical to use this distribution. One way of tackling degeneracy is to resample the

distribution. There are simple algorithms available to sample from densities represented

by particles [79], and these result in more particles being generated in regions of high

probability. After this resampling takes places, the particles are given uniform weighting.

The Sampling Importance Resampling (SIR) particle filter uses resampling after at every

2.3. CONCLUSIONS 27

time step to mitigate the problem of degeneracy. Particle filtering was first introduced in

the computer vision community as the Condensation (Conditional Density Propagation)

algorithm [79] which is exactly equivalent to the SIR particle filter.

The techniques mentioned up to this point, give a brief overview of the field of recur-

sive Bayesian filters, but many more techniques exist. The particle filtering framework

is very flexible, and lends itself easily to modifications. Other popular particle filters not

mentioned so far include the auxiliary particle filter [80], the regularised particle filter

[81], and the Rao-Blackwellised particle filter [82]. Several filters have been designed

to address the problems that arise when tracking multiple targets. These include the

Joint Probability Data Association Filter (JPDAF) [83], although this suffers from the

drawback of being unable to deal with targets leaving or entering the field of view. An-

other alternative is Multiple Hypothesis Tracking (MHT) [84]. A popular technique for

computer vision is the mixture particle filter [85], which has been combined with the

AdaBoost machine learning algorithm [36] to create the Boosted Particle Filter (BPF),

which has been demonstrated by tracking hockey players during a game [86]. The Prob-

ability Hypothesis Density (PHD) filter [87] has become very popular outside the field of

computer vision, and exists in forms which parallel the various versions of the Kalman

filter [88] and the particle filter [89]. It is able to generate probability distributions for

the cardinality of the targets by using finite set statistics [90].

There are techniques that combine aspects of kernel methods and recursive Bayesian

filtering, such as the approach in [91], which uses Gaussian mixture distributions that

are filtered by a modified particle filter, and decides which mode represents the most

likely hypothesis by running the mean shift algorithm over a range of kernel bandwidths.

2.3 Conclusions

This chapter has summarised some of the literature regarding detection and tracking

in the field of computer vision. The limitations of current techniques along with the

state of the art are now considered, and these issues are used to inform the research

undertaken in this thesis.

Many existing methods for detecting people in images suffer from the limitation of

being unable to meet the earlier stated latency requirement of being able to evaluate a

2.3. CONCLUSIONS 28

640 × 480 pixel image in less than a second on a desktop computer. One of the faster

methods is the integral channel features detector [6], which also shows promising results

in terms of accuracy. For this reason, this detector will be used as a starting point in

Chapter 3.

For tracking, recursive Bayesian filters are limited by the fact they require a method

for detection. The mean-shift tracking algorithm is limited by the fact that existing

methods for tracking through scale are prone to failure, or require more operations by

an order of magnitude. Thus, one direction for research would be to formulate methods

for mean-shift tracking through scale, which will be explored in Chapter 5.

Chapter 3

Detecting People in Images

This chapter addresses the problem of detecting instances of people in images. As has

been seen in Section 2.1.1, there are a variety of methods to accomplish this task. When

addressing such a specific problem, it is often useful to use a well established method as a

starting point. The approach used here is based on the integral channel features detector

[47]. As was mentioned in Section 2.3, one of the benefits of this method is its speed and

accuracy over other techniques. This detector learns a sliding window classifier using the

AdaBoost algorithm applied to gradient orientation and colour features. The detector

is described in the following three sections, starting with an explanation of the features

used in Section 3.1. In Section 3.2 the AdaBoost algorithm used to learn the classifier is

introduced. Section 3.3 explains how the classifier is used to detect instances of people

in images of arbitrary size. Results for the detector using various different parameter

settings are presented in Section 3.4. Finally, Section 3.5 explains how the speed of the

classifier can be increased, and the chapter ends with a discussion and summary.

3.1 Features

Let I ∈ Rm1×m2×3 be an RGB image, with elements I(j, k, c) ∈ R where j and k indicate

the row and column of a pixel, and c indicates the channel, which are ordered as red,

green and blue. Individual channels of an image are denoted by Ic ∈ Rm1×m2 . Note that

a window, which is a rectangular region within an image will also be denoted by I.

As has been mentioned, it is often necessary to extract features from images in

order to perform tasks such as classification. A feature map is denoted by Φ(I) ∈

29

3.1. FEATURES 30

Rm1×m2×m3 , where m3 is finite and positive. As before, the entries of a feature map

are Φ(I, j, k, c) ∈ R, although it should be noted that the number of channels is now

different. An individual feature channel is denoted by Φc(I) ∈ Rm1×m2 . For brevity of

notation, occasionally the I will be dropped, to give Φ or Φ(j, k, c).

The default feature map that will be used is the same as that in [47], which has ten

channels. The first six channels of Φ are gradient orientation channels, the seventh is

a gradient magnitude channel, and the last three channels are CIELUV colour space

channels. Images are filtered with a binomial filter prior to feature extraction. How

these channels are generated is explained next.

3.1.1 Image Filtering

Before feature extraction takes place, it is common to apply filtering techniques to reduce

image noise or to reduce the variance of input images. The binomial filter is used here. A

one dimensional binomial filter hl is simply a normalised vector of binomial coefficients

of length l. For example, possible filters are h3 = 1
4 [1 2 1]T and h5 = 1

16 [1 4 6 4 1]T (note

that (·)T denotes a transpose). Only binomial filters with an odd length are considered.

An image is smoothed by convolving each channel with hl and then hl
T. This is more

efficient than convolving by the two dimensional filter hlhl
T, which would give the same

result.

3.1.2 Gradient Channels

The feature map that will be used will contain a gradient magnitude channel and sev-

eral gradient orientation channels. Gradient orientation channels contain magnitude

information for a specific orientation range. Such features are very popular for object

detection [4].

Image gradients are generated by convolving an image with a difference operator.

In the case of a colour image, a finite difference operator can be convolved with each

channel to find gradients in the x and y directions

Gc
x = [−1 0 1] ∗ Ic, (3.1)

Gc
y =

[−1
0
1

]
∗ Ic, (3.2)

3.1. FEATURES 31

1

2

3
4

5

3

1

2

4
5

6

6

π/2

0π

3 /2π

(a)

7

8

3
4

5

9

1

2

10
11

6

12

π/2

0π

3 /2π

(b)

Figure 3.1: The binning process can be (a) contrast insensitive (shown for mb = 6),
where gradients that go from light to dark or from dark to light regions are treated in
the same way if they have the same orientation, or (b) contrast sensitive (shown for
mb = 12) where there are separate bins for gradients with the same orientation, but
different contrast directions.

where Gc
x,G

c
y ∈ Rm1×m2 . Values at the border of Ic are replicated to ensure that the

convolution can be computed at the boundaries of the image. The magnitude of an

entry for a channel can be computed as

Gc
mag(j, k) =

√
Gc
x(j, k)2 + Gc

y(j, k)2. (3.3)

To generate gradient orientation channels, for each pixel a gradient magnitude and

gradient orientation must be defined. A popular method to do this for colour images is

to use the magnitude and orientation from the colour channel with the largest gradient

magnitude value. Let cmax(j, k) = arg max
c
{Gc

mag(j, k)}. For brevity, let cmax(j, k) be

abbreviated to cmax. The gradient magnitude and orientation can be expressed as

Gmag(I, j, k) = max
c
{Gc

mag(j, k)}, (3.4)

Gθ(I, j, k) = arctan

(
Gcmax
y (j, k)

Gcmax
x (j, k)

)
, (3.5)

where Gθ(I, j, k) ∈ [0, 2π). Gradient orientation channels are constructed by assigning

gradient magnitudes to bins based on the value of Gθ(I, j, k). Let the number of bins

be mb. The range [0, 2π) is divided in to equal sized bins. Let bθ(·) be a function that

3.1. FEATURES 32

binomial filter

gradient filters

histogram binning

(contrast
insensitive)

(contrast
sensitive)

Figure 3.2: Gradient features are generated from the process shown above. First, images
are smoothed with a binomial filter. Gradient filters are then applied to each colour
channel in the x and y directions. These results are used to calculate the magnitude and
orientation of the gradients, which are used to construct gradient orientation channels.
Gradient orientation channels can be contrast sensitive, or contrast insensitive.

3.1. FEATURES 33

maps gradient orientations to bin indices so that bθ : [0, 2π)→ {1, . . . ,mb}. It should be

noted that the binning process can be contrast insensitive or contrast sensitive. Image

gradients along an axis can represent transitions from high intensity regions to low

intensity regions (i.e. I(j, k, c) > I(j + 2, k, c)) or vice versa. Contrast sensitive binning

makes a distinction between gradients with the same visual orientation, but differing

directions of contrast, while contrast insensitive binning does not. Figure 3.1 illustrates

the difference between these two types of binning, as well as the layout of the bins.

Gradient orientation channels are then defined as

Ψ(I, j, k, c) =

Gmag(I, j, k) if c = b(Gθ(I, j, k))

0 otherwise

. (3.6)

The process of creating gradient orientation channels is illustrated in Figure 3.2. In

the default setup for generating features, only contrast insensitive features will be used.

However, the performance of contrast sensitive features will be examined later in Sec-

tion 3.4.5.

3.1.3 CIELUV Channels

The second type of feature used is based on the CIELUV colour space. A variety of

colour spaces exist, but the CIELUV space is used here as this has been shown to

improve results in pedestrian detection [47]. This colour space is designed to achieve

perceptual uniformity, so that Euclidean distances in this space correspond to perceptual

differences in the colour [92]. It consists of three channels denoted L∗, u∗ and v∗. The L∗

channel measures luminance (relative brightness), while the u∗ and v∗ channels measure

chromacity (colour).

3.1.4 Channel Features

The features that will be used by the classifiers developed in this thesis are simple

rectangular sums over feature map channels, as in [47]. These are often referred to as

channel features. Let ρ = [xρ yρ wρ hρ cρ]T be a vector containing the parameters that

3.1. FEATURES 34

describe a feature. A feature g ∈ R is computed on an image I by

g(I,ρ) =
∑

(xρ≤j<xρ+wρ)∧
(yρ≤k<yρ+hρ)

Φcρ(I, j, k). (3.7)

These features summarise the intensity of a channel in a particular area within an image.

For example, in the the far left of Figure 3.3, the translucent red rectangle represents

the area covered by a feature for a vertical edge channel. This feature could indicate

the presence or absence of a leg. Combining information from multiple features can give

discriminative information that could indicate the presence or absence of a particular

object (how the features are combined is addressed later in Section 3.2). Channel features

can overlap, and the number of features that can be generated for even a small image

is very large. For a feature map Φ that is m1 ×m2 ×m3, an expression for the number

of possible features Nf can be derived by first considering the number of rectangular

features of a fixed width w and height h for a single channel

Nw,h = (m1 − w + 1)(m2 − h+ 1). (3.8)

The total number of features Nf will simply be Nw,h summed over every value of w and

h and multiplied by the number of channels m3

Nf = m3

m1∑
w=1

m2∑
h=1

Nw,h

= m3

m1∑
w=1

m2∑
h=1

(m1 − w + 1)(m2 − h+ 1)

= m3

m1∑
w=1

(m1 − w + 1)

m2∑
h=1

(m2 − h+ 1)

= (m1(m1 + 1)−
m1∑
w=1

w)(m2(m2 + 1)−
m2∑
h=1

h)m3

= (m1(m1 + 1)− 1

2
m1(m1 + 1))(m2(m2 + 1)− 1

2
m2(m2 + 1))m3

=
1

4
m1(m1 + 1)m2(m2 + 1)m3. (3.9)

For the purposes of learning a detector in Section 3.2, the feature maps for the training

set will have dimensions of m1 = 128, m2 = 64 and m3 = 10 as the default values. This

3.1. FEATURES 35

yields a total of 171,724,800 features. This set of features is far too large to be fully

explored, and so a common practice is to subsample the spatial dimensions m1 and m2

by some factor M to reduce the number of features by a factor of roughly M4, as can be

seen from Equation 3.9. The factor M is usually referred to in literature as the “shrink

factor” [47] [50]. For a shrink factor of 4, the number of features is 718,080. Even

with this reduction in the number of features, full exploration of the feature space is

not possible with the hardware resources used throughout this thesis (a 32-bit computer

with 4 gigabytes of Random Access Memory (RAM)) if we wish to hold all the training

data in RAM at once. A shrink factor of 4 will be used by default throughout this work.

It should be noted that channel features can be computed quickly by computing the

integral histogram of Φ [93]. The integral histogram is a generalisation of the integral

image [36], and can be used to calculate any rectangular channel sum by looking up only

four values. An integral histogram Λ ∈ Rm1×m2×m3 is formed by summing all values

above and to the left of each entry of a feature map Φ

Λc(I, j, k) = Λ(I, j, k, c) =
∑

j′≤j,k′≤k
Φc(I, j′, k′). (3.10)

Equation 3.7 can then be rewritten as

g(I,ρ) = Λcρ(I, xρ, yρ)−Λcρ(I, xρ+wρ, yρ)−Λcρ(I, xρ, yρ+hρ)+Λcρ(I, xρ+wρ, yρ+hρ).

(3.11)

Figure 3.3 presents a visualisation of Equation 3.11. To generate an integral histogram

from a feature map, all the entries of the feature map must be positive. This condition is

met by the gradient channels described in Section 3.1.2, but not by the CIELUV channels

in Section 3.1.3. The ranges for the chromacity channels u∗ and v∗ are [−134, 220] and

[−140, 122] respectively. To satisfy the positivity condition, an offset is added to all

chromacity values to shift the ranges to [0, 354] and [0, 262].

3.1.5 Summary

To summarise, this section has addressed the type of features that will be used to learn

a detector. After smoothing the input image with a binomial filter, a feature map with

3.2. LEARNING A DETECTOR 36

= - +-

Figure 3.3: A channel feature is the sum over a rectangular area within a channel, shown
on the far left. The four corners of the channel feature are shown as coloured circles.
Integral histogram entries are equal to the sum of all entries from the top left hand corner
down to the position of the histogram entry. Thus, four integral histogram entries can
be combined as illustrated on the right to give the value of a channel feature.

gradient orientation channels, a gradient magnitude channel and CIELUV channels is

generated. This feature map is used to generate an integral histogram so that channel

features can be computed quickly with only a few operations. The next section will

address how a detector is learned using this feature set.

3.2 Learning a Detector

The previous section has outlined the methods that will be used to extract features from

images. This section will look at how a classifier, also referred to as a detector in this

context, can be created to indicate whether a person is present in an image based on

the values of multiple features. Classifiers are created by training them on a labelled set

of training images. Here, the AdaBoost algorithm is used in conjunction with binary

decision trees. Methods for training will be described along with practical considerations

for implementing the algorithm.

3.2.1 AdaBoost

The algorithm that will be used to learn a detector is Adaptive Boosting, commonly re-

ferred to as AdaBoost. Boosting algorithms are a class of techniques that were originally

motivated by attempting to address whether it was possible to create a highly accurate

classifier (known as a strong classifier) from several inaccurate classifiers (known as weak

classifiers). It was found that this was possible and further refinements of these concepts

led to the creation of AdaBoost [40]. Since its creation, researchers have sought to ex-

3.2. LEARNING A DETECTOR 37

plain the behaviour of AdaBoost and offer alternative derivations of the algorithm. One

alternative is to view the algorithm as the sequential minimization of an exponential

cost function [23] [37]. It can also be shown that AdaBoost can be seen as a form of

functional gradient descent [94].

A general version of AdaBoost will now be described. Let a training set be S =

{(x1, y1), . . . , (xn, yn)} where x belongs to some instance space Xand y ∈ {−1,+1} is

a label. The aim is to construct a function f : X → {−1,+1} that can assign the

correct label to instances from X that were not observed during training. It is assumed

that there is a weak learning algorithm (known as a weak learner) available L(S, D)

that accepts a training set S and a distribution over the training examples D(i) where

D(i) > 0 and
∑n

i=1D(i) = 1. The weak learner L returns a base classifier h(x), also

known as a weak classifier, where h : X → {−1,+1}. The base classifier that is returned

minimises the error ε defined as

ε =
∑

i:h(xi)6=yi

D(i). (3.12)

It can be seen that the error ε is simply the sum of the weights for all misclassified

training examples. To create a strong classifier, L(S, D) is called R times (each call is

referred to as a round), and each time a different distribution D is used. The distribution

D is adjusted between rounds to increase the values for misclassified examples, and

decrease the values for correctly classified examples. This leads to each weak classifier

compensating for the mistakes of the previous classifiers. The final classifier f is the

sign of a combination of the base classifiers

f(x) = sgn

(
R∑
r=1

αrhr(x)

)
(3.13)

where αr is defined in Algorithm 1 and sgn(·) is the signum function.

The full description of AdaBoost is shown in Algorithm 1. It should be noted that

there are multiple equivalent formulations of the algorithm, and that the formulation is

slightly different when the label values are taken to be {−1,+1} rather than {0, 1}. The

description given in Algorithm 1 is general, and so specific details on how AdaBoost is

applied to train an object detector are given next:

3.2. LEARNING A DETECTOR 38

Algorithm 1 AdaBoost

Require:

• A training set S = {(x1, y1), . . . , (xn, yn)}.
• A learning algorithm L(S, D) that accepts a training set S and a distribution
D and returns a base classifier h where h : X → {−1,+1}.

1: Initialise D0(i)← 1
n for i = 1, . . . , n

2: Initialise H0(x)← 0
3: for r ← 0 to R do
4: Let hr+1 ← L(S, Dr)
5: Let εr+1 ←

∑
i:hr+1(xi)6=yi Dr(i)

6: if εr+1 ≥ 1
2 then

7: return Hr

8: end if
9: Let αr+1 = 1

2 log
(
1−εr+1

εr+1

)
10: Let Hr+1 = Hr + αr+1hr+1

11: Let Dr+1(i)←

{
Dr(i)/2(1− εr+1) if hr+1(xi) = yi

Dr(i)/2εr+1 if hr+1(xi) 6= yi
12: end for
13: return HR+1

• Training sets for object detection are often highly unbalanced, with many more

negative examples than positive ones. To account for this, the initial distribution

for boosting D0 is calculated as

D0(i) =
1

2n+
if yi = +1, (3.14)

D0(i) =
1

2n−
if yi = −1, (3.15)

where n+ and n− are the number of positive and negative training examples re-

spectively. This approach was first adopted in [36].

• The training set for an object detector is a set of features computed from the set of

training images. Let an image training set be defined as SI = {(I1, y1), . . . , (In, yn)}.

To proceed with training, a vector of features must be extracted for each training

example. As the total number of unique features is very large (see Section 3.1.4),

usually a random subset is used. Let {ρ1, . . . ,ρU} be a set of vectors defining the

parameters of U channel features, where by default U = 30000 as in [6]. Let a

3.2. LEARNING A DETECTOR 39

vector of features g ∈ RU be defined as

g(Ii) =

[
g(Ii,ρ1) · · · g(Ii,ρU)

]T
, (3.16)

where g(I,ρ) is defined in Equation 3.11. The feature training set is then defined

as Sg = {(g(Ii), y1), . . . , (g(In), yn)}, and this is the set used to train a detector.

• In general, a weak classifier h(x) is a function of the data vector x. When training

an object detector, the data vector is g as defined in Equation 3.16. Because of the

high dimensionality of g, it is not feasible to have a base classifier that processes

the entire feature vector. Feature selection must be performed so that a base

classifier acts upon only a very small number of the entries.

• The base classifiers that will be used are decision trees. These are explained in the

next section.

3.2.2 Decision Trees

AdaBoost works by training multiple base classifiers, where the choice of base classifier is

left open. The base classifier that will be used in this thesis is the binary decision tree, as

these classifiers can be trained and evaluated very quickly compared to alternatives like

SVMs and linear discriminants. Decision trees are simple and flexible classifiers, which

can be applied to a variety of learning problems. They are composed of split nodes and

leaf nodes, with split nodes applying functions to the input to determine which branch

to follow next, and leaf nodes representing the decisions returned by the tree. Figure 3.4

shows two balanced binary decision trees with split nodes as blue circles, and leaf nodes

as green squares. The depth of a tree refers to the depth of the split nodes, and so the

trees in Figure 3.4 have depths of one and two. A decision tree of depth one is also

known as a stump. This may be seen as the simplest kind of decision tree, and can be

used to build more complex trees. A stump hstump(I,ρ, θ, q), sometimes abbreviated to

hstump(I), can be defined as

hstump(I,ρ, θ, q) =

+1 if qg(I,ρ) < qθ

−1 otherwise

, (3.17)

3.2. LEARNING A DETECTOR 40

-1+1

(a)

-1+1 -1+1

(b)

Figure 3.4: (a) A stump classifier takes an input image I, evaluates a feature g, compares
this against a threshold θ, and then returns a label based on the polarity q. Returning
a label can be seen as selecting a branch. (b) A decision tree is composed of multiple
stump classifiers, and is therefore capable of more complex classifications.

where q ∈ {−1,+1} is the polarity of the stump classifier, and θ ∈ R is a threshold.

A stump classifier compares a feature value g against a threshold θ. The polarity q

controls the type of comparison. The result of the comparison is used to return a

label. A diagram of a stump classifier is shown in Figure 3.4a. As a result of their

simplicity, stump classifiers perform poorly by themselves. Tree classifiers are slightly

more complex, and have a stump classifier for each split node. A depth two decision

tree is shown in Figure 3.4b.

The problem of training a stump classifier will now be examined in some detail. It

should be mentioned that since training a decision tree involves training several stump

classifiers, the discussion here is also relevant to the training of decision trees. To train

a stump classifier, the classifier with the lowest error on the training set must be found,

where the error is defined in Equation 3.12. A stump classifier is determined by the

parameters ρ = (xρ, yρ, wρ, hρ, cρ), θ and q. Thus, the lowest error achieved by a stump

classifier on a training set is

εmin = min
ρ,θ,q

 ∑
i:hstump(Ii,ρ,θ,q)6=yi

D(i)

 . (3.18)

Finding the best stump classifier involves optimising over three parameters. The pa-

3.2. LEARNING A DETECTOR 41

rameters are discrete and the error function is not differentiable. The error function is

not convex in all of the parameters either. There are U features, and for each feature,

a set of V candidate thresholds Θu = {θu1 , . . . , θuV } is generated by calculating V evenly

spaced values in the interval from the minimum feature value min
i
{g(Ii,ρu)} to the

maximum feature value max
i
{g(Ii,ρu)}. Let the error for a particular feature, threshold

and polarity choice be denoted

εuv+ =
∑

i:hstump(Ii,ρu,θuv ,+1)6=yi

D(i), (3.19)

εuv− =
∑

i:hstump(Ii,ρu,θuv ,−1)6=yi

D(i), (3.20)

where the subscript + or − is used to indicate the value of the polarity q. A naive

strategy to find the best stump classifier would be to calculate every value of εuv+ and

εuv− and choose the set of parameters that produce the minimum value. The number of

parameter combinations is U × V × 2, and the cost of exploring all these combinations

is considered next.

Let the computational cost of a stump training algorithm be the approximate num-

ber of addition and subtraction operations needed to evaluate the errors. The error is

computed by evaluating the right hand side of Equation 3.19 or Equation 3.20, which

involves summing over all misclassified examples. Let the number of misclassified exam-

ples in the sum be be denoted by nuv+ for εuv+, and nuv+ for εuv−. If two stump classifiers

differ only by their polarity, then all the examples correctly classified by one will be in-

correctly classified by the other, as long as no example has a value equal to the threshold

of the classifier. In practice this is rarely the case, and even when the situation does

arise, it is unlikely to have a significant impact on the final result. As a consequence of

this, it can be shown that nuv+ +nuv− = n, even though the precise values of nuv+ and nuv−

are not known. Therefore, the cost of evaluating the error for every set of parameters

is U × V × n. It should be noted that this is just the cost of training a single stump

classifier, and typically thousands of these must be trained for a boosting classifier.

A simple way to improve upon the naive approach is to make use of the observation

in the previous paragraph that reversing the polarity of a classifier changes the output

label for an input example. Since the weights satisfy the condition
∑n

i=1D(i), this

3.2. LEARNING A DETECTOR 42

implies that a classifier with an error of ε will have an error of 1 − ε when the polarity

is reversed, subject to the conditions mentioned in the previous paragraph. As a result,

the error only needs to be evaluated for one polarity, and then the error for the opposite

polarity can be calculated through one subtraction operation. This lowers the cost to

U × V × (nuv+ + 1). It is reasonable to assume that (nuv+) ≈ n
2 , as nuv+ + nuv− = n, and

there is no reason to believe that nuv+ would be significantly more or less than nuv− on

average. Therefore, the cost is approximately U × V × n
2 , which is roughly half that

of the naive approach, but still very high. The process for training a stump this way

is shown in Algorithm 2. It should be noted that the algorithm requires the candidate

thresholds Θu as an input. This is for reasons of efficiency, as the candidate thresholds

can be generated once and for all from the feature training set Sg, and as the stump

learning algorithm will be called multiple times by AdaBoost, it makes sense to perform

this calculation outside of this loop.

Algorithm 2 StumpLearnSlow

Require:

• A feature training set Sg = {(g(Ii), y1), . . . , (g(In), yn)} where g ∈ RU .

• A distribution D over the training examples.

• A set of candidate thresholds Θu = {θu1 , . . . , θuV } for each feature u = 1, . . . , U .

1: Initialise εmin ← 1, ρbest ←?, θbest ←? and qbest ←?
2: for u← 1 to U do
3: for v ← 1 to V do
4: Let εuv+ ← 0
5: for i← 1 to n do
6: if hstump(Ii,ρu, θ

u
v ,+1) 6= yi then

7: Let εuv+ ← εuv+ +D(i)
8: end if
9: end for

10: Let εuv− ← 1− εuv+
11: if εuv+ < εmin then
12: Let εmin ← εuv+, ρbest ← ρu, θbest ← θuv and qbest ← +1
13: end if
14: if εuv− < εmin then
15: Let εmin ← εuv−, ρbest ← ρu, θbest ← θuv and qbest ← −1
16: end if
17: end for
18: end for
19: return εmin,ρbest, θbest, qbest

It is possible to vastly improve on the speed of Algorithm 2. The calculation of the

3.2. LEARNING A DETECTOR 43

error can be broken down into components which can be computed separately and reused

to calculate εuv+ for different values of v. Various algorithms exploit the structure of a

problem to accelerate computation, such as the fast Fourier transform [95], which speeds

up the computation of the discrete Fourier transform using a divide and conquer strategy.

For training a stump classifier, the aspect that allows the training to be accelerated is

the fact that the candidate thresholds Θu form an ordered set, where θuv < θuv+1. Before

this can be demonstrated, the notion of quantising features must be introduced. Feature

values g(Ii,ρu) ∈ R can be mapped to discrete values γui ∈ {1, . . . , V + 1} by assigning

them to bins defined by the thresholds Θu

γui =

1 if g(Ii, ρu) < θu1

2 if θu1 ≤ g(Ii, ρu) < θu2

...

V if θuV−1 ≤ g(Ii, ρu) < θuV

V + 1 if g(Ii, ρu) ≥ θuV

. (3.21)

It will later be shown that the discretised feature values γui can be used for train-

ing rather than the feature values g(Ii,ρu). A discrete feature training set SΓ =

{(Γ(Ii), y1), . . . , (Γ(In), yn)} is defined where Γ(Ii) ∈ RU is a discrete feature vector

Γ(Ii) =

[
γ1i · · · γUi

]T
. (3.22)

It will now be shown that the error can be broken down into simpler components. It is

observed that the error εuv+ defined in Equation 3.19 may be expressed as

εuv+ =
∑

i:
(yi=+1)∧

(hstump(Ii,ρu,θ
u
v ,+1)=−1)

D(i) +
∑

i:
(yi=−1)∧

(hstump(Ii,ρu,θ
u
v ,+1)=+1)

D(i)

=
∑

i:
(yi=+1)∧

(g(Ii,ρu)≥θuv)

D(i) +
∑

i:
(yi=−1)∧

(g(Ii,ρu)<θ
u
v)

D(i). (3.23)

Stated in words, Equation 3.23 indicates that the error is the sum of the error over

positive examples and the error over negative examples. The second line is arrived at by

3.2. LEARNING A DETECTOR 44

substituting Equation 3.17 for hstump(Ii,ρu, θ
u
v ,+1). To simplify the notation, let eu+v

and eu−v be defined as

eu+v =
∑

i:
(yi=+1)∧

(g(Ii,ρu)≥θuv)

D(i), (3.24)

eu−v =
∑

i:
(yi=−1)∧

(g(Ii,ρu)<θ
u
v)

D(i), (3.25)

so that εuv+ = eu+v + eu−v . Note that the superscript + or − indicates the values of yi.

Because the set of candidate thresholds Θu = {θu1 , . . . , θuV } are in increasing order, it

can be observed that eu+v and eu−v can be written recursively as

eu+v = eu+v+1 +
∑

i:
(yi=+1)∧

(θuv≤g(Ii,ρu)<θuv+1)

D(i) for v < V, (3.26)

eu+V =
∑

i:
(yi=+1)∧

(g(Ii,ρu)≥θuV)

D(i), (3.27)

eu−v = eu−v−1 +
∑

i:
(yi=−1)∧

(θuv−1≤g(Ii,ρu)<θuv)

D(i) for v > 1, (3.28)

eu−1 =
∑

i:
(yi=−1)∧

(g(Ii,ρu)<θ
u
1)

D(i). (3.29)

By substituting Equation 3.21 into the previous set of equations, they can be expressed

as

eu+v = eu+v+1 +
∑

i:(yi=+1)∧(γui =v+1)

D(i) for v < V, (3.30)

eu+V =
∑

i:(yi=+1)∧(γui =V+1)

D(i), (3.31)

eu−v = eu−v−1 +
∑

i:(yi=−1)∧(γui =v)

D(i) for v > 1, (3.32)

eu−1 =
∑

i:(yi=−1)∧(γui =1)

D(i). (3.33)

Thus, eu+v and eu−v can be calculated for v = 1, . . . , V if
∑

i:(yi=−1)∧(γui =γ)
D(i) is known

3.2. LEARNING A DETECTOR 45

for γ = 1, . . . , V +1. Let du+γ =
∑

i:(yi=+1)∧(γui =γ)
D(i) and du−γ =

∑
i:(yi=−1)∧(γui =γ)

D(i).

The values of du+γ and du−γ are simply the sums of weights which have the same label

yi and also the same discrete feature value γui . These can easily be computed from the

discrete feature training set SΓ. The full process for training a stump classifier is shown

in Algorithm 3.

Now the complexity of Algorithm 2 and Algorithm 3 will be compared. As has

already been seen, the approximate number of additions and subtractions for Algorithm 2

is roughly U × V × n
2 . In Algorithm 3, an outer loop iterates over each feature U times.

Within this loop, there are four loops where addition and subtraction operations take

place. The first of these iterates n times over each training example and performs one

addition per iteration. The second and third loops iterate V − 1 times each, performing

one addition per iteration. The fourth loop iterates V times and performs one addition

and one subtraction per iteration. Thus, the total number of additions and subtractions

for Algorithm 3 is U × (n+ 4V − 2). Usually n >> V , with typical values of n = 12000

and V = 256, and so Algorithm 3 is a considerable improvement over Algorithm 2. It

is important to stress that in practice, the speed of an algorithm relies not only on the

number of operations, but the type of operation, and other factors relating to hardware,

such as whether memory is accessed sequentially or randomly, and the number of branch

prediction errors. As a result, the ultimate measure of speed can only come through

actual experiments, which confirm that Algorithm 3 is faster. It will also be seen in

Section 3.2.3 that Algorithm 3 can provide vast improvements in memory consumption.

Figure 3.5 shows the time taken for training a boosting classifier using Algorithms 2

and 3, with the training time plotted against the total rounds of boosting. It should be

noted that the y-axis of the graph is logarithmic. For the training runs in Figure 3.5,

training parameters were fixed so that U = 30000, n = 7288, V = 255 and stump

classifiers were used as weak classifiers. The total rounds of boosting were varied, and

it can be seen that Algorithm 3 is faster than Algorithm 2 by a least one order of

magnitude.

A decision tree is created by training a stump classifier for each split node in the

tree. Thus, a decision tree learning algorithm would repeatedly call Algorithm 2 or Al-

gorithm 3. In this thesis, a greedy training algorithm is used, where the best performing

3.2. LEARNING A DETECTOR 46

Algorithm 3 StumpLearnFast

Require:

• A discrete feature training set SΓ = {(Γ(Ii), y1), . . . , (Γ(In), yn)} where Γ ∈
RU

• A distribution D over the training examples.

• A set of candidate thresholds Θu = {θu1 , . . . , θuV } for each feature u = 1, . . . , U .

1: Initialise εmin ← 1, ρbest ←?, θbest ←? and qbest ←?
2: for u← 1 to U do
3: for γ ← 1 to V + 1 do
4: Initialise du+γ ← 0
5: Initialise du−γ ← 0
6: end for
7: for i← 1 to n do
8: Let γ ← γui
9: if yi = +1 then

10: Let du+γ ← du+γ +D(i)
11: else
12: Let du−γ ← du−γ +D(i)
13: end if
14: end for
15: Let eu+V ← du+V+1

16: for v ← V − 1 to 1 do
17: Let eu+v ← eu+v+1 + du+v+1

18: end for
19: Let eu−1 ← du−1
20: for v ← 2 to V do
21: Let eu−v ← eu−v−1 + du−v
22: end for
23: for v ← 1 to V do
24: Let εuv+ ← eu+v + eu−v
25: Let εuv− ← 1− εuv+
26: if εuv+ < εmin then
27: Let εmin ← εuv+, ρbest ← ρu, θbest ← θuv and qbest ← +1
28: end if
29: if εuv− < εmin then
30: Let εmin ← εuv−, ρbest ← ρu, θbest ← θuv and qbest ← −1
31: end if
32: end for
33: end for
34: return εmin,ρbest, θbest, qbest

3.2. LEARNING A DETECTOR 47

200 400 600 800 1000 1200 1400 1600 1800 2000
10

3

10
4

10
5

10
6

NumberAofARoundsAofABoosting

T
im

eA
T

ak
en

A(
se

co
nd

s)

AlgorithmA3
AlgorithmA2

Figure 3.5: The training time for a boosting classifier plotted against the number of
rounds of boosting. As can be seen, Algorithm 3 consistently outperforms Algorithm 2.
For all training runs in this graph, training parameters were fixed so that U = 30000,
n = 7288, V = 255 and stump classifiers were used as weak classifiers.

stump classifier is trained for each split node, and only balanced trees are considered.

The training process begins at the top of a tree. After a stump classifier has been trained

for a node, the training set for that node is partitioned into two new smaller sets based

on how each training example is labelled by the newly trained classifier. These two new

sets are used to train the two child nodes, and the training procedure descends through

the tree in this fashion until the maximum specified depth is reached. The actual imple-

mentation of the algorithm performs the training in a breadth first manner, and so the

training time is approximately linear in the tree depth. For example, depth two decision

trees take roughly twice as long to train as stump classifiers.

3.2.3 Implementation Issues

It has been shown how a person detector can be trained with AdaBoost applied to

binary decision trees. The actual implementation of the algorithm for the experiments

in this thesis is written in the C++ programming language. When implementing the

algorithm, practical considerations must be made in regard to the amount of memory

available. Algorithms generally work at a higher speed if the data that they process is

3.2. LEARNING A DETECTOR 48

stored in a computer’s RAM rather than on the hard drive. However, RAM is limited.

Let us consider the memory consumption of a feature training set Sg. The majority

of the memory is taken up by the training vectors g ∈ RU , and so the labels yi and

candidate thresholds Θu will not be considered in these calculations. Each entry of the

vector g is a real number, and can be stored as a single precision floating point value.

Labels can be stored as boolean values. When programming in C++, the size of a

variable type is not fixed by the language standard, and may vary between compilers,

but for a large number of compilers a single precision floating point value consumes

four bytes. A training set will consist of U × n of these values. Thus, the memory

requirements scale linearly with the number of training examples and the number of

features. Typically U = 30000 and the n ≈ 13000. As has been mentioned, in this thesis

we are specifically interested in the implementation of training on a desktop computer

with a 32 bit architecture and 4 gigabytes of RAM, but it is worth considering how the

issues that may be encountered would vary depending on the resources available. In

terms of software, an alternative implementation could use MATLAB rather than C++.

The memory requirements in this case would be the same, but an overhead would be

incurred for running the MATLAB console. Also, MATLAB is highly optimised for

operations involving matrices, of which there are none in this algorithm. In terms of

hardware, alternative platforms could include 64 bit computers and graphics processing

units. Computers with a 64 bit architecture could have more than 4 gigabytes of memory,

allowing more training examples and features to be used, and a 32 bit implementation

could be recompiled to work on such a platform. Graphics processing units would

allow the training of individual weak classifiers to be accelerated, but would require an

implementation using an appropriate application programming interface.

With the previously stated typical values of U = 30000 and n ≈ 13000, and the

assumption that a single precision floating point value requires 4 bytes of storage, the

total memory that is used for training is 1.34 gigabytes. On a 32 bit computer with 4

gigabytes of RAM, only 3 gigabytes of RAM are available, and a proportion of this will

be used by the operating system. While the training set under these settings is within

limits, it is not possible to double the number of features or training examples without

running out of memory.

3.3. RUNNING A DETECTOR 49

The memory consumption of the training algorithm can be vastly decreased by using

a quantised feature set SΓ, as is required by Algorithm 3. In this setup, the entries of a

vector γ ∈ RU are integers. If V is bounded at 255, then γ ∈ {1, . . . , 256}. This means γ

can be stored in a single byte, rather than the four bytes required for g. Thus, a fourfold

reduction in memory consumption can be achieved.

The training set used throughout this thesis is the INRIA person training dataset

[51]. The negative training images in this set can be used to generate millions of negative

training examples by sampling windows at arbitrary scales and translations, but as

has been illustrated, it is only practical to use several thousand. In order to obtain a

representative training set from the negative image set, the approach from [47] is used.

A classifier is trained with an initial negative set of 5000 randomly sampled windows.

The resulting classifier is then applied to the negative training images to gather 5000

additional negative examples, in a process commonly referred to as bootstrapping. These

additional examples will be false positives, and will therefore be useful for correcting

the performance of the classifier. The entire training and bootstrapping process is then

repeated again to give up to 5000 more negative training examples, for a maximum total

of 15000 negative training examples used to train the final classifier. However, in the

last round of bootstrapping, the performance of the classifier has usually improved to

the point where the number of false positives is much lower than 5000, and so normally

the number of negative training examples generated by this process will be ≈ 10000.

3.2.4 Summary

In this section, the training procedure for training a person detector has been outlined.

The AdaBoost algorithm was described, along with decision trees and stump classifiers.

An efficient training method was outlined, and practical issues for implementing the

algorithm were addressed. The next section will describe how the detector is run on an

image at multiple scales to obtain bounding box detections.

3.3 Running a Detector

In the previous section, it has been shown how a detector can be trained. The resulting

detector can be used to classify images that have the same dimensions as those in the

3.3. RUNNING A DETECTOR 50

training set. In this section, it will be shown how the detector can be applied to an image

of arbitrary size to detect people at multiple scales. To do this, first an image has to

be rescaled multiple times, and an integral histogram must be computed for each scale.

Then, the integral histograms will sometimes be padded to allow detection of people

who take up a larger extent of the image. At this point, the detector can be evaluated

on the integral histograms to obtain a list of bounding boxes. Finally, non-maximum

suppression is applied to the resulting bounding boxes with the aim of creating only a

single bounding box for each target instance.

3.3.1 Image Rescaling

There are a variety of methods for rescaling images. Two widely used approaches are

nearest neighbour interpolation and bilinear interpolation. Nearest neighbour interpola-

tion is a very simple approach where every pixel in the new image is assigned the value

of the nearest pixel in the original image. Bilinear interpolation assigns a value in the

new image by calculating a weighted sum of four pixels in the original image, where the

weights are determined by the location of the pixel within the neighbourhood. When

downscaling an image, the quality can deteriorate severely, with rapid changes in in-

tensity being introduced, as shown in Figure 3.6b. To mitigate this, the image can be

convolved with a kernel prior to downscaling. Figure 3.6c shows an image that was con-

volved with a box filter prior to downscaling with nearest neighbour interpolation. The

dimensions of the box kernel are the inverse of the scale factor. It can be seen that the

abrupt changes in intensity present in Figure 3.6b are gone. Throughout this thesis, the

default approach for rescaling images will be to convolve the image with a box filter and

then apply nearest neighbour interpolation. The effect of box filtering on performance

is examined in Section 3.4.2.

3.3.2 Padding Integral Histograms

Throughout this thesis, the INRIA Person Dataset is used to train detectors. As was

mentioned in Section 2.1.3, the cropped positive training examples provided in the

dataset are padded at the borders, so that a 128× 64 pixel image will contain a person

who is approximately 96 pixels tall with a border of 16 pixels on each side. The reason

3.3. RUNNING A DETECTOR 51

(a) (b) (c)

Figure 3.6: (a) An image. (b) The original image downscaled with nearest neighbour
interpolation. (c) The original image convolved with a box filter prior to downscaling
with nearest neighbour interpolation. Smoothing with a box filter substantially improves
results.

for this given in [4] is that introducing this padding improves detection results. However,

as a result of this padding, any person in an image that has a height equal to that of the

image can not be detected. To allow for the detection of such instances, padding can be

added to the boundaries of an integral histogram.

3.3.3 Resizing Bounding Boxes

As mentioned in the previous section, the positive training examples from the INRIA

Person Dataset have a border around each person. To make sure the bounding boxes

output by the detector reflect the extent of a person, they must be resized. We use the

scale factors mentioned in the addendum to [47], which are 0.67 for the width and 0.78

for the height of each bounding box. This resizing is carried out prior to non-maximum

suppression, described in the next section.

3.3.4 Non-maximum suppression

After running a sliding window classifier on an image, there will typically be multiple

overlapping bounding boxes around a pedestrian, as shown in Figure 3.7a. The process

of reducing these is known as Non-Maximum Suppression (NMS). NMS is necessary, as

a reliable evaluation protocol will penalise a detector that produces multiple bounding

boxes for a single target instance. Figure 3.7b shows results after NMS has been applied.

A number of NMS techniques exist. A method based on the mean shift algorithm

is outlined in [96]. However, much simpler methods are often capable of achieving good

results, and so throughout this thesis a method outlined in the addendum of [47] will

3.3. RUNNING A DETECTOR 52

(a) (b)

Figure 3.7: The output bounding boxes from a detector shown in green (a) before non-
maximum suppression and (b) after non-maximum suppression. It can be seen that
non-maximum suppression greatly reduces the number of bounding boxes.

be used. The first step of this method is to sort the bounding boxes into descending

order by the real valued score that they obtain from the boosting classifier. The score

is simply defined as the value on right hand side in Equation 3.13 prior to evaluating

the sgn function. Starting from the bottom of the list and moving upwards, each box

below the current bounding box is removed from the list if its score is lower than the

current box and if the value of an overlap criteria between the two boxes is greater than

a defined threshold. The overlap criteria between two bounding boxes is defined as the

area of overlap between the two boxes, divided by the area of the smallest box. The

default threshold value is 0.65, the same as that used in the addendum of [47].

3.3.5 Summary

This section has summarised how a detector is run on an image of arbitrary size to

detect instances of people of arbitrary size and translation. The input image is rescaled

multiple times with nearest neighbour interpolation preceded by box filtering. An inte-

gral histogram is generated from each rescaled image, and then the detector is evaluated

in a dense fashion over each integral histogram. The bounding boxes produced by the

detectors are then processed using NMS. Results for a range of experiments are given in

the next section.

3.4. RESULTS 53

3.4 Results

The previous three sections have outlined how a person detector can be trained on a

labelled dataset, and then run on novel images. In this section, the performance of

the developed detector is measured under a variety of different settings against other

detectors. The Caltech Pedestrian Detection Benchmark [5] is used to evaluate the per-

formance, and details of this benchmark were discussed in Section 2.1.2. The results

graphs plot the miss rate against the number of false positives per image. The Caltech

Pedestrian Detection Benchmark can be used to generate results for five different pedes-

trian datasets. In this section, the INRIA person dataset [51] and the ETH pedestrian

dataset [54] are used. It should be noted that the ETH pedestrian dataset contains

pedestrians that are smaller than the smallest pedestrian that can be detected by the

detectors presented here, and so for all experiments with this data set, the test images

are rescaled to twice their original size.

As has been mentioned, the approach for creating a detector outlined here is based

on that of the integral channel features detector described in [47]. However, this detector

has been completely re-implemented for this thesis, and there are some differences from

the implementation from [47]:

• The gradient features used throughout this thesis are extracted from Red-Green-

Blue (RGB) images.

• By default, the gradient orientation channels used by the feature maps Φ in this

thesis are not normalised. The effect of normalising these channels is explored in

Section 3.4.4, but the form of normalisation used is different from that used in

[47].

• The integral histograms generated by the code written for this thesis do not use

interpolation between gradient orientation bins. Removing interpolation reduces

the amount of floating point arithmetic that must be executed for each pixel, and

allows the binning of edges without computing the inverse tangent function.

• When running a detector at multiple scales, nearest neighbour interpolation is

used to rescale images rather than bilinear interpolation. Experiments showed

3.4. RESULTS 54

Parameter Default Value

Number of Contrast Insensitive Channels 6

Number of Contrast Sensitive Channels 0

LUV Channels Yes

Shrink Factor 4

U (Number of Candidate Features) 30000

R (Number of Training Rounds) 2000

V (Number of Thresholds) 255

Depth of Decision Trees 2

Box Filter anti-aliasing (for negative examples) Yes

Binomial Filter Length 3 pixels

Table 3.1: The default settings used for training a detector.

Parameter Default Value

Number of Scales per Octave 8

Stride 4 pixels

Box Filter anti-aliasing Yes

Binomial Filter Length 3 pixels

Table 3.2: The default settings used for running a detector on images.

that there was relatively little difference in visual quality for the two methods, but

nearest neighbour interpolation is slightly faster.

In addition to the differences described above, the experiments in this section explore

other novelties such as the effect of different image filtering settings (Section 3.4.2), al-

tering the orientation bin layout (Section 3.4.3), different normalisation schemes for gra-

dient orientation features (Section 3.4.4) and contrast sensitive features (Section 3.4.5).

3.4.1 Default Settings

The first set of results to be presented are generated under a set of default parameters.

The effect of varying these parameters will be examined in later sections. The parameters

can be divided into those that must be determined at training time, and those that must

be determined at test time. The default values are summarised in Tables 3.1 and 3.2.

The results under these settings are shown in Figure 3.8 under the moniker “Base-

line”, and have been compared against the original integral channel features detector

[47], and the HOG detector [4]. It can be seen that the detector has similar performance

to the detector from [47], with an average miss rate of 23% instead of 22% on the INRIA

dataset, and 59% instead of 57% on the ETH dataset. The results are more consistent

3.4. RESULTS 55

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

46% HOG

23% Baseline

22% ChnFtrs

(a)

10
−3

10
−2

10
−1

10
0

10
1

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

64% HOG

59% Baseline

57% ChnFtrs

(b)

Figure 3.8: Result for the default settings given in Tables 3.1 and 3.2 for the (a) INRIA
person dataset and (b) the ETH pedestrian dataset.

on the ETH dataset, due to the larger number of images. On the INRIA dataset, the

baseline detector performs better than the detector from [47] in the region of the graph

spanning a false positive rate of 10−2 to 10−1, and is worse in the region from 10−1 to

100. It should be noted that the y-axis of the graph is logarithmic, and so the perfor-

mance gap in this region of the graph appears to be larger than it is. The discrepancies

between the baseline detector and the detector from [47] can be attributed to the dif-

ferences that are outlined in Section 3.4. It can be seen that both the baseline detector

and the original integral channel features detector outperform the HOG detector by a

very large margin.

3.4.2 Image Filtering

In this section, the role of image filtering on detector performance is examined. In

Section 3.1.1, it was mentioned that images are filtered by a binomial filter prior to the

generation of the feature map Φ. The radius of the binomial filter can be adjusted to

modify the amount of smoothing. Also, in Section 3.3.1, it is noted that box filtering is

applied prior to scaling images.

Image filtering takes place when running a classifier on an image, and also when

cropping negative examples during bootstrapping. To examine the effects of filtering

at training time and test time, four classifiers were trained with different filtering pa-

rameters, and each was tested on the INRIA dataset with four different sets of filtering

3.4. RESULTS 56

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

42% No box filter − No binomial filter

27% Box filter − No binomial filter

25% No box filter − Binomial length 3

23% Box filter − Binomial length 3

(a)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

42% No box filter − No binomial filter

25% Box filter − No binomial filter

24% No box filter − Binomial length 3

20% Box filter − Binomial length 3

(b)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

38% No box filter − No binomial filter

24% No box filter − Binomial length 3

23% Box filter − No binomial filter

22% Box filter − Binomial length 3

(c)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

40% No box filter − No binomial filter

26% No box filter − Binomial length 3

24% Box filter − No binomial filter

23% Box filter − Binomial length 3

(d)

Figure 3.9: The results for four different classifiers trained with different filtering set-
tings, and tested each with four different sets of parameters. The four different training
parameter settings are (a) box filtering and binomial filtering of length 3, (b) no box
filtering and binomial filtering length 3, (c) box filtering and no binomial filtering and
(d) no box filtering and no binomial filtering.

parameters. The four different parameter sets were box filtering and binomial filtering,

no box filtering and binomial filtering, box filtering and no binomial filtering, and no box

filtering and no binomial filtering. All binomial filtering was done with a binomial filter

of length 3, and details are given in Section 3.1.1. The results are shown in Figure 3.9,

and a few clear patterns emerge. Results are consistently better when running the clas-

sifier with both box filtering and binomial filtering, and consistently much worse when

a classifier is run with no form of filtering. Somewhat surprisingly, filtering parameters

seem to have much less of an impact at training time, although using no filtering gives

worse results in the region of the graph spanning a false positive per image rate of 10−2

to 10−1.

3.4. RESULTS 57

1

2

34
5

3

1

2

4
5

6

6

π/2

0π

3 /2π

(a)

7

8

34
5

9

1

2

10
11

6

12

π/2

0π

3 /2π

(b)

Figure 3.10: An alternative layout for (a) contrast insensitive orientation bins and (b)
contrast sensitive bins.

3.4.3 Orientation Bin Layout

The default layout for the gradient orientation bins is shown in Figure 3.1. As can

be seen, the bins are arranged in such a way that horizontal and vertical edges fall

directly within the extent of a bin. This is slightly different from the default layout

that is favoured by HOG features, shown in Figure 3.10, where horizontal edges fall on

the boundary between bins. The layouts in Figures 3.1 and 3.10 will be referred to as

layouts 1 and 2 respectively. In this section the effect of the number of bins and the

bin layout is examined. Figure 3.11a shows the results for layout 1. It should be noted

that with this layout, it is not possible to have an odd number of bins. It can be seen

that the results are very similar for different numbers of bins, with small increases in

performance as the number of bins increases. Figure 3.11b shows the results for layout

2, where once again there is little difference between using different numbers of bins. It

can be seen however, that with layout 2, slightly better results are achieved with fewer

bins. Overall, layout 1 slightly outperforms layout 2. It is interesting to note that the

results do not decline dramatically when the number of bins increase, despite the fact

that the number of possible features increases, and therefore a much smaller fraction of

the available features is explored.

3.4. RESULTS 58

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

23% Layout 1 − 6 bins

22% Layout 1 − 8 bins

21% Layout 1 − 12 bins

(a)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

24% Layout 2 − 12 bins

24% Layout 2 − 9 bins

22% Layout 2 − 6 bins

(b)

Figure 3.11: Results on the INRIA dataset for (a) bin layout 1 and (b) bin layout 2.

3.4.4 Normalising Gradient Channels

The default gradient orientation channels used by the developed detector do not use any

form of normalisation. Past research has shown that normalising gradient orientation

features can have a pronounced effect on detection performance, as normalisation offers

a degree of invariance to changes in illumination. HOG features are normalised with

respect to four neighbouring regions within an image. In [47], gradient orientation values

are normalised with respect to the largest orientation value in a local neighbourhood.

In this section, normalisation is applied to gradient orientation features in a local

fashion. This is done by dividing the value of a feature g by the value of the gradient

magnitude for the area covered by the feature. This form of normalisation has been

used in [36], [97] and [98]. As well as testing the effect of dividing gradient orientation

features by the gradient magnitude, the effect of dividing by the gradient magnitude

squared is also examined. The results of normalisation are compared against the default

detector with no normalisation in Figure 3.12. As can be seen, normalisation by the

gradient magnitude results in the same performance as no normalisation, and both have

an average miss rate of 23%. Normalising by the gradient magnitude squared slightly

degrades the performance. This may be due to the fact that the gradient magnitude

squared covers a large range, and dividing by this number maps the feature values to a

relatively small range.

3.4. RESULTS 59

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

28% L2 norm

23% L1 norm

23% No norm

Figure 3.12: The results on the INRIA dataset under different normalisation schemes.

3.4.5 Contrast Sensitive Features

As was explained in Section 3.1.2, gradient orientation features can be contrast sensitive

or contrast insensitive. Up to this point, only contrast insensitive features have been

used in the detectors presented in this thesis. In this section, the effect of using contrast

sensitive features is examined. These features are outlined in Section 3.1.2.

Different combinations of features are experimented with in this section. As adding

contrast sensitive features vastly increases the total number of possible features, the total

number of features considered during training is now doubled from 30000 to 60000. This

doubles both the training time and the memory consumption of the training algorithm.

Four classifiers are trained with different groups of features. Those four groups

are contrast sensitive features with CIELUV features, contrast insensitive features with

CIELUV features, contrast sensitive with insensitive features, and finally, contrast sen-

sitive and insensitive features with CIELUV features.

The results are shown in Figure 3.13. It can be seen that the default feature group of

contrast insensitive features with CIELUV features performs best. However, the results

also show that it is possible to achieve reasonable performance without CIELUV features

by using both contrast sensitive and contrast insensitive features, with an average miss

3.5. IMPROVING THE SPEED OF BOOSTING CLASSIFIERS 60

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

30% Contrast sensitive + LUV

24% Contrast sensitive + contrast insensitive

23% Contrast sensitive + contrast insensitive + LUV

21% Contrast insensitive + LUV (Default)

Figure 3.13: The results for different feature sets are shown. Each detector is trained
with 60000 features rather than the default of 30000.

rate of 24%. Using all types of features does not give the best performance, which can

be explained by the fact that the number of possible features in this situation is very

large, and so the 60000 features used for training are a small proportion of the total

number of features.

3.5 Improving the Speed of Boosting Classifiers

So far, the accuracy of various different classifiers has been measured. Another important

factor for a classifier is speed. This section examines the speed of some of the classifiers

developed in this section, and examines methods that can be used to improve the speed.

A variety of methods exist for improving the speed of boosting classifiers. Most

of these involve constructing a cascade, whereby the sequence of evaluations of weak

classifiers for a window can be terminated early if some condition is met. This was

first introduced in [36], where weak classifiers were grouped into stages determined by a

target false positive and detection rate. An alternative method for accelerating detection

is presented in [99], where a boosting classifier is trained normally, and then a cumulative

rejection threshold is specified for each weak classifier. This concept was expanded upon

3.5. IMPROVING THE SPEED OF BOOSTING CLASSIFIERS 61

in [100]. Crosstalk cascades [49] involve using multiple cascades that can exchange

information, and are trained using a validation set. Some methods attempt to achieve

gains in speed by taking into account the asymmetry between the number of positive

and negative examples that will be encountered by the classifier [101].

3.5.1 Constant Rejection Thresholds

Let the cumulative score for a window be Hr̂(I) =
∑r̂

r=1 h
tree
r (I) where r̂ ∈ {1, . . . , R}.

An extremely simple method to accelerate detection for a boosting classifier without

sacrificing accuracy is to terminate the sequence of evaluations when the cumulative

score Hr̂(I) for an example falls below a fixed threshold θreject. This idea was first

presented in [49] as constant rejection thresholds, where an increase in speed of up to a

factor of a hundred was obtained for θreject = −1. It is effective because the majority of

negative windows will have negative scores even after only a very small number of weak

classifier have been evaluated.

The classifier trained in Section 3.4.1 was run with constant rejection thresholds of

different values, and the results are shown in Figure 3.14. The results are somewhat

surprising. As expected, less negative values of the threshold degrade the performance

slightly. However, as the threshold becomes more negative, the results can actually

improve, although not by a significant amount. This may be a sign that the trained

classifier is overfitting to the training data. The next section will present results for the

speed of various classifiers.

3.5.2 Results

In this section, results are given for the speed of various different classifiers, with and

without constant rejection thresholds. To measure the time taken to process an image,

each classifier was run on the 169 images of the INRIA test set that have a resolution

of 640 × 480 pixels, and the total time taken was divided by the number of images.

It is important to obtain results on a set of images, as the time taken when using

constant rejection thresholds is dependent upon the image content. All experiments are

carried out on a 32-bit computer with an Intel Pentium Dual-Core 2.6GHz processor and

4GB of RAM. Only a single core of the computer’s CPU was used, but the Streaming

3.5. IMPROVING THE SPEED OF BOOSTING CLASSIFIERS 62

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

26% Threshold −1.0

25% Threshold −2.0

24% Threshold −3.0

23% No threshold

23% Threshold −6.0

23% Threshold −10.0

23% Threshold −9.0

23% Threshold −8.0

23% Threshold −5.0

23% Threshold −7.0

22% Threshold −4.0

Figure 3.14: The results for the default classifier from Section 3.4.1 run with constant
rejection thresholds of different values on the INRIA dataset.

SIMD Extensions (SSE) instruction set [102] was used to improve performance. In these

experiments, the input images are not padded.

The speeds quoted cover the process of rescaling the image multiple times (22 times

for an input image that is 640 × 480 pixels), smoothing each image with a binomial

filter of length 3, generating an integral histogram for each rescaled image, running the

classifier on each integral histogram, resizing the bounding boxes obtained from the

classifiers, and applying non-maximum suppression to the bounding boxes.

The results are shown in Table 3.3, where the times are given in seconds per image for

an image that has a resolution of 640×480 pixels. It can be seen that with θreject = −5,

there is typically a speed up of more than a factor of ten compared to running the full

classifier. Using θreject = −10 also results in a dramatic speed up. The fastest classifier

is the default classifier from Section 3.4.1 with θreject = −5. The slowest classifier is

the classifier that uses magnitude normalisation for gradient orientation features from

Section 3.4.4. This is not surprising, as performing this normalisation approximately

doubles the amount of computation for each gradient orientation feature. However, this

same classifier is the third fastest when used with θreject = −5.

3.5. IMPROVING THE SPEED OF BOOSTING CLASSIFIERS 63

No threshold θreject = −10 θreject = −5

Default settings (Section 3.4.1) 4.0562 0.3783 0.3235

Layout 1 - 8 bins (Section 3.4.3) 4.1146 0.5540 0.3924

Layout 1 - 12 bins (Section 3.4.3) 4.2426 0.5760 0.4133

L1-norm (Section 3.4.4) 6.3750 0.4289 0.3502

Contrast sensitive + contrast insen-
sitive (Section 3.4.5)

4.3432 0.5728 0.3983

Contrast sensitive + contrast insen-
sitive + LUV (Section 3.4.5)

4.2833 0.3991 0.3475

Table 3.3: A table showing the time taken in seconds per 640 × 480 pixel image for
various classifiers from this chapter with different constant rejection thresholds.

As expected, increasing the number of gradient orientation bins results in longer

times for detection, as it takes longer to generate the integral histograms. This can be

seen from the results for the classifiers from Section 3.4.3 in Table 3.3. It can be seen

that this difference is relatively minor when no threshold is used. This shows that when

a constant rejection threshold is used, the time taken to generate the pyramid of integral

histograms becomes a significant bottleneck.

Some of the results for the timing run counter to intuition. The classifier which uses

only contrast insensitive and contrast sensitive features from Section 3.4.5 is actually

slower than the classifier from Section 3.4.5 that uses those features in addition to

CIELUV features. It seems contradictory that using more features would improve the

speed. However, the differences in speed are relatively small, and may be due to faster

rejection when thresholds are used. These findings emphasise the fact that the speed

is dependent not only on how software is written, but on several complex interacting

factors related to how the software is compiled, and how memory is accessed on a

hardware platform.

In order to gain a deeper insight into how various stages of the detection system im-

pact the overall speed, the code was profiled. The results are shown in Table 3.4, where

the stages represent rescaling the input image multiple times, filtering the rescaled im-

ages with binomial filters, generating integral histograms for each filtered image, running

the classifier on each integral histogram to get bounding boxes, and finally performing

non-maximum suppression on these bounding boxes. It should be noted that changing

the value of the rejection threshold θreject only alters the length of time for the final

two stages, and so Table 3.4 shows the timing for the first three stages independent of

3.6. DISCUSSION AND SUMMARY 64

R
e
sc

a
le

a
ll

Im
a
g
e
s

F
il
te

r
a
ll

Im
a
g
e
s

G
e
n
e
ra

te
In

te
g
ra

l
H

is
to

g
ra

m
s

R
u
n

C
la

ss
ifi

e
r,

θ
r
e
j
e
c
t

=
−

5

N
M

S
,

θ
r
e
j
e
c
t

=
−

5

R
u
n

C
la

ss
ifi

e
r,

θ
r
e
j
e
c
t

=
−

1
0

N
M

S
,

θ
r
e
j
e
c
t

=
−

1
0

R
u
n

C
la

ss
ifi

e
r,

n
o

th
re

sh
o
ld

N
M

S
,

n
o

th
re

sh
o
ld

Default settings
0.043272 0.137201 0.096894 0.042438 0.003695 0.099637 0.001296 3.744455 0.034378

Layout 1 - 8 bins
0.043178 0.137023 0.102527 0.115898 0.003675 0.263781 0.007491 3.815834 0.016038

Layout 1 - 12 bins
0.043178 0.137023 0.112787 0.116687 0.003625 0.281621 0.001391 3.933229 0.016383

L1-norm
0.043272 0.136929 0.099574

0.06971
0.000715 0.148663 0.000462 6.079187 0.016038

Contrast sensitive +
contrast insensitive

0.043272 0.136651 0.098184 0.118065 0.002128 0.291147 0.003546 4.048165 0.016928

Contrast sensitive +
contrast insensitive
+ LUV

0.043178 0.136929 0.112792 0.049095 0.005506 0.104980 0.001721 3.974018 0.016383

Table 3.4: A table showing the time in seconds for each individual stage of the overall
detection algorithm. The first three columns show the time taken for the first three
stages of the detector, which are unaffected by the value of θreject. The last six columns
of the table show the timing results for the last two stages of the detector for three
different values of θreject.

the value of θreject. One of the things that can be observed from Table 3.4 is that the

filtering of the images at multiple scales takes a significant amount of the overall time.

Therefore, an optimised implementation of the binomial filter could improve the speed

results. This could be achieved by packing multiple pixel values, which are one byte per

colour channel, into a four byte word to process several values at once. It can also be

seen that using rejection thresholds significantly reduces the the time taken to run the

classifier.

3.6 Discussion and Summary

In this chapter, a detector based on the integral channel features detector was devel-

oped. The features and the AdaBoost learning algorithm were described. A practical

method for implementing AdaBoost to reduce the computation time and memory con-

sumption was outlined. Issues regarding how to run the classifier at multiple scales and

perform non-maximum suppression were addressed. A series of experiments were used

to illustrate the effect of novelties, such as altering the bin layout for gradient orientation

features, altering the number of bins, implementing various kinds of normalisation for

gradient features, and finally, using contrast insensitive features. An important obser-

vation was that the CIELUV features can be replaced with contrast insensitive features,

with only a small drop in performance, if a classifier that only uses gradient features is

3.6. DISCUSSION AND SUMMARY 65

desired.

The results for the default classifier are slightly different from those given in [47].

The performance for the classifier developed in this chapter is better than the original

for a false positive per image rate spanning from 10−2 to 10−1, but worse from 10−1 to

100. This pattern of performance seems to be repeated for all other classifiers developed

throughout the chapter. As was mentioned, this can be attributed to the differences in

the implementation for the classifier. The results may indicate overfitting, as the results

are worse at lower thresholds, and better at higher thresholds, indicating that positive

instances are missed at lower thresholds, but the instances that are detected have much

higher scores. The statistical significance of the results could be improved by training

each detector multiple times on a different pool of random features, and combining the

results together.

The speed of a variety of detectors was also tested, and it was found that constant

rejection thresholds could be used to accelerate detection speeds. It should be noted

that the results for the classifier speeds in this chapter were carried out on a fairly

dated 32-bit machine, without using multiple cores, graphics processing units [50], or

fast approximations of the feature map over multiple scales [48]. The top speed reached

was just over 3 frames per second at a resolution of 640× 480 pixels.

This chapter is concluded by illustrating some of the results from the detector devel-

oped in Section 3.4.5 that uses only contrast sensitive and contrast insensitive features.

Figure 3.15 shows 6 of the 288 images from the INRIA test set used for evaluating the

performance with the bounding boxes produced by the detector shown in green.

3.6. DISCUSSION AND SUMMARY 66

(a) (b)

(c) (d)

(e) (f)

Figure 3.15: Some example results from the detector in Section 3.4.5 that uses gradient
features only. (a) A large crowd of people, where most instances of people have been
detected. There is a large false positive in the upper left portion of the image. (b) An
example with one false negative, for the person that is second from the left. (c) A person
on a bicycle is successfully detected, along with a person in the background. There is
one false positive in the background. (d) A person riding a bicycle and facing away
from the camera is successfully detected. (e) Several fully visible people are detected
correctly. (f) Two people standing close together are detected successfully.

Chapter 4

Using Multiple Detectors

The previous chapter developed a basic person detector. In this chapter, the idea of

using multiple detectors is presented. Multiple detectors can be useful, as each detector

can specialise in a particular mode of appearance. Thus, the use of multiple classifiers

can yield an increase in accuracy, at the cost of an increase in latency. However, it will

be shown in this chapter that the latency does not necessarily have to grow linearly with

the number of classifiers. First, it is shown in Section 4.1 that the classifiers developed

in Chapter 3 can be run in conjunction with a reflected version of the same classifier

in order to improve results. Next, it is demonstrated in Section 4.2.2 that the output

from the weak classifiers within a boosting classifier can be used to cluster images of

people into different groups based on appearance. In Section 4.2.3, separate classifiers

are trained for each of these clusters, and the resulting ensemble of classifiers is applied

to images in the same manner as the detector developed in the previous chapter. Results

for accuracy and speed are presented, and it is shown that using multiple classifiers is

feasible when constant rejection thresholds are used. The chapter is concluded by a

discussion and summary.

4.1 Using Reflected Classifiers

One noteworthy fact that has not been mentioned so far is that the classifiers developed

in Chapter 3 are asymmetric. This is due to the fact that the features used for training

are randomly generated, and therefore unlikely to be symmetric, and also the negative

training examples are not reflected along the vertical axis, although the positive examples

67

4.1. USING REFLECTED CLASSIFIERS 68

are.

The asymmetry of boosting classifiers raises an interesting prospect. It should be

possible to create a new detector by reflecting an existing one. Reflecting a classifier in

the vertical axis can be achieved by reflecting the features g that make up each weak

classifier h. As was described in Section 3.1.4, each feature is described by a vector of

parameters ρ = [xρ yρ wρ hρ cρ]T, giving the x and y coordinate of the top left corner,

the width and height of the feature, and the channel. Reflecting gradient magnitude

features and CIELUV features is straightforward, as only xρ needs to be modified. For

gradient orientation features, the channel cρ must be modified so that the orientation is

reflected in the vertical axis as well.

In this section, experiments are carried out to see the effect of using a classifier in

conjunction with its vertically reflected counterpart. Let a classifier be denoted by H(I),

and its vertically reflected version by Hreflect(I). The two classifiers are combined into

a joint classifier by taking the maximum score for both classifiers

Hjoint(I) = max
{
H(I), Hreflect(I)

}
. (4.1)

Using two classifiers together in this way could improve the performance, as the extra

classifier might detect true positives that were missed by the original classifier. However,

it might also degrade the performance, as there will be false positives from two classifiers

rather than one. Thus, the results that are observed depend upon which of these two

effects dominates. It should be noted that if the false positives from both classifiers are

highly correlated, then the second effect will be significantly mitigated, and an increase

in performance will be observed. The next section shows the results from this approach

using several classifiers.

4.1.1 Results

Several of the classifiers developed in Chapter 3 were tested by running them with their

reflected counterparts on the INRIA dataset. To accelerate the evaluation, a constant

rejection threshold of θreject = −10 was used.

The results are shown in Figure 4.1. As can be seen, for the six classifiers that

were tested, performance improvements were observed in five cases. The only classifier

4.1. USING REFLECTED CLASSIFIERS 69

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

23% Default

22% Default with reflection

(a)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

22% 8 bins

20% 8 bins with reflection

(b)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

20% 12 bins with reflection

19% 12 bins

(c)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

26% L1 norm

22% L1 norm with reflection

(d)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

24% Contrast sensitive + contrast insensitive

22% Contrast sensitive + contrast insensitive with reflection

(e)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

23% Contrast sensitive + contrast insensitive + LUV

23% Contrast sensitive + contrast insensitive + LUV with reflection

(f)

Figure 4.1: The results on the INRIA dataset for several classifiers compared against
their “joint” versions described by Equation 4.1 with θreject = −10. The classifiers are
(a) the default classifier from Section 3.4.1, (b) the classifier from Section 3.4.3 with
8 orientation bins, (c) the classifier from Section 3.4.3 with 12 orientation bins, (d)
the classifier from Section 3.4.4 with normalised gradient orientation features, (e) the
classifier from Section 3.4.5 which uses only contrast sensitive and contrast insensitive
features and (f) the classifier from Section 3.4.5 which uses all feature types.

4.1. USING REFLECTED CLASSIFIERS 70

No threshold θreject = −10 θreject = −5

Default settings (Section 3.4.1) 8.1793 0.4994 0.3733

Layout 1 - 8 bins (Section 3.4.3) 8.3473 0.8504 0.5210

Layout 1 - 12 bins (Section 3.4.3) 8.6253 0.9103 0.5543

L1-norm (Section 3.4.4) 12.8579 0.6049 0.4314

Contrast sensitive + contrast insen-
sitive (Section 3.4.5)

8.8158 0.9041 0.5333

Contrast sensitive + contrast insen-
sitive + LUV (Section 3.4.5)

8.6666 0.5173 0.3984

Table 4.1: A table showing the time taken in seconds per 640 × 480 pixel image for
different classifiers with their reflected counterparts, with different constant rejection
thresholds.

where the performance did not improve was the classifier from Section 3.4.3 that used

12 orientation bins, for which the results are shown in Figure 4.1c. It can be seen that

the average miss rate degrades by a small amount from 19% to 20%

One of the largest improvements is for the classifier that uses only gradient features

from Section 3.4.5 shown in Figure 4.1e, where the average miss rate drops from 24%

to 22%. This could indicate that this classifier learns a bias towards a particular pose

from the training examples.

4.1.2 Classifier Speed

The speed of the joint classifiers was measured. As in Section 3.5.2, all results were

computed on images from the INRIA test set that were 640×480 pixels, and once again

a 32-bit computer with an Intel Pentium Dual-Core 2.6GHz processor and 4GB of RAM

was used. The results are shown in Table 4.1. As expected, when using the full classifiers,

the time taken to evaluate the joint classifier is roughly double the time of an equivalent

single classifier, as can be seen by comparing the first column of Tables 3.3 and 4.1.

However, when constant rejection thresholds are used, the time taken to evaluate a joint

classifier is less than double the amount of time a single classifier would take. This shows

that when constant rejection thresholds are used, the time taken to rescale the input

image and create integral histograms becomes a significant bottleneck, and so running

another classifier immediately after does not affect the speed as much. All of the joint

classifiers considered in Table 4.1 take less than a second to evaluate on an image when

run with constant rejection thresholds.

4.2. USING MULTIPLE CLASSIFIERS 71

4.1.3 Summary

It has been shown that a small improvement in performance can be gained by running a

classifier with its vertically reflected counterpart. It has also been shown that using these

two classifiers together with constant rejection thresholds can lead to a vast increase in

speed, making the technique quite practical. Despite the fact that two classifiers are

used, the time taken to evaluate can be less than double the time taken for a single

classifier.

4.2 Using Multiple Classifiers

The previous section examined the effect of using a classifier with its reflected counter-

part. The idea of using multiple classifiers is expanded upon in this section by parti-

tioning a set of positive training images into several clusters and training a classifier for

each cluster. This allows each classifier to specialise in a particular type of appearance.

To partition the set of positive images, K -means clustering is used, which is explained

in Section 4.2.1. To apply this clustering method to images, vectors that summarise the

appearance of an image are extracted using a boosting classifier, and the clusters are

visualised in Section 4.2.2. The performance of the multiple classifiers is examined in

Section 4.2.5.

4.2.1 K -means clustering

Clustering is the problem of assigning a set of vectors {x1, . . . ,xn} to K disjoint groups.

It is a well studied and common problem, and a variety of solutions exist such as mean-

shift [60], Gaussian mixture models [23] and hierarchical clustering [103].

An extremely popular method for clustering data is the K -means algorithm [23],

which is listed as Algorithm 4. The K -means algorithm takes a set of vectors {x1, . . . ,xn}

where x ∈ Rm and a specified number of clustersK, and returns the cluster centroids µ ∈

Rm and the cluster membership labels for each vector yi ∈ {1, . . . ,K}. The clustering

is carried out by alternating between two steps, referred to as the assignment step and

the update step. During the assignment step, vectors are assigned to the cluster with

4.2. USING MULTIPLE CLASSIFIERS 72

Algorithm 4 K -means clustering

Require:

• A set of vectors {x1, . . . ,xn}.

• The number of clusters K.

1: for k ← 1 to K do
2: Initialise centroid µk ← xj where j ∈ {1, . . . , n} is random
3: end for
4: for i← 1 to n do
5: yi ← arg mink ‖xi − µk‖2
6: end for
7: while {y1, . . . , yn} change from values during the previous iteration do
8: for k ← 1 to K do
9: µk ← 1

Nk

∑
i:yi=k

xi
10: end for
11: for i← 1 to n do
12: yi ← arg mink ‖xi − µk‖2
13: end for
14: end while
15: return {µ1, . . . ,µK}, {y1, . . . , yn}

the nearest centroid by calculating the label yi as

yi = arg min
k
‖xi − µk‖2. (4.2)

During the update step, the centroid values are updated by taking the average of all the

vectors assigned to a cluster, to give new values for µk as

µk =
1

Nk

∑
i:yi=k

xi, (4.3)

where Nk is the number of vectors in cluster k. Before the algorithm can begin, the

values of µ must be initialised, and this is usually done by randomly selecting a vector

from one of the input vectors x for each centroid. It can be shown that alternating

between the assignment and update steps reduces the within cluster sum of squares

error (WCSSE) given by

WCSSE =

K∑
k=1

∑
i:yi=k

‖xi − µk‖2. (4.4)

Convergence of the algorithm is guaranteed, and can be detected when an iteration

4.2. USING MULTIPLE CLASSIFIERS 73

of the two steps fails to produce a change in the assignment yi of any of the vectors.

However, it is important to note that the algorithm is only guaranteed to converge to

a local optimum as Equation 4.4 is not convex in yi and µk, and what this optimum is

depends on how the algorithm was initialised. This is a common problem encountered

in non-convex optimisation problems, such as expectation maximisation [23] and latent

SVMs [44]. A common way to mitigate this problem is to run the K -means algorithm

multiple times with different initialisations, and to take the solution with the lowest

WCSSE value given by Equation 4.4.

It should be noted that the K -means algorithm can be modified to use distance

measures other than Euclidean distance, such as the `1-norm or Hamming distance. It

is also important to note that the K -means algorithm assumes that the clusters to be

found are spherical.

4.2.2 Applying Clustering to Image Windows

The K -means algorithm could be applied directly to the positive image windows used

for training classifiers in Chapter 3 to obtain clusters based on different modes of ap-

pearance. However, the dimensionality of each image is equal to the number of pixels,

which is 8192. To reduce the complexity of the clustering problem, the dimensionality

of the input images could be reduced somehow.

In this section, the idea of clustering windows by using the output from a boosting

classifier is explored. As has been shown, boosting classifiers consist of an ensemble

of weak classifiers hr : I → {−1,+1}, and each weak classifier will make a decision

regarding the input, which by itself will often be inaccurate. A final decision on whether

the target class is present or not is made by taking the consensus of the weak classifiers,

as shown in Equation 3.13. Each weak classifier has an associated coefficient αr, and a

real valued score for an input is computed by multiplying each alpha value by the output

of the corresponding hr, and summing over r. The sign of this value then determines

the final decision f . The values of αr are determined at training time as described in

Algorithm 1, with larger values of αr for weak classifiers that are more accurate. It is

interesting to note that for a window to be judged as representing a person, only some of

the weak classifiers need to return that decision. Thus, for two different images featuring

4.2. USING MULTIPLE CLASSIFIERS 74

two different people, the set of weak classifiers that return the label +1 may be different,

and may reflect the differences in appearance between the two target instances. For an

image window I, the output from a boosting classifier can be used to construct a vector

α(I) defined as

α(I) =

[
α1h1(I) · · · αRhR(I)

]T
, (4.5)

which summarises the response of the weak classifiers. This vector gives a compact

summary of multiple feature values. This concept is not dissimilar to the popular “bag

of words” paradigm [104] in computer vision, where histograms of feature frequencies

are used as a higher level feature. Here, the vector of responses from the individual weak

classifiers is used.

If the vector α can be used to summarise variations in appearance between differ-

ent instances of people, then it is reasonable to suggest that instances with a similar

appearance would have values of α that were close together, as measured by a distance

metric, such as the Euclidean norm. Thus, if values of α were computed for a set of

images containing people, these vectors could be clustered to reveal modes of appearance

among those people. Using the vectors α presents several advantages over clustering

the actual images. The most obvious is that the vector α is considerably more compact

than an image. Another advantage is that as α is produced by a boosting classifier, the

entries of the vector focus on discriminative information. Finally, by training different

boosting classifiers with different sets of features, the nature of the clustering can be

altered. By using a boosting classifier trained solely on colour features, α will only

reflect information from these features.

In this section, positive training images are clustered by extracting the vectors α and

applying K -means clustering. Let αH(I) denote a vector α extracted from an image I

by applying the boosting classifier H. By changing the boosting classifier H, different

values of αH(I) can be obtained. For example, using a boosting classifier trained only on

CIELUV features will create a vector α that only reflects information from the CIELUV

colour space. A set of positive images {I1, . . . , In} is used with a boosting classifier H

to generate a set of vectors {αH(I1), . . . ,αH(In)} which are used as the input to the

K -means algorithm.

Four different classifiers are used to generate different versions of αH(I) to generate

4.2. USING MULTIPLE CLASSIFIERS 75

different results for clustering. To make the discussion in the following section easier to

follow, each of these classifiers is assigned a moniker, and is described next:

• The first classifier is referred to as default trees, and is trained using the default

settings described in Section 3.4.1.

• The second classifier is referred to as default stumps, and is the same as default

trees, except for the fact that stump classifiers are used rather than depth two

decision trees. The motivation behind using stump classifiers is that tree classifiers

select features to test using branching, and so two inputs that are given the same

label by a decision tree can have different visual characteristics. A stump classifier

tests only a single feature, and so any two inputs that are assigned the same label

will have responded to a single feature in the same way.

• The third classifier is referred to as cieluv trees, and is similar to default

trees, except that it is trained only with CIELUV features. The motivation for

using only CIELUV features is to obtain clusters based only on information from

this colour space.

• The fourth classifier is referred to as cieluv stumps, and is similar to cieluv

trees, but uses stump classifiers rather than depth two decision trees.

Experiments are also carried out by applying the K -means algorithm with the Ham-

ming distance rather than Euclidean norm. The Hamming distance is a metric that

measures the distance between two binary strings by counting the number of bits that

differ. To convert α to a binary vector, positive entries become 1 and negative entries

become 0. Thus, clustering with the Hamming distance can be used to test if the actual

values of αr have an impact on clustering, and whether it is possible to use an even more

compact representation.

As was mentioned in Section 4.2.1, the K -means algorithm is sensitive to initialisa-

tion, and is usually run multiple times, with the result with the lowest within cluster sum

of squares error being taken. In this section, all clustering experiments involve running

the K -means algorithm 20 times. To visualise what each cluster might represent, the

images within a cluster can be averaged together.

4.2. USING MULTIPLE CLASSIFIERS 76

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q)

Figure 4.2: The average image for different clusters. (a) The average of all the positive
training images used. (b) and (c) show the averages for the clusters obtained with the
default trees classifier using the Euclidean distance, and (d) and (e) show the same
results when using the Hamming distance. (f) and (g) show the averages for the clusters
obtained with the cieluv trees classifier using the Euclidean distance, and (h) and (i)
show the same results when using the Hamming distance. (j) and (k) show the cluster
averages obtained with the default stumps classifier using Euclidean distance and (l)
and (m) show the cluster averages when using the Hamming distance. (n) and (o) show
the cluster averages obtained with the cieluv stumps classifier using the Euclidean
distance and (p) and (q) show the same results when using the Hamming distance.

Figure 4.2 shows the results of clustering with K = 2 for different classifiers using

Euclidean and Hamming distances. The clustering was applied to the 2416 images of

the INRIA person training set. Figure 4.2a shows the average of these 2416 images. As

can be seen, there is little difference in the clusters obtained using different classifiers

or different distance metrics. The two clusters that are obtained correspond to lighter

and darker images, with the cluster of darker images containing approximately 60% of

all the images on average.

Figure 4.3 shows the results of clustering for K = 3. It can be seen that small

differences begin to emerge between the clusters for different classifiers. The clusters

produced with classifiers that use CIELUV features have average appearances that place

more emphasis on colour, with Figures 4.3n, 4.3q, 4.3t, and 4.3w being noticeably more

blue in colour than Figures 4.3b, 4.3e, 4.3h, and 4.3k. Also, Figures 4.3m, 4.3p, 4.3s,

and 4.3v are slightly more red in colour than Figures 4.3a, 4.3d, 4.3g and 4.3j. The

results are very similar regardless of whether the Euclidean distance or the Hamming

distance is used for clustering. Once again, the majority of images belong to the cluster

4.2. USING MULTIPLE CLASSIFIERS 77

with the darker average appearance.

Figure 4.4 shows the results of clustering for K = 5. It can be seen that with this

number of clusters, the results for different classifiers are now significantly different, and

the distance metric used also affects the results. Some correspondences can be seen

across the results, with all sets of clusters having a “dark” cluster, a “light” cluster, and

a cluster representing images with people wearing clothes of a blue hue against a light

background. However, many clusters are now unique to certain classifier and distance

metric combinations. Figure 4.4a shows the cluster averages for the default trees

classifier using the Euclidean distance. It can be seen that the center cluster seems

to represent images of people against green backgrounds, such as natural environments

with grass. Similar clusters appear when the Hamming distance is used, as shown

in Figure 4.4b, although the central cluster is not as well defined. When the default

stumps classifier is used, as shown in Figures 4.4c and 4.4d, the clusters are quite similar

to those created using the default trees classifier, except that the cluster representing

people against natural backgrounds is replaced by a less well defined cluster. When

classifiers with CIELUV features are used, the average appearances of the clusters place

a stronger emphasis on colour. It can be seen from Figures 4.4e, 4.4f, 4.4g and 4.4h that

shades of blue and red are more prominent than in Figures 4.4a, 4.4b, 4.4c and 4.4d. It

can also be seen that there is a cluster representing images of people against backgrounds

with a brown hue. With CIELUV classifiers, the results are similar regardless of whether

the Euclidean distance or the Hamming distance is used for clustering.

In this section, it has been shown that the output from a boosting classifier can

be used to construct vectors αH(I) that can be used to cluster images of people into

different groups based on the visual characteristics tested for by different features.

4.2.3 Training Multiple Classifiers

The previous section has illustrated how the output from a boosting classifier can be used

to cluster images of people, where each cluster represents a distinct mode of appearance.

In this section, the idea of training individual classifiers for each of these clusters is

presented. This allows each individual classifier to specialise in a particular mode of

appearance. For example, if the positive training images are divided into K clusters then

4.2. USING MULTIPLE CLASSIFIERS 78

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 4.3: The average image for different clusters when K = 3. (a), (b) and (c) show
the cluster averages obtained using the default trees classifier using the Euclidean
distance, and (d), (e) and (f) show the same results using the Hamming distance. (g),
(h) and (i) show the cluster averages obtained using the default stumps classifier and
the Euclidean distance, and (j), (k) and (l) show the same results using the Hamming
distance. (m), (n) and (o) show the cluster averages obtained using the cieluv trees

classifier and the Euclidean distance, and (p), (q) and (r) show the same results using
the Hamming distance. (s), (t) and (u) show the cluster averages obtained using the
cieluv stumps classifier and the Euclidean distance, and (v), (w) and (x) show the
same results using the Hamming distance.

4.2. USING MULTIPLE CLASSIFIERS 79

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: The average image for different clusters when K = 5. (a) shows the cluster
averages obtained using the default trees classifier using the Euclidean distance, and
(b) shows the same results using the Hamming distance. (c) shows the cluster averages
obtained using the default stumps classifier using the Euclidean distance, and (d)
shows the same results using the Hamming distance. (e) shows the cluster averages
obtained using the cieluv trees classifier using the Euclidean distance, and (f) shows
the same results using the Hamming distance. Finally, (g) shows the cluster averages
obtained using the cieluv stumps classifier using the Euclidean distance, and (h) shows
the same results using the Hamming distance.

4.2. USING MULTIPLE CLASSIFIERS 80

K separate classifiers can be trained. The classifiers can then be combined together in

a manner similar to that used in Section 4.1. For a set of classifiers {H1(I), . . . ,HK(I)},

the final score is simply the maximum amongst all the classifiers

Hjoint(I) = max {H1(I), . . . ,HK(I)} . (4.6)

The concept of using multiple boosting classifiers has been introduced in other work. A

method developed in the “AnyBoost” [94] framework is given in [105], where multiple

classifiers are trained simultaneously. This method has been demonstrated for the task

of pedestrian detection [25]. In [50], different classifiers are trained to specialise for

particular scales. In the approach presented here, multiple classifiers can be trained

independently once clustering has been carried out, and the output from a monolithic

boosting classifier is used to guide the clustering of the positive training examples.

4.2.4 Calibrating Classifiers

When using multiple classifiers, an important issue is that the real valued scores output

by different detectors are not always directly comparable. For example, two classifiers

that output real valued scores for images could have completely different ranges for their

output values. Thus, when using multiple classifiers in conjunction, it is necessary to

adjust their output scores in a process that is often referred to as calibration. Calibration

did not need to be addressed in Section 4.1, as the reflected counterpart of a classifier will

have the same output range. Though sophisticated calibration methods exist [106], in

this thesis a simpler method is used. For a set of classifiers {H1(I), . . . ,HK(I)}, let αkr be

a weak classifier coefficient for the classifier k. Classifiers are calibrated by normalising

all values of αkr so that
∑R

r=1 αr for all values of k is equal to max
k
{
R∑
r=1

αkr}.

4.2.5 Results

In this section, results are presented for using multiple detectors. Six different sets of

multiple detectors are presented. Three were trained on clustered images produced by

the default trees classifier, using values of K = 2, K = 3, and K = 5, and another

three were trained on images clustered by the cieluv trees, using values of K = 2,

4.2. USING MULTIPLE CLASSIFIERS 81

K = 3, and K = 5. All classifiers were trained using the default parameters defined

in Section 3.4.1. Tests were carried out using calibration as described in Section 4.2.4,

and without calibration. To accelerate the evaluation, as in Section 4.1.1, a constant

rejection threshold of θreject = −10 is used.

The result are shown in Figure 4.5, and as can be seen, are rather mixed. There

is no consistent pattern for the effect of calibration, and it seems to only cause small

differences in performance. It can be seen that training more classifiers using more

clusters seems to degrade the average miss rate, with Figures 4.5e and 4.5f showing that

classifiers with K = 5 on sets that were clustered using the default trees and cieluv

trees classifiers have average miss rates of 26% and 27% respectively. The best results

are obtained by training classifiers on images from clusters created using the default

trees classifier for K = 2, where the resulting classifier has an average miss rate of 19%

as shown in Figure 4.5b.

The results obtained in Figure 4.5 seem to indicate that overfitting occurs when

more clusters are used. To attempt to alleviate this problem, the classifiers trained

via clustering were run again, but this time the default classifier from Section 3.4.1 was

added to each set of classifiers, so that now each set of classifiers consists of those trained

on clusters, and the default classifier. The results are shown in Figure 4.6, and it can

be seen that running the classifiers trained on clusters along with the default classifier

generates results that improve upon on the original results when K = 3 and K = 5.

However, the best performance is still obtained with the classifier trained on clusters

obtained using the default trees classifier with K = 2.

Figure 4.7 shows some of the results obtained using the set of classifiers trained on

images that were clustered with the default trees classifier with K = 5. The same

images that were used for Figure 3.15 are used again. The majority of detections shown

are the result of just one of the detectors, for which the bounding boxes are shown in

dark blue, but several of the detections correspond to the other classifiers, shown in red,

yellow, green and cyan.

4.2. USING MULTIPLE CLASSIFIERS 82

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

24% CIELUV trees, K=2 − calibrated

23% CIELUV trees, K=2 − uncalibrated

(a)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

20% Normal trees, K=2 − uncalibrated

19% Normal trees, K=2 − calibrated

(b)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

23% CIELUV trees, K=3 − calibrated

22% CIELUV trees, K=3 − uncalibrated

(c)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

22% Normal trees, K=3 − calibrated

21% Normal trees, K=3 − uncalibrated

(d)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

27% CIELUV trees, K=5 − uncalibrated

27% CIELUV trees, K=5 − calibrated

(e)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

26% Normal trees, K=5 − uncalibrated

25% Normal trees, K=5 − calibrated

(f)

Figure 4.5: The results on the INRIA dataset for several classifiers trained on clustered
datasets, with and without calibration, and with θreject = −10. The classifiers are sets of
classifiers trained on clusters created using the cieluv trees classifier with (a) K = 2,
(c) K = 3 (e) and K = 5, and sets of classifiers trained on clusters created using the
default trees classifier with (b) K = 2, (d) K = 3 (f) and K = 5.

4.2. USING MULTIPLE CLASSIFIERS 83

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

24% CIELUV trees, K=2, calibrated

23% CIELUV trees, K=2, calibrated + Baseline

23% Baseline

(a)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

23% Baseline

20% Normal trees, K=2, calibrated + Baseline

19% Normal trees, K=2, calibrated

(b)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

23% Baseline

23% CIELUV trees, K=3, calibrated

21% CIELUV trees, K=3, calibrated + Baseline

(c)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

23% Baseline

22% Normal trees, K=3, calibrated

20% Normal trees, K=3, calibrated + Baseline

(d)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

27% CIELUV trees, K=5, calibrated

23% Baseline

22% CIELUV trees, K=5, calibrated + Baseline

(e)

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

25% Normal trees, K=5, calibrated

23% Baseline

22% Normal trees, K=5, calibrated + Baseline

(f)

Figure 4.6: The results on the INRIA dataset for the calibrated classifiers from Figure 4.5
combined with the default classifier from Section 3.4.1. Each figure shows the results
for the default classifier (under the moniker “Baseline”), one of the classifiers trained on
clustered data, and the combination of the two.

4.2. USING MULTIPLE CLASSIFIERS 84

(a) (b) (c) (d) (e)

(f) (g)

(h) (i)

(j) (k)

Figure 4.7: Examples of the results from the set of detectors trained on positive images
clustered using the default trees classifier with K = 5. The bounding boxes are colour
coded to show which classifier they correspond to, with the correspondence shown in
(a), (b), (c), (d) and (e).

4.3. DISCUSSION AND SUMMARY 85

Training Set No threshold θreject = −10 θreject = −5

default trees, K = 2 8.1117 0.5686 0.4043

cieluv trees, K = 2 8.1241 0.6128 0.4163

default trees, K = 3 12.0094 0.6170 0.4318

cieluv trees, K = 3 12.0534 0.6845 0.4487

default trees, K = 5 19.8175 0.5493 0.4131

cieluv trees, K = 5 20.0119 0.8409 0.5305

Table 4.2: A table showing the time taken in seconds per 640 × 480 pixel image for
different sets of multiple classifiers, with different constant rejection thresholds.

4.2.6 Classifier Speed

The speed of the multiple classifiers was measured. As with Sections 3.5.2 and 4.1.2, all

results were computed on images from the INRIA test set that were 640×480 pixels, and

once again, a 32-bit computer with an Intel Pentium Dual-Core 2.6GHz processor and

4GB of RAM. The results are shown in Table 4.2. Once again, when the full classifier

is run, as shown in the second column of Table 4.2, the time taken per image scales in

a linear fashion. As a single classifier takes roughly 4 seconds, with K = 2 the set of

classifiers takes roughly 8 seconds, with K = 3 the time is around 12 seconds, and with

K = 5 the time is 20 seconds. However, it can be observed again that when a constant

rejection threshold is used such that θreject = −10 or θreject = −5, the time taken is

always less than one second, and scales much more gracefully as K increases.

4.3 Discussion and Summary

It has been shown in this chapter that multiple classifiers can be used to improve the

results of person detection. It was first shown how reflected classifiers could be utilised

to improve performance, without sacrificing too much speed. The speed of these joint

classifiers could be further improved by exploiting the fact that any features that are

symmetric with respect to the vertical axis only need to be computed once. Another

improvement would be to attempt to alter the training process so the orientation of

positive training images with respect to the vertical axis is a latent random variable,

which can be inferred during training to create a classifier that is biased towards a

particular pose. Such an approach has been applied to SVMs to yield better results [44].

It was shown that the output from the weak classifiers of a boosting classifier reflect

4.3. DISCUSSION AND SUMMARY 86

information on the appearance of input images, and can be used to construct vectors for

clustering. It was also shown that these vectors can be converted to a compact binary

form with little impact on the results of clustering. Future work could explore using

more clusters to obtain even more distinct modes of appearance.

Finally, it was shown that multiple classifiers can be trained on sets of positive

images obtained via clustering, and that combining multiple classifiers together can im-

prove performance, if these clustered classifiers are combined with a normally trained

classifier. With constant rejection thresholds, multiple classifiers can be run in conjunc-

tion with only a small increase in running time. Future work could focus on modeling

any redundancy between classifiers to improve the speed further

Chapter 5

Tracking People in Video

The previous chapters have addressed the problem of detecting people in images rapidly.

This chapter focuses on the problem of tracking people in video. The first approach

that is presented is based on the mean shift algorithm that was described in detail in

Section 2.2.1. It is shown that this algorithm can be adapted to the purpose of tracking

based on colour characteristics. A novel method for mean shift tracking through scale

is developed and tested. Finally, the problem of tracking multiple people is briefly

examined based on a different approach involving the classifiers that were developed in

Chapter 3 and Kalman filtering.

5.1 Mean Shift Tracking

Mean shift tracking [63] involves tracking a target based on its colour characterisitics.

The target’s position must be manually initialised in the first frame, and in subsequent

frames the best colour match for the target is found.

In this section, the theory behind the mean shift tracking technique from [63] is

outlined. The target that is to be tracked is represented by a reference colour histogram

in RGB space q̂ =

[
q̂1 · · · q̂mb

]T
where mb is the number of bins for the colour

histogram. The aim is to find the area centered on the pixel location y ∈ R2 in each frame

It of a video {I1, . . . , IT } which yields a colour histogram p̂(It,y) that is most similar to

q̂. The similarity between two colour histograms is measured using the Bhattacharyya

87

5.1. MEAN SHIFT TRACKING 88

coefficient, which is given by

BC(y) = BC(p̂(It,y), q̂) =

mb∑
i=1

√
p̂i(I,y)q̂i. (5.1)

Since
∑mb

i=1 p̂i = 1 and
∑mb

i=1 q̂i = 1, the range of the Bhattacharyya coefficient is 0 ≤

BC ≤ 1. The value of the Bhattacharyya coefficient is high when two histograms are very

similar, and low when they are dissimilar. Thus, the tracking problem can be formulated

as finding the value of y in each frame that maximises BC(y). The histograms q̂ and

p̂(y) are kernel weighted histograms, and the reason for this will be addressed shortly. A

kernel weighted histogram modulates the value that a pixel contributes to the histogram

based on the position of the pixel relative to a kernel, and so p̂i ∈ R can be expressed as

p̂i(I,y) = cH
∑
x∈X

k
(
‖H(y − x)‖2

)
δ (bRGB(I(x))− i) , (5.2)

where cH is a normalisation constant, k(·) is a finite support kernel function which was

explained in detail in Section 2.2.1, and x ∈ R2 are the pixel co-ordinates within the

support X of the kernel function k(·). It should be noted that in this chapter, I(x) ∈ R3

will be used to denote a pixel, in contrast to the notation that was used in Chapter 3.

Furthermore, δ is the Kronecker delta function, bRGB : R3 → {1, . . . ,mb} is a function

that maps the pixel located at x to the correct histogram bin index based on its colour,

and H is the bandwidth matrix given by

H =

 1
h1

0

0 1
h2

 , (5.3)

where h1 and h2 are parameters that determine the scale of the kernel, and also enable

the kernel to be elliptical, as opposed to just circular.

It is shown in [63] that the linear Taylor series expansion of the Bhattacharyya

coefficient, subject to the condition that we consider histograms that are kernel weighted

as was previously mentioned, is comprised of two terms. The first term is constant with

respect to y, and the the second term takes the form of a kernel density estimate. As

the mean shift algorithm can be used to find the local mode of a kernel density estimate,

5.1. MEAN SHIFT TRACKING 89

it can be used as the basis of a tracking algorithm that maximises the Bhattacharyya

coefficient. This is achieved by computing the location y iteratively using the following

equation

yj+1 =

∑
x∈X

xw(I,x)k′
(
‖H(yj − x)‖2

)
∑
x∈X

w(I,x)k′
(
‖H(yj − x)‖2

) , (5.4)

where yj+1 is the new location, yj is the previous location, k′(·) is the derivative of k(·),

and the weights w(I,x) are given by

w(I,x) =

mb∑
i=1

√
q̂i

p̂i(I, ŷj)
δ(bRGB(I(x))− i). (5.5)

It should be noted that for any value of i where, p̂i = 0, the result of the division opera-

tion in Equation 5.5 is set to 0. Typically, Equation (5.4) will have to be iterated several

times to converge to an estimate for the target position in a single frame. Iterations are

continued until the mean shift vector mg(yj) given by Equation 2.8, which is the differ-

ence between two consecutive location estimates, has a magnitude below some specified

threshold. In this thesis, this threshold is set to one pixel. It is important to note that

the histogram p̂(I,yj) will change at every mean shift iteration, as yj is changing.

A choice of kernel for k(·) must be made. The most common choice is the Epanech-

nikov kernel given by Equation 2.10 in Section 2.2.1. By choosing k(·) to be the

Epanechikov kernel, the derivative kernel k′(·) becomes the uniform kernel. This con-

siderably simplifies the calculation of (2.12), as all values of k′(·) (within the support of

the kernel) are constant. Thus, Equation 5.4 simplifies to

yj+1 =

∑
x∈X

xw(I,x)∑
x∈X

w(I,x)
(5.6)

5.1.1 Mean Shift Tracking Through Scale

As was very briefly mentioned in Section 2.2.1, mean shift tracking through scale is a

non-trivial problem. The most extensive and in depth work on this problem is [65],

where a method was developed based on Lindeberg’s theory of scale selection [66]. This

method is briefly explained next.

5.1. MEAN SHIFT TRACKING 90

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

2

2.5

Figure 5.1: The difference of Gaussians kernel.

The technique presented in [65] works by interleaving mean shift iterations in the

spatial domain (similar to those given by Equation 2.12) with iterations in the scale

domain. The current scale is denoted as σ0. The difference of Gaussians kernel is used

to perform mean shift in the scale domain, and is given by

kD(x, s) =
1

2πσ2s/1.6
exp

(
−x

2σ2s/1.6

)
− 1

2πσ2s(1.6)
exp

(
−x

2σ2s(1.6)

)
, (5.7)

where s ∈ Z is a variable used to control the scale of the kernel through the equation

σs = σ0ζ
s where ζ is a user specified parameter (a value of 1.1 is used in [65]), and

exp(·) is the exponential function. The kernel is shown in Figure 5.1. Equation 5.7 is

an approximation of the Laplacian of Gaussian function, and is similar in profile to the

Mexican hat wavelet [107]. It can be seen that kD(x, 0) will give a kernel at the current

scale. The aim is to calculate the new scale σnew0 . This is given by σnew0 = σ0ζ
snew ,

where snew is given by the mean shift equation

snew =

n∑
s=−n

s
∑
x∈X

w(I,x)kD

(
‖H(yj − x)‖2 , s

)
n∑

s=−n

∑
x∈X

w(I,x)kD

(
‖H(yj − x)‖2 , s

) , (5.8)

where typically n = 2. A more intuitive explanation of this algorithm is given in Figure

5.2. The function w(I,x) simply maps pixels to their weights, implicitly creating a new

type of image, as shown in Figure 5.2b. This image was created by replacing each pixel

5.1. MEAN SHIFT TRACKING 91

(a) (b) (c) (d) (e) (f)

Figure 5.2: Using the difference of Gaussians method with mean shift for scale detection:
(a) The original image in RGB space. (b) w(I,x), the back-projection image. (c)
A diagrammatic representation of the difference of Gaussians kernel. The red region
represents negative values, and the blue represents positive values. (d) A kernel that is
too small has been superimposed on w(I,x). Many values fall in the red region, leading
to a smaller value of w̃(I,yj , s) (e) A kernel that is the correct size. The vast majority
of the target is in the blue region, creating a large value for w̃(I,yj , s) (f) A kernel
that is too large. Though the target is in the blue region, the peak is shallower, and so
w̃(I,yj , s) will be smaller.

by the weights given in Equation (5.5), and normalising all values to lie in the range 0

to 255. In this new image, the pixel values will be replaced with the weights given by

Equation 5.5, which tends to allocate larger values to pixels that are likely to belong to

the target. The target in this image is then masked with difference of Gaussian kernels

of different scales. The weighted average of these scales is then taken. The second

summation in the numerator of Equation (5.8) evaluates the summation of the kernel

multiplied by the weights, and may be written separately as

w̃(I,yj , s) =
∑
x∈X

w(I,x)kD

(
‖H(yj − x)‖2 , s

)
. (5.9)

Figures 5.2d, 5.2e and 5.2f show how the differently scaled kernels are used to calcu-

late the appropriate scale of the target. Each kernel consists of a positive central region

surrounded by a ring of negative values, as is represented by Figure 5.2c, where the

colours red and blue represent negative and positive values respectively. A kernel whose

positive region fits tightly to the target as in Figure 5.2e will give the maximum possible

value for w̃(I,yj , s). For a kernel that is too small, as shown in Figure 5.2d, the negative

region will overlap with the target, leading to a lower value for w̃(I,yj , s). For a kernel

that is too large, as shown in Figure 5.2f, most of the positive values will overlap with

5.1. MEAN SHIFT TRACKING 92

values of w(I,x) that are zero. A wider difference of Gaussians kernel has a shallower

peak (due to normalisation of the integral), and so the values that do overlap with the

non-zero values of w(I,x) will be smaller. Therefore, w̃(I,yj , s) is smaller for kernels

that are both too big or too small. Thus, snew is calculated as a weighted average of

the different scales, weighted by w̃(I,yj , s). The full mathematical justification for this

technique is given in [65].

There are several issues that arise when using the scheme presented in [65]. The

method requires the computation of several difference of Gaussian kernels per mean shift

iteration per frame. This can rarely be achieved in real-time, even with the efficiency

savings from highly optimised algorithms. Also, several parameters must be chosen, such

as the number of scales to be considered. Finally, the difference of Gaussian kernels that

are used have infinite support, and must therefore be truncated at some point.

A novel method for scale adaptive mean shift tracking is now presented. Rather than

using intermediary variables to adjust the scale, it is much simpler to deal directly with

the variables h1 and h2 from the bandwidth matrix given in Equation 5.3. A subscript

j is now added to these quantities to denote that they are computed via iterations.

Assuming that the target to be tracked maintains the same ratio between its width and

height, then both h1,j and h2,j can be updated in the same fashion to give the new

values h1,j+1 and h2,j+1

h1,j+1 = h1,j(1 + λ), (5.10)

h2,j+1 = h2,j(1 + λ), (5.11)

where λ is an update factor. Thus, a negative value for λ will yield a decrease in target

scale, and a positive value will result in an increase in scale. Now a method is needed

to generate a value for λ. First, a new kernel is defined

kR(x) =

√
x− 0.5 x ≤ 1

0 otherwise

, (5.12)

A cross-section through the kernel kR(‖H(yj −x)‖2) is shown in Figure 5.3. The values

of the kernel range from −0.5 to 0.5, with the central region containing negative values,

5.1. MEAN SHIFT TRACKING 93

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

Figure 5.3: A cross-section through the kernel kR(‖x‖2). This kernel is used to perform
mean shift style iterations in scale.

and the outer region consisting of positive values. It is interesting to note that this is

in a sense the opposite of the difference of Gaussians kernel, where a central region of

positive values is surrounded by a ring of negative values. Also, this kernel has a linear

profile, in contrast to the exponential profile for the difference of Gaussians kernel. This

scale kernel can be used to calculate the value of λ using the following type of mean

shift style iteration

λ =

∑
x∈X

w(I,x)kR

(
‖H(yj − x)‖2

)
∑
x∈X

w(I,x)
. (5.13)

The iterations given by Equation 5.13 are interleaved with mean shift iterations in

the spatial domain given by Equation 5.6.

Note that in Equation 5.13, only a single kernel is used, in contrast to the multiple

kernels used in Equation 5.8. As with the difference of Gaussians method presented in

[65], an intuition can be developed as to why this method works. Figure 5.4 shows how

the value of λ will vary with targets of different scale. A target that is too small will

produce a negative value for λ, as it will be concentrated in the central region of the

kernel, as shown in Figure 5.4a. A target that is too large will produce a positive value

of λ, as shown in Figure 5.4c. λ converges to a low value when the scale is correct, as

shown in Figure 5.4b.

The technique developed for scale adaptivity in this thesis has advantages over several

5.1. MEAN SHIFT TRACKING 94

(a) λ > 0 (b) λ ≈ 0 (c) λ < 0

Figure 5.4: The proposed method for tracking through scale. As with Figure 5.2, the red
regions are negative, and the blue positive, but this time we consider the kernel given by
Equation 5.12. (a) Most of the values fall in the positive region, resulting in λ > 0 (b)
The non-zero values of w(I,x) are roughly equally distributed between the positive and
negative regions of the kernel, resulting in λ ≈ 0 (c) The majority of non-zero values of
w(I,x) fall in the negative region of the kernel, leading to λ < 0.

others. The computational cost is roughly double that of the mean shift algorithm

without scale adaptivity, while the method for scale adaptivity developed in [63] is triple

the cost. This is due to a reduction in the number of kernels that must be computed per

iteration of mean shift. The method presented here represents a considerable reduction in

computational complexity from the method presented in [65], which requires that several

(typically five) difference of Gaussian kernels are computed per mean shift iteration. In

comparison, the method shown here requires the computation of two kernels per mean

shift iteration, and the most intensive calculations (the norm of a set of vectors) are

common to both kernels, and therefore need only be computed once per iteration.

Finally, the kernel method developed in this paper is less prone to background dis-

tractions than the difference of Gaussians method, as the kernel developed here fits the

target more tightly. This can be seen by comparing Figures 5.2e and 5.4b, as the cor-

rectly scaled difference of Gaussians kernel has a larger support then our scale kernel.

Therefore, anything very close to the target that exhibits a similar appearance will affect

the difference of Gaussians method, but will have little effect on our technique.

5.1.2 Results

The proposed technique for tracking through scale was tested on the CAVIAR dataset

[108]. The results on two videos are shown in Figure 5.5. The reference colour histogram

5.1. MEAN SHIFT TRACKING 95

(a)

(b)

Figure 5.5: Examples of tracking through scale. (a) A person is tracked as they walk
towards a camera. The kernel grows larger as they get closer. (b) A person in a group
walks towards the camera. Note that there are inaccuracies in the first two frames shown
due to background distractions. As the target walks into a clearing, the scale estimate
improves.

5.2. TRACKING MULTIPLE TARGETS 96

Proposed mean-shift Boosting classifier
method

Percentage of false neg-
atives

28.17 12.83

Table 5.1: The percentage of missed detections on a 600 frame sequence from the
CAVIAR dataset using the proposed mean-shift method and the boosting classifier from
Chapter 3.

q̂ is created by manually initialising the tracker’s position in the first frame. It can

be seen that the technique is successful, although there are small inaccuracies due to

background distraction in the first two frames of the third row.

Table 5.1 shows the percentage of missed detections from the proposed mean-shift

tracking algorithm on a 600 frame sequence from the CAVIAR dataset. The results

are measured for tracking a single person. The results for the mean-shift algorithm

are compared against the boosting classifier from Chapter 3. For clarity, detections are

measured here in the same way as Chapters 3 and 4 using an overlap criterion. This

criterion is equal to the area of the intersection between a predicted bounding box and

the ground truth bounding box divided by the area of the union of the two boxes. If

the result is greater than 0.5, the detection is regarded as a true positive. Bounding

boxes are obtained from mean-shift kernels by simply taking the smallest rectangle that

encapsulates the elliptical mean shift kernel. A missed detection signifies a low overlap

between the predicted bounding box and the ground truth bounding box.

Timing results were also obtained on the 600 frame CAVIAR sequence for the pro-

posed mean-shift tracking algorithm and the boosting classifier from Chapter 3. The

resolution of these images is 384 × 288 pixels. The time per frame for the proposed

mean-shift tracking algorithm is 0.03852 seconds, while for the boosting classifier it is

0.13108 seconds. Thus, the proposed mean-shift algorithm is significantly faster than

the boosting classifier.

5.2 Tracking Multiple Targets

The method presented in the previous section is suitable for tracking single targets,

and requires manual initialisation. In many scenarios, it is desirable to be able to track

multiple people automatically. Tracking multiple targets is a difficult problem, especially

5.2. TRACKING MULTIPLE TARGETS 97

if the identities of the bounding boxes across time are to be established.

In contrast to using mean shift tracking to track individual targets, the classifiers

developed in Chapters 3 and 4 can be used. These classifiers generate bounding boxes for

each image, as was described at length in Chapter 3. However, no temporal information

is used, and as a result, the correspondences between bounding boxes across time are not

known. The process of finding these correspondences is referred to as data association,

and this is a necessary prerequisite before any of the recursive Bayesian filters described

in Section 2.2.2 can be used to filter the measurements. A simple heuristic that can be

used to perform data association is to define a distance metric between measurements,

and associate measurements between frames that have the shortest distance measure.

In Equation 2.14 a measurement for the single target tracking problem was defined.

For the multiple target tracking problem, let a set of measurements for a frame at

time t be {z1t , . . . , z
nt
t } where nt is the number of measurements at time t, and a set

of measurements at time t + 1 be {z1t , . . . , z
nt+1

t }. The aim is to create a set of tracks

that consist of disjoint sets of measurements across time. The distance between two

measurements in two consecutive frames can be defined as

d(zlt, z
m
t+1) =

√
zlTt zmt+1. (5.14)

A matrix D ∈ Rnt×nt+1 of the distances between all measurements in two consecutive

frames can be constructed. Each row of this matrix gives the distances between a

measurement at time t and every other measurement at time t+ 1. Thus, for each row

the lowest value of d defines the best match for a measurement at time t. To prevent

matches when all values in a row are very large, a maximum matching distance dmax

is defined. The best match for a measurement is made if the value is less than dmax.

When a match is made, the row and column in the matrix that correspond to the match

are removed, so that the same measurement cannot be assigned twice, as in [109]. This

process is repeated until the matrix is empty. If no match is found for a measurement,

then its track is terminated.

Once data association has been performed as described, the measurements that have

been matched together into tracks can be filtered using Kalman filters, described in

detail in Section 2.2.2. The purpose of this filtering is to smooth any abrupt changes

5.2. TRACKING MULTIPLE TARGETS 98

in a sequence of measurements. A measurement vector for this filtering problem may

be defined as zt ∈ R3, where the three entries of the vector are the target’s x-position,

y-position, and scale. The state vector can be defined as xt ∈ R6, where the entries

are the target’s x position, y position, scale, x velocity, y velocity, and “scale velocity”,

which indicates the scale change with respect to time. The state transition model F,

defined in Section 2.2.2 by Equation 2.19, can be chosen to assume constant velocity,

with Gaussian noise used to account for acceleration. The only remaining parameters

to be determined are the process noise covariance matrix Q, and the observation noise

covariance matrix R. These parameters have a major impact on how the Kalman filter

performs, and this issue is explained next.

The state estimate given by a Kalman filter is a combination of the measurement

zt and the predicted state x̂t|t−1, weighted by the process noise and observation noise

covariance matrices Q and R, as shown in Equation 2.23. If the observation noise

has much less power than the process noise, then the estimate is weighted towards

the measurement. Conversely, if the observation noise is greater, then the estimate is

weighted towards the predicted state. Intuitively, the level of noise can be thought of as

the level of uncertainty, with the process noise representing uncertainty for the predicted

state x̂t|t−1 and the observation noise representing uncertainty for the measurement zt,

and so the Kalman estimate is weighted towards the more certain quantity. For these

reasons, experiments in this section use diagonal covariance matrices for Q and R with

both matrices equal to strike a balance between the smoothing introduced by the process

model and the results given by the actual measurements.

Figure 5.6 shows some results for applying Kalman filters to the measurements pro-

duced by a boosting classifier. Results were also computed using a particle filter, but

were found to be very similar. As can be seen, the detector is capable of detecting most

instances of people. The previously described data association method was used to group

the measurements into tracks, and Kalman filters were used to filter the measurements

for each track. It should be noted that the number of tracks created was much larger

than the number of individuals in the video sequence, and so for each individual person

there is a series of “broken” tracks. These track fragments are a common occurrence,

and are often referred to as tracklets [110]. It would be desirable to fuse the tracklets

5.2. TRACKING MULTIPLE TARGETS 99

(a)

(b)

Figure 5.6: Results of running the classifier from Chapter 3 with Kalman filtering on the
same images from the CAVIAR dataset that were used in Figure 5.5. (a) The detector
is able to detect most of the people present in the images. (b) The detector is again able
to most instances, but there is a false positive in the final frame.

5.3. DISCUSSION AND SUMMARY 100

together, in order to have tracks that correspond to each person in a video sequence,

but this is left for future work. It should be noted that the mean shift algorithm from

Section 5.1.1 is considerably faster than the boosting classifier, for which timing results

were given in Section 3.5.2.

5.3 Discussion and Summary

This chapter has examined the problem of tracking people in videos. The mean shift

algorithm was used for single target tracking with initialisation, and a novel, efficient

method was presented for tracking through scale. Results for this method were presented

on the CAVIAR dataset. As this form of tracking is based solely on colour, it is prone

to errors when there are areas of a frame that are of a similar colour to the target.

Therefore, future work could focus on using other features for tracking, such as image

gradient orientations.

The final section of this chapter briefly examined the problem of tracking multiple

people. As was mentioned, an aim for future research would be to create tracks that

correspond to the identities of unique instances of people. This could be achieved by

fusing the tracklets that were obtained, perhaps by deriving appearance models for each

target. A number of other issues would also have to be addressed, such as tracking

through occlusion, reducing the number of false positives and being able to interpolate

measurements to correct false negatives.

Chapter 6

Conclusions and Future Work

This chapter concludes this thesis by summarising the work that has been presented, and

exploring directions for future research. The problem of detecting people in images was

examined in Chapters 3 and 4. The techniques presented used the AdaBoost algorithm

in conjunction with image gradient and CIELUV features. The problem of tracking

people in video was addressed in Chapter 5. Mean shift and recursive Bayesian filters

were used for tracking. Concluding remarks are made in Section 6.1, and ideas for future

work are given in Section 6.2.

6.1 Summary and Concluding Remarks

The problems of detecting and tracking people in images and video were examined in

this thesis. There are vast variety of methods and techniques for tackling these problems,

and this thesis has focused on the use of AdaBoost for detection and mean shift and

recursive Bayesian filters for tracking. The focus of this thesis has been on techniques

that can evaluate a 640× 480 pixel image in less than a second.

The third chapter of this thesis presented a series of experiments concerning the

detection of people in images. The integral channel features detector was used as a

starting point, and the different aspects of this detector were discussed in detail. The

process of extracting gradient orientation and magnitude features, along with features in

the CIELUV colour space was explained. Efficient methods for computing these features

were illustrated. The AdaBoost algorithm was examined in detail, and practical issues

concerning the implementation of the algorithm were explored. Experiments investigated

101

6.1. SUMMARY AND CONCLUDING REMARKS 102

the effects of novelties such as altering the layout of gradient orientation bins, using

normalisation for gradient orientation features, and using contrast sensitive gradient

orientation features. Results were presented to show that the proposed detectors were

both fast and accurate. It was also found that with a better implementation of the

binomial filter, the speed could be improved.

The fourth chapter examined the use of multiple classifiers, and also showed how

boosting classifiers could be used to aid the process of clustering images of people. It was

shown that the accuracy of a boosting classifier could be improved by combining it with

its vertically reflected version. It was also shown that the output of weak classifiers from a

boosting classifier contain information regarding the appearance of input images, and so

by applying K-means clustering to vectors constructed from these outputs, it is possible

to cluster images into sets based on their appearance. Furthermore, these vectors could

be converted to a binary form without much loss of information, to give an even more

compact summary of an image’s appearance. The idea of training multiple classifiers

on clustered data sets was also presented. It was shown that multiple classifiers could

be combined together to yield performance that was better than that of the classifiers

used separately. It was also demonstrated that using multiple classifiers with constant

rejection thresholds prevents the running time from becoming too prohibitive.

The fifth chapter of this thesis examined the problem of tracking people in video.

The mean shift algorithm was used for single target tracking by finding the best match

for a target in terms of RGB colour features. A novel method was presented for mean

shift tracking through scale, which involved interleaving iterations in scale space with

those in the image plane. It was shown that this method possessed several advantages

over competing methods, particularly in regards to the number of kernels used. The

problem of tracking multiple people was also very briefly explored using the classifiers

developed in previous chapters. These were used in conjunction with Kalman filters that

were used to smooth the results for tracks. Measurements were grouped into tracks by a

simple data association method based on a distance metric being computed exhaustively

for measurements from consecutive frames.

6.2. FUTURE WORK 103

6.2 Future Work

There are a number of possible future directions for the research presented in this thesis.

Object detection and tracking are both very active areas of research, and are widely

applicable to a range of scenarios.

One possible direction of research that would make the techniques presented in this

work easier to implement would be aiming to reduce the memory resources and time

taken by the AdaBoost training algorithm. This would make it easier to experiment with

other feature sets and to tune parameters for training. Techniques such SVMs consume

far fewer resources during training. Progress could be made by making the training

process approximate rather than exact. In fact, the training process used throughout this

thesis is already approximate in the sense that only a fraction of the possible features are

considered. Selecting a small representative training set without the use of bootstrapping

could greatly reduce the training time. Faster training would allow the multiple classifier

technique in Chapter 4 to be extended to more clusters.

The multiple classifier technique from Chapter 4 could be extended to work with a

larger number of clusters. With more clusters, it would be expected that the appear-

ance of each individual cluster would become more unique, and this would make each

classifier trained on a cluster more specialised. Classifiers could then be used to infer

useful information regarding appearance, such as the colour of clothing, or the type of

environment. A scheme for sharing weak classifiers between different boosting classifiers

would allow savings in computation.

In this thesis, the problem of detecting people in images was explored. An important

direction for future research would be to extend the developed detectors to work on other

object categories, or even to simply extend the detector to detecting people in more

varied scenarios involving occlusion and articulation. This would likely involve training

multiple classifiers for each pose of an object class. Training detectors for multiple object

categories introduces new possibilities. Contextual cues can be used to aid detection, by

incorporating information on the spatial distribution of different object classes in relation

to one another. For example, people tend to appear level with vehicles, and both appear

below the sky. Also, features could be shared between object categories to reduce the

computation at test time. Such an idea has already been presented [111], but has not

6.2. FUTURE WORK 104

been extensively tested on newer, more difficult object detection benchmarks. Grammar

models [46] represent an interesting field of research, where detectors are composed of

parts, and a set of rules can be used to generate multiple detectors. At present though,

the grammar must be manually designed, and results have only been presented for a

single object category.

In Section 2.1, it was explained that the majority of object detection methods are

comprised of a feature transformation and a machine learning algorithm. This has been

the case with all the detectors presented in this thesis. A major issue with this approach

is the difficulty in selecting a suitable feature transformation for a particular machine

learning algorithm. Too often, this process effectively involves trial and error, leading

to the criticism that research in object detection is more “art” than science. A major

goal for object detection research that would also have implications in other research

fields would be to develop a technique that would dispense with or automate the feature

transformation selection process. Progress has recently been made in this direction by

using neural networks for object detection with raw pixel intensities as the input values

[29], and have achieved state of the art results. However, neural networks are slow to

train and current implementations are slower to run than other alternatives, and so

techniques developed with other machine learning algorithms will continue to remain

relevant.

With tracking, future work could incorporate three dimensional scene information.

This would be particularly useful to handle occlusion in a principled manner. Also, it

would enable a better approach towards filtering, as motion models and measurements

could be mapped to real world co-ordinates. This would require the use of a calibrated

camera [112]. Camera calibration is an extensive field of research itself, but an interesting

approach would be to guide the calibration by tracking people. As the average height of a

person is known, this information can be leveraged to provide a rough initial calibration

for a camera, which can be refined thereafter.

Effective tracking could also be used to extract features based on motion. These

features, which would contain temporal information unlike the features used throughout

this thesis, could capture motion that is characteristic of pedestrians. However, such

features would not improve detection performance on static images.

6.2. FUTURE WORK 105

The problem of tracking multiple targets was very briefly examined in this thesis.

This is an extremely challenging problem which is the subject of ongoing research. The

main difficulty lies in grouping measurements into tracks that correspond to unique tar-

gets across time. Approaches that could be explored in future that would be compatible

with the boosting classifiers developed in this thesis would include methods that formu-

late multiple target tracking as a network flow problem [113], and methods that perform

data association through Markov chain Monte Carlo methods [114].

The results presented in this thesis have used the INRIA person dataset, the ETH

pedestrian dataset and the CAVIAR dataset. When only a single dataset is used, it is

possible that any improvements in performance indicates overfitting rather than better

generalisation performance. Better conclusions regarding the performance of techniques

can be drawn from testing them on multiple datasets. Such tests can be time consuming,

but allow for deeper forms of analysis, such as exploring the effect of bias in datasets

[115]. Thus, future work could incorporate more varied and difficult datasets, which

would also be helpful to determine which future directions for research would result in

the largest improvements in performance.

Bibliography

[1] J. Losty and P. Watkins, “Computer vision for industrial applications,” Software

Microsystems, vol. 2, no. 5, pp. 130–138, 1983.

[2] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks

for image classification,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 3642–3649, 2012.

[3] G. Thomas, “Sports TV applications of computer vision,” in Visual Analysis of

Humans (T. B. Moeslund, A. Hilton, V. Krger, and L. Sigal, eds.), pp. 563–579,

Springer London, 2011.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), vol. 1, pp. 886–893, 2005.

[5] Caltech Pedestrian Detection Benchmark. http://www.vision.caltech.edu/

Image_Datasets/CaltechPedestrians/.

[6] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evalua-

tion of the state of the art,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 34, pp. 743–761, Apr. 2012.

[7] R. Layne, T. M. Hospedales, and S. Gong, “Towards person identification and

re-identification with attributes,” in Computer Vision ECCV 2012. Workshops

and Demonstrations (A. Fusiello, V. Murino, and R. Cucchiara, eds.), vol. 7583

of Lecture Notes in Computer Science, pp. 402–412, Springer Berlin Heidelberg,

2012.

106

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/

BIBLIOGRAPHY 107

[8] Z. Liu and S. Sarkar, “Improved gait recognition by gait dynamics normalization,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 6,

pp. 863–876, 2006.

[9] J. Candamo, M. Shreve, D. Goldgof, D. Sapper, and R. Kasturi, “Understand-

ing transit scenes: A survey on human behavior-recognition algorithms,” IEEE

Transactions on Intelligent Transportation Systems, vol. 11, no. 1, pp. 206–224,

2010.

[10] W. Knight, “Volvo demos a nifty cyclist detection system.” MIT Technology Re-

view, Mar. 2013.

[11] C. Urmson and W. Whittaker, “Self-driving cars and the urban challenge,” IEEE

Intelligent Systems, vol. 23, no. 2, pp. 66–68, 2008.

[12] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,

D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp,

D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen,

I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and

S. Thrun, “Junior: The Stanford entry in the urban challenge,” Journal of Field

Robotics, vol. 25, pp. 569–597, Sept. 2008.

[13] E. Guizzo, “How Google’s self-driving car works,” IEEE Spectrum Online, vol. 18,

Oct. 2011.

[14] J. Lee, “Hacking the Nintendo Wii remote,” IEEE Pervasive Computing, vol. 7,

no. 3, pp. 39–45, 2008.

[15] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-

man, and A. Blake, “Real-time human pose recognition in parts from single depth

images,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

vol. 2, p. 3, 2011.

[16] M. Sun, H. Su, S. Savarese, and L. Fei-Fei, “A multi-view probabilistic model for

3D object classes,” in IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 1247–1254, 2009.

BIBLIOGRAPHY 108

[17] M. J. Choi, A. Torralba, and A. Willsky, “A tree-based context model for object

recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 34, no. 2, pp. 240–252, 2012.

[18] D. Gavrila and V. Philomin, “Real-time object detection for “smart” vehicles,” in

IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 87–93,

1999.

[19] S. Dupont and J. Luettin, “Audio-visual speech modeling for continuous speech

recognition,” IEEE Transactions on Multimedia, vol. 2, no. 3, pp. 141–151, 2000.

[20] D. Ferrucci, “Build Watson: an overview of DeepQA for the Jeopardy! challenge,”

in 19th ACM international conference on Parallel Architectures and Compilation

Techniques (PACT), pp. 1–2, 2010.

[21] J. Bennett and S. Lanning, “The Netflix prize,” in Proceedings of KDD cup and

workshop, p. 35, 2007.

[22] M. J. Kearns and U. V. Vazirani, An introduction to computational learning theory.

Cambridge, MA, USA: MIT Press, 1994.

[23] C. M. Bishop, Pattern Recognition and Machine Learning. Information Science

and Statistics, Springer, 1st ed., 2007.

[24] K. Tieu and P. Viola, “Boosting image retrieval,” in International Journal of

Computer Vision, pp. 228–235, 2000.

[25] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New features and insights

for pedestrian detection,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1030–1037, 2010.

[26] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional Journal of Computer Vision, vol. 60, pp. 91–110, Nov. 2004.

[27] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY, USA:

Oxford University Press, 1st ed., 1995.

BIBLIOGRAPHY 109

[28] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural Computation, vol. 18, pp. 1527–1554, July 2006.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing

Systems 25 (NIPS), pp. 1097–1105, 2012.

[30] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,”

Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cam-

bridge University Press, 2004.

[32] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector ma-

chine learning for interdependent and structured output spaces,” in Proceedings of

the 21st International Conference on Machine learning (ICML), (New York, NY,

USA), p. 104, ACM, 2004.

[33] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-

of-parts,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1385–1392, 2011.

[34] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, Oct. 2001.

[35] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky, “Hough forests for

object detection, tracking, and action recognition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 33, no. 11, pp. 2188–2202, 2011.

[36] P. Viola and M. Jones, “Robust real-time object detection,” International Journal

of Computer Vision, vol. 57, no. 2, pp. 137–154, 2002.

[37] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statis-

tical view of boosting,” The Annals of Statistics, vol. 38, no. 2, 2000.

[38] C. Huang, H. Al, B. Wu, and S. Lao, “Boosting nested cascade detector for multi-

view face detection,” in 17th International Conference on Pattern Recognition

(ICPR), vol. 2, pp. 415–418, 2004.

BIBLIOGRAPHY 110

[39] I. Laptev, “Improvements of object detection using boosted histograms,” in British

Machine Vision Conference (BMVC), vol. 6, pp. 949–958, 2006.

[40] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learn-

ing and an application to boosting,” Journal of Computer and System Sciences,

vol. 55, no. 1, pp. 119–139, 1997.

[41] C. Papageorgiou and T. Poggio, “Trainable pedestrian detection,” in International

Conference on Image Processing (ICIP), vol. 4, pp. 35–39, 1999.

[42] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection using a

cascade of histograms of oriented gradients,” in IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 1491–1498,

2006.

[43] X. Wang, T. Han, and S. Yan, “An HOG-LBP human detector with partial oc-

clusion handling,” in 12th IEEE International Conference on Computer Vision

(ICCV), pp. 32–39, 2009.

[44] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object detection

with discriminatively trained part-based models,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[45] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,

“The PASCAL visual object classes (VOC) challenge,” International Journal of

Computer Vision, vol. 88, pp. 303–338, June 2010.

[46] R. B. Girshick, P. Felzenszwalb, and D. Mcallester, “Object detection with gram-

mar models,” in Advances in Neural Information Processing Systems 24 (NIPS),

pp. 442–450, 2011.

[47] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,” in British

Machine Vision Conference (BMVC), vol. 2, p. 5, 2009.

[48] P. Dollár, S. Belongie, and P. Perona, “The fastest pedestrian detector in the

west,” in British Machine Vision Conference (BMVC), vol. 2, 2010.

BIBLIOGRAPHY 111

[49] P. Dollár, R. Appel, and W. Kienzle, “Crosstalk cascades for frame-rate pedestrian

detection,” in Proceedings of the 12th European Conference on Computer Vision

(ECCV) - Volume Part II, pp. 645–659, Springer Berlin Heidelberg, 2012.

[50] R. Benenson, M. Mathias, R. Timofte, and L. Van Gool, “Pedestrian detection at

100 frames per second,” in CVPR, pp. 2903–2910, June 2012.

[51] INRIA Person Dataset. http://pascal.inrialpes.fr/data/human/.

[52] P. Dollar, Z. Tu, H. Tao, and S. Belongie, “Feature mining for image classification,”

in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–

8, 2007.

[53] S. Maji, A. Berg, and J. Malik, “Classification using intersection kernel support

vector machines is efficient,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1–8, 2008.

[54] A. Ess, B. Leibe, and L. Van Gool, “Depth and appearance for mobile scene

analysis,” in 11th IEEE International Conference on Computer Vision (ICCV),

pp. 1–8, 2007.

[55] M. Enzweiler and D. Gavrila, “Monocular pedestrian detection: Survey and ex-

periments,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 31, no. 12, pp. 2179–2195, 2009.

[56] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A

benchmark,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 304–311, June 2009.

[57] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Computing

Surveys, vol. 38, Dec. 2006.

[58] E. Parzen, “On estimation of a probability density function and mode,” The An-

nals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[59] M. P. Wand and M. C. Jones, Kernel Smoothing. Monographs on statistics and

applied probability, Boca Raton (Florida), London, New York: Chapman and

Hall/CRC, 1st ed., 1994.

http://pascal.inrialpes.fr/data/human/

BIBLIOGRAPHY 112

[60] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature

space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 5, pp. 603–619, 2002.

[61] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 17, pp. 790–799, Aug. 1995.

[62] G. Bradski, “Real time face and object tracking as a component of a perceptual

user interface,” in Fourth IEEE Workshop on Applications of Computer Vision

(WACV), pp. 214–219, Oct. 1998.

[63] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 564–577,

May 2003.

[64] A. Elgammal, R. Duraiswami, and L. Davis, “Probabilistic tracking in joint

feature-spatial spaces,” in IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR), vol. 1, pp. 781–788, June 2003.

[65] R. Collins, “Mean-shift blob tracking through scale space,” in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2,

pp. 234–240, June 2003.

[66] T. Lindeberg, “Feature detection with automatic scale selection,” International

Journal of Computer Vision, vol. 30, pp. 79–116, Nov. 1998.

[67] G. Hager, M. Dewan, and C. Stewart, “Multiple kernel tracking with SSD,” in

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), vol. 1, pp. 790–797, June 2004.

[68] M. Fashing and C. Tomasi, “Mean shift is a bound optimization,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 471–474, Mar.

2005.

[69] Z. Fan, M. Yang, and Y. Wu, “Multiple collaborative kernel tracking,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 29, pp. 1268–

1273, July 2007.

BIBLIOGRAPHY 113

[70] R. Kalman, “A new approach to linear filtering and prediction problems,” Trans-

actions of the ASME - Journal of Basic Engineering, vol. 82, pp. 35–45, Mar.

1960.

[71] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions

on Signal Processing, vol. 50, pp. 174–188, Feb. 2002.

[72] S. M. Ross, Introduction to Probability Models. Orlando, FL, USA: Academic

Press, Inc., 9th ed., 2006.

[73] G. Welch and G. Bishop, “An introduction to the Kalman filter,” Tech. Rep. TR

95-041, 2004.

[74] A. H. Jazwinski, Stochastic Processes and Filtering Theory. San Diego, CA, USA:

Academic Press, Inc., 1970.

[75] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to nonlinear

systems,” in International Symposium on Aerospace/Defense Sensing, Simulation

and Controls, vol. 3, pp. 2–3, Apr. 1997.

[76] E. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear esti-

mation,” in IEEE Adaptive Systems for Signal Processing, Communications, and

Control Symposium (AS-SPCC), pp. 153–158, 2000.

[77] Y. Rui and Y. Chen, “Better proposal distributions: object tracking using un-

scented particle filter,” in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), vol. 2, pp. 786–793, 2001.

[78] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling

methods for Bayesian filtering,” Statistics and Computing, vol. 10, pp. 197–208,

2000.

[79] M. Isard and A. Blake, “CONDENSATION-conditional density propagation for

visual tracking,” International Journal of Computer Vision, vol. 29, pp. 5–28,

1998.

BIBLIOGRAPHY 114

[80] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,”

Journal of the American Statistical Association, vol. 94, no. 446, pp. 590–599,

1999.

[81] C. Musso, N. Oudjane, and F. Le Gland, “Improving regularised particle filters,”

in Sequential Monte Carlo Methods in Practice (A. Doucet, N. de Freitas, and

N. Gordon, eds.), Statistics for Engineering and Information Science, pp. 247–271,

Springer New York, 2001.

[82] Z. Khan, T. Balch, and F. Dellaert, “A Rao-Blackwellized particle filter for Eigen-

tracking,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 2, pp. 980–986, 2004.

[83] C. Rasmussen and G. Hager, “Probabilistic data association methods for tracking

complex visual objects,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, pp. 560–576, June 2001.

[84] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on

Automatic Control, vol. 24, pp. 843–854, Dec. 1979.

[85] J. Vermaak, A. Doucet, and P. Perez, “Maintaining multimodality through mix-

ture tracking,” in Ninth IEEE International Conference on Computer Vision

(ICCV), vol. 2, pp. 1110–1116, Oct. 2003.

[86] K. Okuma, A. Taleghani, N. d. Freitas, J. J. Little, and D. G. Lowe, “A boosted

particle filter: Multitarget detection and tracking,” in Computer Vision - ECCV

2004 (T. Pajdla and J. Matas, eds.), vol. 3021 of Lecture Notes in Computer

Science, pp. 28–39, Springer Berlin Heidelberg, 2004.

[87] R. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 39, pp. 1152–1178, Oct.

2003.

[88] B.-N. Vo and W.-K. Ma, “The Gaussian mixture probability hypothesis density

filter,” IEEE Transactions on Signal Processing, vol. 54, pp. 4091–4104, Nov. 2006.

BIBLIOGRAPHY 115

[89] N. Whiteley, S. Singh, and S. Godsill, “Auxiliary particle implementation of prob-

ability hypothesis density filter,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 46, pp. 1437 –1454, July 2010.

[90] R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion. Norwood,

MA, USA: Artech House, Inc., 2007.

[91] B. Han, Y. Zhu, D. Comaniciu, and L. Davis, “Visual tracking by continuous den-

sity propagation in sequential Bayesian filtering framework,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 31, pp. 919–930, May 2009.

[92] G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative

Data and Formulae. Wiley Series in Pure and Applied Optics, Wiley-Interscience,

2 ed., Aug. 2000.

[93] F. Porikli, “Integral histogram: a fast way to extract histograms in Cartesian

spaces,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 1, pp. 829–836, 2005.

[94] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms as gradient

descent,” in In Advances in Neural Information Processing Systems 12 (NIPS),

pp. 512–518, 2000.

[95] J. Cooley and J. Tukey, “An algorithm for the machine calculation of complex

Fourier series,” Mathematics of Computation, vol. 19, no. 90, pp. 297–301, 1965.

[96] N. Dalal, Finding people in images and videos. PhD thesis, Institut National

Polytechnique de Grenoble, July 2006.

[97] K. Ali, F. Fleuret, D. Hasler, and P. Fua, “A real-time deformable detector,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 2,

pp. 225–239, 2012.

[98] R. Benenson, M. Markus, T. Tuytelaars, and L. Van Gool, “Seeking the strongest

rigid detector,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 3666–3673, June 2013.

BIBLIOGRAPHY 116

[99] L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR), vol. 2, pp. 236–243, 2005.

[100] P. Viola, J. C. Platt, and C. Zhang, “Multiple instance boosting for object detec-

tion,” in Advances in Neural Information Processing Systems 18 (NIPS), pp. 1417–

1426, Jan. 2007.

[101] P. Viola and M. Jones, “Fast and robust classification using asymmetric AdaBoost

and a detector cascade,” in Advances in Neural Information Processing System 14

(NIPS), pp. 1311–1318, 2001.

[102] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab, “Dominant orientation

templates for real-time detection of texture-less objects,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2257–2264, June 2010.

[103] S. Salvador and P. Chan, “Determining the number of clusters/segments in hier-

archical clustering/segmentation algorithms,” in 16th IEEE International Confer-

ence on Tools with Artificial Intelligence (ICTAI), pp. 576–584, 2004.

[104] L. Fei-Fei and P. Perona, “A Bayesian hierarchical model for learning natural

scene categories,” in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), vol. 2, pp. 524–531, 2005.

[105] B. Babenko, P. Dollár, Z. Tu, and S. Belongie, “Simultaneous learning and align-

ment: Multi-instance and multi-pose learning,” in Workshop on Faces in “Real-

Life” Images: Detection, Alignment, and Recognition, Oct. 2008.

[106] T. Malisiewicz, A. Gupta, and A. Efros, “Ensemble of exemplar-SVMs for object

detection and beyond,” in IEEE International Conference on Computer Vision

(ICCV), pp. 89–96, 2011.

[107] A. Nabout and B. Tibken, “Object shape recognition using Mexican hat wavelet

descriptors,” in IEEE International Conference on Control and Automation

(ICCA), pp. 1313–1318, June 2007.

BIBLIOGRAPHY 117

[108] CAVIAR Test Case Scenarios, 2004. http://homepages.inf.ed.ac.uk/rbf/

CAVIAR/.

[109] B. Wu and R. Nevatia, “Detection and tracking of multiple, partially occluded

humans by Bayesian combination of edgelet based part detectors,” International

Journal of Computer Vision, vol. 75, no. 2, pp. 247–266, 2007.

[110] W. Ge and R. T. Collins, “Multi-target data association by tracklets with unsu-

pervised parameter estimation,” in British Machine Vision Conference (BMVC),

vol. 2, p. 5, 2008.

[111] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual features for mul-

ticlass and multiview object detection,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 29, no. 5, pp. 854–869, 2007.

[112] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

Cambridge University Press, 2nd ed., 2004.

[113] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-object track-

ing using network flows,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1–8, 2008.

[114] B. Benfold and I. Reid, “Stable multi-target tracking in real-time surveil-

lance video,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 3457–3464, 2011.

[115] A. Torralba and A. Efros, “Unbiased look at dataset bias,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 1521–1528, 2011.

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Statement of Originality
	Copyright Declaration
	List of Symbols
	List of Abbreviations
	Introduction
	Objectives
	Motivation
	Original Contributions
	Thesis Outline

	Background
	Object Detection
	Person and Pedestrian Detection
	Evaluation Methodology
	The INRIA Person Dataset

	Tracking
	Kernel-Based Tracking
	Recursive Bayesian Filters

	Conclusions

	Detecting People in Images
	Features
	Image Filtering
	Gradient Channels
	CIELUV Channels
	Channel Features
	Summary

	Learning a Detector
	AdaBoost
	Decision Trees
	Implementation Issues
	Summary

	Running a Detector
	Image Rescaling
	Padding Integral Histograms
	Resizing Bounding Boxes
	Non-maximum suppression
	Summary

	Results
	Default Settings
	Image Filtering
	Orientation Bin Layout
	Normalising Gradient Channels
	Contrast Sensitive Features

	Improving the Speed of Boosting Classifiers
	Constant Rejection Thresholds
	Results

	Discussion and Summary

	Using Multiple Detectors
	Using Reflected Classifiers
	Results
	Classifier Speed
	Summary

	Using Multiple Classifiers
	K-means clustering
	Applying Clustering to Image Windows
	Training Multiple Classifiers
	Calibrating Classifiers
	Results
	Classifier Speed

	Discussion and Summary

	Tracking People in Video
	Mean Shift Tracking
	Mean Shift Tracking Through Scale
	Results

	Tracking Multiple Targets
	Discussion and Summary

	Conclusions and Future Work
	Summary and Concluding Remarks
	Future Work

	Bibliography

