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Aerial LiDAR-based 3D Object Detection and
Tracking for Traffic Monitoring
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1Innovation Technologies Laboratories, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
2Missouri University of Science and Technology, Rolla, Missouri, USA

3Higher School of Communications of Tunis, University of Carthage, Tunis, Tunisia

Abstract—The proliferation of Light Detection and Ranging
(LiDAR) technology in the automotive industry has quickly
promoted its use in many emerging areas in smart cities and
internet-of-things. Compared to other sensors, like cameras and
radars, LiDAR provides up to 64 scanning channels, vertical and
horizontal field of view, high precision, high detection range, and
great performance under poor weather conditions. In this paper,
we propose a novel aerial traffic monitoring solution based on
Light Detection and Ranging (LiDAR) technology. By equipping
unmanned aerial vehicles (UAVs) with a LiDAR sensor, we
generate 3D point cloud data that can be used for object detection
and tracking. Due to the unavailability of LiDAR data from the
sky, we propose to use a 3D simulator. Then, we implement
PointVoxel-RCNN (PV-RCNN) to perform road user detection
(e.g., vehicles and pedestrians). Subsequently, we implement an
Unscented Kalman filter, which takes a 3D detected object as
input and uses its information to predict the state of the 3D box
before the next LiDAR scan gets loaded. Finally, we update the
measurement by using the new observation of the point cloud and
correct the previous prediction’s belief. The simulation results
illustrate the performance gain (around 8%) achieved by our
solution compared to other 3D point cloud solutions.

Index Terms—Traffic monitoring, deep learning, detection,
tracking, UAV, LiDAR

I. INTRODUCTION

The global population is expected to reach around 8.5
billion in 2030, which will significantly elevate urbanization
challenges [1]. With the increase in traffic volume, a lack
of adequate traffic management would result in significant
economic and environmental losses, e.g., energy consumption,
greenhouse gas emissions, and time delays. To cope with these
challenges, smart traffic management are needed , such as
smart parking integration [2], advanced safety and pollution
analytics [3], electronic road pricing and toll collection [4],
and video traffic detection systems. Although the commonly
used systems are based on Closed-Circuit Television (CCTV),
traffic management systems are still suffering from limited
control over the traffic network via standard viewpoints.

To overcome the limitations of gathering traffic data via
CCTV, video collection utilizing Unmanned Aerial Vehicles
(UAVs) has lately been proposed in [5] due to their ability
to monitor a huge spectrum of roadways. In fact, UAVs can
monitor a broad range of roadways by shifting altitude and
location. Moreover, UAVs can operate on-demand by traveling
to a specific area to observe unpredictable situations such as
road traffic accidents. On the other hand, due to its rapid, pre-
cise, and accurate data collection, Light Detection and Ranging
(LiDAR) technology has shown great potential in a variety
of applications such as terrestrial ecology, agriculture [6],

astronomy [7], hydrology, and atmospheric science. However,
LiDAR is becoming increasingly popular in transportation and
navigation. For instance, it has demonstrated exceptional per-
formance in monitoring traffic congestion and guiding vehicles
to park safely. LiDAR is also used for autonomous vehicle
navigation, collision avoidance [4], and autonomous cruise
control [8]. LiDAR’s high spatial resolution and mapping
accuracy make it an ideal solution for planning transport and
road networks [9]. Furthermore, it provides the high-grade
reliability needed while preserving anonymity among road
users. Indeed, the point cloud data generated from LiDARs is
a convenient container for storing, processing, and visualizing
3D raw scanner measurements.

There are a collection of multidimensional points that rep-
resent physical surfaces. In particular, 3D object detection has
emerged as an active research topic in the field of computer
vision. However, due to the sparse and complex nature of 3D
point cloud data, this type of data remains a challenging task.
In [10], the authors proposed a solution to capture traffic video
using UAVs integrated with onboard cameras, where the data
is processed in the cloud. Their aerial prototype can collect
and transmit real-time videos that include a vehicle detection
stage based on the Haar cascade model [11] and a frame-by-
frame tracking stage. Although this method exhibits excellent
performance, it does not overcome the lack of information in
2D images by using conventional cameras. In [12], the authors
introduced a robust multiple object detection and tracking
(MODT) algorithm for a non-stationary base, using multiple
3D LiDARs for perception. The solution can be applied in
real-time on a vehicle-embedded computer. However, such an
approach uses multiple 3D ground LiDARs, which can signif-
icantly increase the cost and the complexity of its deployment
in further applications.

In this paper, we propose the employment of a traffic
monitoring system using LiDAR-equipped UAVs. The goal is
to create a high-performance 3D object detection and tracking
solution geared toward traffic monitoring. The framework uses
raw 3D LiDAR data as input to perform multi-target object
detection while keeping track of the identified objects in a
robust and real-time manner. Firstly, we investigate the main
challenges of using LiDAR-equipped UAVs to capture real-
world traffic. However, due to the unavailability of real-world
LiDAR data from the sky, we simulate various traffic scenarios
using a 3D simulator to generate our own dataset. After-
ward, for car and pedestrian detection, we use PointVoxel-
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Fig. 1: A screenshot illustrating the developed environment on
Webot simulator.

RCNN(PV-RCNN) and Point-RCNN as 3D detection models.
Our proposed tracking algorithm employs a Kalman filter
to predict the trajectory of the detected object, estimate the
motion model, and tackle the data-matching problem. The
evaluation results show that the proposed solution achieves
promising results in both the detection and tracking stages.

II. DATA ACQUISITION

Deep learning algorithms depend heavily on the amount of
training data on the models. This data can be available as open-
source data or collected in real life. However, the existing
dataset may not meet the requirements of the investigated
problem. Furthermore, collecting the data may be a time-
consuming and labor-intensive task. For this work, we propose
to use Webots simulator for data collection. Webots is an open-
source 3D robot simulator that offers highly detailed simu-
lations with realistic capabilities [13]. It allows the creation
of different traffic scenarios and scenes containing moving
ground objects, as shown in Fig. 1. We generate point cloud
data using a LiDAR laser sensor attached to a static UAV
operating at a flight altitude of 50 m above the ground level.

The diversity and size of the dataset used to train the deep
learning algorithm can significantly affect the learning. In this
work, we simulated different scenarios while mixing between
pedestrians and vehicles, as well as single-target and multi-
target situations. Further, we consider different shapes and
sizes of the objects to maximize the diversity of the dataset.
A sample illustration of a point cloud capture generated from
Webots are given at the top of Fig. 2.

III. PROPOSED ARCHITECTURE

The main goal of this work is to implement a 3D detection
and tracking solution that is able to automatically detect and
track pedestrians and vehicle objects given 3D raw point cloud
capture as input.

The proposed system consists of three main modules, as
illustrated in Fig. 2:

1. Labeling stage: it consists of annotating the raw point
cloud with the semi-automatic labeling tool labelCloud.

2. Detection stage: we pass the annotated 3D data to PV-
RCNN model.

3. Tracking stage: the detected object is given to the Kalman
filter to predict its kinematic state, like position and velocity.

Fig. 2: Overview of the proposed architecture for detecting
and tracking road users.

a) Data Labeling: The LiDAR sensor specifications used
in this work provide 180-degree spatial information and yield
a minimum of 20, 000 3D points per measurement. This repre-
sentation is our raw input to the object detection and tracking
model. However, before proceeding with these steps, we first
annotate every collected point cloud by drawing a cuboid,
which is a 3D bounding box located around every object in the
point cloud scene. We use labelCloud which is an annotating
tool built for versatile use and aims at supporting all common
point cloud file formats and label formats for storing 3D
bounding boxes. Using labelCloud, the point cloud captures
are labeled by cuboid annotation. Each object is assigned to a
class and its dimensions (height, width, and length) together
with the coordinates of its centroid. Afterward, we implement
an automatic algorithm that transforms the labels into TXT
files as follows:〈

classname
〉〈

w
〉〈

l
〉〈

h
〉〈

R
〉〈

x
〉〈

y
〉〈

z
〉

where Class name is the class to which the object belongs,
mainly cars or pedestrians, w, l, and h are the height, width,
and length of the object, respectively, x, y, and z are the
3D object location in LiDAR coordinates, respectively, and
R is the rotation of the cuboid around the Z-axis in LiDAR
coordinates.

b) PV-RCNN for Object Detection: PV-RCNN is an
efficient and accurate 3D deep learning model designed to
improve 3D object detection from raw point cloud. Contrary
to the previous detection models which are either Voxel-based
or Point-based, PV-RCNN combines the pros of Point-based
and Voxel-based models [14].

The PV-RCNN model main steps employed with the pro-
posed LiDAR-equipped UAV are given as:
• 3D sparse convolution backbone: a sequence of sparse
convolutions is used to downsample the point cloud by 8 ×.
The layers’ intermediate outputs are then saved for use in the
Voxel Set Abstraction layer.
• Bird’s eye view converter: the features are stacked on top
of each other to form a 3D array of H×W×Fetaures.
• Sectorized keypoint sampling: only points under a certain
radius of these proposals are deemed significant, and the
remaining are discarded. Following that, the point cloud is split
into sectors, and the pertinent keypoints are acquired using
farthest point sampling (FPS) in each sector.
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• Voxel set abstraction and keypoint weighting: after
extracting the keypoints from preceding layers, we retrieve
the known features from the point cloud using vector pool
aggregation. With the features of each keypoint, a multi-
layer perceptron is used to evaluate and multiply the relative
importance associated with each keypoint.
• Vectorpool aggregation: the point cloud is subdivided into
N neighborhoods, each with its center point. After that, each
neighborhood is split into a number of high-density voxels.
• ROI-GRID pooling: the 3D proposal’s keypoint features
are grouped to RoI-grid points with several receptive fields.
• Box refinement and confidence prediction: finally, two
sibling sub-networks are used for confidence prediction and
proposal refinement, and then, the refinement branch predicts
the size and location residuals in relation to the previous 3D
proposal box.
passed to the tracker.

A. Unscented Kalman Filter for Object Tracking

Kalman Filter (KF) was introduced by R. E. Kalman in
1960, to deal with the issue of retrieving the output signals
from noisy measurement variables [15]. The measurement
variables are used as input signals based on the statistical
properties of the system noise and measurement noise, and the
unknown variables are the filter’s output. However, the Kalman
filter can only be applied if the state and measurement models
are both linear.

However, this condition is extremely hard to meet in real
system applications, including our problem. The suggested
system will differ significantly from the current system in
some ways. Furthermore, the noise environment in real-world
applications is more complicated. Many improved filtering
techniques have been proposed to overcome these limitations
to extend the implementation of KF like the Extended Kalman
Filter (EKF) and the Unscented Kalman Filter (UKF). UKF
was introduced [16] to realize tracking by employing a non-
linear model. UKF opts to use an approximation based on so-
called sigma points from a Gaussian distribution. Pedestrians
and vehicles in congested areas are expected to use multiple
motion models rather than a linear constant velocity, as they
would in a less congested area. Second, tracking multiple
objects in an environment at the same time is a difficult task.
Therefore, we propose a tracking solution based on UKF to
address these two issues.

In a nutshell, assuming that the prior probability distribution
of the state variable X is follow a Gaussian distribution (ν,σ2)
UKF uses a non-linear transformation of the system along
with posterior probability distribution to predict the mean
value and the covariance matrix. The movement of cars and
pedestrians is considered a combination of movements in the
x-axis, y-axis, and z-axis. We need to use an appropriate
equation to represent the dynamic behavior of each movement.
The state vector is represented with a 13-dimensional vec-
tor T=(x,y,z,θ,l,w,h,vx,vy ,vz ,ax,ay ,az) describing the current
state of an object’s trajectory where vx, vy , and vz represent
the velocity while ax, ay , and az represent the acceleration

in 3D space. A nonlinear system is thus used to define the
moving model for the i-th object, as follows:

xi(n) = xi(n− 1) + vxi(n− 1)dt+
1

2
axi(n− 1)dt2,

yi(n) = yi(n− 1) + vyi(n− 1)dt+
1

2
ayi(n− 1)dt2.

The process of tracking objects with UKF, can be resumed
in three main steps:
Step 1: For each detected object, we take the bounding box
with dimension, center position, and yaw. We define the state
vector T , the transition matrix F , and the measurement matrix
H .
Step 2: Use the UKF to predict each object’s position and
velocity.
Step 3: Update the state vector with measurement values of
each object’s location.

IV. RESULTS & DISCUSSIONS

This section presents selected results to show the perfor-
mance of our proposed method.

a) Data Augmentation (DA): it is essential to improve
learning performance and avoid overfitting. Therefore, we
employ three 3D DA techniques, including: (i) Random global
scaling: every point cloud is multiplied by a scale factor be-
tween [0.97,1.3] to obtain a new point. (ii) Global translation:
we translate all the points in the point cloud along X , Y , and
Z values by offset values. The offset values are three values
drawn at random from a normal distribution, with the zero
mean and different variance values from a set of 0.2, 0.3, 0,4,
and 0.5. (iii) Global rotation around Z axis: we rotate every
point in the point cloud along the Z axis as defined in the
following:

P ′ = R× P

where P is a point cloud defined with (x, y, z), × is the
matrix multiplication operator and R is the rotation matrix
characterized by rotation angle β randomly picked from −π/4
to π/4.

b) Training Phase: Point-RCNN is an object detec-
tion framework 3D detector that offers accurate and precise
3D detection performance by working directly on 3D point
clouds [17]. It uses Pointnet++ as a backbone for point-wise
feature learning [18]. It is composed of two main sub-stages:
bottom-up 3D proposal generation stage and canonical 3D Box
refinement. In our work, we used Point-RCNN as a baseline
model to compare it to our proposed solution. The dataset
contains over 4000 frames. Each frame represents a minimum
of one car and one pedestrian. Our model is trained with
80% of the data, and the remaining 20% of the data is used
for validation. The PointRCNN’s two-stage sub-networks are
trained independently. In contrast to the stage-2 sub-network,
which is trained for 30 epochs with batch size 256, the stage-1
sub-network is trained for 100 epochs with batch size 16. The
learning rate is 0.002 for both stages. For PV-RCNN model,
the training details were set as: the feature dimensions of the
four-level 3D voxel CNN are 16, 32, 64, 64, respectively.
The two neighboring radii of each grid point in the RoI-grid
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Fig. 3: Snapshots of the 3D point cloud detection.

pooling operation are (7m, 7m). The voxel size is (0.03 m, 0.03
m, 0.05 m) in each axis, the batch size is 48, the optimizer is
ADAM optimizer and the learning rate is 0.01 for 80 epochs.
Training each model takes 2-4 hours to converge with Pytorch
and 2 NVIDIA RTX A6000 GPUs.

c) Quantitative Results: the classification, position, and
dimension data of the cuboid box are obtained from the
detection results. The detecting performance of the predictive
model is evaluated by the overlap volumes between the cuboid
boxes and ground truth boxes based on the evaluation dataset.
As mentioned in Table 1, the detection results are evaluated
by using the Average Precision metric with a threshold 0.7
for cars and 0.55 for pedestrians. The mean average precision
(mAP) is calculated using 11 recall positions.

TABLE I: Object detection performance and DA impact.

AP (Cars) AP (Pedestrians) mAP

Point-RCNN w/o DA 82.56 79.37 80.96

Point-RCNN with DA 86.41 82.98 84.67

PV-RCNN w/o DA 89.32 86.19 87.75

PV-RCNN with DA 92.51 90.33 91.42

We compare the networks that were trained on the samples
after augmentation with those that were trained on the raw
samples to validate the impact of DA. After applying our DA
algorithm, the mAP of the Point-RCNN has been improved by
about 4.6%, and the mAP of PV-RCNN has been increased by
about 4.18%. This implies that the augmented modes have a
greater chance of making an accurate prediction. This is due to
the model now having a wider variety of object representations
and positions from which to learn features. The achieved
Average Precision by Point-RCNN and PV-RCNN in testing
were 77.54 and 91.42 respectively. In Fig. 3, we provide an
example of the detected road users using LiDAR from an aerial
view.

d) Tracking Results: to inspect the tracking performance,
we chose 2 samples from the dataset, which were selected to
compare our UKF tracker with EKF tracker.

In Fig. 4, we can notice that EKF and UKF trackers
followed the real values perfectly when the pedestrian was
on a linear trajectory. When the pedestrian shifted to a non-
linear trajectory, the EKF had a bias and continued to follow
a linear line, while our proposed UKF tracker had a more
accurate estimation.

In Fig. 5, we simulate a car with a 10 mph speed. After x =
75 m, we kept fluctuating the speed by -5mph and +5 mph. As
can be seen, the EKF values had some bias since the velocity
is varying continuously. However, the UKF was not heavily
affected by velocity change. This shows the capability of the

Fig. 4: Tracking spatial evolution of a pedestrian with a fixed
speed.

Fig. 5: Tracking spatial evolution of a car with fluctuated
speed.

UKF tracker to follow different target trajectories moving with
non-constant speed.

In the case of having multiple objects, we identify every
detected object by giving it a specific index. Subsequently, we
assign detections to tracks using the James Munkres’s variant
of the Hungarian assignment algorithm. We then decide which
tracks are missing and which detections should start with new
ones. We compute the indices of assigned and unassigned
tracks, as well as the indices of unassigned detection. To do
this, we calculate the cost matrix, which is a t by d matrix. T
equals the number of tracks in this matrix, and d represents
the number of detections.

V. CONCLUSION

In this paper, we proposed an aerial LiDAR-based solution
to detect and track moving objects, primarily pedestrians and
cars. A comparison between two detection models operating
on the 3D LiDAR point cloud, namely Point-RCNN, and PV-
RCNN, was performed and has shown the superiority of the
PV-RCNN method. The object detection stage is then followed
by a tracking stage based on the Unscented Kalman filter,
which estimates the target’s state vector and enables effective
tracking of the detected mobile road users.
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