256,583 research outputs found

    Release of anandamide from blood cells

    Get PDF
    Background: Endogenous ligands of cannabinoid receptors ( endocannabinoids), in particular anandamide ( arachidonylethanolamide), have been recognized as being of crucial importance in a variety of physiological functions. Plasma concentrations of anandamide have been measured in a number of investigations; however, discrepant data on "normal'' anandamide plasma concentrations were reported. Since this might be caused by pre-analytical variables, we investigated the impact of different sample handling conditions on measured plasma anandamide concentrations. Methods: Blood samples were taken from healthy volunteers in EDTA- or heparin-containing tubes; whole blood samples were kept at +4 degrees C, room temperature, or 37 degrees C, respectively, for up to 120 min before obtaining plasma by centrifugation. Plasma anandamide concentrations were measured by an isotope-dilution liquid chromatography tandem mass spectrometry ( LC-MS/MS) method. Results: A marked time- and temperature-dependent increase in plasma anandamide concentrations ex vivo was observed in both EDTA- and heparin-containing tubes. Mean anandamide concentrations approximately doubled when EDTA samples were kept at 4 degrees C for 60 min before centrifugation {[}immediately centrifuged, 1.3 mg/L ( SD 0.3 mg/L); 2.8 mg/L ( SD 0.5 mg/L) after storage for 60 min; n=12). After storage of heparinized whole-blood samples for 120 min at 37 degrees C, a mean plasma anandamide concentration of 11.9 mg/L ( SD 1.8 mg/L) was found. In cell-free plasma, no increase in anandamide concentrations was found. Conclusion: Anandamide is released from blood cells ex vivo at a very high rate; therefore, strictly standardized pre-analytical protocols have to be applied for plasma anandamide determination

    Characterization of a Putative Hemolysin Expressed by Sneathia amnii, a Preterm Birth-associated Pathogen

    Get PDF
    The gram-negative bacteria Sneathia amnii is a poorly-characterized commensal of the female urogenital tract frequently associated with adverse clinical outcomes such as bacterial vaginosis (BV), amnionitis, and preterm labor. To investigate its potential role in virulence, we sought to identify and characterize virulence determinants produced by S. amnii in an effort to better understand the pathogenesis of infectious preterm birth. Through sequencing of the Sn35 genome (type strain of S. amnii), we identified two genes with amino acid sequence similarity and structural similarity to the filamentous hemagglutinin (FHA) protein of Bordetella pertussis and its Type Vb transporter. Because S. amnii requires human blood components for growth and lyses human red blood cells, we hypothesized that this two-partner system was involved in hemolysis. To characterize the function of the FHA-like protein, a purified, recombinant peptide was used to induce an antibody response. The polyclonal rabbit serum against the antigenic peptide was incubated with S. amnii to block the FHA-like protein prior to the addition of red blood cells. Pre-treatment with the antiserum inhibited hemolytic activity against human erythrocytes suggesting that the FHA-like protein is somehow involved in hemolysis. Additionally, we found that the hemolytic activity of S. amnii was highly specific against human red blood cells; it did not lyse horse or rabbit red blood cells and only minimally lysed sheep red blood cells. Further research efforts will focus on purifying functional FHA-like protein for further characterization and to determine whether it is sufficient to induce hemolysis.https://scholarscompass.vcu.edu/uresposters/1249/thumbnail.jp

    Viscoelastic transient of confined Red Blood Cells

    Get PDF
    The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D107\eta_{mem}^{2D}\sim 10^{-7} N\cdots\cdotm1^{-1}. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D\eta_{mem}^{2D}, and reconcile seemingly conflicting conclusions from previous works

    Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases

    Get PDF
    Hematopoiesis is a complex biological process that leads to the production and regulation of blood cells. It is based upon differentiation of stem cells under the action of growth factors. A mathematical approach of this process is proposed to carry out explanation on some blood diseases, characterized by oscillations in circulating blood cells. A system of three differential equations with delay, corresponding to the cell cycle duration, is analyzed. The existence of a Hopf bifurcation for a positive steady-state is obtained through the study of an exponential polynomial characteristic equation with delay-dependent coefficients. Numerical simulations show that long period oscillations can be obtained in this model, corresponding to a destabilization of the feedback regulation between blood cells and growth factors. This stresses the localization of periodic hematological diseases in the feedback loop

    Following red blood cells in a pulmonary capillary

    Full text link
    The red blood cells or erythrocytes are biconcave shaped cells and consist mostly in a membrane delimiting a cytosol with a high concentration in hemoglobin. This membrane is highly deformable and allows the cells to go through narrow passages like the capillaries which diameters can be much smaller than red blood cells one. They carry oxygen thanks to hemoglobin, a complex molecule that have very high affinity for oxygen. The capacity of erythrocytes to load and unload oxygen is thus a determinant factor in their efficacy. In this paper, we will focus on the pulmonary capillary where red blood cells capture oxygen. We propose a camera method in order to numerically study the behavior of the red blood cell along a whole capillary. Our goal is to understand how erythrocytes geometrical changes along the capillary can affect its capacity to capture oxygen. The first part of this document presents the model chosen for the red blood cells along with the numerical method used to determine and follow their shapes along the capillary. The membrane of the red blood cell is complex and has been modelled by an hyper-elastic approach coming from Mills et al (2004). This camera method is then validated and confronted with a standard ALE method. Some geometrical properties of the red blood cells observed in our simulations are then studied and discussed. The second part of this paper deals with the modeling of oxygen and hemoglobin chemistry in the geometries obtained in the first part. We have implemented a full complex hemoglobin behavior with allosteric states inspired from Czerlinski et al (1999).Comment: 17 page

    Swinging of red blood cells under shear flow

    Get PDF
    We reveal that under moderate shear stress (of the order of 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tanktreading (TT) motion. A model based on a fluid ellipsoid surrounded by a visco-elastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the TT period) upon decreasing the shear stress, a shear stress-triggered transition towards a narrow shear stress-range intermittent regime of successive swinging and tumbling, and a pure tumbling motion at lower shear stress-values.Comment: 4 pages 5 figures submitted to Physical Review Letter

    The buckling instability of aggregating red blood cells

    Get PDF
    Plasma proteins such as fibrinogen induce the aggregation of red blood cells (RBC) into rouleaux, which are responsible for the pronounced shear thinning behavior of blood, control the erythro- cyte sedimentation rate (ESR) a common hematological test and are involved in many situations of physiological relevance such as structuration of blood in the microcirculation or clot formation in pathological situations. Confocal microscopy is used to characterize the shape of RBCs within rouleaux at equilibrium as a function of macromolecular concentration, revealing the diversity of contact zone morphology. Three different configurations that have only been partly predicted before are identified, namely parachute, male-female and sigmoid shapes, and quantitatively recovered by numerical simulations. A detailed experimental and theoretical analysis of clusters of two cells shows that the deformation increases nonlinearly with the interaction energy. Models indicate a forward bifurcation in which the contacting membrane undergoes a buckling instability from a flat to a de- formed contact zone at a critical value of the interaction energy. These results are not only relevant for the understanding of the morphology and stability of RBC aggregates, but also for a whole class of interacting soft deformable objects such as vesicles, capsules or cells in tissues.Comment: 22 pages, 12 figure

    An epidemiologic study of early biologic effects of benzene in Chinese workers.

    Get PDF
    Benzene is a recognized hematotoxin and leukemogen, but its mechanisms of action in humans are still uncertain. To provide insight into these processes, we carried out a cross-sectional study of 44 healthy workers currently exposed to benzene (median 8-hr time-weighted average; 31 ppm), and unexposed controls in Shanghai, China. Here we provide an overview of the study results on peripheral blood cells levels and somatic cell mutation frequency measured by the glycophorin A (GPA) gene loss assay and report on peripheral cytokine levels. All peripheral blood cells levels (i.e., total white blood cells, absolute lymphocyte count, platelets, red blood cells, and hemoglobin) were decreased among exposed workers compared to controls, with the exception of the red blood cell mean corpuscular volume, which was higher among exposed subjects. In contrast, peripheral cytokine levels (interleukin-3, interleukin-6, erythropoietin, granulocyte colony-stimulating factor, tissue necrosis factor-alpha) in a subset of the most highly exposed workers (n = 11) were similar to values in controls (n = 11), suggesting that benzene does not affect these growth factor levels in peripheral blood. The GPA assay measures stem cell or precursor erythroid cell mutations expressed in peripheral red blood cells of MN heterozygous subjects, identifying NN variants, which result from loss of the GPA M allele and duplication of the N allele, and N phi variants, which arise from gene inactivation. The NN (but not N phi) GPA variant cell frequency was elevated in the exposed workers compared with controls (mean +/- SD, 13.9 +/- 8.4 mutants per million cells versus 7.4 +/- 5.2 per million cells, (respectively; p = 0.0002), suggesting that benzene produces gene-duplicating but not gene-inactivating mutations at the GPA locus in bone marrow cells of exposed humans. These findings, combined with ongoing analyses of benzene macromolecular adducts and chromosomal aberrations, will provide an opportunity to comprehensively evaluate a wide range of early biologic effects associated with benzene exposure in humans
    corecore